
lows. Section 2 presents a comprehensive description
of our motivation to work on this proposal; Section 3
deals with high-level interaction models suitable to be
applied in the context of MOWS and presents the lin-
guistic support we have designed; Section 4 presents
our framework for implementing aspect-oriented mul-
tiparty coordination. Finally, Section 5 shows our main
conclusions.

2. MOTIVATION

Distributed object computing is nowadays consid-
ered the way forward in devising multi-organisational
solutions. Many leading companies have realised that
the Internet is more than a sell-and-buy arena, and
offers many opportunities to thrive in the web world.

As the Internet settles, companies are finding ways
to take advantage of its capabilities, and there is an
ever-increasing demand for frameworks that typically
describe multi-organisational systems as collections of
components that are exposed to programmers as ser-
vices. Such services are usually implemented as a set of
interrelated business objects that encapsulate a protocol
for a logical unit of work, e.g., transferring money, pro-
cessing an order, updating a customer record, or mov-
ing a task to the next person in a workflow queue.

From an abstract point of view, business objects
model real-world actors and data, and this is the reason
why they greatly enhance communication amongst
developers and customers and help reduce production
costs. In theory, programmers should only care about
the functionality they provide. Unfortunately, this
vision is far too idealistic because business objects are
seldom isolated in a system, and they have to work
coordinately with other objects in order to achieve a
common goal. This implies that business objects are
more than simple abstract descriptions, and they are
tightly coupled with the underlying interaction model
and the technology used to communicate them.

Multi-Party Coordination in the Context of MOWS
R. Corchuelo, J. A. Pérez, and A. Ruiz

Universidad de Sevilla, Dpto. de Lenguajes y Sistemas Informdticos, Avda. de la Reina Mercedes, s/n. Sevilla 41.012,
Spain

e-mail: corcku@lsi.us.es

Abstract—Separation of concerns has been presented as a promising tool to tackle the design of complex sys-
tems in which cross-cutting properties that do not fit into the scope of a class must be satisfied. In this paper,
we show that interactions amongst a number of objects can also be described separately from functionality,
which enhances reusability of functional code and interaction patterns. We present our proposal in the context
of Multi-Qrganisational Web-Based Systems (MOWS) and also present a framework that provides the infra-
structure needed to implement multiparty coordination as an independent aspect.

1. INTRODUCTION

Isolating interaction from computation has been
paid much attention because it benefits from enhancing
modularity, understandability or reusability, but also
from being the best way to help relieve well-known
problems such as the inheritance anomaly. Unfortu-
nately, aspect-oriented languages, such as COOL, RIDL
[l], ASPECTJ [2] or AML [3] do not succeed in isolating
computation from interaction with other objects in a
system. COOL, for instance, allows us to define synchro-
nization policies, but interactions with other objects are
embedded into the functional code.

Therefore, objects are dependent on the interaction
model used to coordinate them. This model usually
relies on classical point-to-point communication prim-
itives and, thus, emphasizes a number of entities
exchanging binary message and requires a specific pro-
tocol for coordinating them that is usually scattered
amongst functionality. Besides point-to-point commu-
nication, many other interaction models have been pro-
posed in the literature [4]. Each one has its own
strengths and weaknesses, so that there is no univer-
sally accepted interaction model, but a wide spectrum
of alternatives. Thus, it is desirable for aspect-oriented
languages dealing with interaction to exist. Such lan-
guages enhance reusability of functional code and
coordination patterns that can be applied to similar sit-
uations as long as adequate mapping languages existed.
Such languages also allow programmers to decide
which interaction model better suits his or her needs,
which has a direct effect on understandability, main-
tainability, and evolvability.

In this paper, we present a proposal that aims at
describing aspect-oriented interaction [5] in the context
of Multi-Organisational Web-Based System, which are
systems composed of coarse-grained business objects
that reside on different organisations and need to coop-
erate frequently [6, 7]. The paper is organized as fol-

Furthermore, this technology is advanced enough
and should be applied as automatically as possible, so
that business objects remain as much abstract, handy,
and reusable as possible. Thus, the concerns of
abstractness and reusability argue for an aspect-ori-
ented solution to the problem of separation amongst
coordination, interaction models, and functionality.
This way, business objects would not embed interac-
tions into their functionality, and they might be coordi-
nated using different interaction models depending on
the context in which they are going to be reused.

We think that automatization of the software devel-
opment process is the key to succeeding in the Internet
world, and separating interaction models from compu-
tations brings designers many opportunities to tests
new approaches or ideas without modifying the func-
tional code of their business objects.

3. A HIGH-LEVEL INTERACTION MODEL
FOR MOWS

Client/server primitives such as remote procedure
call or message passing are the de facto industrial stan-
dard for object interaction. Although this model has
been proven to be appropriate in the local set, MOWS
require careful thinking about problems, such as partial
failure, increased latency, or language interoperability
[7, 8]. It is not surprising then that many researchers
have put a great deal of effort on researching advanced
interaction models that are more appropriate to
describe distributed systems [4].

JavaSpaces [9] have been recently proposed as a
Linda-based [10] model for coordinating Java objects
on the web. This technology provides a mechanism for
storing a group of related objects and retrieving them
based on a value-matching lookup for specified fields,
and it allows the programmer to easily build distributed
protocols that can be designed as flows of objects
through one or more servers. If your application can be
modeled this way, JavaSpaces technology will provide
many benefits, but, often, workflow is not enough, spe-
cially in the field of MOWS and e-commerce applica-
tions. The reason is that many problems in this context
require a number of objects to cooperate in order to
achieve a global goal: transferring money from a bank
to another by means of a point of sales terminal, reach-
ing a virtual agreement in an auction sale, paying taxes,
and so on.

For instance, assume we have to design a debit-card
system [11], which is one of the basic behaviour pat-
terns in a distributed e-commerce application. Such a
system is composed of a set of point of sales terminals
and a number of computers that hold customer
accounts and merchant accounts, and the goal is to
design a business object responsible for transferring
money from a customer account to a merchant account
every time a customer pays with his or her debit card.
With JavaSpaceS, for instance, it is relatively easy to

devise a simple solution to solve this problem, but it
would have two main drawbacks: first, the whole trans-
action can be viewed as an atomic event coordinating
three objects, but this interaction model leads to a solu-
tion in which this event needs to be decomposed into a
number of method calls that need to be coordinated by
means of a specific protocol based on a tuple space; fur-
thermore, this protocol may be reusable in other sys-
tems, but current technology merges protocols and
functionality so much that sorting out the difference is
almost impossible.

In general, solutions that are based on the classical
binary client/server model are difficult to apply in prob-
lems in which several objects need to cooperate simul-
taneously in order to achieve a common goal. Current
technology provides transactional servers for grouping
individual client/server interactions, but there is no
clear separation between the problem to be solved and
the underlying technology to be used.

The need for a higher-level interaction model has
been recognised as one of the main goals in the design
of the new Microsoft’s.NET platform. Built on the stan-
dard integration fabric of XML and Internet protocols,
the Microsoft.NET platform brings programmers a new
way to develop advanced applications that can integrate
or orchestrate any group of services on the Internet into
a single solution. Unfortunately, the orchestrating com-
ponent of the .NET platform does not succeed in sepa-
rating high-level coordination from the underlying
technology. Thus, this solutions are tightly coupled
with the way they are implemented.

These concerns argue for an interaction model that
allow to describe coordination patterns amongst an
arbitrary number of object as much independently as
possible from the underlying technology. Such an inter-
action model exists, and it is usually referred to as the
Multiparty Interaction Model [12, 13]. It is well suited
to capture the essence of problems in which several
objects residing on different organisations need to
cooperate coordinately and simultaneously, and it pro-
vides a higher level of abstraction because it allows
them to exchange data and perform some joint actions
coordinately without taking implementation details
into account. Multiparty interactions hide several
underlying point-to-point communication operations,
as well as the order in which they must occur or the
algorithm used to achieve multiparty synchronization.
The programmer does not need to care about these low
level details, which can be generated in a completely
automatic way, thus easing maintainability.

This is the reason why it is not surprising that it has
also attracted the attention of the designers of the well-
known Catalysis method [14], which is a next genera-
tion UML-based approach for the systematic business-
driven development of component-based systems.
Catalysis has been used by Fortune 500 companies in
fields including finance, telecommunication, insurance,
manufacturing, embedded systems, process control,

flight simulation, travel and transportation, or systems
management, thus proving the adequacy of this novel
interaction model in so different application domains.

We have focused on this interaction model because,
although dozens of papers dealing with it exist, none
has addressed the problems of open multiparty interac-
tions, passive objects, or aspect-orientation.

3.1. Linguistic Support

In order to support the above-described high-level
interaction model, we have designed CAL [5], which is
a language that aims at describing coordination patterns
amongst a number of objects in a way that is indepen-
dent from computation or other aspects. Coordination
patterns are not dependent on the objects they coordi-
nate, so that they can be easily reused.

In this section, we glance at CAL and describe its
main features by means of the debit-card system. This
problem can be easily described by means of multi-
party interactions because a three-party interaction
needs to be carried out when a clerk inserts a debit card
into a terminal in order to transfer funds from a cus-
tomer’s account to a merchant’s account. Figure 1
shows a description of the debit-card system in CAL that
is analyzed in the following subsections.

3.1.1. Describing interactions. Interactions are
defined by means of the following syntax:

interaction <name>
[<participating object descriptions>]
(<slot descriptions>)
where <read/write permissions>

Each interaction is given a different name, a number
of participating objects, a number of slots, and some
read/write permissions. In the example in Fig. 1, an
interaction called transfer has been defined, and it is a
three-party interaction that coordinates a terminal that
plays role term and two bank accounts that play roles
source and dest. This interaction is intended to be the
channel by means of which they can coordinate, so that
funds can be transferred from the source account to the
destination account.

Interactions are equipped with a local state that is
composed of several slots. In our example, interaction
transfer has two slots called sum and approval. sum is
used to store the amount of money to be transferred,
and approval is a flag that indicates whether the source
account can transfer such a sum to the destination
account. These slots make up a local state that simu-
lates the temporary global combined state in IP [13],
being the most important difference that an object does
not need to have access to the local state of other
objects in order to get the information it needs.

The read/write permissions state which participant
in an interaction can read and/or write each slot. In our
example, the terminal is responsible for storing the sum
to be transferred in slot sum, whereas it only reads slot

approval in order to display a message on its screen; the
account playing role source can read slot sum to decide
whether it can transfer such a sum, and it can write slot
approval to store its decision; finally, the destination
account can read both slots, but it is not allowed to write
any of them.

Every object can offer participation in one or more
interactions simultaneously. In every offer, a partici-
pant states which role it plays in the interaction, and
may establish constraints on what objects should play
the other roles. An interaction may be executed as long
as a set of objects satisfying the following constraints is
found: (i) there is an object per role willing to partici-
pate in that interaction and play that role; (ii) those
objects agree in interacting with each other, i.e., the
constraints they stablish are satisfied. A set of objects
which can execute an interaction is what we call an
enablement.

Since exclusion must be guaranteed, an object can-
not commit to more than one interaction at a time. But,
since an object can offer participation simultaneously
in more than one interaction, it can be in more than one
enablement. So, when two or more enablements share
objects, they cannot be executed simultaneously. The
set of enablements that cannot be executed are said to
be refused.

3.1.2. Describing behaviours. Each interaction
requires a number of objects, and they must behave the
right way. We use the following syntax to describe
behaviour patterns:

behaviour <name>
requires <inter face>

{

<behaviour statement>
}

Each one is given a different name and requires a
number of operations (i.e., an interface) to be imple-
mented by the objects onto which it can be mapped. In
the example in Fig. 1, two behaviour patterns are
described: Terminal, which describes the behaviour of
a terminal, and Account, which describes the behaviour
of a bank account, both as debtor and creditor.

Pattern Terminal requires that the operations in
interface ITerminal (Fig. 2) be implemented by the
objects that can behave the way it describes:
Wait_For_Sale, that encapsulates the details concern-
ing waiting for a new sale and interactions with the
clerk initiating it, Get_Price that can be invoked after a
new sale has been initiated and reports its price,
Get_Customer_Account and Get_Merchant_Account,
that provide references to the involved accounts, and
Report_Results, that can be invoked to report whether a
transfer has been done or not. Similarly, pattern
Account requires that the three operations in the inter-
face I Account be implemented: Charge, to withdraw
money from an account, Pay_In, to pay money into it,

and Authorise_Payment, that decides whether an
account can afford a payment or not.

The operations required by a behaviour pattern are
the operations whose execution is coordinated by means
of multiparty interactions. In order to model how a termi-

nal or an account cooperate, we use interaction state-
ments of the form I[expression_list]{comm_stat}, where
I is the name of an interaction, the expressions in the
brackets identify the objects with which the object exe-
cuting such a statement is interested in cooperating, and

interaction transfer;

[term as Terminal; source, dest as Account]
(int sum, boolean approval)
where

term writes sum, reads approval;
source writes approval, reads sum;
dest reads approval, sum;

behaviour Terminal requires
interface ITerminal;

{
*[Wait For Sale();

/* Try to engage interaction 'transfer' together with the
* customer’s account as source and the merchant’s account
* as destination */

transfer[term!self,
source!Get_Customer_Account(),
dest!Get_Merchant_Account()]{

sum = Get_Price();
Report_Result(approval);

}
]

}
behaviour Account requires

interface IAccount;
{

[/ Behave as a source account: Try to engage 'transfer'
* together with any terminal or destination account */

transfer [source! self] {
approval = Authorize Payment (sum);

[approval Charge(sum);];

}
[]
/* Behave as a destination account: Try to engage 'transfer'

* together with any terminal or source account */
transfer [dest! self] {

[approval Pay_In(sum);];
}

]
}

Fig. 1. A description, of the debit-card system in CAL.

comm_stat is a communication statement involving the
slots of interaction I. The expressions between brackets
are of the form of role!id, that means that the role must
be played by the object identified by id. The expression
role!self is used to denote the role that the object that
issues the offer is playing in the interaction. If no
expression is given for a role of the interaction, it is
assumed that the object accepts that any object can play
such a role in the interaction.

Therefore, the behaviour of a terminal can be sum-
marized as follows: it is an infinite loop where it, first,
waits for a new sale operation to begin and, then, tries
to engage interaction transfer together with the objects
that model the customer’s account and the merchant’s
account. If this interaction is fired, the terminal partici-
pating in it executes then its communication code,
which consists of storing the sum to be transferred in
slot sum, and displaying a message on its screen. The
behaviour of an Account also consists of an infinite loop
where engaging interaction transfer is offered either as
a source account or a destination account. If the inter-
action where an account plays the first role is fired, it
checks whether it can afford the charge, stores the
result in slot approval, and updates its balance accord-
ingly. If the interaction in which it plays the other role

is fired, it simply reads slot approval and, then, updates
its balance accordingly.

Obviously, a multiparty interaction delays an object
that tries to read a slot that has not been initialized yet;
e.g., a terminal that executes the statement
Report_Result(approval) is delayed until the source
account participating in the same interaction has writ-
ten slot approval. Thus, the communication statements
are executed in a critical region where no race condi-
tions can occur.

3.1.3. Mapping behaviours onto object classes.
Behaviour patterns are abstract because they describe
how an object that implements a set of operations coop-
erates with others. These operations are also abstract,
and they usually need to be adapted when we want to
map a behaviour onto an object class.

CAL provides a simple mechanism for adapting
operations, and it is shown in Fig. 3. In this example,
behaviour Account has been mapped onto a Java class
called bank Account, but it does not provide the opera-
tions this pattern requires. For instance, there is no
operation for deciding whether charging a sum is
affordable or not. Fortunately, the expression getBal-
ance() >= sum implements it

This mapping allows us to write fully abstract, reus-
able behaviour specifications. This is important,
because in other aspect languages such as COOL, RIDL,
ASPECTJ, or AML, aspect specifications reference the
classes onto which they are applied by name, which
causes dependencies between components and aspects,
and makes difficult their effective reuse.

4. A FRAMEWORK FOR ASPECT-ORIENTED
OPEN MULTI-PARTY COORDINATION

We have carefully designed a framework that offers
a number of high-level services for implementing CAL.
We have arrive at its design largely through experimen-
tation. In [15, 16], we presented two solutions to the
problem, but, unfortunately, they lacked a systematic
way to change the middleware layer or the algorithm
used to select amongst conflicting interactions. Given
that new results in this area appear continuously, we

interface ITerminal {
void Wait_For_Sale();
int Get_Price();
OID Get_Customer_Account();
OID Get_Merchant_Account();
void Report .Result (boolean done);

}

interface IAccount {
void Charge(int sum);
void Pay_In(int sum);
boolean Authorize_Payment(int sum);

}

Fig. 2. Interfaces required by behaviours in Fig. 1.

class bankAccount {
private int balance;

public void updateBalance(int sum) { balance +a sum; }

public boolean getBalanceQ { return balance; }
}
map behaviour Account onto class bankAccount where

Charge(sum) = updateBalance(-sum);
Pay_In(sum) = updateBalance(+sum);

Authorize Payment(sum) = (getBalance() >= sum);

Fig. 3. Mapping for behaviour Account onto class bank Account.

decided to design a framework able to deal with them
easily.

Our two main design goals were, thus, the follow-
ing:

1. The framework should be extensible, so that new
middlewares or coordination algorithms may be easily
incorporated. This enhances the choices the designer
has to produce the final version of his or her business
objects independently from the functionality he or she
has programmed.

2. It should allow for passive objects. The traditional
multiparty interaction model assumes that every object
participating in a multiparty interaction is active. How-
ever, objects are passive in may real-world problems,
and a good framework should be able to deal with them
without compromising effectiveness.

Figure 4 shows a snapshot of a running system that
sketches the architecture of our solution. It is composed
of the following elements.

The gatekeeper. It is one of the most important
components of our architecture because it is responsi-
ble for tasks such as security policies, billing, generat-
ing and managing UUIDs, locating interaction coordi-
nators, or interacting with the system administrator.

Interaction coordinators. They are responsible for
detecting enabled interactions and arbitrating amongst
conflicting ones, i.e., interactions that cannot be exe-
cuted simultaneously because they involve a common
object.

Proxies. In our framework, objects are considered
to be external entities that use proxies to interact. This
makes a clean separation between functionality and
coordination details and simplifies the framework
implementation because it does only need to care about
proxies, independently from the objects they represent.

Communication managers. They are responsible
for managing communication amongst a number of
objects that have committed to an interaction. This way,
many different occurrences of the same interaction may

be running simultaneously and independently from
each other. Communication managers are also respon-
sible for coping with faults during multiparty commu-
nication [17].

At first glance, it might seem that the gatekeeper is
a bottleneck component, but it is not. The reason is that
the functionality it offers is used only when new objects
or interactions are added to the system, or when an
object needs to fetch references to the coordinators
responsible for the interactions in which it may be
interested. It is also worth noting that nothing prevents
us from creating several instances of the gatekeeper,
thus reducing the impact of a crash. However, we usu-
ally refer to this component as “the gatekeeper”
because all of its instances are functionally equivalent.

It is also worth mentioning that having proxies does
not amount to inefficiency because they reside in the
same memory space as the objects they represent. Fur-
thermore, separating coordination concerns from busi-
ness objects at run-time is worthwhile because this
draws a clear line between the functionality they encap-
sulate and the way they interact with others. This facil-
itates the construction of a weaver because proxies may
be implemented using a combination of design patterns
that are collectively called the Role Object Pattern [18].
This helps keep the different contexts in which a busi-
ness object may participate separated, and system con-
figuration is simplified.

Figure 5 shows the class framework we have
designed. Notice that our design is general enough to
accommodate several middlewares, as well as several
coordination or communication algorithms proposed in
the literature. The designer may make a choice depend-
ing on the application domain. It is worth mentioning
that proxies implement two interfaces because they
have to communicate with both objects and coordina-
tors. We have split their interface into interface IPart
Proxy, which groups the operations an object needs,

Web
Administration

Tool

Gatekeeper

Repository

ProxyO1

O2 O3

I1

I2

Interaction
Coordinator

Business
Object

Communication
Manager

Fig. 4. The architecture of our solution.

and ICoordProxy, which groups the operations coordi-
nators need.

4.1. Coordination Algorithms

Several solutions to implement multiparty interac-
tions have been proposed in the literature. We have
found a variety of centralized and distributed tech-
niques for implementing this interaction model, but,
unfortunately, most of them have been devised to deal
with a fixed set of objects. Although they may work
well in some MOWS, it is problematical insofar the ser-
vices business objects offer may be used by a changing
set of objects.

An important feature of a good business framework
is that it allows for evolution [18]. Thus, it is needed a

better solution allowing for open interactions in which
the set of objects participating in them is not known
until run time. We have designed an algorithm for deal-
ing with multiparty coordination in this context, which
is referred to as α. It is responsible for two main tasks:
(i) detection of interacting groups, i.e., groups of
objects that are interested in participating in the same
interaction, and (ii) arbitrating amongst conflicting
interactions that share a common object. Therefore, α
was split into two parts referred to as α-SOLVER and α-
CORE [19].

We sketch the main ideas behind α-SOLVER by means
of a simple example depicted in Fig. 6. Assume that our
system has an interaction called I, and that it coordi-
nates three active objects that may play roles P, Q and
R that may behave in some way. Let us also assume that

Middleware

COBRA
Orbacus Java /RMI

“Interface”
ICommMgr

CommMgr

Alpha Core
CommMgr

Zorzo’s
CommMgr

Alpha Coordinator

EM Coordinator

MEM Coordinator

Coordinator “Interface”
ICoordinator

“Interface”
IMiddleware

Proxy

Gatekeeper

Alpha Proxy

EM Proxy

MEM Proxy

“Interface”
IGatekeeper

“Interface”
IPartProxy

“Interface”
ICoordProxy

Fig. 5. Class framework.

p1

p2

q1 q2

r1

I
QP

R

interaction I[P as..., Q as..., R as...]

[R!self]

[P!p
2 , Q!self][P

!p 1
, Q

!se
lf]

[P!self, Q
!q 2]

[P!self, Q!q
1 , R!r1]

Fig. 6. A simple system.

objects p1 and p2 are interested in playing role P, objects
q1 and q2 make an offer to play role Q, and object r1
wants to play role R. The offers are represented by
means of arrows from proxies to coordinators, and each
one is labeled by the list of expressions that identifies
the participants that may engage in the interaction, as
described in section 3.1.2. For instance, the expression
[P!self, Q!q2] offered by p2 means that this object is
willing to play role P in interaction I, that it requires
object q2 to play role Q, but does not care about the
object playing role R.

α-SOLVER processes offers as they arrive and forms
incrementally the consolidation graph in Fig. 7 to
detect groups of objects that are willing to participate in
the same interaction. For instance, assume that the offer
made by p1 arrives first so that α-SOLVER constructs a
consolidation graph with only one node [p1, (q1), (r1)]
that is interpreted in the following way: there is an offer
in which object p1 is willing to play role P, object q1 is
required to play role Q and object r1 is required to play
role R. If the second offer is made by object p2, a new
node of the form [p2,(q2), ()] is added to the graph, but
no connecting node is constructed because the tuples so
far processed cannot be consolidated, i.e., objects p1
and p2 cannot interact together.

If the offer made by q1 is then received, a node of the
form [(p1), q1, ()] is added. Since it consolidates with
[p1, (q1), (r1)], a connecting node of the form [p1, q1, (r1)
is added. It indicates that both p1 and q1 are willing to
participate in interaction I and agree in committing to
this interaction together with object r1. Notice that no
interaction group is found until object r1 makes its
offer. When this happens, two interaction groups are
found simultaneously, but, unfortunately, they are con-
flicting because they share a common participant. Thus,
α-CORE is called to arbitrate amongst this conflicting
groups and decide which one commits to interaction I
first.

The idea behind α-CORE is quite simple because
shared participants are considered to be shared

resources amongst the coordinators responsible for the
interactions in which they are interested. In order for an
interacting group to execute an interaction, α-CORE

must ensure exclusive access to all objects participating
in that interaction. The algorithm we use to lock objects
is based on a simple idea that was presented years ago
in the field of operating systems [20]: α-CORE locks
objects in order of increasing UUID. Although this idea
did not work well in the field of operating systems
because processes are difficult to program so that they
request resources in increasing order, it has been proven
to be quite effective in this context.

4.2. Coordinating Passive Objects

In previous section, we presented a system whose
objects were assumed to be active; i.e., their proxies
send messages to coordinators responsible for the inter-
actions in which they are interested. However, objects
in MOWS tend to be passive in the sense that they offer
services on request, and each interaction has a rela-
tively small set of active objects.

Our framework can deal with such objects using a
simple protocol: each time an active object initiates an
interaction in which a passive object may participate,
the run time system sends a notification to the proxy
associated with that object; if it can participate in that
interaction, the proxy then makes an offer, thus behav-
ing as if its object was active; otherwise, it stores the
notification and re-processes it each time the passive
object it represents changes its state. If one of the active
objects willing to participate in that interaction give up,
the coordinator also notifies the involved passive
objects so that their proxies can stop monitoring the
moment when they are ready to interact.

For instance, assume that objects that play roles P
and Q in the system in Fig. 6 are active and objects that
play role R are passive. On reception of the offer made
by q1, the coordinator of interaction I adds the connect-
ing node [p1, q1, (r1)] to the consolidation graph and

[p1, q1, r1]c [p2, q2, r1]d

[p1, q1, (r1)]a [p2, q2, ()]b

[p1, (q1), (r1)]1 [p2, (q2), ()]2 [(p1), q1, ()]3 [(p2), q2, ()]4 [(), (), r1]5

Fig. 7. Consolidation graph for the system in Fig. 6.

knows that p1 and q1 are willing to interact as soon as r1
is ready to play role R. Thus, the coordinator searches
for such an object and notifies its proxy that it is
requested to participate in interaction I. The proxy then
stores this notification and waits for its object to reach
a state in which it can participate in this interaction. If
its current state allows it to participate, the notification
is immediately replied.

Sometimes, many passive objects reside in the same
machine. In those cases, the designer may decide to
assign a set of objects to the same proxy in order to
improve scalability. Passive objects usually reside on a
database, so that having an individual proxy responsi-
ble for each one may significantly degrade perfor-
mance. In those cases, it is better to use a small set of
proxies managing the whole set of objects in a class.
The ratio between proxies and objects depends com-
pletely on the context, and it is a trade-off between reli-
ability and scalability.

5. CONCLUSIONS
In this paper, we have explored the aspect-oriented

paradigm, the multiparty interaction model, and how
programming distributed systems in the contexts of
MOWS may benefit from both. Separating computation
from coordination encourages reuse, improves compre-
hension, and eases maintenance and evolution of soft-
ware.

We have also presented a framework and a set of
coordination algorithms that can be used to implement
multiparty coordination as a separate aspect and consti-
tutes infrastructure for implementing CAL, which is, as
far as we know, the first aspect-oriented language deal-
ing with such concern in the literature. It also deals with
multi-organisational system and passive objects.

We have implemented the framework using Java 1.2
and Orbacus 3.3.2 and Java/RMI as middlewares, and
we have also conducted some experiments and perfor-
mance analysis on this prototype. Our results show that
using the framework introduces a penalty that is about
20% when compared with a manually developed solu-
tion. Obviously, much work on optimization remains to
be done. However, our proposal is promising because,
although it introduces some performance penalty, our
experiments show that the development time is approx-
imately three times shorter than by using .NET orches-
tration or JavaSpaces. The reason is that the program-
mer does only need to concentrate on developing pure
functionality, independently from the technology used
to coordinate its objects which is dealt with by the
framework and the weaver.

BIOGRAPHIES
Rafael Corchuelo, Associate Professor at the

Department of Computer Languages and Systems of
the University of Sevilla, Spain. Received PhD degree
from this University. Leads Research Group on Distrib-

uted Systems since 1997. Scientific interests: instru-
mentation techniques to support the multiparty interac-
tion model as well as fairness concerns. Reviewer of the
ACM Computing Reviews, Concurrency: Practice and
Experience, Computacion y Sistemas and Communica-
tions of the ACM.

Jose A. Pérez. Received Master Degree in Computer
Science in 1993 and PhD degree in 2000. Worked as a
software engineer and a consultant for companies, such
as Quimisur, in projects concerning embedded real-
time systems. Scientific interest: multiparty coordina-
tion and aspect orientation.

Antonio Ruiz. Received B.S.E and M.S degrees in
Computer Engineering from the University of Sevilla.
Lecturer at the School of Computer Science of the Uni-
versity of Sevilla since 1998. Scientific interests: non-
functional requirements, software architecture, and
component-oriented technologies in web applications.

REFERENCES
1. Lopes, C.V., D: A Language Framework for Distributed

Programming. PhD Thesis, Xerox Palo Alto Research
Center, 1998.

2. Lopes, C.V. and Kiczales, G., Recent Developments in
AspectJ, Object-Oriented Technology: ECOOP’98
Workshop Reader Demeyer S. and Bosch J., Eds.; Lec-
ture Notes in Computer Science, 1998 vol. 1543,
pp. 398-401, Springer.

3. Irwin, J., Loingtier, J.-M., Gilbert, J.R., and Kiczales, G.,
Aspect-oriented Programming of Sparse Matrix Code,
Proc. of the 1997 Int. Sci. Computing in Object-Oriented
Parallel Environments; Lecture Notes in Computer Sci-
ence, 1997, vol. 1343, pp. 249–256, Springer.

4. Papadopoulos, G. and Arbab, F., Coordination Models
and Languages, Advances in Computers, 1998, vol. 46.

5. Corchuelo, R., Pérez, J.A., and Tow, M., A Multiparty
Coordination Aspect Language, ACM Sigplan, 2000,
vol. 35, no. 12, pp. 24–32.

6. Corchuelo, R. and Ruiz, A., Advances in Business Solu-
tions, Nova Science, 2001.

7. Corchuelo, R., Ruiz, A., Mïhlbacher, J.R., and Garcia-
Consuegra, J. Object-oriented Business Solutions,
ECOOP’2001 Workshop Reader, LCNS, Springer, 2001.

8. Ruiz, A., Corchuelo, R., Martín, O., Durán, A., and Toro, M.,
Addressing Interoperability in Multi-organisational
Web-based Systems, European Conf. on Object-Ori-
ented Programming ECOOP’OO, Workshop on Object
Interoperability WOI’QO, Sophia Antipolis, 2000,
pp. 87–96.

9. Freeman, E., Hupfer, S., and Arnold, K., JavaSpaces
Principles, Patterns, and Practice, Addison-Wesley,
1999.

10. Carriero, N., and Gelernter, D., Linda in Context, Com-
mun. ACM, 1989, vol. 32, no. 4, pp. 444–458.

11. Ruiz, A., Corchuelo, R., Pérez, J.A., Durán, A., and Toro, M.,
An Aspect-oriented Approach Based on Multiparty
Interactions to Specifying the Behaviour of a System,
Principles, Logics, and Implementations of High-Level
Programming Languages PLI’99, Workshop on Object-

Oriented Specification Techniques for Distributed Sys-
tems and Behaviours, Paris, 1999.

12. Corchuelo, R., Ruiz, D., Toro, M., and Durán, A.,
Avances en la coordinacidn de objetos activos, Novatica,
2000, vol. 143, pp. 34–37.

13. Francez, N. and Forman, I., Interacting Processes: A
Multiparty Approach to Coordinated Distributed Pro-
gramming, Addison-Wesley, 1996.

14. D’Souza, D.F. and Wills, A.C., Objects, Components,
and Frameworks with UML: The Catalysis Approach,
Reading, Mass.: Addison-Wesley, 1999.

15. Corchuelo, R., Ruiz, D., Toro, M., Prieto, J M., and
Arjona J.L., A Distributed Solution to Multiparty Inter-
action, in Recent Advances in Signal Processing and
Communications, World Sci., 1999, pp. 318–323.

16. Corchuelo, R., Ruiz, D., Toro, M., and Ruiz, A., Imple-
menting Multiparty Interactions on a Network Com-

puter, Proc. of the XXVth Euromicro Conf. (Workshop on
Network Computing), Milan: IEEE Press, 1999.

17. Zorzo, A.F. and Stroud, R.J., A Distributed Object-ori-
ented Framework for Dependable Multiparty Interac-
tions, ACM Sigplan, 1999, vol. 34, no. 10, pp. 435–446.

18. Building Application Frameworks: Object-Oriented
Foundations of Framework Design Fayad, M. and
Schmidt, D.C., Eds., Wiley, 1999.

19. Pérez, J.A., Corehuelo, R.J., Ruiz, D., and Toro, M., A
Framework for Aspect-oriented Multiparty Coordina-
tion, Working Conf. on Distributed Appieations and
Interoperable Systems DAIS’01, Krakow, 2001, Kluwer,
(in press).

20. Coffman, E.G., Elphick, M.J., and Shoshani, A., System
Deadlocks, Computing Surveys, 1971, vol. 3, no. 2,
pp. 67–78.

