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Abstract We define a Gauss map for surfaces in the universal cover of the Lie group PSL2(R)

endowed with a left-invariant Riemannian metric having a 4-dimensional isometry group.
This Gauss map is not related to the Lie group structure. We prove that the Gauss map of
a nowhere vertical surface of critical constant mean curvature (CMC) is harmonic into the
hyperbolic plane H

2 and we obtain a Weierstrass-type representation formula. This extends
results in H

2 ×R and the Heisenberg group Nil3, and completes the proof of existence of har-
monic Gauss maps for surfaces of critical CMC in any homogeneous manifold diffeomorphic
to R

3 with isometry group of dimension at least 4.
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508 B. Daniel et al.

1 Introduction

An important property in the theory of constant mean curvature (CMC) surfaces is that the
Gauss map (i.e., the unit normal vector viewed as a map into the 2-sphere S

2) of a CMC
surface in R

3 is a harmonic map into S

2. If the surface in R

3 is minimal, the Gauss map is
holomorphic.

When we consider an immersed oriented surface � in a Riemannian three-manifold M ,
its unit normal vector is a map N : � → UM that takes values in the five-dimensional unit
tangent bundle UM of M . It is then unclear how to define for � a Gauss map into S

2 that
provides relevant information about the surface. The construction of such a Gauss map will
depend on the geometric properties of M , and in general the Gauss map will not be harmonic
for CMC surfaces in M . Nonetheless, for some ambient spaces M such a Gauss map has
been constructed, and has provided key information about the global properties of certain
classes of surfaces in M .

An illustration of this fact is the case of CMC surfaces in hyperbolic 3-space H

3. There is
a well known way to define a “hyperbolic Gauss map” for surfaces in H

3 [4,11] taking values
in the asymptotic boundary ∂∞H

3 � C̄ where C̄ = C ∪ {∞} is the Riemann sphere. Bryant
[4] proved that this hyperbolic Gauss map is holomorphic for CMC 1 surfaces in H

3 and
he obtained a Weierstrass-type representation formula for these surfaces; these techniques
were then developed by Umehara and Yamada [29] and many other authors, leading to very
important improvements in the study of these surfaces. See also [12,18] for other applications
of the hyperbolic Gauss map.

Recently, much attention was drawn to surfaces in simply connected homogeneous 3-
manifolds. The homogeneous spaces diffeomorphic to R

3 with a 4-dimensional isometry
group constitute a two-parameter family; they will be denoted by E

3(κ, τ ) where κ � 0 and
(κ, τ ) �= (0, 0). When τ = 0 we get the product space H

2(κ) × R; when κ = 0 we obtain
the 3-dimensional Heisenberg group Nil3 endowed with a left-invariant metric; otherwise we
obtain the universal cover of the Lie group PSL2(R) endowed with a left-invariant metric;
we will denote it by ˜PSL2(R). Thus, we see that the metrics of H

2 × R and Nil3 arise as
limits of certain left invariant metrics on ˜PSL2(R).

The second and third authors [14] defined a “hyperbolic Gauss map” taking values
in the hyperbolic plane H

2 for surfaces in H

2 × R having a regular projection on H

2;
they moreover proved that for CMC 1/2 surfaces this Gauss map is harmonic, and they
obtained a Weierstrass-type representation formula for these surfaces. Then, in Nil3, the
first author [7] studied a Gauss map defined using the Lie group structure and obtained
obtained a Weierstrass-type representation formula for minimal surfaces in Nil3. These
two Gauss maps have quite different definitions and properties. Moreover, the use of these
Gauss maps has led to important discoveries in their respective theories, such as solutions
to Bernstein type problems, classification of complete multigraphs or half-space theorems
[8,15].

Let us indicate that minimal surfaces in R

3 and Nil3, CMC 1 surfaces in H

3 and CMC
1/2 surfaces in H

2 × R all have critical CMC. That is, their mean curvature equals the value
c such that there exist compact CMC H surfaces respectively in R

3, Nil3, H

3, H

2 × R if
and only if |H | > c. By the same definition, the value c for the critical mean curvature
in ˜PSL2(R) = E

3(κ, τ ) for κ < 0 and τ �= 0, is c = √−κ/2. Moreover, CMC surfaces
with critical mean curvature in H

2 × R, Nil3 and ˜PSL2(R) are related by a Lawson-type
correspondence [6].
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The Gauss map of surfaces in˜PSL2(R) 509

The aims of this paper are:

• to define geometrically a smooth Gauss map for smooth surfaces in ˜PSL2(R) taking values
in a 2-sphere, in a way that does not depend on a choice of model and such that the Gauss
map is “compatible” with ambient isometries (in a sense that will be made precise),

• to try to unify the definitions of the Gauss map of surfaces in H

2 × R, ˜PSL2(R) and Nil3,
• to prove that the Gauss maps of CMC local graphs with critical mean curvature in˜PSL2(R)

are harmonic maps into H

2 (local graphs will be defined in Sect. 2).

Let us first eliminate two approaches that could seem natural to solve this problem.
The first approach would be to define a left-invariant Gauss map using the Lie group struc-

ture, as it is implicitely done in R

3 and as it was done in Nil3 [7] (see also [10]). Isometries
coming from the Lie group structure in H

2 × R and ˜PSL2(R) do not have a geometric char-
acterization (see Remark 3.10) as in R

3 and Nil3 (where they are “translations”). Moreover,
the homogeneous manifold ˜PSL2(R) is isometric to another Lie group with a left-invariant
metric (see Theorem 2.14 and Corollary 3.19 in [26] for a discussion of these Lie group
structures), so defining a left-invariant Gauss map would depend on the choice of a Lie group
structure. These left-invariant Gauss maps do not relate well to isometries. One can compute
that, for surfaces with critical CMC, they satisfy some second order elliptic partial differential
equations that are not harmonic map equations.

The second approach would be to define a Gauss map taking values in the asymptotic
boundary of the ambient manifold, as it is again implicitly done in R

3 and as it was done in
H

3. However, even in H

2 × R this is not suitable: indeed, H

2 × R admits no differentiable
Hadamard compactification [22], and hence the Gauss map of a smooth surface would not
necessarily be smooth.

The paper is organised as follows. In Sect. 2, we introduce some preliminary material
about the manifolds E

3(κ, τ ). In Sect. 3, we prove the existence and the uniqueness of a
Gauss map satisfying some geometric conditions; this Gauss map reaches the first two of
the abovementioned aims of the paper. In Sect. 4, we gather some preliminary computations
related to conformal immersions and their Gauss map. Section 5 is devoted to the Gauss map
of surfaces with critical CMC: we prove that it is harmonic into H

2 for local graphs and we
obtain a Weierstrass-type representation theorem; hence this Gauss map reaches the third of
the above mentioned aims. We also relate the Gauss map of the surface with the Gauss map
of its sister minimal surface in Nil3. In Sect. 6 we give the expression of the Gauss map using
the Lorentzian model for H

2.

2 The manifolds E

3(κ, τ)

The simply connected homogeneous Riemannian 3-manifolds with a 4-dimensional isometry
group constitute, together with Euclidean 3-space and round 3-spheres, a 2-parameter family
(E3(κ, τ ))(κ,τ )∈R

2 , such that there exists a Riemannian fibration π : E

3(κ, τ ) → M

2(κ)

with bundle curvature τ , where M

2(κ) is the simply connected surface of curvature κ . The
fibration is a product fibration if and only if τ = 0. We refer to [6] and references therein for
more details.

There are different types of manifolds according to the values of κ and τ . In this paper we
will only consider the case where

κ � 0.
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510 B. Daniel et al.

The manifold E

3(κ, τ ) is diffeomorphic to R

3 and isometric

• to Euclidean space R

3 when (κ, τ ) = (0, 0); in this case the isometry group has dimension
six, and the fibration π is not unique,

• to the 3-dimensional Heisenberg group endowed with a left-invariant metric when κ = 0
and τ �= 0; we will denote it by Nil3(τ ) (up to dilations, all these metrics are isometric),

• to H

2(κ) × R when κ < 0 and τ = 0, where H

2(κ) is the hyperbolic plane of constant
curvature κ ,

• to the universal cover of PSL2(R) endowed with certain left-invariant metrics when κ < 0
and τ �= 0; we will denote it by ˜PSL2(R) (up to dilations, all these metrics are isometric
to one such that κ − 4τ 2 = −1).

A vector v is said to be vertical if dπ(v) = 0 and horizontal if it is orthogonal to vertical
vectors. We let ξ be a unit vertical field in E

3(κ, τ ) (the field ξ is unique up to multiplication
by −1). We say that a vector v is upwards pointing (respectively, downwards pointing) if
〈v, ξ 〉 > 0 (respectively, 〈v, ξ 〉 < 0).

We set

c :=
√−κ

2
.

This constant is called the critical mean curvature because there exist compact CMC H
surfaces in E

3(κ, τ ) if and only if |H | > c. When κ < 0, horocylinders, i.e. inverse images
by π of horocycles of H

2(κ), have CMC c. When κ = 0, vertical planes, i.e. inverse images
by π of straight lines of R

2, are minimal, and hence have CMC c. In particular, any E

3(κ, τ )

with κ � 0 can be foliated by topological planes of critical CMC, all of them congruent to
each other.

A surface is said to be nowhere vertical (or a local graph) if ξ is nowhere tangent to it,
that is, if the restriction of π to the surface is a local diffeomorphism (in H

2(κ) × R this
means that the surface has a regular projection on H

2(κ)); it is said to be an entire graph if
the restriction of π to the surface is a global diffeomorphism onto M

2(κ). The angle function
of an oriented surface � is the function 〈N , ξ 〉 where N is the unit normal vector field to �.
Hence, a surface is nowhere vertical if and only if its angle function does not vanish. CMC
local graphs, and in particular entire graphs, play an important role among CMC surfaces;
see for instance [8,15,20,21,23–25].

For ρ > 0 we set

D(ρ) = {z ∈ C; |z| < ρ}.
We also set

D = D(1).

We use the following model for the hyperbolic plane of constant curvature κ:

H

2(κ) = D

(
2√−κ

)

endowed with the metric given in canonical coordinates (x1, x2) by

	2(dx2
1 + dx2

2 )

where

	 = 1

1 + κ
4 (x

2
1 + x2

2 )
= 1

1 − c2|ζ |2
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with

ζ = x1 + i x2.

The model we use for E

3(κ, τ ) is D

(
2√−κ

)
× R when κ < 0 or R

3 when κ = 0, endowed

with the metric given in canonical coordinates (x1, x2, x3) by

	2(dx2
1 + dx2

2 )+ (τ	(x2dx1 − x1dx2)+ dx3)
2.

In this model we have

π(x1, x2, x3) = (x1, x2).

We consider the following orthonormal frame:

V1 = 1

	

∂

∂x1
− τ x2

∂

∂x3
, V2 = 1

	

∂

∂x2
+ τ x1

∂

∂x3
, V3 = ∂

∂x3
= ξ. (2.1)

The fields V1 and V2 are the horizontal lifts in E

3(κ, τ ) by the fibration π of the fields 1
	

∂
∂x1

and 1
	

∂
∂x2

in M

2(κ).

3 Definition of the Gauss map

In this section we set

κ < 0.

We will define a “geometric” Gauss map for surfaces in E

3(κ, τ ) that coincides with the
hyperbolic Gauss map [14] for graphs in H

2(κ)× R when τ = 0 and such that, by taking a
limit when κ → 0, we get the Gauss map defined for surfaces in Nil3 using the Lie group
structure studied in [7].

For simplicity we set E = E

3(κ, τ ). We denote by Isom0(E) the connected component of
the identity in the isometry group of E. All isometries in Isom0(E) leave the field ξ invariant,
since the sectional curvature of the plane ξ⊥ is a strict minimum (see [6] for more details);
as a consequence, a fiber is mapped to another fiber. An isometry f ∈ Isom0(E) induces via
π an orientation-preserving isometry f̃ of H

2(κ), i.e., f̃ ◦ π = π ◦ f ; we will say that f̃ is
the horizontal part of f . Moreover, the field ξ is a Killing field; the isometries it generates
are called vertical translations and their horizontal part is the identity. Let

SU1,1 =
{(

α β

β̄ ᾱ

)
; (α, β) ∈ C

2, |α|2 − |β|2 = 1

}
,

PSU1,1 = SU1,1/{±I}.
We let S denote the Riemann sphere C̄ = C ∪ {∞} together with a marked oriented circle

E in C̄. We call E the equator of S. Then S\E has two connected components: we will call
northern hemisphere and denote by S+ the one whose oriented boundary is E , and we will
call southern hemisphere and denote by S− the one whose oriented boundary is E with the
opposite orientation.

The connected group that acts naturally on S is the group of (orientation-preserving)
conformal diffeomorphisms of C̄ that leave E invariant and preserve the orientation of E . This
group is PSU1,1 � PSL2(R), which is also the group of orientation-preserving isometries of
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H

2(κ). Hence to each M ∈ SU1,1 we associate a conformal diffeomorphism ψM : S → S
as above and an orientation-preserving isometry ϕM : H

2(κ) → H

2(κ), so that

ψM N = ψM ◦ ψN , ϕM N = ϕM ◦ ϕN .

In this way we obtain a unique conformal diffeomorphism σ : H

2(κ)∪ ∂∞H

2(κ) → S+ ∪ E
such that

σ ◦ ψM = ϕM ◦ σ
for all M . Without loss of generality we can assume that E is the circle |z| = 1 oriented
counter clockwise, the northern hemisphere is

S+ = {|z| < 1},
the southern hemisphere is

S− = {|z| > 1} ∪ {∞},
and, for

M =
(
α β

β̄ ᾱ

)
∈ SU1,1,

ψM and ϕM are defined by

ψM (z) := αz + β

β̄z + ᾱ
, ϕM (ζ ) := 1

c

αcζ + β

β̄cζ + ᾱ
.

In this way, we have σ(z) = z/c.
Inspired by the properties of the “hyperbolic Gauss map” of surfaces in hyperbolic 3-space

H

3, we seek a Gauss map for oriented surfaces in E with values in S having the following
properties:

• two surfaces passing through the same point x have the same Gauss map at x if and only
if they have the same unit normal vector at x ,

• applying an isometry f of E belonging to the connected component of the identity switches
the Gauss map g of the surface toψM ◦ g, where M ∈ SU1,1 corresponds to the horizontal
part of f ,

• the Gauss map at a point lies on the equator E (respectively, in the northern hemisphere)
if and only if the unit normal vector at that point is horizontal (respectively, upwards
pointing).

The first property implies that the Gauss map of an oriented surface � factorizes as
g = � ◦ N for some map� : UE → S, where UE denotes the unit tangent bundle to E and
N : � → UE the unit normal vector to �.

Theorem 3.1 There exists a unique map

� : UE → S
(x, Z) → �x (Z)

such that

(a) for any f ∈ Isom0(E), if M ∈ SU1,1 is such that the horizontal part of f is ϕM , then

� ◦ d f = ψM ◦�,
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The Gauss map of surfaces in˜PSL2(R) 513

(b) for any (x, Z) ∈ UE, �x (Z) ∈ E (respectively �x (Z) ∈ S+, �x (Z) ∈ S−) if and only
if Z is horizontal (respectively, upwards pointing, downwards pointing),

(c) for any point x ∈ E and any horizontal vector Z ∈ Ux E, �x (Z) = σ(p) where p
denotes the endpoint of the oriented geodesic of H

2(κ) passing through π(x)with dπ(Z)
as tangent vector,

(d) for any point x ∈ E, the map �x : Ux E → S is a conformal diffeomorphism.

Moreover the map � is analytic, and its expression in the frame (V1, V2, V3) is given by

�x (Z) = Z1 + i Z2 + cζ(1 + Z3)

cζ̄ (Z1 + i Z2)+ 1 + Z3
(3.1)

where ζ = x1 + i x2 and Z = Z1V1 + Z2V2 + Z3V3.

Proof We first notice that proving existence and uniqueness of � is equivalent to proving
that there exists a unique map � : UE → S satisfying property (a) and properties (b), (c)
and (d) at one point, for instance at the origin O = (0, 0, 0) ∈ E.

We first prove the uniqueness of �O . At the origin the frame (V1, V2, V3) is just the
coordinate frame. We let s : UOE → S denote the stereographic projection with respect to
the South Pole, i.e., if Z = Z1V1 + Z2V2 + Z3V3 ∈ UOE, then

s(Z) = Z1 + i Z2

1 + Z3
.

So, by property (d) there exists a conformal diffeomorphism h : S → S such that�O = h◦s.
By property (b), h(S+) = S+. Moreover, property (a) holds for all isometries f ∈

Isom0(E) preserving O . Applying this property to the vector Z = V3, we obtain that for all
rotations R around 0 ∈ S we have h(0) = R(h(0)), which implies that h is a rotation around
0 ∈ S. Finally, using property (c) we conclude that h is the identity, and hence �O = s.

Observe that it is easy to check that �O = s satisfies (b), (c), (d) at x = O and also (a)
for all isometries f ∈ Isom0(E) preserving O .

We now prove existence and uniqueness of �, as well as the announced expression (3.1)
for �.

We consider a point y = (y1, y2, y3) ∈ E and an isometry f ∈ Isom0(E) such that

f (y) = O . To f is associated a matrix M =
(
α β

β̄ ᾱ

)
∈ SU1,1 such that

β = −αcw

where w = y1 + iy2. Let

Z = Z1V1(y)+ Z2V2(y)+ Z3V3(y) ∈ UyE

and set

d f (Z) = Y1V1(0)+ Y2V2(0)+ Y3V3(0).

Since isometries in Isom0(E) preserve the field ξ , we have 〈d f (Z), ξ(O)〉 = 〈Z , ξ(y)〉, i.e.,
Y3 = X3. On the other hand, since ϕM is holomorphic, using complex notation in H

2(κ) we
have dϕM = ϕ′

M (dx1 + idx2).
Consequently, since 	(0) = 1 and

dπ(d f (Z)) = dϕM (dπ(Z)),
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we get

Y1 + iY2 = ϕ′
M (w)

	(w)
(Z1 + i Z2) = α

ᾱ
(Z1 + i Z2).

From this we deduce that

�O (d f (Z)) = Y1 + iY2

1 + Y3
= α

ᾱ

Z1 + i Z2

1 + Z3
.

Then by property (a) we have

�y(Z) = ψ−1
M (�O (d f (Z))) = ᾱ�O(d f (Z))− β

−β̄�O (d f (Z))+ α
= Z1 + i Z2 + cw(1 + Z3)

cw̄(Z1 + i Z2)+ 1 + Z3
.

Let us observe that this expression does not depend on the choice of the isometry f ;
this is because �O satisfies (a) for all isometries in Isom0(E) preserving O . This gives the
uniqueness of� as well as the announced expression, from which we also deduce analyticity.
Conversely, by construction this map satisfies (a), (b), (c) and (d). ��
Definition 3.2 Let � be an oriented surface in E. Then the Gauss map of � is the map
� ◦ N : � → S where N is the unit normal vector to �.

Remark 3.3 Though we have used a specific model for E to prove Theorem 3.1, its statement
about existence and uniqueness of � : UE → S satisfying conditions (a)–(d) does not
involve a model for E but only needs the choice of an isomorphism between the group of
orientation-preserving isometries of H

2(κ) and the group of orientation-preserving conformal
diffeomorphisms of S that leave E invariant and preserve the orientation of E . In particular,
Definition 3.2 is also independent of the model chosen for E.

If we consider the specific model for E we are working with in this paper, we get the
following expression for the Gauss map.

Corollary 3.4 If N = N1V1 + N2V2 + N3V3, then the Gauss map of � is

g = N1 + i N2 + cζ(1 + N3)

cζ̄ (N1 + i N2)+ 1 + N3
(3.2)

with ζ = x1 + i x2.

Remark 3.5 In the case of H

2 × R, the hyperbolic Gauss map defined in [14] for CMC 1/2
graphs can be written as � ◦ N with � satisfying conditions (a)–(d) in Theorem 3.1, so it
coincides with g.

Remark 3.6 The formula given in Corollary 3.4 extends for κ = 0, and in this case we get
the Gauss map studied in [7]. Hence formula (3.2) provides a unified treatment for Gauss
maps in all manifolds E

3(κ, τ ) with κ � 0.

Example 3.7 Let γ be a curve of constant curvature k in H

2(κ) and let � = π−1(γ ) ⊂ E.
Then, by property (b) of Theorem 3.1, the image of the Gauss map of� lies in is the equator
E , since the normal to� is horizontal. When |k| > √−κ , it is the whole E ; when |k| = √−κ
(in which case � is a horocylinder), it is a point in E or its complement (depending on the
orientation); when |k| < √−κ , it is an open arc in E . More generally, the Gauss map of a
surface� ⊂ E takes values in E if and only if the normal to� is everywhere horizontal, i.e.,
if and only if π(�) ⊂ H

2(κ) is a curve.
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Remark 3.8 By property (b) of Theorem 3.1, the Gauss map of a surface� ⊂ E takes values
in D if and only if � is a nowhere vertical surface with upwards pointing normal.

Remark 3.9 Let r : E → E be the map defined by r(x1, x2, x3) = (x1,−x2,−x3). This map
is an isometry of E (but does not lie in Isom0(E)); it is the rotation of angle π around the
x1-axis, which is a horizontal geodesic. Let x ∈ E and X ∈ Ux E. Then

�r(x)(dr(X)) = 1

�x (X)
.

Indeed, this follows from (3.1) with (ζ, X1, X2, X3) replaced by (ζ̄ , X1,−X2,−X3).

Remark 3.10 The homogeneous manifold ˜PSL2(R) is isometric to the universal cover of
UH

2(κ) endowed with a Sasaki metric (see [6] for details). Via this identification, the Rie-
mannian fibration π is the canonical projection onto H

2(κ), and isometries of ˜PSL2(R)

coming from the Lie group structure (i.e., left-multiplications) are of the form ( f, d f )where
f is a direct isometry of H

2(κ). For example, among all screw motions around the x3-axis
in ˜PSL2(R), those coming from the Lie group structure are exactly those whose pitch has
a particular value that depends on κ and τ . Vertical translations do not come from the Lie
group structure.

4 Preliminary calculations

This section is devoted to preliminary equations for conformal immersions in E = E

3(κ, τ )

where

κ � 0

and their Gauss map.

4.1 Expression of the connection of E

First we compute the connection ∇̂ of E in the frame (V1, V2, V3). We have

[V1, V2] = −κ
2

x2V1 + κ

2
x1V2 + 2τV3, [V1, V3] = [V2, V3] = 0,

and so

∇̂V1 V1 = κ
2 x2V2, ∇̂V2 V1 = − κ

2 x1V2 − τV3, ∇̂V3 V1 = −τV2,

∇̂V1 V2 = − κ
2 x2V1 + τV3, ∇̂V2 V2 = κ

2 x1V1, ∇̂V3 V2 = τV1,

∇̂V1 V3 = −τV2, ∇̂V2 V3 = τV1, ∇̂V3 V3 = 0.
(4.1)

4.2 Conformal immersions

Let X = (x1, x2, x3) : � → E be a conformal immersion from a Riemann surface� into E.
We shall denote by N : � → UE its unit normal. If we fix a conformal coordinate z = u + iv
in �, then we have

〈Xz, Xz̄〉 = λ

2
> 0, 〈Xz, Xz〉 = 0,

where λ is the conformal factor of the metric with respecto to z. Moreover, we will denote
the coordinates of Xz and N in the frame (V1, V2, V3) by
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Xz =
⎡
⎣ A1

A2

A3

⎤
⎦ , N =

⎡
⎣ N1

N2

N3

⎤
⎦ .

The function N3 is the angle function (see Sect. 2).
The usual Hopf differential of X , i.e., the (2, 0) part of its complexified second fundamental

form, is defined as

Pdz2 = 〈N , ∇̂Xz Xz〉dz2.

From the definitions, we have the basic algebraic relations
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

|A1|2 + |A2|2 + |A3|2 = λ

2
,

A2
1 + A2

2 + A2
3 = 0,

N 2
1 + N 2

2 + N 2
3 = 1,

A1 N1 + A2 N2 + A3 N3 = 0.

(4.2)

A classical computation proves that the Gauss–Weingarten equations of the immersion read
as

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∇̂Xz Xz = λz

λ
Xz + P N ,

∇̂Xz̄ Xz = λH

2
N ,

∇̂Xz̄ Xz̄ = λz̄

λ
Xz̄ + ¯P N ,

⎧⎪⎨
⎪⎩

∇̂Xz N = −H Xz − 2P

λ
Xz̄,

∇̂Xz̄ N = −2 P̄

λ
Xz − H Xz̄,

where H is the mean curvature function of X .
Using (4.1) in these equations we get

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

A1z̄ = λH

2
N1 + κ

2
x2 Ā1 A2 − κ

2
x1|A2|2 − τ( Ā2 A3 + A2 Ā3),

A2z̄ = λH

2
N2 + κ

2
x1 A1 Ā2 − κ

2
x2|A1|2 + τ( Ā1 A3 + A1 Ā3),

A3z̄ = λH

2
N3 + τ(A1 Ā2 − Ā1 A2).

(4.3)

N3z = −H A3 − 2P

λ
Ā3 + τ(A2 N1 − A1 N2). (4.4)

Moreover, the fact that Xz × Xz̄ = i λ2 N implies that

N1 = −2i

λ
(A2 Ā3 − A3 Ā2), N2 = −2i

λ
(A3 Ā1 − A1 Ā3), N3 = −2i

λ
(A1 Ā2 − A2 Ā1).

4.3 An auxiliary map

We now introduce the auxiliary map

G := N1 + i N2

1 + N3
,
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so that

N = 1

1 + |G|2

⎡
⎣ 2 Re G

2 Im G
1 − |G|2

⎤
⎦ . (4.5)

Remark 4.1 This map G does not have a geometric meaning since it depends on the choice
of the frame (V1, V2, V3); however |G| has a geometric meaning, since it depends only on the
angle function of the immersion. In particular, X defines a local graph with upwards pointing
normal if and only if |G| < 1.

Let us set

η := 2〈Xz, ξ 〉 = 2A3.

A straightforward computation from (4.2) proves that η/Ḡ extends smoothly at points where
G = 0 and that

A1 = −1 − Ḡ2

4Ḡ
η, A2 = i

1 + Ḡ2

4Ḡ
η, A3 = η

2
(4.6)

and thereby

λ = (1 + |G|2)2 |η|2
4|G|2 . (4.7)

Then, denoting ζ = x1 + i x2 : � → C, (4.3) becomes

(Ḡ2 + 1)
ηḠ z̄

4Ḡ2
+ 1

4

(
Ḡ − 1

Ḡ

)
ηz̄ = (1 + |G|2) |η|2

4|G|2 H Re(G)

− κ
|η|2

32|G|2 (1 + Ḡ2)(ζ + G2ζ̄ )+ iτ
|η|2

8

(
1

G
− 1

Ḡ
+ G − Ḡ

)
, (4.8)

i(Ḡ2 − 1)
ηḠ z̄

4Ḡ2
+ i

4

(
Ḡ + 1

Ḡ

)
ηz̄ = (1 + |G|2) |η|2

4|G|2 H Im(G)

+ iκ
|η|2

32|G|2 (1 − Ḡ2)(ζ + G2ζ̄ )+ τ
|η|2

8

(
− 1

G
− 1

Ḡ
+ G + Ḡ

)
, (4.9)

1

2
ηz̄ = (H + iτ)

|η|2
8|G|2 (1 − |G|4). (4.10)

Reporting (4.10) into (4.8) + i (4.9) gives

GḠz̄

2η̄
= H

8
(1 + |G|2)2 + iτ

8
(1 − |G|2)2 − κ

16
Ḡ(ζ + G2ζ̄ ),

i.e.

η = 4ḠGz

U (G, ζ )
(4.11)

where

U (G, ζ ) = H(1 + |G|2)2 − iτ(1 − |G|2)2 + 2c2G(ζ̄ + Ḡ2ζ ).
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4.4 Preliminary formulas for the Gauss map

Using (4.6) and (2.1) we first have

ζz = A1 + i A2

	(ζ)
= −(1 − c2|ζ |2) η

2Ḡ
, (4.12)

ζ̄z = A1 − i A2

	(ζ)
= (1 − c2|ζ |2) Ḡη

2
= −Ḡ2ζz . (4.13)

By Corollary 3.4, the Gauss map g and the auxiliary map G are related by

g = G + cζ

cζ̄G + 1
, G = g − cζ

−cζ̄ g + 1
, (4.14)

from where we also get

1 − |G|2 = (1 − c2|ζ |2)(1 − |g|2)
(1 − cζ̄ g)(1 − cζ ḡ)

. (4.15)

ζ̄ + Ḡ2ζ = (ζ̄ + ḡ2ζ )(1 + c2|ζ |2)− 4c|ζ |2 ḡ

(1 − cζ ḡ)2
. (4.16)

4.5 Preliminary formulas for the derivatives of the Gauss map

Differentiating the left equation in (4.14) we get

gz

g
= Gz + cζz

G + cζ
− c

ζ̄zG + ζ̄Gz

cζ̄G + 1

= 1 − c2|ζ |2
(G + cζ )(cζ̄G + 1)

Gz + c
ζz

G + cζ
− c

G ζ̄z

cζ̄G + 1
.

Using (4.12), (4.13) and (4.11) we obtain

gz

g
= 1 − c2|ζ |2
(G + cζ )(cζ̄G + 1)

ηU (G, ζ )

4Ḡ
− c(1 − c2|ζ |2)

(
η

2Ḡ(G + cζ )
+ |G|2η

2(cζ̄G + 1)

)

= (1 − c2|ζ |2)η
4Ḡ(G + cζ )(cζ̄G + 1)

(U (G, ζ )− 2c(cζ̄G + 1)− 2cGḠ2(G + cζ ))

= (1 − c2|ζ |2)η
4Ḡ(G + cζ )(cζ̄G + 1)

V (G)

with

V (G) = (H − c)(1 + |G|2)2 − (c + iτ)(1 − |G|2)2. (4.17)

On the other hand, differentiating the right equation in (4.14) and using (4.12) and (4.13)
we get

Ḡz

Ḡ
= 1 − c2|ζ |2
(ḡ − cζ̄ )(1 − cζ ḡ)

(
ḡz − cηḡ + c2η

2
(ζ̄ + ḡ2ζ )

)
. (4.18)
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5 CMC surfaces with critical mean curvature

We recall that there exist compact CMC H surfaces in E if and only if |H | > c. Indeed,
there exist CMC H spheres if |H | > c (see for instance [1,17,28]), and since horocylinders
(vertical planes when κ = 0) have mean curvature c, by the maximum principle there cannot
exist compact CMC H surfaces if |H | � c. CMC surfaces with mean curvature c are called
CMC surfaces with critical mean curvature.

In this section we focus on CMC surfaces with critical mean curvature, and we assume
that they are oriented by their mean curvature vector when κ < 0, i.e., we set H = c. The
results of these section generalize those of [7] (which correspond to the case where κ = 0
and where τ has been normalized to 1/2).

5.1 Harmonicity of the Gauss map

Theorem 5.1 Let X = (x1, x2, x3) : � → E be a CMC immersion with critical mean
curvature. Assume that X is nowhere vertical and with upwards pointing unit normal vector.
Let g : � → D be its Gauss map (see Remark 3.8). Then, g is nowhere antiholomorphic, i.e.,
gz �= 0 at every point for any local conformal parameter z on �, and g verifies the second
order elliptic equation

(1 − |g|2)gzz̄ + 2ḡgz ḡz̄ = 0. (5.1)

In other words, g is harmonic in D endowed with the hyperbolic metric (of curvature −1)
4|dw|2/(1 − |w|2)2.

Moreover, the immersion X = (x1, x2, x3) : � → E can be recovered in terms of the
Gauss map g by means of the representation formula

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ζz = 2

c + iτ

(1 − cζ ḡ)2

(1 − |g|2)2 gz,

ζz̄ = − 2

c − iτ

(g − cζ )2

(1 − |g|2)2 ḡz̄,

(x3)z = − 2

c + iτ

(ḡ − cζ̄ )(1 − cζ ḡ)

(1 − c2|ζ |2)(1 − |g|2)2 gz + iτ

2

ζ ζ̄z − ζ̄ ζz

1 − c2|ζ |2 ,

(5.2)

where

ζ = x1 + i x2.

Conversely, assume that a map g : � → D from a simply connected Riemann surface
� verifies (5.1) and is nowhere antiholomorphic. Then the map X : � → E given by the
representation formula (5.2) is a conformal CMC immersion with critical mean curvature
whose Gauss map is g.

Proof Since H = c, V (G) defined in (4.17) simplifies and we obtain, using (4.15) and the
second equation in (4.14),

gz = −c + iτ

4

(1 − c2|ζ |2)(1 − |g|2)2
(ḡ − cζ̄ )(1 − cζ ḡ)

η. (5.3)
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Differentiating (5.3), we get

gzz̄

gz
= ηz̄

η
− c2 ζ̄ ζz̄ + ζ ζ̄z̄

1 − c2|ζ |2 − 2
ḡgz̄ + gḡz̄

1 − |g|2 − ḡz̄ − cζ̄z̄

ḡ − cζ̄
+ c

ḡζz̄ + ζ ḡz̄

1 − cζ ḡ

= (c + iτ)
1 − |G|4

4|G|2 η̄ + c2(ζ − ζ̄G2)
η̄

2G
− 2

ḡgz̄

1 − |g|2 − 2
gḡz̄

1 − |g|2

−c
1 − c2|ζ |2

ḡ − cζ̄

η̄

2G
+ c

(1 − c2|ζ |2)ḡ
1 − cζ ḡ

Gη̄

2
+ −1 − c2|ζ |2 + 2cζ ḡ

(ḡ − cζ̄ )(1 − cζ ḡ)
ḡz̄ .

We compute

B1 := (c + iτ)
1 − |G|4

4|G|2 η̄

= (c + iτ)(1 − c2|ζ |2)(1 − |g|2) (1 − cζ̄ g)(1 − cζ ḡ)+ (g − cζ )(ḡ − cζ̄ )

4(g − cζ )(ḡ − cζ̄ )(1 − cζ̄ g)(1 − cζ ḡ)
η̄,

B2 := c2(ζ − ζ̄G2)
η̄

2G

= c2 (ζ − ζ̄ g2)(1 − c2|ζ |2)
2(g − cζ )(1 − cζ̄ g)

η̄,

B3 := −c
1 − c2|ζ |2

ḡ − cζ̄

η̄

2G
+ c

(1 − c2|ζ |2)ḡ
1 − cζ ḡ

Gη̄

2

= c(1−c2|ζ |2)cḡ(ζ−ζ̄ g2)(1−c2|ζ |2)+c2(ζ 2 ḡ2−ζ̄ 2g2)+2cg(ζ̄ − ζ ḡ2)+ |g|4 − 1

2(g − cζ )(ḡ − cζ̄ )(1 − cζ̄ g)(1 − cζ ḡ)
η̄,

and so

B1+B2+B3 =−(c − iτ)(1−c2|ζ |2)(1−|g|2) (1 − cζ̄ g)(1 − cζ ḡ)+ (g − cζ )(ḡ − cζ̄ )

4(g − cζ )(ḡ − cζ̄ )(1 − cζ̄ g)(1 − cζ ḡ)
η̄.

Moreover, we have

−2
gḡz̄

1 − |g|2 + −1 − c2|ζ |2 + 2cζ ḡ

(ḡ − cζ̄ )(1 − cζ ḡ)
ḡz̄ = − (1 − cζ̄ g)(1 − cζ ḡ)+ (g − cζ )(ḡ − cζ̄ )

(1 − |g|2)(ḡ − cζ̄ )(1 − cζ ḡ)
ḡz̄,

and we conclude from (5.3) that

gzz̄

gz
= −2

ḡgz̄

1 − |g|2 ,

which means that g : � → D is harmonic for the hyperbolic metric.
Combining (4.12), (4.13), (4.14) and (5.3) gives the first order differential system satisfied

by ζ in terms of g and gz : ⎧⎪⎪⎨
⎪⎪⎩
ζz = 2

c + iτ

(1 − cζ ḡ)2

(1 − |g|2)2 gz,

ζz̄ = − 2

c − iτ

(g − cζ )2

(1 − |g|2)2 ḡz̄ .

(5.4)

Observe that (5.3) gives η in terms of g, gz and ζ :

η = − 4

c + iτ

(ḡ − cζ̄ )(1 − cζ ḡ)

(1 − c2|ζ |2)(1 − |g|2)2 gz . (5.5)
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Finally, since x3z = A3 + τ(x1 A2 − x2 A1) = A3 + τ	(x1x2z − x2x1z), we have

(x3)z = η

2
+ iτ

2

ζ ζ̄z − ζ̄ ζz

1 − c2|ζ |2 . (5.6)

Moreover, if gz = 0 at some point, then these formulas show that ζz = 0, ζz̄ = 0 and
(x3)z = 0 at this point, contradicting the fact that X is an immersion. Consequently, g is
nowhere antiholomorphic. We observe that the conformal factor of X is given in terms of g
as

λ = 4
(|1 − cζ̄ g|2 + |g − cζ |2)2

(c2 + τ 2)(1 − c2|ζ |2)2(1 − |g|2)4 .

Conversely, assume that a map g : � → D from a simply connected Riemann surface �
verifies (5.1) and is nowhere antiholomorphic. A long but straightforward computation shows
that if z denotes a complex parameter on �, then(

2

c + iτ

(1 − cζ ḡ)2

(1 − |g|2)2 gz

)
z̄

=
(

− 2

c − iτ

(g − cζ )2

(1 − |g|2)2 ḡz̄

)
z
.

By the Frobenius theorem, given p1 + i p2 ∈ D(1/c) and z0 ∈ �, there is a unique solution
ζ : � → C to (5.4) such that ζ(z0) = p1 + i p2. Let us check now that |ζ | < 1/c on �.

Let φ := 1 − c2|ζ |2. Then, from (5.4) we get

φz = −2c2(ζ̄ − ḡ2ζ )

(c + iτ)(1 − |g|2)2 gzφ. (5.7)

Assume that |ζ | < 1/c does not hold in � (observe that |ζ(z0)| < 1/c). Then there exists a
regular path γ (t) : [0, 1] → � such that (φ ◦ γ )(0) > 0, (φ ◦ γ )(1) = 0 and (φ ◦ γ )′(t) < 0
for all t ∈ [0, 1). As γ [0, 1] is compact, we get from (5.7) that

− (φ ◦ γ )′(t)
(φ ◦ γ )(t) � C

for every t ∈ [0, 1) and some constant C > 0. Denote f (t) = log((φ ◦ γ )(t)) − log((φ ◦
γ )(0)). Then f (0) = 0 and f ′(t) � −C for every t ∈ [0, 1). Thus f (t) � −Ct , which
contradicts that limt→1− f (t) = −∞. So, |ζ | < 1/c on �.

Once here, a computation shows that, if we write the third equation in (5.2) as (x3)z =: A,
then Az̄ = Āz . Again by the Frobenius theorem there exists x3 : � → R such that (x3)z = A,
unique once we fix an initial condition x3(z0) = p3.

Therefore, we get a unique map X = (x1, x2, x3) : � → E with X (z0) = (p1, p2, p3)

that verifies system (5.2), where ζ = x1 + i x2.
To complete the proof of the converse, it remains to check that X is a conformal immersion

with critical mean curvature c and Gauss map g. This is a long but standard computation.
The idea is, starting with (5.2), to show that if Xz = A1V1 + A2V2 + A3V3, then A1, A2 are
given by (4.12), (4.13) and A3 =: 2η is given by (5.5). From here we can check that X is a
conformal immersion with Gauss map g, and a computation using (4.17) gives that X has
critical CMC c. We omit the details. ��
Remark 5.2 If X : � → E is a CMC immersion with critical mean curvature possibly
with vertical points, then its Gauss map g : � → C̄ still satisfies (5.1), and it is nowhere
antiholomorphic at points where |g| �= 1. Indeed, the whole proof can be extended to this
case.
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However, conversely, if � is simply connected and g : � → C̄ satisfies (5.1) without
assuming that |g| < 1, then the representation formula (5.2) only locally defines a possibly
branched immersion away from points where |g| = 1 (see Remark 4.2 in [7]).

Remark 5.3 When κ < 0, if X is a nowhere vertical CMC immersion with critical mean
curvature, it may not be possible to orient it so that its unit normal is upwards pointing, since
the orientation is chosen so that the mean curvature is positive. However it is not a loss of
generality to assume that the unit normal is upwards pointing. Indeed, assume that X has a
downwards pointing unit normal and let r the rotation of angle π around the x1-axis (see
Remark 3.9). This map r is an isometry of E, and hence r ◦ X is a nowhere vertical CMC
immersion with critical mean curvature c and upwards pointing normal. Then Theorem 5.1
applies to r ◦ X . Also, if g denotes the Gauss map of X , then the Gauss map of r ◦ X is 1/g.

Remark 5.4 Theorem 5.1 implies that, when κ < 0 (i.e., in H

2 × R and ˜PSL2(R)), there
generically exists a two-parameter family of non-congruent CMC immersions with critical
mean curvature sharing the same Gauss map. Indeed, in Theorem 5.1, for a given z0 ∈ � one
can prescribe ζ(z0) and x3(z0); changing x3(z0) simply corresponds to a vertical translation,
but changing ζ(z0) gives a new non-congruent immersion unless the Gauss map has some
symmetry, by property (a) in Theorem 3.1. In H

2 × R this was noticed in Remark 5 in [14].
When κ = 0 (i.e., in Nil3) this is not the case anymore (see Sect. 6 in [7]).

5.2 The Hopf differential

One can associate two natural holomorphic quadratic differentials to the immersion X :

• the Hopf differential Q(g)dz2 of g (in the sense of harmonic maps into D endowed with
the hyperbolic metric):

Q(g) := 4gz ḡz

(1 − |g|2)2 ,

• the Abresch–Rosenberg differential �dz2 of X [1,2] (see also [13] for its expression):

� := 2(H + iτ)P − (κ − 4τ 2)
η2

4
= 2(c + iτ)P + (c2 + τ 2)η2.

Proposition 5.5 We have

Q(g) = −�.
Proof By (5.3) we have

Q(g) = −(c + iτ)
(1 − c2|ζ |2)

(ḡ − cζ̄ )(1 − cζ ḡ)
ηḡz .

We now compute�. First we compute P , starting from the identity (4.4) and using (4.5),
(4.6), (4.7) and (4.11):

P = λ

η̄

(
2

ḠGz + GḠz

(1 + |G|2)2 − (H − iτ)
η

2

)

= η

2|G|2
(

U (G, ζ )η

4
+ GḠz

)
− (H − iτ)(1 + |G|2)2 η2

8|G|2

= iτ

2
η2 + c2η2

4Ḡ
(ζ̄ + Ḡ2ζ )+ Ḡzη

2Ḡ
.
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Then, using (4.18) and (4.16), we get

P = iτ

2
η2+ c2η2

2

ζ̄ + ḡ2ζ

(ḡ−cζ̄ )(1 − cζ ḡ)
− cḡη2

2

1+c2|ζ |2
(ḡ−cζ̄ )(1−cζ ḡ)

+ η

2

1−c2|ζ |2
(ḡ−cζ̄ )(1 − cζ ḡ)

ḡz

= −c − iτ

2
η2 + η

2

1 − c2|ζ |2
(ḡ − cζ̄ )(1 − cζ ḡ)

ḡz .

Finally we get � = −Q(g). ��
5.3 The Gauss map of the sister minimal surface in Nil3(τ̂ )

Let X : � → E

3(κ, τ ) be a CMC immersion with critical mean curvature. Assume that� is
simply connected. Then, by the Lawson-type correspondence in [6], there exists a minimal
immersion X̂ : � → Nil3(τ̂ ) = E

3(0, τ̂ ) where τ̂ 2 = τ 2 + c2 that is isometric to X .
Moreover, the immersions X and X̂ have the same angle function (see Sect. 2) and their
associated Abresch–Rosenberg differentials � and �̂ are related by � = e−2iθ �̂, where
τ + ic = eiθ τ̂ (see for instance the end of Sect. 3 in [19] and the expression of the Abresch–
Rosenberg differential given in Sect. 5.2).

A pair of such isometric surfaces are called sister surfaces. The minimal sister surface
in Nil3(τ̂ ) of a CMC surface in E

3(κ, τ ) with critical mean curvature is unique up to direct
isometries of Nil3(τ̂ ).

If g : � → D is a harmonic map for the hyperbolic metric on D, we consider the form
μ(g)|dz|2 (which is independent of the choice of the conformal parameter z) where

μ(g) := 4(|gz |2 + |gz̄ |2)
(1 − |g|2)2 .

Two harmonic maps g1 and g2 are said to be associate if there exists a real constant θ such
that Q(g2)dz2 = e−2iθ Q(g1)dz2 and μ(g2)|dz|2 = μ(g1)|dz|2.

We now consider a conformal immersion X : � → E

3(κ, τ ) from a simply connected
Riemann surface� into E

3(κ, τ ) such that X (�) is a local graph with positive angle function.
We let X̂ : � → Nil3(τ̂ ) be its sister minimal immersion. Let g be the Gauss map of X and
ĝ the Gauss map of X̂ (which is unique only up to rotations around 0 ∈ D, see Sect. 6 in [7]).

Proposition 5.6 The Gauss maps g and ĝ are associate and Q(g) = e−2iθ Q(ĝ) with θ
defined by

τ + ic = eiθ τ̂ . (5.8)

Proof We keep for the immersion X the same notation as in the previous sections.
By Proposition 5.5 we have Q(g) = −�, and similarly we have Q(ĝ) = −�̂ where �̂ is

the Abresch-Rosenberg differential of X̂ . Since the differentials� and �̂ satisfy� = e−2iθ �̂,
we get Q(g) = e−2iθ Q(ĝ). We now prove that μ(g) = μ(ĝ).

Since sister surfaces have the same angle function, it follows from (4.5) and the analogous
formula in Nil3(τ̂ ) (see Definition 3.1 in [7]) that

|G| = |ĝ|. (5.9)

Denote by (ĝ, η̂) the Weierstrass data of X̂ (see Defintion 3.2 in [7]). By Eq. (10) in [7]
(or by (4.11) with (η, H, τ, c) replaced by (η̂, 0, τ̂ , 0)) we have

η̂ = 4i

τ̂

ĝĝz

(1 − |ĝ|2)2 . (5.10)
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On the other hand we have (see for instance the end of Sect. 3 in [19])

η = e−iθ η̂. (5.11)

So using (5.3) we get

gz = τ − ic

τ + ic

(1 − c2|ζ |2)(1 − |g|2)2
(ḡ − cζ̄ )(1 − cζ ḡ)

ĝĝz

(1 − |ĝ|2)2
and so, using (5.8), (5.9) and (4.15),

gz

1 − |g|2 = e−2iθ ĝz

1 − |ĝ|2
ĝ(1 − cζ̄ g)

ḡ − cζ̄
, (5.12)

which implies, using (5.9) and (4.14),

|gz |
1 − |g|2 = |ĝz |

1 − |ĝ|2 . (5.13)

Then (5.13) and the fact that |Q(g)| = |Q(ĝ)| imply that

|gz̄ |
1 − |g|2 = |ĝz̄ |

1 − |ĝ|2 . (5.14)

Finally, we deduce from (5.13) and (5.14) that μ(g) = μ(ĝ). This proves that g and ĝ are
associate. ��

Remark 5.7 Formula (5.12) gives the expression of ζ in terms of g and ĝ without the need
to integrate a differential system, contrarily to the representation formula (5.2). We will use
(5.12) to explicitely compute Example 5.9.

We recall the following result from [9] (see Corollaries 4.6.3, 4.6.4 there; see also Theorem
6.10 in [16]).

Proposition 5.8 The following conditions are equivalent for a surface X (�) of critical CMC
in E

3(κ, τ ):

(1) X (�) is an entire graph,
(2) X (�) is a complete local graph.

In particular, the sister correspondence preserves entire graphs of critical CMC (see Sect. 2
for the definition).

Proof That (1) implies (2) is trivial. Conversely, let X (�) be a complete local graph in
E

3(κ, τ ), which we will assume to be simply connected by passing to its universal covering
if necessary. Let ds2 denote the metric induced by X on� and ν the angle function of X (�).
Let X̂(�) denote the sister surface of X in Nil3. Then, ds2 and ν coincide with the metric
induced by X̂ on �, and with the angle function of X̂(�), respectively. Then, in particular,
X̂(�) is a complete local graph in Nil3. Consequently, by Theorem 3.1 in [7], X̂(�) is an
entire graph in Nil3. By Corollary 13 in [15] (which uses a result from [5]), the metric ν2ds2

is complete, and so by Lemma 9 in [15] the surface X (�) is an entire graph in E

3(κ, τ ). This
shows that (2) implies (1) and completes the proof. ��
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Example 5.9 (Surface with conformal Gauss map) We seek a local graph with critical CMC
whose Gauss map g : � → D is conformal, i.e., such that the Hopf differential of g vanishes
identically. Then ĝ is also conformal, so the surface will be the sister surface of that of
Example 8.1 in [7]. Up to a reparametrization we may assume that� = D and that ĝ(z) = z.
Then up to an isometry of E

3(κ, τ ) we can assume that g(z) = z.
Then by (5.12) we get

ζ = e2iθ − 1

c

z

e2iθ |z|2 − 1
.

Using (5.10), (5.11) and (5.8) we get

η = 4i

τ + ic

z̄

(1 − |z|2)2 .

Next, we compute that

ζz = 1 − e2iθ

c(e2iθ |z|2 − 1)2
, ζ̄z = (1 − e−2iθ )e−2iθ

c

z̄2

(e−2iθ |z|2 − 1)2
,

1 − c2|ζ |2 = (1 − |z|2)2
(e2iθ |z|2 − 1)(e−2iθ |z|2 − 1)

.

Then we compute using (5.6) that

(x3)z =
(

2i

τ + ic
− iτ(1 − e2iθ )(1 − e−2iθ )

2c2

|z|4 − 2|z|2e−2iθ + 1

(e2iθ |z|2 − 1)(e−2iθ |z|2 − 1)

)
z̄

(1 − |z|2)2 .

By (5.8) we have (1 − e2iθ )(1 − e−2iθ ) = 4c2/(τ 2 + c2), so we get

(x3)z = 2

τ 2 + c2

c(|z|4 + 1)+ 2(τ sin(2θ)− c cos(2θ))|z|2
(1 − |z|2)2(e2iθ |z|2 − 1)(e−2iθ |z|2 − 1)

z̄

= 2c

τ 2 + c2

(1 + |z|2)2 z̄

(1 − |z|2)2(|z|4 − 2|z|2 cos(2θ)+ 1)
,

and finally, up to a vertical translation,

x3 = − τ

c2 arctan

( |z|2 − cos(2θ)

sin(2θ)

)
+ 2

c(1 − |z|2) .

Hence we obtain a surface of revolution about the x3-axis; this surface is also an entire graph
and x3 → +∞ as |ζ | → 1/c. This surface is described in [28] (item 2 of Theorem 2 with
4H2 + κ = 0 and E = 0). In H

2(κ)× R (i.e., when τ = 0), this is the surface described on
p. 1172 in [14] (see also [1]).

Example 5.10 (Surfaces with singular Gauss map) We seek complete local graphs with
critical CMC whose Gauss map g : � → D is singular on an open set of �. Then g(�)
and ĝ(�) are geodesics of D for the hyperbolic metric, and these surfaces will be sister
surfaces of those of Example 8.2 in [7]. These minimal surfaces in Nil3 constitute a one-
parameter family of surfaces that are not isometric one to another, the parameter being the
hyperbolic distance between ĝ(�) and the origin 0 ∈ D. Since sister surfaces are isometric,
we get a one-parameter family of CMC surfaces in E

3(κ, τ ) that are not isometric one to
another. Since their sister minimal surfaces in Nil3 are invariant by a one-parameter family of
translations, a standard argument using the integrability equations for surfaces in E

3(κ, τ ) [6]
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shows that these surfaces are invariant by a one-parameter family of isometries of E

3(κ, τ )

(see Proposition 4.3 in [19]). Moreover, since their sister minimal surfaces in Nil3 are entire
graphs, it follows from Proposition 5.8 that these surfaces are also entire graphs. In H

2(κ)×R

(i.e., when τ = 0), these are the surfaces described in Proposition 18 in [14] (see also [27]).

6 The Gauss map in the Lorentzian model

In this section we assume that κ < 0 and we will show an alternative expression for the Gauss
map of nowhere vertical surfaces when we consider the Lorentzian model for the hyperbolic
space, that is, we now consider π : E → H

2(κ), where

H

2(κ) = {p = (p0, p1, p2) ∈ L

3 | 〈p, p〉 = 1/κ, p0 > 0} ⊂ L

3.

Here p0 denotes the timelike coordinate in Lorentz space L

3 and 〈p, p〉 = −p2
0 + p2

1 + p2
2.

This construction is inspired by the one given in [14] for surfaces in H

2 ×R. In particular,
it agrees with that one when τ = 0.

Theorem 6.1 Let X : � → E be a nowhere vertical surface oriented so that its unit normal
vector field N points upwards. Define X∗ = π ◦ X : � → H

2(κ) ⊂ L

3, N∗ = dπ(N ) :
� → L

3 and ν = 〈N , ξ 〉.
Then the map g̃ : � → H

2 = H

2(−1) given by

g̃ = 1

ν
(2cX∗ + N∗).

agrees with the Gauss map of X as defined in Corollary 3.4.

Proof We first observe that g̃ actually takes values in H

2. Indeed, since N∗ takes values
in TX∗(·)H2(κ) = 〈X∗(·)〉⊥ ⊂ L

3, we have 〈N∗, X∗〉 = 0. Also, since π is a Riemannian
submersion, we have 〈N , N 〉 = 〈N∗, N∗〉 + 〈N , ξ 〉2, from where we get 〈N∗, N∗〉 = 1 − ν2,
and so 〈g̃, g̃〉 = −1. Finally, since N points upwards, ν is positive, and therefore 〈g̃, X∗〉 =
−1/(2cν) < 0, implying that the timelike coordinate of g̃ is positive.

Let F : D → H

2 be the natural isometry given by

F(w) = 1

1 − |w|2
(
1 + |w|2, 2Re(w), 2Im(w)

)

and �̃ : UE → H

2 the map so that g̃ = �̃ ◦ N , that is, for x ∈ E and Z ∈ Ux E,

�̃(x, Z) = �̃x (Z) = 1

Z3
(2cx∗ + Z∗),

where x∗ = π(x) ∈ H

2(κ), Z∗ = dxπ(Z) and Z3 = 〈Z , ξ 〉.
Let us prove that �̃ = F ◦�, where� is the map given in Theorem 3.1. Since �̃ satisfies

hypothesis (a) in above mentioned theorem, following the ideas of the proof of this result, it
suffices to check that both maps agree at the origin O = (( 1

2c , 0, 0
)
, 0

) ∈ E.

Since Z∗ = dOπ(Z) ∈ T(
1
2c ,0,0

)
H

2 = 〈( 1
2c , 0, 0

)〉⊥ ⊂ L

3, then its timelike coordinate

vanishes, and so

�̃O (Z) = 1

Z3
(1, Z1, Z2).

On the other hand, since �O(Z) = 1
1+Z3

(Z1 + i Z2), it is straightforward to check that

�̃O(Z) = F(�O(Z)). ��
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Remark 6.2 It is possible then to follow the computations in [14] and find an alternative
Weierstrass-type representation for surfaces of critical CMC in E in terms of the Gauss map,
using this model. This method uses the fact that a nowhere antiholomorphic harmonic map
into H

2 is (locally) the Gauss map of a CMC 1/2 surface in L

3 [3]. In this setting, one first
needs to integrate a differential system to obtain η = 2〈Xz, ξ 〉 and then X∗ is obtained from
η and the harmonic map without integration. This gives a representation formula equivalent
to (5.2) but that differs significantly from it.

Remark 6.3 The condition for being the Gauss map in H

2 × R that we obtain in the present
paper (being nowhere antiholomorphic) is different from the one obtained in [14] (the exis-
tence of Weierstrass data). This difference comes from the fact that in [14] the orientation
induced by the Riemann surface � is not assumed to coincide with the orientation induced
by the unit normal for which the angle function of the surface is positive. In the present paper,
we always assume that the orientation of � is coherent with the choice of the unit normal of
the immersion.
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