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Abstract

We show that the number of entire maximal graphs with finitely many singular

points that are conformally equivalent is a universal constant that depends only

on the number of singularities, namely 2n for graphs with n + 1 singularities. We

also give an explicit description of the family of entire maximal graphs with a finite

number of singularities all of them lying on a plane orthogonal to the limit normal

vector at infinity.

1 Introduction

The present paper is devoted to the study of maximal graphs in the Lorentz-Minkowski

space L3 = (R3, 〈·, ·〉), where 〈(x1, x2, x3), (y1, y2, y3)〉 = x1y1 + x2y2 − x3y3. Maximal

graphs appear in a natural way when considering variational problems. If u : Ω ⊂ R2 ≡

{x3 = 0} → R is a smooth function defining a spacelike graph in L3 (that is, a graph with

Riemannian induced metric), then its area is given by the expression

A(u) =

∫

Ω

√

1− |∇u|2,

(recall that |∇u| < 1 since the graph is spacelike). The corresponding equation for the

critical points of the area functional in L3 is

Div
∇u

√

1− |∇u|2
= 0. (1)
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Spacelike graphs satisfying this (elliptic) differential equation are called maximal graphs,

since they represent local maxima for the area functional. Geometrically, this condition

is equivalent to the fact that the mean curvature of the surface in L3 vanishes identically.

Besides of their mathematical interest, these surfaces, and more generally those having

constant mean curvature, have a significant importance in physics [MT].

Figure 1: Left: Lorentzian catenoid. Right: Riemann type surface.

From a global point of view, it is known by Calabi’s theorem [Ca] that the only every-

where regular complete maximal surface is the plane. In particular, there are no entire

maximal graphs besides the trivial one. This motivates to allow the existence of singu-

larities, i.e., points of the surface where the metric degenerates. We will focus here our

attention to the case where the singular set is the smallest possible, that is, a finite number

of points. The first and most known example is the Lorentzian catenoid (Figure 1, left),

an entire maximal graph with one singular point, and actually the only one as proved in

[Ec], but there are examples with any arbitrary number of singularities. Among them it is

worth mentioning the Riemann type maximal graphs (Figure 1, right) obtained in [LLS],

with two singular points and characterized by the property of being foliated by circles

and lines. Other highly symmetric examples with arbitrary number of singularities (even

infinitely many) were constructed in [FL2] (Figure 2). Actually there is a huge amount of

such graphs. Indeed, in [FLS] the authors study the moduli space Gn of entire maximal

graphs with n+1 singularities, proving that it is an analytic manifold of dimension 3n+4.

A global system of coordinates in this space is given by the position of the singular points in

L3 and a real number called the logarithmic growth that controls the asymptotic behavior.

If u : Ω → R defines a maximal graph, singular points appear where |∇u| = 1. At

a singular point, the PDE (1) stops being elliptic. Moreover, the tangent plane of the

surface becomes lightlike, the normal vector has no well defined limit, and the surface is

asymptotic to a half of the light cone of the singular point. For this reason they are called
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Figure 2: Entire maximal graphs with isolated singularities.

conelike singularities. It should be pointed out that a maximal surface with isolated cone-

like singularities is an entire graph if and only if it is complete (that is, divergent curves

have infinite length), as proved in [FLS].

If S is a maximal surface with singular set F ⊂ S, its regular part S \ F has a

natural conformal structure associated to its Riemannian metric. The conformal type of

a maximal surface has been widely studied, for example in [FL1, AA] parabolicity criteria

for maximal surfaces are given, but there also exist hyperbolic examples, [Al1, Al2, MUY].

In the case of entire graphs with n+1 singularities, it turns out that S\F is conformally

equivalent to a n-connected circular domain of the complex plane, that is, the plane with

n + 1 discs removed. Each one of these boundary circles corresponds to a singular point

of the graph. Our aim in this paper is to study the space of entire maximal graphs with

the same conformal structure, that is

Problem. Given a n-connected circular domain Ω of the complex plane, how

many entire maximal graphs with n+1 singularities are there whose conformal

structure is biholomorphic to Ω?

We will answer this question by proving that the number of (non congruent) maximal

graphs supported by a fixed circular domain is finite and does not depend on the circular

domain, but only on the number of connected component of the boundary, that is, the

number of singularities. This will be the aim of Section 3. Thus, our problem reduces to

compute the number of graphs for a fixed conformal structure. In Section 4 we will fix an

specific n-connected circular domain (Definition 4.1) and we will find out how many entire

graphs are there with this conformal structure, obtaining that there are exactly 2n non-

congruent surfaces. Moreover, the graphs constructed in Section 4 can be characterized

by the property of having all their singularities in a plane orthogonal to the limit normal

vector at infinity (Theorem 5.1).

Let us point out that our main result contrast with the analogous problem in the
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related theory of solutions to the Monge-Ampère equation

Hess(u) = 1. (2)

Specifically, in [GMM] it is proved that any solution to (2) globally defined on R2 with

finitely many isolated singularities is uniquely determined by its associated conformal

structure, which is also a circular domain of the complex plane.

2 Preliminaries

2.1 Maximal surfaces

A differentiable immersion X : M → L
3 from a surface M to L

3 is said to be spacelike

if the tangent plane at any point is spacelike, that is to say, the induced metric on M

is Riemannian. The Gauss map of a spacelike surface in L3 takes values in the sphere

of radius −1, H2 = {p ∈ L3 : 〈p, p〉 = −1}. Since H2 has two connected components,

H2
+ = H2 ∩ {x3 > 0} and H2

−
= H2 ∩ {x3 < 0}, spacelike surfaces are always orientable.

A maximal immersion is a spacelike immersion whose mean curvature vanishes. A

remarkable property of maximal surfaces in L3 is the existence of a Weierstrass-type

representation for maximal surfaces, similar to the one of minimal surfaces. Roughly

speaking, the Weierstrass representation of a conformal maximal immersion X : M → L
3

is a pair (g, φ3) of a meromorphic function and a holomorphic 1-form defined on M such

that, up to translation, the immersion can be recovered as

X(p) := Real

∫ p

p0

( i

2
(
1

g
− g)φ3,

−1

2
(
1

g
+ g)φ3, φ3

)

, (3)

where p0 ∈ M is an arbitrary point. It is worth mentioning that g agrees with the

stereographic projection of the Gauss map of the surface. We refer to [Ko, Ec] and

Theorem 2.1 below for more details.

We will focus our attention to entire maximal graphs, that is, maximal graphs defined

on the whole plane {x3 = 0}. As we explained in Section 1, the only everywhere regular

example is the plane [Ca], and so singularities (i.e., points where the induced metric

converges to zero) appear in a natural way in this setting. The following theorem condense

the information regarding the global structure of entire maximal graphs with isolated

singularities (also called conelike singularities).
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Proposition 2.1 (Global behavior, [FLS]) Let S be a surface with isolated singular-

ities in L3. Then the following two statements are equivalents:

(i) S is a complete embedded maximal surface,

(ii) S is an entire graph over any spacelike plane.

In this case S is asymptotic at infinity to either a half-catenoid or a plane. If we label

F ⊂ S as the singular set, S \F is conformally equivalent to Ω0 := C \∪p∈FDp, where Dp

are pairwise disjoint closed discs. Moreover, the associated conformal reparameterization

X : Ω0 → L3 extends analytically to Ω := C \ ∪p∈F Int(Dp) by putting X(∂(Dp)) = X(p).

The point p∞ = ∞ is called the end of the surface.

2.2 Double surface and representation theorem

As showed in the previous section, the underlying conformal structure of an entire maximal

graph with an isolated set of singularities is conformally equivalent to a circular domain

in the complex plane. We now go into this aspect in depth to obtain a representation

theorem for entire maximal graphs with a finite number of singularities that will be crucial

in our study.

For any finitely connected circular domain Ω = C \ ∪k
j=1Int(Dj), let Ω

∗ be its mirror

surface and N the double surface obtained by gluing Ω and Ω∗ along their common

boundaries as in Figure 3 (see [FK] for an explicit description of this construction). It is

clear that N is a compact Riemann surface of genus k − 1 minus two points. We denote

by N the compactification of N by adding these two points.

Finally, we label J : N → N as the mirror involution mapping a point in Ω into its

mirror image and viceversa. Notice that J extends to an antiholomorphic involution on

N , and its fixed point set of J coincides with ∂Ω ≡ ∂Ω∗.

This double surface is used in [FLS] to give a characterization of complete maximal

surfaces with a finite number of singularities in terms of their Weierstrass data:

Theorem 2.1 (Representation) Let X : Ω → L3 be a conformal immersion of an

entire maximal graph with n + 1 conelike singularities, where Ω = C \ ∪n+1
j=1 Int(Dj), Dj

pairwise disjoint closed discs. Label N as the compactification of the double surface of Ω.

Then the Weierstrass data of X, (g, φ3), satisfy:

(i) g is a meromorphic function on N of degree n + 1, |g| < 1 on Ω, and g ◦ J = 1
g
,
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Figure 3: The double surface associated to a maximal surface with singularities

(ii) φ3 is a holomorphic 1-form on N \ {p∞, J(p∞)}, where p∞ = ∞ ∈ Ω, with poles of

order at most two at p∞ and J(p∞), and satisfying J∗(φ3) = −φ3,

(iii) the zeros of φ3 in N \ {p∞, J(p∞)} coincide (with the same multiplicity) with the

zeros and poles of g.

Conversely, let N be a compact genus n Riemann surface. Suppose that there exists

an antiholomorphic involution J : N → N such that the fixed point set of J consists of

n+ 1 pairwise disjoint analytic Jordan curves γj , j = 0, 1, . . . , n, and that N \
⋃n

j=0 γj =

Ω0 ∪ J(Ω0), where Ω0 is topologically equivalent (and so conformally) to C minus a finite

number of pairwise disjoint open discs.

Then, for any (g, φ3) satisfying (i), (ii) and (iii) the map X : Ω0 \ {p∞} → L3 given

by Equation (3) is well defined and S = X(Ω0 \ {p∞}) is an entire maximal graph with

conelike singularities corresponding to the points qj := X(γj), j = 0, 1, . . . , n.

2.3 Divisors on a Riemann surface.

An important part of our work in this paper deals with classical properties of divisors on

compact Riemann surfaces. We recall here the notation and basics results that will be

used in the sequel (see [FK] for more details).
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Let Σ be a Riemann surface. A (multiplicative) divisor on Σ is a formal symbol

D = pk11 · . . . pkhh , where pkj ∈ Σ and kj ∈ Z. We can also write the divisor D as

D =
∏

p∈Σ

pkp,

where kp 6= 0 only for finitely many. We call Div(Σ) to the multiplicative group of

divisors on Σ. We can define an order in Div(Σ), indeed, given D1 =
∏

p∈Σ pk
1
p and

D2 =
∏

p∈Σ pk
2
p ∈ Div(Σ), we say that D1 ≥ D2 if k1

p ≥ k2
p for all p ∈ Σ.

The degree of the divisor D is defined as the integer deg(D) =
∑

p∈Σ kp. D ∈ Div(Σ)

is an integral divisor if kp ≥ 0 for any p ∈ Σ. We denote by Divk(Σ) the set of integral

divisors of degree k.

Let f be a meromorphic function on Σ. The associated divisor of f is defined as

(f) =
∏

p∈Σ pkp, where for any zero (resp. pole) p of f of order α we have kp = α > 0

(resp. kp = −α < 0), and kp = 0 in other case. Likewise we define the associated divisor

of a meromorphic 1-form. Classical theory of Riemann surfaces give that both functions

and 1-forms are determined by their divisors up to a multiplying constant. Moreover,

the degree of a meromorphic function on a compact Riemann surface is 0, whereas the

associated divisor of a 1-form has degree 2n− 2, where n is the genus of the surface.

3 A first approach to the problem

Let G be an entire maximal graph with n + 1 conelike singularities. When n = 0, Ecker

[Ec] characterized the Lorentzian catenoid (Figure 1, left) as the unique entire maximal

graph with 1 singular point, so we will assume from now on that n ≥ 1.

As showed in Section 2.1, the underlying conformal structure of a maximal graph is

conformally equivalent to a circular domain Ω ⊂ C with n + 1 boundary components.

Moreover, if we rotate the surface so that the end is horizontal, as a consequence of

Theorem 2.1 the divisors of the Weierstrass data (g, φ3) of G must be of the form

(g) =
D · p∞
D∗ · p∗

∞

, (φ3) =
D ·D∗

p∞ · p∗
∞

, (4)

where p∞ = ∞ ∈ Ω is the end of the surface, D ∈ Divn(Ω), and
∗ denotes the mirror

involution. Notice that the divisor D determines uniquely the Weierstrass data (g, φ3) up

to replacing by (eiθ g, Aφ3), for any θ, A ∈ R.
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Conversely, for any integral divisor D of degree n on Ω such that there exist a mero-

morphic function g and 1-form φ3 satisfying (4), it is immediate to check that (g, φ3) fulfill

conditions (i) to (iii) in Theorem 2.1. Thus by means of Equation (3) we can obtain an

entire maximal graph with n + 1 conelike singularities, horizontal end, and conformal

structure Ω. Moreover, this graph is unique up to homotheties and vertical rotations.

The problem of finding out whether exists a pair (g, φ3) satisfying (4) for a given divisor

D is closely related with the Abel-Jacobi map of the corresponding compact Riemann

surface N , ϕ : Div(N ) → J (N ), where J (N ) denotes the Jacobian bundle of N (see

[FK] for its definition). Abel Theorem states that D ∈ Div(N ) is the divisor associated

to a meromorphic function (resp. 1-form) on N if and only if ϕ(D) = 0 (resp. ϕ(D) = T ,

where T ∈ J (N ) is a fixed element in the Jacobian bundle). Thus, in our case the divisors

D coming from Weierstrass data are precisely those satisfying:

ϕ(D) + ϕ(p∞)− ϕ(D∗)− ϕ(p∗
∞
) = 0, ϕ(D) + ϕ(D∗)− ϕ(p∞)− ϕ(p∗

∞
) = T.

This set of divisors is deeply studied in [FLS], proving that the previous two equations

are equivalent to

2ϕ(D)− 2ϕ(p∗
∞
) = T. (5)

Before going into the properties of this set, let us fix some notation. Let Ω be a n-connected

circular domain and write ∂Ω = ∪n
j=0γcj(rj), with γcj(rj) = {z ∈ C , |z− cj | = rj}. Up to

a Möbius transformations we can assume that c0 = 0, r0 = 1 and c1 ∈ R+. Thus, we can

parameterize the space Tn of marked (i.e., with an ordering in the boundary components)

n-connected circular domains (up to biholomorphisms) by their corresponding uplas v =

(c1, r1, . . . , cn, r1, . . . , rn) ∈ R+ × Cn−1 × (R+)n, of centers and radii, with the convention

c0 = 0 and r0 = 1. By this identification, Tn can be considered as an open subset of

R+ × Cn−1 × (R+)n, and therefore it inherits a natural analytic structure of manifold of

dimension 3n − 1. We label as Ω(v) the circular domain defined by v ∈ Tn. Now define

the spinorial bundle

Sn = {(v,D) : v ∈ Tn, 2ϕv(D)− 2ϕv(p
∗

∞
) = Tv},

where the subscript v refers to the double surface of Ω(v), then

Theorem 3.1 ([FLS]) The spinorial bundle Sn defined above is an analytical manifold

of dimension 3n− 1 . Moreover, the map

ν : Sn → Tn
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ν(v,D) = v

is a finitely sheeted covering.

Thus, the number of divisors D ∈ Divn(Ω(v)) satisfying Equation (5) is a universal

constant that depends not on the conformal structure Ω(v), but only on the number of

boundary components (equivalently, the number of singularities of the maximal graph).

As explained above, each divisor corresponds to a unique congruence class of entire max-

imal graphs with n + 1 singularities and conformal structure Ω(v). Thus we have the

following

Corollary 3.1 For each n ∈ N there exists a constant C(n) ∈ N such that, for any

n-connected circular domain Ω, the number of non-congruent entire maximal graph with

conformal structure biholomorphic to Ω is exactly C(n).

Remark 3.1 Since the space Tn is simply-connected, it follows from Corollary 3.1 that

the number of connected components of Sn is C(n). In particular, the number of connected

components of the moduli space of entire maximal graphs with n + 1 singularities is also

C(n).

Indeed, label Gn as the space of marked entire maximal graph with horizontal end and

n+1 singularities, where a mark means an ordering m = (q0, . . . , qn) of the singular points

of the graph. As we commented in Section 1, Gn can be endowed with a differentiable

structure of manifold of dimension 3n + 4 with coordinates given by (G,m) 7→ (m, c),

being c the logarithmic growth at the end. On the other hand, we can consider the map

ǫ : Gn → Sn × L
3 × S

1 × R

ǫ((G,m)) = ((v,D), q0, g(1), h(1))

where, if (g, φ3) denote the Weierstrass data of the graph, then

• (v,D) ∈ Sn is given by the conformal structure of G (with the order in v ∈ Tn given

by the order in m), and the divisor D defined as in Equation (5),

• q0 is the first singular point in m,

• h := φ3

dz
(here z means the natural conformal parameter in Ω(v) ⊂ C, recall that

1 ∈ ∂Ω(v) for all v ∈ Tn).

Then, it is clear from the above explanation that ǫ is bijective. Moreover, the induced

topology in Gn by ǫ agree with the one given by its before mentioned differentiable structure,

as proved in [FLS]. Thus, the number of connected components of Gn is C(n).
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4 Counting maximal graphs on a given circular do-

main

As it was showed in the previous section, the number of maximal graphs that share the

same underlying conformal structure only depends on the number of boundary compo-

nents of the conformal support. Thus, in this section we will fix an specific circular domain

and we will find out how many non-congruent maximal graphs are defined on that surface.

Let n ∈ N, and a1 < a2 < . . . < a2n+2 ∈ R. Throughout this section, N 0 will

denote the (hyperelliptic) compact genus n Riemann surface associated to the function
√

∏2n+2
j=1 (z − aj), that is,

N 0 := {(z, w) ∈ C
2
: w2 =

2n+2
∏

j=1

(z − aj)}.

And we will also define N0 = N 0 \ {z−1(∞)}.

The surface N 0 can be realized as a two sheeted covering of the Riemann sphere.

Indeed, consider two copies of C. Following [FK], we label these copies as sheet I and

sheet II. We ”cut” each copy along curves joining a2j+1 with a2j+2, for any j = 1, . . . , n.

We assume that these cuts does not intersect each others (see Figure 4). Each cut has

two banks: a N-bank and a S-bank. We recover the surface N 0 by identifying the N-bank

(resp. S-bank) of a cut in the sheet I with the corresponding S-bank (resp. N-bank) in

the sheet II.

Figure 4: A model for the Riemann surface N0.

We denote by z, w : N 0 → C the two canonical projections, whose associated divisors

10



are

(w) =
a1 · . . . · a2n+2

(p∞)n+1 · (p∗
∞
)n+1

and (dz) =
a1 · . . . · a2n+2

(p∞)2 · (p∗
∞
)2
,

where aj ≡ (aj , 0) and {p∞, p∗
∞
} = z−1({∞}). We will label p∞ as the one where the

coefficient of degree −(n + 1) of the Laurent series of w is −1.

Finally we define J0 : N 0 → N 0 as the antiholomorphic involution given by J0(z, w) =

(z,−w). The fixed points of J0 are the Jordan curves γj = {(z, w) ∈ N 0 : z ∈

[a2j−1, a2j]}, j = 1, . . . , n + 1. Moreover, N0 \ ∪n+1
j=1γj has two connected components,

each one of them corresponding to a single-valued branch of w, and biholomorphic to a

n-connected circular domain.

Definition 4.1 Let n ∈ N, and a1 < a2 < . . . < a2n+2 ∈ R. Consider the above defined

compact Riemann surface

N 0 := {(z, w) ∈ C
2
: w2 =

2n+2
∏

j=1

(z − aj)},

with the antiholomorphic involution J0(z, w) = (z,−w). Label ∆ as the set of fixed points

of J0. We will define Ω̄0 as the closure of the connected component of N 0 \∆ containing

p∞, and Ω0 will denote the circular domain Ω0 := Ω̄0 \ {p∞}.

Proposition 4.1 Let (g, φ3) be Weierstrass data on Ω0 of an entire maximal graph

with n + 1 singularities and horizontal end. Then there exists n + 1 distinct points

{b1, . . . , bn+1} ⊂ {a1, . . . , a2n+2}, such that

g = eiθ
w + P (z)

w − P (z)
and φ3 = A

( w

P (z)
−

P (z)

w

)

dz, (6)

where P (z) =
∏n+1

j=1 (z − bj), θ ∈ R, and A ∈ R∗.

Proof : By Theorem 2.1, the associated divisors to (g, φ3) are given by

(g) =
D · p∞

J(D) · p∗
∞

and (φ3) =
D · J(D)

p∞ · p∗
∞

(7)

where D ∈ Divn(Ω0). Here, p∞ denotes the point in Ω0 ∩ z−1(∞), and p∗
∞

= J(p∞).

We will denote by F : N 0 → N 0 the holomorphic involution given by F (z, w) =

(z,−w).
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Claim 4.1 In the above conditions there exist n+1 distint points {b1, . . . , bn+1} ⊂ {a1, . . . , a2n+2},

such that g = G1

G2

for two meromorphic functions G1, G2 on N 0 satisfying

a) (G1) ≥
p∗
∞

b1 · . . . · bn+1

b) (G2) ≥
p∞

b1 · . . . · bn+1

Since g has degree n+1 and N 0 is hyperelliptic, the two meromorphic functions g and

z satisfy a relation P (g, z) = 0, where P is a polynomial in two variables with algebraic

degree two in the first one and n+1 in the second (see [FK]). We can rewrite this relation

as P2(z)g
2 + P1(z)g + P0(z) = 0, with Pi polynomials whose maximum algebraic degree

is n + 1. Solving this equation we obtain

g =
−P1 ±

√

P 2
1 − 4P0P2

2P2
.

Consider the meromorphic function f =
√

P 2
1 − 4P0P2 = ±(2gP2 + P1). Let us check

that f = cw, for some constant c ∈ R∗. Indeed, any meromorphic function on the hyper-

elliptic surface N 0 can be expressed as f = R1(z) + R2(z)w, with Ri rational functions

(see [FK]). In our case, f 2 is a polynomial function in z, and so it follows that either

R1 = 0 or R2 = 0. The last case would imply that g is a rational function of z, which is

impossible from Equation (7) so f = R2(z)w. Now observe that f has poles only at p∞

and p∗
∞

with order at most n + 1, which implies that f/w is a holomorphic function on

N 0, and therefore constant. Thus, f = cw for some c ∈ R
∗. Up to replace Pi by ±cPi,

i = 1, 2, we can suppose that

g =
P1 + w

2P2

.

We will also assume that the leading coefficient of P1 is one. Since P1 and P2 are mero-

morphic functions of degree ≤ 2(n + 1) that only depend on z, it is not hard to realize

that (7) implies that

(P1 + w) =
D · E

(p∞)n−1 · (p∗
∞
)n+1

and (P2) =
J(D) · E

(p∞)n · (p∗
∞
)n
,

where E := F (J(D) ∈ Divn(Ω0). Thus, the meromorphic function

h =
P2(P1 + w)

w
∏

e∈E(z − z(e))

dz

φ3
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satisfies that (h) = E·p∞
F (E)·p∗

∞

= ( 1
h
◦F ), and therefore up to a multiplying constant h ◦F =

1/h. On the other hand, deg(h) = n + 1, and reasoning as before we can deduce that

h = (P̂1(z) + w)/P̂2(z), for some P̂i(z) polynomial functions in z with algebraic degree

less than or equal to n+1. Since h ◦F = 1/h, we infer that w2 = P̂ 2
1 − P̂ 2

2 and so, setting

S = −P̂1 − P̂2 we can write h = (S − w)/(S + w).

Looking at the divisor of h is immediate to realize that there exists an integral divisor

B with degB = n+ 1 such that:

(S − w) =
E ·B

pn
∞
· (p∗

∞
)n+1

and (S + w) =
F (E) · B

pn+1
∞

· (p∗
∞
)n
.

Since points in B are zeros of both S+w and S−w, they must be n+1 distinct (recall that

w only has simple zeroes) points of {a1 . . . a2n+2}. Setting G1 =
P1 + w

S − w
and G2 =

2P2

S − w
the claim is proved.

Claim 4.2 Up to multiplicative constants, the functions G1 and G2 in Claim 4.1 are

given by G1 =
w

P (z)
+ 1 and G2 =

w

P (z)
− 1, being P (z) =

∏n

j=1(z − bj).

Call B to the integral divisor given by B = b1 · . . . · bn+1. By Riemann-Roch Theorem,

the dimension of the linear space of meromorphic functions on N 0 satisfying condition a)

(resp. b)) in Claim 4.1 is 1+d where d is the dimension of the linear space of meromorphic

1-forms ν on N 0 satisfying (ν) ≥ B
p∗
∞

(resp. (ν) ≥ B
p∞

). Let us see that d = 0.

Indeed, observe first that by the residues theorem, both spaces agree with the space

L(B) of holomorphic 1-forms ν with (ν) ≥ B. But since {
dz

w
, z

dz

w
, . . . , zn−1dz

w
} is a basis

for the space of holomorphic 1-forms onN 0, any ν ∈ L(B) must be of the form ν = P (z)dz
w
,

where P is a polynomial with algebraic degree less than n. Thus, if a Weierstrass point

aj0 is a zero of ν then its order is at least two. It follows that the number of zeroes of the

holomorphic 1-form ν is at least 2(n+ 1) which is impossible because N 0 has genus n.

Therefore the dimension of the linear space of meromorphic functions satisfying con-

dition a) (resp. b)) in the Claim 4.1 is 1. It is easy to show that the function w
Qn

j=1
(z−bj)

+1

(resp. w
Qn

j=1
(z−bj)

− 1) is a basis for this space, so Claim 4.2 is proved.

As a consequence of the previous claims, we can write:

g =
G1

G2
= c

w + P (z)

w − P (z)
,
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for a suitable constant c ∈ C∗. As g ◦ J = 1/g we infer that c = eiθ for some θ ∈ R.

To finish observe that the divisor of φ3 coincides with the divisor for the 1-form
(

w
P (z)

− P (z)
w

)

dz, and as a consequence

φ3 = A
( w

P (z)
−

P (z)

w

)

dz,

since J∗(φ3) = −φ3 we get A ∈ R. This concludes the proof. ✷

To finish the classification of the entire maximal graphs on the given circular domain

Ω0 we need to find out when the pair given by (6) are actually Weierstrass data. This is

done in the following proposition. Figure 4 shows two examples of the surfaces given by

these Weierstrass representation.

Proposition 4.2 Choose b1 < b2 < . . . < bn+1 points in {a1, . . . , a2n+2}, and define

P (z) =
∏n+1

j=1 (z − bj).

Then the pair (g, φ3) given by Equation (6) are Weierstrass data on Ω0 of an entire

maximal graph with n+1 singularities if and only if bj ∈ {a2j−1, a2j} for all j = 1, . . . , n+1.

Proof : We just have to check the conditions stated in Theorem 2.1. Recall that J(z, w) =

(z̄,−w̄), and define Q(z) = w2/P (z) =
∏n+1

j=1 (z − cj). For simplicity, we will assume that

θ = 0 and A = 1.

Conditions (ii) and (iii) are straightforward for all the possible values of b1, . . . , bn+1.

Let us show when (i) is accomplished.

First, notice that g−1(1) = {b1, . . . , bn+1}. In particular, deg(g) = n+1. In particular,

in order to be g the Gauss map of a maximal surface with conelike singularities, any

connected component in ∂Ω0 must have exactly one point with g = 1, and so bj ∈

{a2j−1, a2j} for every j = 1, . . . , n+ 1.

Conversely, assume that bj ∈ {a2j−1, a2j}, j = 1, . . . , n+1, and let us show that g has

no critical points on ∂Ω0 ≡ ∪n+1
j=1 [a2j−1, a2j ]. After some computations one easily gets that

dg =
QdP − PdQ

w(Q+ P − 2w)
.

Thus for critical points in N0 = N 0 \ {z−1(∞)} we have QdP = PdQ, or equivalently,

n+1
∑

j=1

1

z − bj
=

n+1
∑

j=1

1

z − cj
.
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If we assume that bj ∈ {a2j−1, a2j} for all j = 1, . . . , n + 1, and we have a point

p0 ∈ [a2j0−1, a2j0 ] ⊂ ∂Ω0, with a2j0−1 = bj0 and a2j0 = cj0 (the case a2j0−1 = cj0 and

a2j0 = bj0 is similar) then we have that

1

z(p0)− cj
<

1

z(p0)− bj+1
< 0, j = 1, . . . n+ 1,

(here we use the convention bn+2 = b1), and this gives that p0 cannot be a critical point

of g.

To finish just notice that g ◦ J = 1/ḡ and therefore |g| = 1 on the n + 1 connected

components of ∂Ω0. Since g is injective on each one of these curves, and deg(g) = n + 1,

then |g| 6= 1 on N0 \ ∂Ω0. Taking into account that g(p∞) = 0 we have that |g| < 1 on

Ω0. ✷

Definition 4.2 Let Ω0 the circular domain given in Definition 4.1 for some real num-

bers a1 < . . . < a2n+2. For each subset τ = {b1, . . . , bn+1} ⊂ {a1, . . . , a2n+2} with

bj ∈ {a2j−1, a2j}, j = 1, . . . , n + 1, we will define the Gτ as the entire maximal graph

with n+ 1 singularities with Weierstrass data (gτ , φ
τ
3) on Ω0 given by

gτ ==
w + P (z)

w − P (z)
and φτ

3 =
( w

P (z)
−

P (z)

w

)

dz,

where P (z) =
∏n+1

j=1 (z − bj).

Figure 5: Two examples of the surfaces obtained for n = 1 and n = 2

Theorem 4.1 Let Ω0 be the n-connected circular domain given in Definition 4.1. Then

the number of non-congruent entire maximal graphs whose underlying conformal structure

is Ω0 is exactly 2n.

Proof : From Propositions 4.1 and 4.2 we know that any maximal graph G with horizontal

end defined on Ω0 have Weierstrass data (g = eiθgτ , φ3 = Aφτ
3), where θ ∈ R, A ∈ R∗ and

(gτ , φ
τ
3) are given by Definition 4.2.
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Observe that replacing the set τ by its complementary {a1, . . . , a2n+2}\τ gives congru-

ent surfaces (more specifically, (g, φ3) are transform into (−g,−φ3)). So, we can assume

without loss of generality that b1 = a1. To avoid congruences, we will also normalize so

that g(a1) = h(a1) = 1, where h =
φ3

dz
w

. Looking at the expressions for g and φ3 this

means that θ = 0, A = 1. Thus, the number of non-congruent maximal graphs defined

on Ω0 is the number of possible choices of bj ∈ {a2j−1, a2j+1}, j = 2, . . . , n + 1, which is

2n. ✷

Taking into account our previous discussion in Section 3, we can conclude that:

Theorem 4.2 The number of non-congruent entire maximal graphs with the same con-

formal structure is 2n, where n+ 1 is the number of (conelike) singularities.

Equivalently, the number of connected components of the space Gn of entire marked

maximal graphs with n+ 1 singularities and horizontal end is 2n.

5 Maximal graphs with coplanar singularities

We will prove now that the surfaces constructed in the previous section are characterized

by the property of having all its singularities on a plane orthogonal to the limit normal

vector at infinity. In particular, for n = 1, surfaces obtained in Section 4 describe the

whole moduli space of the entire maximal graphs with two singular points.

Theorem 5.1 Let G ⊂ L3 be an entire maximal graph with n + 1 conelike singulari-

ties. Then G has all its singularities lying on a timelike plane in L3 orthogonal (in the

Lorentzian sense) to the normal vector at the end if and only if G is congruent to one of

the examples given in Definition 4.2.

Proof : Assume that G has all its singularities in an orthogonal plane to the normal

vector at the end. Up to a rigid motion in L3 we can assume that the end is horizontal

and the singularities lie in the plane {x1 = 0}. Let X : Ω → G ⊂ L3 a conformal

reparameterization of G. By the uniqueness result in [Kly] (see also [FLS] Remark 2.5),

the surface is symmetric with respect to the plane {x1 = 0}. This symmetry induces an

antiholomorphic involution T : Ω → Ω leaving ∂Ω globally fixed. It follows that T extends

to an antiholomorphic involution T : N → N , where N is the mirror surface, by putting

T ◦J = J ◦T (J is the mirror involution). Moreover, if (g, φ3) are the Weierstrass data of
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the immersion, g ◦T = g and T ∗(φ3) = φ3. It is straightforward that T must have exactly

two fixed points on every connected component of the circular domain ∂Ω. We call these

points p1, . . . , p2n+2. Observe that the end p∞ ∈ Ω is also fixed by T.

Consider the holomorphic involution F = J ◦ T, whose fixed points are exactly

p1, . . . , p2n+2. Therefore, N is a compact genus n Riemann surface with 2n+2 fixed points,

this means that N is hyperelliptic with Weiersrtass points p1, . . . , p2n+2 (see [FK]),

N ≡ {(z, w) ∈ C
2
: w2 =

2n+2
∏

i=1

(z − aj)},

where (aj , 0) corresponds to pj for any j (and so aj 6= ak for k 6= j). With this identifi-

cation we have F (z, w) = (z,−w). Up to a Möbius transformation we can suppose that

z(p2n+1) = 1, z(p2n+2) = −1, and z(p∞) = ∞.

In what follows we will identify aj = (aj , 0) ∈ N . To prove aj ∈ R notice that the

divisor associated to the meromorphic 1-form d(z ◦ J) coincides with the one of dz and

therefore z ◦ J = k z + λ, for some k, λ ∈ R. Since a2n+1 = 1 and a2n+2 = −1 are fixed by

J it follows that z ◦ J = z which implies that aj ∈ R. Moreover, since w2 ◦ J = w2, then

w ◦J = ±w. Taking into account that J interchanges the two points with z = ∞, namely

p∞ and p∗
∞

= J(p∞), then w◦J = −w. Therefore J(z, w) = (z,−w) and T (z, w) = (z, w).

In particular, Ω agrees with the circular domain Ω0 defined in Definition 4.1 and by Propo-

sitions 4.1 and 4.2 we are done.

Conversely, let Gτ one of the graphs defined in Definition 4.2. Consider the involution

T (z, w) = (z̄, w̄) on N 0 that fix globally any component of ∂Ω0. Moreover, gτ ◦T = ḡτ and

T ∗(φτ
3) = φ̄τ

3, thus, T induces an isometry on the resulting surface, namely I(x1, x2, x3) =

(−x1, x2, x3). Since {a1, . . . , a2n+2} are fixed by T it follows that all the singularities lie in

the plane {x1 = 0}. ✷
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