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José M. Espinar †1, Isabel Fernández ‡ 2
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‡ Departamento de Matemática Aplicada I, Universidad de Sevilla, 41012 Sevilla, Spain;
e-mail: isafer@us.es

This paper is in honor of Professor Manfredo do Carmo for its 80’th birthday.

Abstract

Following [Ch] and [dCF], we give sufficient conditions for a disk type surface, with
piecewise smooth boundary, to be totally umbilical for a given Coddazi pair. As a conse-
quence, we obtain rigidity results for surfaces in space forms and in homogeneous product
spaces that generalizes some known results.

MSC: 53C42, 53C40.

1 Introduction
It is well known that a totally umbilical surface in R3 is part of either a round sphere or a
plane. Using this result, H. Hopf [Ho] proved that an immersed constant mean curvature (CMC)
sphere in R3 must be a round sphere by introducing a quadratic differential that turns out to be
holomorphic on CMC surfaces, and that vanishes at the umbilic points of the surface. Thus, the
proof follows from the fact that any holomorphic quadratic differential on a sphere must vanish
identically and the previous classification.
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In the case of constant Gaussian curvature (CGC) surfaces, the Liebmann Theorem states
that the only complete surfaces with positive constant Gaussian curvature in R3 are the totally
umbilical round spheres. T. K. Milnor [Mi] gave a proof of the Liebmann Theorem similar to
the one due to Hopf. In fact, she proved that the (2, 0)-part of the first fundamental form of the
surface is holomorphic for the structure given by the second fundamental form if and only if
the Gaussian curvature is constant. Also, the zeroes of this quadratic differential are the umbilic
points.

Thus, the existence of a certain holomorphic quadratic differential is the main tool for the
classification of immersed spheres with constant mean or Gaussian curvature. The underlying
idea for the construction of these two differentials relies on an abstract structure, the Codazzi
pairs, that can be defined on a differentiable surface (for example, in the above situations, the
Codazzi pair consists of the first and second fundamental forms of the surface). Under some
geometrical conditions, a Codazzi pair gives rise to a holomorphic quadratic differential on the
surface that can be used to classify those surfaces that are topological spheres.

In this line, U. Abresch and H. Rosenberg (see [AR] and [AR2]) recently showed the exis-
tence of such a differential for CMC surfaces in the homogeneous spaces with a 4-dimensional
isometry group. These homogeneous space are denoted by E(κ, τ), where κ and τ are constant
and κ − 4τ 2 6= 0. They can be classified as: the product spaces H2 × R if κ = −1 and τ = 0,
or S2 × R if κ = 1 and τ = 0, the Heisenberg space Nil3 if κ = 0 and τ = 1/2, the Berger
spheres S3

Berger if κ = 1 and τ 6= 0, and the universal covering of PSL(2,R) if κ = −1 and
τ 6= 0. Using this differential they were able to classify all the immersed CMC spheres in these
spaces, putting the study of surfaces in homogeneous spaces in a new light (see [AR], [AR2],
[CoR], [FM1], [FM2], [EGR], [ER] and references therein).

In the same spirit, J. A. Aledo, J. M. Espinar and J. A. Gálvez [AEG1] proved that for a
large class of surfaces of CGC in H2 × R and S2 × R there exists a Codazzi pair related with
the the first fundamental form, second fundamental form and height function. In addition, this
pair has constant extrinsic curvature, which gives the existence of a holomorphic quadratic dif-
ferential for any surface of positive constant curvature in H2×R and constant curvature greater
than one in S2 × R. Moreover, the holomorphic quadratic differential vanishes at the umbilic
points of the introduced Codazzi pair, which allows them to classify the complete CGC surfaces.

Regarding surfaces with non-empty boundary, a natural problem is to determine whether
such a surface is part of a totally umbilical sphere. In this way, J. Nitsche [N] showed that
an immersed disk type CMC surface in R3 whose boundary is a line of curvature must be a
part of a totally umbilical surface. On the other hand, J. A. Gálvez and A. Martı́nez [GM]
proved a Liebmann-type theorem for immersed CGC disks in R3 when the boundary is a line
of curvature.

When the boundary is non regular, but piecewise differentiable, J. Choe [Ch] extended
Nitsche’s Theorem under some additional conditions on the singular points at the boundary.
Its proof is based on the control of the zeroes of the holomorphic quadratic differential intro-
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duced by Hopf.
A similar result for surfaces in the product spaces S2 × R and H2 × R was proved by

M.P. do Carmo and I. Fernández in [dCF]. Nevertheless, in this work the mean curvature of
the surface is not assumed to be constant, and therefore the Abresch-Rosenberg differential is
not holomorphic. On the other hand, the required regularity of the surface is more restrictive
than in [Ch]. The control of the zeroes Abresch-Rosenberg differential is achieved here by a
more general condition on the mean curvature, and the use of the following result (see either [J,
Lemma 2.6.1, pp 70] or [HW] where the original proof is done, the version we use here is [J,
Lemma 2.7.1, pp 75]):

Lemma 1. Let f : U → C be a differentiable function defined on a complex domain U ⊂ C,
and suppose that there exists a continuous real-valued (necessarily non negative) function µ
such that

|fz̄| ≤ µ(z)|f(z)|, ∀ z ∈ U. (1)

Then either f ≡ 0 in U or it has isolated zeroes. Moreover, if z0 is an isolated zero of f , there
exists a positive integer k such that locally around z0

f(z) = (z − z0)kg(z), (2)

where g is a continuous non-vanishing function.

Our aim in this work is to show that the results in can be adapted to the general setting of
Codazzi pairs (see Theorem 1 for a precise statement, and Theorems 2 and 3 for its aplicca-
tions). In particular, applied to CMC surfaces in S2 × R or H2 × R this result gives the do
Carmo-Fernández’s Theorem. Moreover, it also generalizes the Martı́nez-Gálvez’s Theorem to
piecewise smooth boundary, and extends to other homogeneous product spaces.

It should be remarked that Lemma 1 has been also a fundamental tool in the classification
of topological spheres with either constant positive extrinsic curvature in H2 × R and S2 × R
(see [EGR]), or constant mean curvature H > 1/

√
3 in Sol3 (see [DM]). Furthermore, it

would not be surprising if Lemma 1 is a key for the classification of topological spheres with
either constant positive extrinsic curvature or constant positive Gaussian curvature in the other
homogeneous spaces, or with constant mean curvature H > 0 in Sol3.

2 Preliminaries
First, we need to state some basic facts on Codazzi pairs (see [Mi] for details).

Let Σ be an orientable surface and (A,B) a pair of real quadratic forms on Σ such that A is
a Riemannian metric and B a quadratic form, such a pair (A,B) is called a fundamental pair.
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Associated to a fundamental pair (A,B), we define the shape operator of the pair as the unique
self-adjoint endomorphism of vector fields S on Σ given by

B(X, Y ) = A(SX, Y ), X, Y ∈ X(Σ).

We define the mean curvature, the extrinsic curvature and the principal curvatures of (A,B)
as half the trace, the determinant and the eigenvalues of the endomorphism S, respectively.

In particular, given local parameters (u, v) on Σ such that

A = E du2 + 2F dudv +Gdv2, B = e du2 + 2f dudv + g dv2,

the mean curvature and the extrinsic curvature of the pair are given, respectively, by

H(A,B) =
Eg − 2Ff +Ge

2(EG− F 2)
, (3)

Ke(A,B) =
eg − f 2

EG− F 2
, (4)

and the skew curvature
q(A,B) = H(A,B)2 −Ke(A,B). (5)

Associated to any fundamental pair (A,B) we define the lines of curvature form W =
W (A,B) by

√
EG− F 2W = (Ef − Fe) du2 + (Eg −Ge) dudv + (Fg −Gf)dv2. (6)

The integral curves for the equationW = 0 are level lines for doubly orthogonal coordinates
and they are called lines of curvature associated to the pair (A,B). Umbilic points are those
where W ≡ 0 for all values of du and dv or, equivalently, if q = 0 at this point. Thus, a
fundamental pair (A,B) is said to be totally umbilical if q(A,B) vanishes identically on Σ. If
we take z = u+ iv a local conformal parameter for the Riemannian metric A, we can define

Q = Q(A,B) :=
1

4
(e− g − 2if) dz2,

that is, Q is the (2, 0)−part of the complexification of B for the conformal structure given by
A. Also, in this setting, it is easy to check that

−2 Im(Q) = W

thus, the lines of curvature associated with a fundamental pair (A,B) are given by

Im(Q) = 0.

Now, we recall the definition of the Codazzi Tensor and Function associated to any funda-
mental pair (A,B) introduced in [AEG3] (see also [Es]).
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Definition 1. Given a fundamental pair (A,B), we define its Codazzi Tensor as

TS : X(Σ)× X(Σ) −→ X(Σ),

TS(X, Y ) = ∇XSY −∇Y SX − S[X, Y ] , X, Y ∈ X(Σ),

here∇ stands for the Levi-Civita connection associated to A and S denotes the shape operator.
Moreover, we define the Codazzi function associated to S as

TS : Σ −→ R

p 7−→ ‖TS(Xp, Yp)‖2

‖Xp ∧ Yp‖2

where X, Y ∈ X(U) are linearly independent vector fields defined in a neighborhood U of p
and

‖X ∧ Y ‖2 := ‖X‖2 ‖Y ‖2 − A(X, Y )2,

‖·‖ is the norm with respect to A.

It is easy to check that the Codazzi Tensor is skew-symmetric and the Codazzi function is
well defined.

Definition 2. A fundamental pair (A,B) is said to be a Codazzi pair if its associated Codazzi
Tensor vanishes identically. This means it satisfies the classical Codazzi equations for surfaces
in a 3-dimensional space form, that is,

ev − fu = eΓ1
12 + f(Γ2

12 − Γ1
11)− gΓ2

11, fv − gu = eΓ1
22 + f(Γ2

22 − Γ1
12)− gΓ2

12, (7)

where Γkij are the Christoffel symbols for the Riemannian metric A w.r.t. the Riemannian con-
nection of A.

Now, we establish a result (proved in [AEG3], see also [Es]) that relates the Codazzi function
associated to (A,B) to the quadratic differential Q defined before.

Lemma 2. Let (A,B) be a fundamental pair on Σ with associated shape operator S. Set
S̃ = S −H Id, where H = H(A,B). Then

TS̃ = 2
|Qz̄|2

λ3
,

or equivalently

|Qz̄|2 =
λ

2

TS̃
q
|Q|2,

where z is a local conformal parameter forA, i.e., A = 2λ |dz|2, andQ is the (2, 0)−part of the
complexification of B for the conformal structure given by A. Moreover, if (A,B) is Codazzi,
then

TS̃ = ‖dH‖2 .
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3 Totally umbilical disks
Our main theorem gives a sufficient condition for a disk-type surface (with non regular bound-
ary) to be totally umbilical for a given Codazzi pair. It is inspired in the results of [Ch] and
[dCF]. We will give the proof of the theorem in Section 5.

Theorem 1. Let Σ be a compact disk with piecewise differentiable boundary. We will call the
vertices of the surface to the finite set of non-regular boundary points. Assume also that Σ is
contained as an interior set in a differentiable surface Σ̃ without boundary.

Let (A,B) be a Codazzi pair on Σ̃. Assume that the following conditions are satisfied:

1. On Σ̃ we have ‖dH‖ ≤ h
√
q , where H and q are the mean and skew curvature of the

pair (A,B), h is a continuous function, and ‖·‖means the norm with respect to the metric
A.

2. The number of vertices in ∂Σ with angle < π (measured with respect to the metric A) is
less than or equal to 3.

3. The regular curves in ∂Σ are lines of curvature for the pair (A,B).

Then, Σ is totally umbilical for the pair (A,B).

It should be remarked that, even the outline of the proof follows the ideas in [Ch], our
hypothesis on the regularity on the surfaces is a bit more restrictive. Indeed, in [Ch] the Codazzi
pair is assumed to be extended around the points regular points of the boundary, but (possibly)
not around the vertices. However, in that case the holomorphicity of the Hopf differential
makes possible to control the behavior at these points, whereas in the general case of a non
holomorphic differential Q it is necessary to impose more regularity to obtain a estimate of the
rotation index at the vertices. This is the same strategy employed in [dCF].

As a particular case of Theorem 1 we can consider the case of an immersed surface Σ ⊂
M2(ε)×R, where M2(ε) denotes the complete simply connected surface of constant curvature
ε ∈ {+1, 0,−1}.

Denote by h the height function of the surface, H its mean curvature, and (I, II) the first
and second fundamental forms respectively. Then if we define

B = 2H II − εdh2 +
ε

2
‖∇h‖2 I,

it is easy to check that the pair (I, B) is a Codazzi pair when H is constant. Note that when
ε = 0, B is nothing but a constant multiple of the second fundamental form. Our theorem then
implies the result in [dCF] when the surface has constant mean curvature (notice that in this
case the first hypothesis trivially holds).
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Remark 1. We should point out that the (2, 0)−part of the complexification ofB for the confor-
mal structure given by I agrees with the Abresch-Rosenberg differential (see [AR] and [AR2]).
In these papers, it is proved that this differential is holomorphic for the conformal structure
given by I if the mean curvature, H , of the surface is constant.

Moreover, the gradient term in the definition of B makes that H(I, B) = 2H2. Thus, we
can apply [Mi, Lemma 6] for ensuring:

(I, B) is Codazzi if, and only if, the Abresch-Rosenberg differential is holomorphic.

This is reason for adding the gradient term in the definition ofB, to use the Codazzi pair theory.

To prove the result in [dCF] in all generality, we establish Theorem 1 in a more general
version. Actually, we have imposed the condition to be Codazzi in Theorem 1 because we can
not control the Codazzi Tensor of a surface immersed in a general three-manifold. But, it is
still possible in a homogeneous three-manifold since it depends on the mean curvature and the
height function.

4 Applications to surfaces in homogeneous 3-manifolds
Throughout this section, Σ will denote a compact disk immersed in a homogeneous three-
manifold.

We will assume that Σ has piecewise differentiable boundary. We will call the vertices
of the surface the (finite) set of non-regular boundary points. We will also assume that Σ is
contained in the interior of a differentiable surface Σ̃ without boundary.

4.1 Surfaces in space forms
Let M3(ε) denote the complete simply connected Riemannian 3-manifold of constant curvature
ε. That is, M3(ε) is S3 if ε = 1, R3 if ε = 0, or H3 if ε = −1. It is well known that for an
immersed surface Σ in M3(ε) the first and second fundamental forms, I and II , are a Codazzi
pair. Moreover, the mean, extrinsic and skew curvature, as well as the lines of curvature for the
pair (I, II) agree with the usual definitions for an immersed surface.

The classification of totally umbilical surfaces in these spaces is well-known (see [Spi]).
Roughly speaking, they are part of round spheres, planes, or horospheres (in the case of M3(−1) =
H3).

We say that an immersed surface Σ ⊂ M3(ε) is a special Weingarten surface if its mean
curvature is of the form H = f(H2 − Ke) for a smooth function f , where Ke is the extrinsic
curvature. This class of surfaces includes the case of constant mean curvature surfaces for
H = f(q) := c, as well as the surfaces with constant positive extrinsic curvature (equivalently,
constant Gaussian curvature, since in this setting the Gaussian curvature, K, is K = Ke + ε)
for H = f(q) :=

√
q + c, in both cases c is the positive constant so that H = c or Ke = c.
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Then, we have:

Theorem 2. Let Σ̃ ⊂ M3(ε) be a special Weingarten surface, and Σ ⊂ Σ̃ a compact disk
with the regularity conditions assumed at the beginning of the Section. Assume also that the
following conditions are satisfied:

1. The number of vertices in ∂Σ with angle < π is less than or equal to 3.

2. The regular curves in ∂Σ are lines of curvature.

Then, Σ is a piece of one of the totally umbilical surfaces described above.

Proof. Let us show that there exists a continuous function h such that ‖dH‖ ≤ h
√
q. Since

H = f(H2 −Ke) = f(q), then

dH = f ′(q) dq =
f ′(q)

λ2
(d(|Q|2)− d(λ2)q),

where we have used that |Q|2 = λ2q. Now just observe that ‖d(|Q|2)‖ =
∥∥d(QQ̄)

∥∥ ≤
|Q|(‖dQ‖+

∥∥dQ̄∥∥), and so the desired condition holds for h = |f ′(q)|
λ

(
‖dQ‖+

∥∥dQ̄∥∥+2
√
q dλ

)
.

Thus, the result follows from Theorem 1 applied to the Codazzi pair (I, II) and the classi-
fication of totally umbilical surfaces in space forms described in [Spi].

The above theorem generalizes the result in [GM] regarding positive constant Gaussian
curvature surfaces in R3 with everywhere regular boundary.

4.2 K-surfaces in product spaces
Now we will deal with immersed disks in the product space M2(ε) × R, where M2(ε) denotes
S2 if ε = 1, R2 if ε = 0 or H2 if ε = −1.

Let Σ ⊂M2(ε)×R be an orientable immersed surface with unit normal vector field N and
let I and II be the first and second fundamental forms, K its Gaussian curvature. We denote
by h : Σ → R the height function of the immersion, that is, the restriction to the surface of the
canonical projection M2(ε)×R→ R. It is easy to show that, if we denote by ξ the unit vertical
vector field in M2(ε)× R (that is, the Killing field ξ = ∂t), then

ξ = ∇h+ νN, (8)

where ν = 〈ξ,N〉.

If we assume that K 6= ε at every point on Σ, we can define the new quadratic form

A = I +
ε

K − ε
dh2. (9)

Moreover, if K > max{0, ε} then A is a Riemannian metric.
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Definition 3. Let Σ ⊂ M2(ε) × R be an immersed surface with constant Gaussian curvature
K. We will say that Σ is a K−surface in M2(ε)× R if K > max{0, ε}.

In [AEG1], the authors show that the pair (A, II) is Codazzi for a K−surface and its ex-
trinsic curvature is

Ke(A, II) = K − ε,
when ε ∈ {−1, 1}. Note that when ε = 0, then M2(0) × R ≡ R3 and this case was discussed
above. In this case, the (2, 0)-part of A with respect to the conformal structure induced by II ,
Q(II, A), is holomorphic on Σ ([Mi, Lemma 8]). This is the main tool for the classification
given in [AEG1] of the complete K-surfaces. It turns out that these surfaces are rotationally
invariant spheres, extending the previously known classification in the euclidean case.

Theorem 3. Let Σ̃ ⊂ M2(ε) × R be a K−surface, and Σ ⊂ Σ̃ a compact disk with the
regularity conditions stated at the beginning of the section. Assume that the following conditions
are satisfied:

1. The number of vertices in ∂Σ with angle < π (with respect to the metric A) is less than
or equal to 3.

2. The regular curves in ∂Σ are lines of curvature for the pair (A, II).

Then, Σ is a piece of one of the rotational spheres described in [AEG1].

Proof. Since Σ is a K−surface, (A, II) is a Codazzi pair and c := Ke(A, II) = K − ε is a
positive constant. Set q := q(A, II) and H := H(A, II), then H = f(q) :=

√
q + c. Thus,

‖dH‖ ≤ h
√
q, where h is a continuous function. Here, the norm ‖·‖ is with respect to A.

Thus, from Theorem 1, Σ is totally umbilical for the pair (A, II), and so also Q(II, A)
vanishes identically on Σ, giving that Σ is a piece of one of the complete examples described in
[AEG1].

In a recent paper [ALP], the authors deal with the regular case for K−surfaces in product
spaces, more precisely, they proved the following

Theorem. Let Σ ⊂ M2(ε) × R be a compact surface with positive constant Gaussian
curvature K > ε and such that the imaginary part of Q(A, II) vanishes identically along ∂Σ,
where ∂Σ is a closed regular curve in M2(ε) × R. Then Σ is a piece of a rotational complete
K−surface.

Thus, the above result is a particular case of Theorem 3.
Despite the case of surfaces in space forms, in the spaces M2(ε)× R the lines of curvature

for the Coddazi pair (A, II) we work with do not agree in general with the classical lines of
curvature (except of course when ε = 0). In the following lemma we give sufficient conditions
on a curve in Σ to be a line of curvature of (A, II). These conditions are inspired by those given
in [dCF] for the pair (I, B) defined in Section 3.
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Lemma 3. Let Σ ⊂ M2(ε) × R be a K−surface, and γ ⊂ Σ a differentiable curve. Assume
that γ satisfies one of the following conditions,

1. γ is contained in a horizontal slice.

2. γ is an integral curve of ∇h, where h is the height function of Σ (here ∇ is the gradient
with respect to I).

Then γ is a line of curvature for the pair (A, II) if and only if it is a line of curvature of Σ in
the classical sense.

Proof. This follows from the fact that the orthogonal vectors to γ′ for the metricsA and I agree.
Indeed, if γ is horizontal then dh(γ′) = 0, whereas in the second case dh(n) = 0 for any vector
n orthogonal to γ′ with respect to I . Thus, by the very definition of A (see Equation (9)) we are
done.

The following result is then a straightforward consequence of Theorem 1 and the above
lemma.

Corollary 1. Let Σ ⊂ M2(ε) × R be disk-type K−surface satisfying the regularity conditions
stated at the beginning of this section. Assume that the following conditions are satisfied:

1. The number of vertices in ∂Σ with angle < π (with respect to the induced metric A) is
less than or equal to 3.

2. Every regular component γ of ∂Σ is a line of curvature (in the classical sense) satisfying
one of the following properties:

• γ is contained in a horizontal slice.

• γ is an integral curve of ∇h, where h is the height function of Σ.

Then, Σ is a piece of one of the complete examples described in [AEG1].

Remark 2. The hypothesis 1 in Theorem 3 is sharp. Indeed, consider the revolution surface Σ0

with positive constant Gaussian curvature in R3 given by

ψ(s, t) = (sin(s)k(t), cos(s)k(t), h(t))

with

k(t) = b sin(
√
Kt)

h(t) =

∫ t

0

√
1− b2K cos2(

√
Kr) dr

(10)
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The complete example is when b = 1. Also, up to scaling, we can assume that K = 1. Thus
if we consider b ∈ (0, 1) in (10) we obtain a constant Gaussian curvature (CGC) surface with
non vanishing Q(A, II).

We take Σ a simply-connected region bounded by two meridians and two horizontal circles
(and therefore lines of curvature), then Σ is a compact embedded disk type CGC bounded by
lines of curvature meeting at 4 vertices with angle π/2.

Similar examples can be constructed in S2×R and H2×R by constructing a non-complete
rotational following the computations in [AEG1, Section 3]. These surfaces have non vanishing
holomorphic quadratic differential Q(A, II), so we can choose a local conformal parameter
(for the second fundamental form) z so that Q(A, II) = dz2. Thus the piece of the surface
corresponding to the square {|Re z| ≤ t0, |Im z| ≤ t0} in the parameter domain gives an
example of a disk type CGC surface bounded by lines of curvature (for the associated Codazzi
pair) meeting at 4 vertices with angle equal to π/2.

5 Proof of the Main Theorem
We now prove the Theorem 1 stated in Section 3. From now on, Σ satisfies the regularity con-
ditions as the previous Section.

PROOF OF THEOREM 1:

Consider on Σ̃ ⊃ Σ the Riemannian metric given by A, and let z be a conformal parameter.
Set Q̃ the (2, 0)−part of the complexification of B for the conformal structure given by A on
Σ̃, and Q = Q̃|Σ. Assume, reasoning by contradiction, that Σ is not totally umbilical, that is, Q
does not vanish identically.

At every non umbilical point in Σ̃ there exist two orthogonal (for the metric A) lines of
curvature, whereas at an umbilic point (that is, a zero of Q̃) the lines of curvature bend sharply.
Since ImQ̃ = 0 on these curves, if we write Q̃ = f(z)dz2 in a neighborhood of z0, the rotation
index at an umbilic point z0 is given by

I(z0) =
−1

4π
δargf,

where δargf is the variation of the argument of f as we wind once around the singular point.

At an interior umbilic point of Σ, the rotation index of the lines of curvature of Σ clearly
agrees with the one of Σ̃. At a point z0 ∈ ∂Σ the rotation index of the lines of curvature of
Σ is defined as follows (see also [Ch]). Consider ϕ : D+ → Σ an immersion of D+ = {ξ ∈
C : |ξ| < 1, Im(z) ≥ 0} into Σ, mapping the diameter of the half disk into ∂Σ. The lines of
curvature can be pulled back to a line field in D+. Moreover, since the regular curves of ∂Σ are
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lines of curvature, they can be extended by reflection to a continuous (with singularities) line
field on the whole disc. Thus, we define the rotation index I(z0) of Q at z0 ∈ ∂Σ to be half of
the rotation index of the extended lines of curvature.

If all the singularities are isolated, the Poincaré-Hopf index theorem gives that∑
z∈Σ

I(z) = 1.

The next two claims show that the umbilic points are isolated and give a bound for the rotation
index.

Claim 1. The zeroes of Q in Σ \ ∂Σ are isolated, and the rotation index I(z0) of X
at an interior singular point is ≤ −1/2 , in particular, it is always negative.

Proof of Claim 1. Let us see first that the singularities are isolated. Taking into account Lemma
2 and our hypothesis 1 we infer that

|Q̃z̄|2 =
λ

2

||dH||2

q
|Q̃|2 ≤ λ

2
h2|Q̃|2, (11)

on Σ̃, where z is a conformal parameter for the metric A, and λ is the conformal factor of A in
the parameter z. Then, Lemma 1 gives that the zeroes of Q̃ in Σ̃ are isolated (recall that we are
assuming that Q does not vanish identically). In particular, the zeroes of Q are isolated in Σ.
Moreover, locally around a zero z0 ∈ Σ̃ of Q̃ we have that

Q̃(z) = (z − z0)kg(z)dz2, (12)

where k ∈ N and g(z) is a non-vanishing continuous function. Therefore, the rotation index is
−k/2 ≤ −1/2, in particular, it is always negative. 2

Claim 2. The boundary singular points of X are isolated. Moreover, let z0 ∈ ∂Σ
be a singular point, then

(i) if z0 is not a vertex, its rotation index is I(z0) < 0,

(ii) if z0 is a vertex of angle > π, then I(z0) < 0,

(iii) if z0 is a vertex of angle < π, then I(z0) ≤ 1/4.
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Proof of Claim 2. Consider ϕ : D+ → Σ a conformal immersion as explained above, with
ϕ(0) = z0. Since Q satisfies ImQ = 0 on ∂Σ, its pull-back can be reflected through the
diameter to a continuous quadratic form on the whole unit disc D, that will be denoted by Q∗.
Notice that when z0 is a vertex ϕ′ could be zero or infinite.

Let θ be the angle of ∂Σ at z0 (θ = π if z0 is not a vertex). Then ϕ′ grows as |ξ| θπ−1 at
the origin. Around z0, Q̃ is given by (12), although in this case k could be zero, since when
θ = π/2, z0 is not necessarily a zero of Q̃. In particular, z0 is an isolated singularity. Moreover,
there are 2(k + 2) lines of curvature in Σ̃ emanating from z0, and meeting at an equal-angle
system of angle π/(k + 2). In particular, since the curves in ∂Σ are lines of curvature, θ must
be a multiple of π/(k + 2).

If we write Q∗ = f(ξ)dξ2 for ξ ∈ D, then

f(ξ) =
(
ϕ(ξ)− ϕ(0)

)k
(ϕ′(ξ))2g(ϕ(ξ)), ξ ∈ D+.

Then the variation of the argument of f(ξ) as we wind once around the origin is 2θ(k+2)−4π,
and the rotation index is

I∗ = 1− θ

2π
(k + 2).

In particular, if θ ≥ π, then I∗ ≤ −k/2 < 0, whereas for θ < π we have I∗ ≤ 1/2 (as
I∗ < 1, and 2I∗ must be an integer). Since I(z0) = I∗/2, the claim is proved. 2

Taking into account the two previous claims, and since the number of vertices of angle < π
is less than or equal to 3, we can conclude that∑

p∈Σ

I(p) ≤ 3/4 < 1,

which contradicts the Poincaré-Hopf theorem and shows that Σ is totally umbilical.
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