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Abstract. This is a survey on the global theory of constant mean curvature surfaces
in Riemannian homogeneous 3-manifolds. These ambient 3-manifolds include the eight
canonical Thurston 3-dimensional geometries, i.e. R3, H3, S3, H2 × R, S2 × R, the
Heisenberg space Nil3, the universal cover of PSL2(R) and the Lie group Sol3. We will
focus on the problems of classifying compact CMC surfaces and entire CMC graphs in
these spaces. A collection of important open problems of the theory is also presented.

Keywords. Constant mean curvature surfaces, homogeneous spaces, Thurston geome-
tries, harmonic maps, minimal surfaces, entire graphs.

1. Introduction

Constant mean curvature (CMC) surfaces appear as critical points of a natural geo-
metric variational problem: to minimize surface area with or without a volume constraint
(the unconstrained case corresponds to zero mean curvature, i.e. to minimal surfaces). A
fundamental problem of this discipline is the geometric study and classification of CMC
surfaces under global hypotheses like compactness, completeness, properness or embed-
dedness. The study of this problem for CMC surfaces in the model spaces R3, S3 and
H3 has produced a very rich theory, in which geometric arguments interact with com-
plex analysis, harmonic maps, integrable systems, maximum principles, elliptic PDEs,
geometric measure theory and so on.

One of the most remarkable achievements of this field in the last decade has been
the extension of this classical theory to the case of CMC surfaces in simply connected
homogeneous 3-dimensional ambient spaces. Apart from R3, S3 and H3, these spaces are
the remaining five Thurston 3-dimensional geometries (i.e. H2×R, S2×R, the Heisenberg
group Nil3, the universal covering of PSL2(R) and the Lie group Sol3), together with 3-
dimensional Berger spheres and some other Lie groups with left-invariant metrics (see
Section 2).

It must be said here that there is an important number of contributions regarding
CMC surfaces in general Riemannian 3-manifolds (not even homogeneous), many of which
deal for instance with isoperimetric questions or with geometric consequences derived from
the stability operator associated to the second variation of the surface. The achievement in
the case of homogeneous ambient 3-spaces has been the construction of a very rich global
theory of CMC surfaces, analogous to the case of R3, S3 and H3, with an emphasis on
the geometric classification (up to ambient isometries) of properly immersed or properly
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embedded CMC surfaces. The fact that the ambient space is homogeneous, i.e. it has
the same local geometry at all points, makes this problem extremely natural.

Our aim here is to present a survey on some fundamental aspects of the global theory
of CMC surfaces in homogeneous 3-manifolds. We do not plan, however, to give a sys-
tematic account of all important results of this already broad theory, but to discuss some
specific problems at the core of it. Hence, there will be many important results omitted,
and we apologize in advance for that.

In order to explain the problems we shall be dealing with, let us distinguish between
compact and non-compact CMC surfaces in these spaces.

In the case of compact CMC surfaces, three fundamental problems are the Alexandrov
problem (i.e. to classify compact embedded CMC surfaces), the Hopf problem (i.e. to
classify CMC spheres), and the isoperimetric problem (recall that isoperimetric regions
on a Riemannian 3-manifold are bounded by compact embedded CMC surfaces, but the
converse is not always true). By classical results, round spheres constitute the solution
to each of these three problems in the case of CMC surfaces in R3. One of our main
objectives will be to explain what is known (and what is not known) for these problems
in the broader context of CMC surfaces in homogeneous 3-manifolds.

In the case of non-compact CMC surfaces, one of the basic problems is to study the
properly embedded CMC surfaces of finite topology. A classical result in that direction
is given by Bernstein’s theorem: planes are the only entire minimal graphs in R3. As in
all Thurston 3-dimensional geometries there is a natural notion of entire graph, it is an
important problem of the discipline to solve the Bernstein problem for CMC graphs, i.e.
to classify all entire CMC graphs in these 3-dimensional ambient spaces. This will be our
other main objective.

The theory of CMC surfaces in Thurston 3-dimensional geometries started to develop
as a consistent unified theory after some pioneer works by Harold Rosenberg, jointly with
William H. Meeks [MeRo1, MeRo2, Ros] for the case of minimal surfaces in product
spaces, and jointly with Uwe Abresch [AbRo1, AbRo2] for the case of CMC surfaces in
homogeneous spaces with a 4-dimensional isometry group.

On one hand, Meeks and Rosenberg established many results on complete minimal
surfaces in M2 × R, what has guided a large number of subsequent works in the field. A
recent major contribution in this sense is the Collin-Rosenberg theorem [CoRo] on the
existence of harmonic diffeomorphims from C onto the hyperbolic plane H2, obtained by
constructing an entire minimal graph of parabolic conformal type in H2 × R.

On the other hand, Abresch and Rosenberg discovered a holomorphic quadratic dif-
ferential for CMC surfaces in these homogeneous spaces with 4-dimensional isometry
group (the E3(κ, τ ) spaces), and solved the Hopf problem for them. The general integra-
bility theory of CMC surfaces in the homogeneous E3(κ, τ ) spaces was then established
by B. Daniel [Dan1]. The discovery by the authors of a harmonic Gauss map into H2

for H = 1/2 surfaces in H2 × R turned into a series of papers by Daniel, Fernández,
Hauswirth, Mira, Rosenberg, Spruck [FeMi1, Dan2, FeMi2, HRS, DaHa] in which the
Bernstein problem for CMC graphs of critical mean curvature (including minimal graphs
in Heisenberg space Nil3, see Section 6) was solved. Very recently, the Hopf and Alexan-
drov problems for CMC surfaces have been solved by Daniel-Mira and Meeks [DaMi, Mee]
in the remaining Thurston 3-dimensional geometry: the Lie group Sol3, whose isometry
group is only 3-dimensional.

We have organized this exposition as follows. In Section 2 we will introduce the
3-dimensional homogeneous ambient spaces. In Section 3 we will present the basic in-
tegrability equations by Daniel for CMC surfaces in the homogeneous spaces E3(κ, τ ),
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together with the holomorphic Abresch-Rosenberg differential, and with some basic defi-
nitions on stability of CMC surfaces. In Section 4 we will discuss the Hopf, Alexandrov
and isoperimetric problems in the homogeneous spaces E3(κ, τ ). Section 5 will be devoted
to solving the Hopf and Alexandrov problems in the eighth Thurston geometry, i.e. the
Lie group Sol3. In Section 6 we will present the solution to the Bernstein problem for
entire graphs of critical CMC in the homogeneous E3(κ, τ ) spaces. Finally, in Section
7 we shall expose the Collin-Rosenberg theorem on parabolic entire minimal graphs in
H2 ×R, together with some developments on the theory of complete minimal surfaces of
finite total curvature in H2 × R. Most sections finish with a selection of important open
problems. See [Mee, DHM] for more open problems in the theory.

A more detailed introduction to the global theory of CMC surfaces in homogeneous
3-spaces can be found in the Lecture Notes by Daniel, Hauswirth and Mira [DHM].

The authors are grateful to H. Rosenberg, B. Daniel and J.A. Gálvez for useful ob-
servations about this manuscript.

2. Homogeneous 3-spaces and Thurston geometries

Homogeneous spaces are the natural generalization of space forms. By definition,
a manifold is said to be homogeneous if the isometry group acts transitively on the
manifold. Roughly speaking, the manifold looks the same at all the points, even though,
standing at one point, the manifold can look different in different directions. In the simply
connected case, the classification of the 3-dimensional homogeneous spaces is well-known.
It turns out that any simply connected homogeneous 3-space must have isometry group
of dimension 6, 4 or 3. The complete list of these spaces is the following (see subsections
below for more details):

• The spaces with 6-dimensional isometry group are the space forms: the Euclidean
space R3, the hyperbolic space H3(κ), and the standard sphere S3(κ). For simplicity
we will assume that κ = ±1 and write H3 = H3(−1) and S3 = S3(1).

• The spaces with 4-dimensional isometry group are fibrations over the 2-dimensional
space forms. They are the product spaces H2 × R and S2 × R, the Berger spheres,
the Heisenberg space Nil3 and the universal covering of the Lie group PSL(2,R).

• The spaces with 3-dimensional isometry group are a certain class of Lie groups;
among them we specially quote the space Sol3.

These spaces are closely related with Thurston’s Geometrization Conjecture. This
recently proved conjecture states that any compact orientable 3-manifold can be cut by
disjoint embedded 2-spheres or tori into pieces, each one of them, after gluing 2-balls or
solid tori along its boundary components, admits a geometric structure. A 3-manifold
without boundary is said to admit a geometric structure if it can be endowed with a
complete locally homogeneous metric. In this case, by considering its universal cover-
ing we obtain a complete simply-connected locally homogeneous space and hence, by a
result of Singer, homogeneous. Thus, a 3-manifold admitting a geometric structure can
be realized as the quotient of a homogeneous simply connected 3-space under the action
of a subgroup of a Lie group acting transitively by isometries. The list of the maximal
geometric structures that give compact quotients consists of eight of the previously de-
scribed spaces: the three space forms, the two product spaces, Nil3, the universal covering
of PSL(2,R) and Sol3 (Berger spheres must be excluded from this list because they are
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not maximal, their isometry group are contained in the one of the standard sphere S3).
We refer to [Sco, Bon] for more details.

2.1. Homogeneous spaces with 4-dimensional isometry group.
Denote by M2(κ) the 2-dimensional space form of constant curvature κ (for example,
M2(κ) = R2,H2, S2 for κ = 0,−1, 1 respectively). As commented above, any simply
connected homogeneous 3-space with 4-dimensional isometry group admits a fibration
over M2(κ), for some κ ∈ R. Moreover, these spaces can be parameterized in terms of
the base curvature κ and the bundle curvature τ , that satisfy κ − 4τ 2 6= 0. We will use
the notation E3(κ, τ ) for these homogeneous spaces.

1. When τ = 0, we have the product spaces M2(κ)×R, i.e. up to scaling, the spaces
S2 × R when κ > 0, and H2 × R when κ < 0.

2. When τ 6= 0 and κ > 0, the corresponding spaces are the Berger spheres, a family
of 2-parameter (1-parameter after a homothetical change of coordinates) metrics
on the sphere, obtained by deforming the standard metric in such a way that the
Hopf fibration is still a Riemannian fibration. They can also be seen as the Lie
group SU(2) endowed with a 1-parameter family of left-invariant metrics.

3. When τ 6= 0 and κ = 0, E3(κ, τ ) is the Heisenberg group Nil3, the nilpotent Lie
group 








1 a b
0 1 c
0 0 1



 ; a, b, c ∈ R




 ,

endowed with a 1-parameter family of left-invariant metrics, all of them isometri-
cally equivalent after a homothetical change of coordinates.

4. When τ 6= 0 and κ < 0, we obtain the universal covering of the Lie group PSL(2,R),
endowed with a 2-parameter (again 1-parameter after homotheties) family of left-
invariant metrics.

There exists a common setting for all these spaces. Indeed, label D(ρ) = {(x1, x2) ∈
R2 ; x2

1 + x2
2 < ρ2}. Then, if κ = 0 (resp. κ < 0), the space E3(κ, τ ) can be viewed as R3

(resp. D
(
2/

√−κ
)
× R) endowed with the metric

ds2 = λ2(dx2
1 + dx2

2) +
(
τλ(x2dx1 − x1dx2) + dx3

)2
, λ =

1

1 + κ
4

(x2
1 + x2

2)
. (1)

Also, for κ > 0, (R3, ds2) corresponds to the universal cover of E3(κ, τ ) minus one fiber.
In all cases, up to a homothetical change of coordinates we can suppose without loss of
generality that κ− 4τ 2 = ±1.

The corresponding Riemannian fibration π : E3(κ, τ ) → M2(κ) is given here by the
projection on the first two coordinates. The unitary vector field

ξ =
∂

∂x3

is a Killing field tangent to the fibers of π, and will be referred to as the vertical field of
the space E3(κ, τ ). It satisfies the equation

∇̂Xξ = τX × ξ

for all vector fields X in E3(κ, τ ). Here ∇̂ is the Levi-Civita connection, × the cross
product and τ the bundle curvature (this is basically the definition of τ ).
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A remarkable difference between the spaces E3(κ, τ ) is that their isometry group has
four connected components in the case τ = 0, and only two when τ 6= 0. This follows
from the fact that any isometry in the product spaces can either preserve or reverse the
orientation of the base and the fibers independently, while in the case τ 6= 0 it can only
either preserve or reverse both orientations. In particular, reflections only exist in product
spaces.

Also, when τ 6= 0 the spaces E3(κ, τ ) are Lie groups, and if we set σ := κ
2τ

, an
orthonormal frame of left-invariant vector fields (called the canonical frame) is given by

E1 = λ−1

(
cos(σx3)

∂

∂x1

+ sin(σx3)
∂

∂x2

)
+ τ (x1 sin(σx3) − x2 cos(σx3))

∂

∂x3

,

E2 = λ−1

(
− sin(σx3)

∂

∂x1

+ cos(σx3)
∂

∂x2

)
+ τ (x1 cos(σx3) + x2 sin(σx3))

∂

∂x3

,

E3 = ξ =
∂

∂x3

.

2.2. Homogeneous spaces with 3-dimensional isometry group.
Of all homogeneous spaces with 3-dimensional isometry group, Sol3 is specially impor-
tant, since it is the only Thurston geometry among them. We will now describe some
aspects of this space.

A useful representation of Sol3 is the space R3 with the metric

ds2 = e2x3dx2
1 + e−2x3dx2

2 + dx2
3,

that is left-invariant for the structure of Lie group given by

(x1, x2, x3) · (y1, y2, y3) = (x1 + e−x3y1, x2 + ex3y2, x3 + y3).

The following vector fields form an orthonormal left-invariant frame

E1 = e−x3
∂

∂x1

, E2 = ex3
∂

∂x2

, E3 =
∂

∂x3

.

The isometries in Sol3 are generated by the three 1-parameter groups of translations

(x1, x2, x3) 7→ (x1 + c, x2, x3), (x1, x2, x3) 7→ (x1, x2 + c, x3),

(x1, x2, x3) 7→ (e−cx1, e
cx2, x3 + c),

and by the orientation reversing isometries fixing the origin

(x1, x2, x3) 7→ (−x1, x2, x3), (x1, x2, x3) 7→ (x2,−x1,−x3).

A remarkable fact is the existence of two canonical foliations, namely

F1 = {x1 = constant}, F2 = {x2 = constant},

whose leaves are totally geodesic surfaces isometric to the hyperbolic plane H2. Reflections
across any of these leaves are orientation reversing isometries of Sol3.
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3. CMC surfaces: basic equations

In this section we present three important tools for our study. One is the set of
integrability equations of CMC surfaces in E3(κ, τ ) by Daniel [Dan1]. Another one the
Abresch-Rosenberg differential, a holomorphic quadratic differential geometrically defined
on any CMC surface in E3(κ, τ ). The third one is a local isometric correspondence for
CMC surfaces in E3(κ, τ ) via which one can pass from one homogeneous space into another
when studying CMC surfaces [Dan1]. Some notions about the stability operator of CMC
surfaces are also given.

3.1. Integrability equations in E3(κ, τ ). It is well known that the Gauss-
Codazzi equations are the integrability conditions of surface theory in R3, S3 and H3. In
other homogeneous spaces, the situation is more complicated.

Let ψ : Σ → E3(κ, τ ) be an isometric immersion with unit normal map η, and consider
on Σ the conformal structure given by its induced metric via ψ. Associated to a conformal
parameter z = s + it on Σ, we will consider the usual operators ∂z = (∂s − i∂t)/2 and
∂z̄ = (∂s + i∂t)/2. Also denote by ξ the vertical Killing field of E3(κ, τ ).

Definition 3.1. We call the fundamental data of ψ the 5-tuple (λ|dz|2, u, H, p dz2, A dz)
where H is the mean curvature and

λ = 2〈ψz, ψz̄〉, u = 〈N, ξ〉, p = −〈ψz, Nz〉, A = 〈ξ, ψz〉.

The function u is commonly called the angle function of the surface.

Once here, a set of necessary and sufficient conditions for the integrability of CMC
surfaces in E3(κ, τ ) can be written in terms of these fundamental data. This is a result
by B. Daniel [Dan1], although the formulation that we expose here (i.e. in terms of a
conformal parameter on the surface) comes from [FeMi2].

Theorem 3.2 ([Dan1, FeMi2]). The fundamental data of an immersed surface ψ : Σ →
E3(κ, τ ) satisfy the following integrability conditions:





(C.1) pz̄ =
λ

2
(Hz + uA(κ− 4τ 2)).

(C.2) Az̄ =
uλ

2
(H + iτ ).

(C.3) uz = −(H − iτ )A− 2p

λ
Ā.

(C.4)
4|A|2
λ

= 1 − u2.

(2)

Conversely, if Σ is simply connected, these equations are also sufficient for the exis-
tence of a surface ψ : Σ → E3(κ, τ ) with fundamental data (λ|dz|2, u, H, p dz2, A dz). This
surface is unique up to ambient isometries preserving the orientations of base and fiber
of E3(κ, τ ).

We see then that, in the spaces E3(κ, τ ), more equations apart from the Gauss-
Codazzi ones are needed, due to the loss of symmetries. As a matter of fact, (C.1) is
the Codazzi equation, while the Gauss equation does not appear (it is deduced from the
rest). These new equations evidence the special character of the vertical direction in the
E3(κ, τ ) spaces.
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Definition 3.3. The Abresch-Rosenberg differential of the immersion is defined as the
quadratic differential on Σ given by

Qdz2 =
(
2(H + iτ )p− (κ− 4τ 2)A2

)
dz2.

It is then easy to see by means of (C.2) that the Codazzi equation (C.1) can be
rephrased in terms of Q as

Qz̄ = λHz + (κ− 4τ 2)
Hz̄A

2

(H + iτ )2
. (3)

Consequently, one has the following theorem, which generalized the classical fact that the
Hopf differential is holomorphic for CMC surfaces in R3, S3 and H3.

Theorem 3.4 ([AbRo1, AbRo2]). Qdz2 is a holomorphic quadratic differential on any
CMC surface in E3(κ, τ ).

This is a crucial result of the theory, since it allows the use of holomorphic functions
in the geometric classification of CMC surfaces in E3(κ, τ ) (see Section 4 and Section 6,
for instance).

An important tool in the description of CMC surfaces in R3, S3 and H3 is the classi-
cal Lawson correspondence. It establishes an isometric one-to-one local correspondence
between CMC surfaces in different space forms that allows to pass, for instance, from
minimal surfaces in R3 to H = 1 surfaces in H3.

The Lawson correspondence was generalized by B. Daniel to the context of homoge-
neous spaces. Indeed, Daniel discovered in [Dan1] an isometric local correspondence for
CMC surfaces in all the homogeneous spaces E3(κ, τ ), which can be described as follows
in terms of the fundamental data defined above.

Theorem 3.5 (Sister correspondence, [Dan1]). Let (λ|dz|2, u,H1, p1 dz
2, A1 dz) be the

fundamental data of a simply connected H1-CMC surface in E(κ1, τ1), and consider
κ2, τ2,H2 ∈ R so that

κ2 − 4τ 22 = κ1 − 4τ 21 , H2
2 + τ 22 = H2

1 + τ 21 .

Then if we set θ ∈ R given by H2 − iτ2 = eiθ(H1 − iτ1), the fundamental data given by

(λ|dz|2, u, H2, p2 dz
2 = e−iθp1 dz

2, A2 dz = e−iθA1 dz) (4)

give rise to a (simply connected) H2-CMC surface in E3(κ2, τ2), which is locally isometric
to the original one.

Two surfaces related by the above correspondence are called sister surfaces with phase
θ. In particular, the corresponding Abresch-Rosenberg differentials of sister surfaces are
related by Q2 = e−2iθQ1. As special cases of this correspondence we obtain the associate
family of minimal surfaces in M2(κ)×R, and a correspondence between minimal surfaces
in Nil3 and CMC 1

2
surfaces in H2 × R. Generically, and up to ambient isometries and

dilations, the family of sister surfaces for a given choice of (H,κ, τ ) is a continuous 1-
parameter family.

There is a natural notion of graph in these spaces. Since E3(κ, τ ) has a canonical
fibration over M2(κ) (see Section 2), we will say that an immersed surface Σ in E3(κ, τ )
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is a (local) graph if the projection to the base is a (local) diffeomorphism. The CMC-
equation for the graph of a function u = u(x, y) is the PDE (see [Lee])

2H

δ2
=

∂

∂x

(α
ω

)
+

∂

∂y

(
β

ω

)
, (5)

where
δ = 1 +

κ

4
(x2 + y2), ω =

√
1 + δ2(x2 + y2),

α = ux + τ
y

δ
, β = uy − τ

x

δ
.

For instance, a graph u = u(x, y) in Nil3 ≡ E3(0, τ ) is minimal if and only if it satisfies
the elliptic PDE

(1 + β2)uxx − 2αβ uxy + (1 + α2)uyy = 0, (6)

where α := ux + y/2 and β := uy − x/2.

3.2. Stability and index of CMC surfaces. As it is well known, CMC
surfaces in Riemannian 3-manifolds appear as the critical points for the area functional
associated to variations of the surface with compact support and constant enclosed vol-
ume. Equivalently, an immersed surface S has constant mean curvature H if and only if
it is a critical point for the functional Area − 2H Vol. The second variation formula for
this functional is given by

Q(f, f) = −
∫

S

fL(f),

where L is the Jacobi operator (or stability operator) of the surface:

L = ∆ + ||B||2 + Ric(η).

Here ∆ is the Laplacian for the induced metric on the surface, B is the second fundamental
form, η is the unit normal vector field, and Ric is the Ricci curvature in the ambient
manifold. As a particular case, the Jacobi operator for CMC surfaces in the spaces
E3(κ, τ ) can be rewritten (see [Dan1]) as

L = ∆ − 2K + 4H2 + 4τ 2 + (κ− 4τ 2)(1 + u2),

being K the Gaussian curvature of the surface and u the angle function (see Definition
3.1). A Jacobi function is a function f for which L(f) = 0.

A CMC surface S is said to be stable (resp. weakly stable) if

Q(f, f) = −
∫

S

fL(f) ≥ 0

holds for any smooth function f on S with compact support (resp. with compact support
and

∫
S
f = 0). For instance, CMC graphs in E3(κ, τ ) are stable, and compact CMC

surfaces bounding isoperimetric regions are weakly stable (but not necessarily stable, as
round spheres in R3 show).

An important concept related to stability is the index of a CMC surface. The index
of a compact CMC surface is defined as the number of negative eigenvalues of its Jacobi
operator. Thus, stable CMC surfaces (in particular CMC graphs) have index zero. Round
spheres in R3 have index one.

We refer to [MPR] for more details about stability of CMC surfaces.
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4. Compact CMC surfaces in E3(κ, τ )

In this section we explain the most important results that are known regarding the
existence and uniqueness of compact CMC surfaces in the homogeneous 3-spaces E3(κ, τ ).
The fundamental examples are the rotational CMC spheres, and we shall be interested in
their uniqueness among compact embedded CMC surfaces, and among immersed CMC
surfaces. These problems are called, respectively, the Alexandrov and Hopf problems.

4.1. Rotational compact CMC surfaces. Although round spheres in the
model spaces R3, S3,H3 are CMC spheres, this does not hold for the rest of homogeneous
spaces. However, in all the spaces E3(κ, τ ) there exist rotations with respect to the
vertical axis, and so there is a natural notion of rotational surface. It is hence natural
to seek CMC spheres (and CMC tori) in E3(κ, τ ) among the class of rotational surfaces.
This can be done by ODE analysis, and the result of this can be summarized as follows:

Theorem 4.1. (Structure of rotational CMC spheres in E3(κ, τ )).

1. If κ−4τ 2 > 0, then for every H ∈ R there exists a unique rotational CMC H sphere
(up to isometries) in E3(κ, τ ). These spheres are embedded if τ = 0, i.e. in S2×R,
and also for most Berger spheres. However, for some Berger spheres with small
bundle curvature τ (with respect to a fixed κ) there is a certain region of variation
of the parameters (H, τ ) where the spheres are non-embedded. This region can be
explicitly described, see [Tor].

2. If κ− 4τ 2 < 0, then

• if H2
6 −κ

4
, then there exists no rotational CMC H sphere in E3(κ, τ ),

• if H2 > −κ
4

, then there exists a unique rotational CMC H sphere (up to
isometries) in E3(κ, τ ). All these spheres are embedded.

Let us remark that all these CMC spheres can be constructed explicitly. We shall call
them canonical rotational CMC spheres. For example, the rotational CMC H spheres in
S2 × R ⊂ R4 are given by the formula

ψ(u, v) = (− cos k(u), sin k(u) cos v, sin k(u) sin v, h(u)),

where −1 ≤ u ≤ 1, H ∈ R and

k(u) := 2 arctan

(
2H√
1 − u2

)
, h(u) :=

4H√
4H2 + 1

arcsinh

(
u√

1 − u2 + 4H2

)
.

Besides these rotational CMC spheres, there also exist rotational CMC tori in E3(κ, τ )
when (and only when) κ− 4τ 2 > 0 (excluding minimal surfaces in S2 × R). For S2 × R,
they are all embedded (see Pedrosa [Ped]). For Berger spheres the situation is explained
by Torralbo and Urbano in [Tor, ToUr]; one has for every H rotational embedded CMC
tori given by the Hopf lift of a circle in S2, but there also exist some other non-flat
rotational CMC tori. The embeddedness problem for such tori is open in general, but
for the minimal case there are embedded rotational tori other than Clifford tori. This
contrasts with the case of embedded minimal tori in S3.

A general study of CMC surfaces in H2 × R and S2 × R invariant by a continuous
1-parameter subgroup of ambient isometries can be found in [SaE, SaTo].



10 Isabel Fernández and Pablo Mira

4.2. The Alexandrov problem in E3(κ, τ ). One of the fundamental
theorems of CMC surface theory is the so-called Alexandrov theorem.

Theorem 4.2 (Alexandrov). Any compact embedded CMC surface in R3, H3 or a hemi-
sphere of S3 is a round sphere.

Proof. The proof relies on the so-called Alexandrov reflection principle, which we sketch
for R3 although it works with great generality. Consider a plane P disjoint from the
compact embedded CMC surface Σ, and start translating it in a parallel way towards Σ.
After it first touches Σ, we start reflecting the piece of Σ that has been left behind across
this new translated plane. In this way we will eventually reach a first contact point with
the unreflected part of Σ. By the maximum principle for elliptic PDEs, this means that
Σ is symmetric with respect to such a plane. As the starting plane was arbitrary, the
compact surface must be a round sphere.

It must be emphasized that there exist embedded CMC tori in S3, such as the product
tori S1(r) × S1(

√
1 − r2) ⊂ S3. Thus, the hemisphere hypothesis is necessary in the case

of S3.
Motivated by this result, the problem of classifying all compact embedded CMC

surfaces in a Riemannian 3-manifold M̄3 will be called the Alexandrov problem in M̄3.
In the case of CMC surfaces in the product spaces H2×R and S2×R, the Alexandrov

technique can be applied for horizontal directions, and so the following result holds.

Theorem 4.3 (Hsiang-Hsiang). Any compact embedded CMC surface in H2×R or S2
+×R

is a standard rotational CMC sphere.

Again, the hemisphere hypothesis is necessary, since we know that there are embedded
CMC tori in S2 × R.

As regards the homogeneous spaces E3(κ, τ ) with τ 6= 0, i.e. Heisenberg space, Berger
spheres and the universal covering of SL2(R), the Alexandrov problem is open. The main
difficulty there is that these spaces do not admit reflections, and hence the reflection
principle does not hold.

4.3. The Hopf problem in E3(κ, τ ). Another fundamental result of CMC
surface theory is the Hopf theorem:

Theorem 4.4 (Hopf). Any immersed CMC sphere in R3, S3 or H3 is a round sphere.

Proof. The Hopf differential (see Section 3) of any CMC surface in R3, S3 or H3 is
holomorphic, and vanishes at the umbilical points of the surface. As any holomorphic
quadratic differential must vanish on the Riemann sphere, we conclude that immersed
CMC spheres are totally umbilical, and hence round spheres.

The Hopf problem in a Riemannian 3-manifold M̄3 will refer to the problem of clas-
sifying all immersed CMC spheres in M̄3.

As was proved in Theorem 3.4, CMC surfaces in the homogeneous spaces E3(κ, τ )
have an associated holomorphic quadratic differential: the Abresch-Rosenberg differential
QAR. This allows to solve the Hopf problem in E3(κ, τ ), along the lines suggested by
Hopf’s classical theorem. We present here an alternative proof to the original one by
Abresch and Rosenberg [AbRo1, AbRo2], based on Daniel’s integrability equations, and
on some ideas in [FeMi2, GMM] (see [dCF, EsRo, DHM]).
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Theorem 4.5 (Abresch-Rosenberg). Any immersed CMC sphere in E3(κ, τ ) is a stan-
dard rotational sphere.

Proof. As the Abresch-Rosenberg QAR is holomorphic, it must vanish on any immersed
CMC sphere. So, we need to prove that spheres with QAR = 0 are rotational.

First, one can observe that on any CMC surface in E3(κ, τ ), the equation QAR = 0
together with the integrability conditions in Theorem 3.2 imply that the function w :=
arctanh(u) is a harmonic function on the surface (here u is the angle function of the
surface). So, once we rule out the case u = const. which does not produce CMC spheres
(except for slices in S2 × R), we can define ζ to be a local conformal parameter on the
surface with Re ζ = w. Again from the integrability equations (C.1) to (C.4) we see that
all fundamental data of the surface depend only on w (and not on Im ζ). This implies that
the surface is a local piece of some CMC surface invariant by a continuous 1-parameter
subgroup of ambient isometries of E3(κ, τ ).

If the surface is compact, this isometry subgroup must be the group of rotations
around the vertical axis, with the possible exception of Berger 3-spheres (the only space
in which there are non-rotational compact continuous isometry subgroups). However, it
is clear that any element of such a non-rotational isometry subgroup has no fixed points.
Hence, by the invariance property, there is a globally defined non-zero vector field on the
surface (that is tangent to the orbits). But this is impossible on a sphere. Hence, the
isometry subgroup is always the group of rotations around the vertical axis, and thus the
CMC sphere is rotational, as wished.

4.4. The isoperimetric problem in E3(κ, τ ). The Alexandrov problem
is very relevant to the isoperimetric problem in a Riemannian 3-manifold M̄3; indeed, any
solution to the isoperimetric problem in M̄3 is a region bounded by a compact embedded
CMC surface. So, for instance, the only candidates to solve the isoperimetric problem
for a given volume in H2 × R are rotational CMC spheres. Another geometric property
satisfied by isoperimetric solutions is that they are weakly stable, see Section 2.

The class of isoperimetric solutions in R3, S3 and H3 is the class of round spheres.
The isoperimetric problem in S2×R and H2×R has been also explicitly solved, as follows:

1. The isoperimetric regions in H2×R are exactly the regions bounded by the canonical
rotational CMC spheres. (Hsiang-Hsiang).

2. There is a value H1 ≈ 0.33 such that the isoperimetric regions in S2×R are exactly
the regions bounded by the canonical rotational CMC H spheres with H ≥ H1.
(Pedrosa).

So, regading complete simply connected Riemannian 3-manifolds, the isoperimetric prob-
lem is fully solved in R3, S3, H3, S2 × R and H2 × R. A remarkable advance in this
direction has been obtained very recently by F. Torralbo and F. Urbano [ToUr], who
have added to this list a certain subfamily of Berger spheres:

Theorem 4.6 (Torralbo-Urbano). The solutions to the isoperimetric problem in the

Berger spheres E3(κ, τ ) with 1

3
≤ 4τ2

κ
< 1 are the canonical rotational CMC spheres.

The proof of this result relies on embedding the Berger spheres E3(κ, τ ) into the 4-
dimensional complex space CP 2, and using a Willmore inequality in this space due to
Montiel and Urbano [MoUr].

For the rest of the spaces, the isoperimetric problem is open. In any case, the general
theory of the isoperimetric problem together with the Abresch-Rosenberg uniqueness
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theorem imply that, for small volumes, the isoperimetric solutions are canonical rotational
CMC spheres with large H .

4.5. Open problems. One of the major unsolved problems in the theory is the
Alexandrov problem when τ 6= 0, i.e. in Nil3, the universal cover of PSL(2,R) and Berger
hemispheres. It is conjectured that canonical rotational spheres are the only compact
embedded CMC surfaces in these spaces. A related open problem is the isoperimetric
problem in Nil3, the universal cover of PSL(2,R) and the Berger spheres not covered by
Theorem 4.6. In the first two cases, it is conjectured that the isoperimetric solutions are
exactly the canonical rotational spheres.

Besides, it is conjectured by Nelli and Rosenberg [NeRo2] that compact weakly stable
CMC surfaces in H2 × R are rotational CMC spheres.

Another important problem of the theory is the construction of higher genus compact
(immersed) CMC surfaces, (e.g. CMC tori) in E3(κ, τ ) with κ ≤ 0.

5. CMC spheres in Sol3
In this section we will expose the recent solution to the Alexandrov problem (i.e.

the classification of compact embedded CMC surfaces) and the Hopf problem (i.e. the
classification of immersed CMC spheres) in the remaining Thurston 3-geometry: the
homogeneous space Sol3.

The first step in this direction is that we can solve the Alexandrov problem from a
topological point of view.

Theorem 5.1 (Rosenberg). Any compact embedded CMC surface in Sol3 is, topologically,
a sphere.

Proof. By Alexandrov reflection principle using the two canonical foliations of Sol3 (recall
that reflections across their leafs are orientation-reversing isometries of Sol3), it turns out
that any compact embedded CMC surface in Sol3 is a bi-graph with respect to two linearly
independent directions in R3. Thus, the surface is, topologically, a sphere.

This result leaves us with the problem of classifying (embedded) CMC spheres. A
substantial difficulty for this task is that Sol3 has no rotations. Hence, there are no
rotational CMC spheres to use in order to gain insight of the theory, and even the existence
of CMC spheres for a given value of H needs to be settled.

The next theorem is the main result of the section, and solves the Hopf and Alexandrov
problems in Sol3.

Theorem 5.2 (Daniel-Mira, Meeks). For every H > 0 there exists an embedded CMC
H sphere SH in Sol3. This sphere is unique in the following sense:

1. Hopf uniqueness: every immersed CMC H sphere in Sol3 is a left-translation of
SH .

2. Alexandrov uniqueness: every compact embedded CMC H surface in Sol3 is a left-
translation of SH .

Moreover, each sphere SH has index one, it inherits all possible symmetries of the ambient
space (its group of ambient isometries is the diedral group D4), its Lie group Gauss map
is a diffeomorphism, and the family {SH : H > 0} is real analytic (up to left translations).
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Remark 5.3. Theorem 5.2 was obtained by Daniel and Mira [DaMi] for H > 1/
√

3. For
the remaining values H ∈ (0, 1/

√
3], Daniel and Mira also proved the uniqueness in the

Hopf and Alexandrov sense for all values of H for which there exists an index one CMC
H sphere. Finally, Meeks [Mee] obtained the existence of index one CMC H spheres for
every H > 0 (and not just for H > 1/

√
3). This concluded the proof of Theorem 5.2.

We shall split the sketch of the proof of Theorem 5.2 into two parts.

5.1. Proof of Theorem 5.2: uniqueness. The results of this part are
contained in [DaMi]. The Lie group Gauss map g : Σ → C of a CMC surface X : Σ → Sol3
satisfies the following elliptic PDE (here z is a conformal parameter on the surface):

gzz̄ = A(g)gzgz̄ +B(g)gzḡz̄, (7)

where, by definition,

A(q) =
Rq

R
=

2H(1 + |q|2)q̄ + 2q

R(q)
, B(q) =

Rq̄

R
− R̄q̄

R̄
= −4H(1 + |q|2)(q̄ + q3)

|R(q)|2 , (8)

R(q) = H(1 + |q|2)2 + q2 − q̄2.

Moreover, the surface X is uniquely determined by the Gauss map g, and it can actually
be recovered from g by means of an integral representation formula.

Once here, the first idea in order to prove a Hopf-type theorem is to look for a
holomorphic quadratic differential for CMC surfaces in Sol3. However, it seems that such
a holomorphic object is not available in the theory; this constitutes another key difference
from the theory of CMC surfaces in the other Thurston 3-geometries exposed in the
previous section, where the Abresch-Rosenberg (or the Hopf differential) is holomorphic.

Still, it is not strictly necessary to obtain a holomorphic differential in order to prove a
Hopf-uniqueness theorem: it suffices to find a geometrically defined quadratic differential
with isolated zeros of negative index, so that it vanishes identically on spheres. This is
done as follows.

Theorem 5.4 (Daniel-Mira). Let H > 0, and assume that there exists an index one
CMC H sphere SH in Sol3. Then there exists a quadratic differential QH , geometrically
defined on any CMC H surface in Sol3, with the following properties:

1. It only has isolated zeros of negative index (thus, it vanishes on spheres).

2. QH = 0 holds for a surface X : Σ → Sol3 if and only if X is a left-translation of
some piece of the sphere SH .

Moreover, the sphere SH is embedded, and it is therefore unique in Sol3 (up to left-
translations) in the Hopf sense and in the Alexandrov sense.

The quadratic differential QH is constructed as follows. Let G : SH ≡ C → C denote
the Gauss map of SH . Then G is a diffeomorphism (otherwise one can construct a Jacobi
function u on SH with u(p) = ∇u(p) = 0 at some p ∈ SH , which contradicts the index
one condition by Courant’s nodal domain theorem).

Once here, the differential QH is defined for any CMC H surface X : Σ → Sol3 with
Gauss map g : Σ → C by

QH = (L(g)g2z +M(g)gzḡz) dz2, (9)
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where by definition

M(q) =
1

R(q)
=

1

H(1 + |q|2)2 + q2 − q̄2
(10)

and L : C → C is implicitly given in terms of the Gauss map G of SH by

L(G(z)) = −M(G(z))Ḡz(z)

Gz(z)
. (11)

It must also be emphasized that, by this uniqueness theorem, any index one CMC
sphere SH in Sol3 is as symmetric as the ambient space allows: there is a point p ∈ Sol3
such that SH is invariant with respect to all the isometries of Sol3 that leave p fixed.

5.2. Proof of Theorem 5.2: existence. Let us define

I := {H > 0 : exists an index one CMC H sphere SH in Sol3}.

We prove next the theorem by Meeks [Mee] that I = (0,∞). (The fact that (1/
√

3,∞) ⊂
I had been previously obtained in [DaMi]).

That I 6= ∅ follows from the existence of isoperimetric spheres, which in Sol3 must
have index one. That I is open was proved in [DaMi], and follows from the implicit
function theorem and from the continuity of the eigenvalues and eigenspaces in the de-
formation.

The proof that I is closed is the critical step. The key point is to prevent that the
diameters of a sequence of CMC Hn spheres (SHn

) with Hn → H0 > 0 tend to ∞. This
was proved first by Daniel-Mira, but only for H0 > 1/

√
3. The final proof for every

H0 > 0 was recently given by Meeks [Mee], using the following height estimate: there
exists a constant K(H0) such that for any CMC H0 graph (possibly non-compact) with
respect to one of the two canonical foliations of Sol3, and with boundary on a leaf, the
maximum height attained by the graph with respect to this leaf is ≤ K(H0).

Once this height estimate is ensured, Meeks concludes the proof by some elliptic
theory and stability arguments.

5.3. Open problems. Are CMC spheres in Sol3 weakly stable? Do they all
bound isoperimetric regions in Sol3? A positive answer is conjectured in [DaMi]. What
happens in other homogeneous 3-spaces with 3-dimensional isometry group?

It seems very interesting to develop a global theory of minimal surfaces in Sol3. Some
natural problems would be proving half-space theorems, classifying entire minimal graphs,
or finding properly embedded minimal surfaces of non-trivial topology.

6. Surfaces of critical CMC

As we saw in Section 3, CMC H spheres in the homogeneous space E3(κ, τ ) exist
exactly for the values H2 > −κ/4. Besides, one can easily see that there exist entire
rotational CMC H graphs in E3(κ, τ ), κ ≤ 0, whenever H2 ≤ −κ/4. From these results
and the maximum principle, we obtain

Theorem 6.1. Any compact CMC H surface in E3(κ, τ ) satisfies H2 > −κ/4. Also,
any entire CMC graph in E3(κ, τ ), κ ≤ 0, satisfies H2 ≤ −κ/4.
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There are several other properties that make the theory of CMC surfaces with H2 >
−κ/4 quite different from the theory of CMC surfaces with H2 ≤ −κ/4. For instance:

1. A properly embedded CMC surface in H2 × R with H > 1/2 and finite topology
cannot have exactly one end (Espinar, Gálvez, Rosenberg, [EGR]).

2. There exist horizontal and vertical height estimates for CMC surfaces with H > 1/2
in H2 × R [NeRo2, AEG1, EGR].

3. There are no complete stable CMC surfaces in H2 × R with H > 1/
√

3, and the
result is expected for H > 1/2. (Nelli-Rosenberg, [NeRo2]). Besides, there are
no complete stable CMC surfaces with H > 1/2 in H2 × R of parabolic conformal
structure (Manzano-Pérez-Rodŕıguez, [MaPR]).

It is hence natural to introduce the following definition.

Definition 6.2. We say that a CMC surface in E3(κ, τ ) with κ ≤ 0 has critical CMC if
its mean curvature H satisfies H2 = −κ/4.

The critical mean curvature is the largest value of |H | for which compact CMC surfaces
do not exist. Therefore we have H = 1/2 surfaces in H2 × R, minimal surfaces in Nil3,
and H =

√−κ/2 surfaces in the universal covering of PSL(2,R). A remarkable property
is that the sister correspondence preserves the property of having critical CMC, and that
every simply connected surface of critical CMC is the sister surface of some minimal
surface in Nil3.

In this section we will study the global geometry of surfaces with critical CMC,
focusing on the existence of harmonic Gauss maps and the classification of entire graphs.

6.1. Harmonic Gauss maps. A smooth map G : M → N between Rieman-
nian manifolds is harmonic if it is a critical point for the total energy functional. When
M is a surface, harmonicity is a conformal invariant, and it implies that the quadratic
differential

Q0dz
2 = 〈Gz, Gz〉dz2,

is holomorphic, where z is a conformal parameter on Σ, and 〈, 〉 denotes the metric in N
(see [FoWo]). We call Q0dz

2 the Hopf differential associated to G.

The Gauss map of CMC surfaces in R3 is harmonic into S2, and its Hopf differential
agrees (up to a constant) with the Hopf differential of the surface. Moreover, the CMC
surface can be recovered from the Gauss map by a representation formula. This Gauss
map opens the door to the use of strong techniques from harmonic maps in the description
of CMC surfaces.

The same holds for spacelike CMC surfaces in Minkowski 3-space  L3, but this time
the harmonic Gauss map takes values into H2. Let us briefly comment this case, since
it will play an important role in the development of the section. Let f : Σ →  L3 be a
connected spacelike CMC surface, oriented so that its Gauss map G takes values in H2.
Here  L3 is R3 with the metric dx2 + dy2 − dz2 and H2 is realized in  L3 in the usual way.
It turns out that G is harmonic into H2 and its associated Hopf differential agrees (up to
a multiplicative constant) with the Hopf differential of the immersion f . Moreover, the
metric of the CMC surface, 〈df, df〉 = τ0|dz|2, is related with G by

2〈Gz, Gz̄〉 =
τ0
4

+
4|Q0|2
τ0

.
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Definition 6.3. We will say that a harmonic map G into H2 admits Weierstrass data
{Q0, τ0} if the pullback metric induced by G can be written as

〈dG, dG〉 = Q0dz
2 + µ|dz|2 + Q̄0dz̄

2, µ =
τ0
4

+
4|Q0|2
τ0

,

τ0 being a positive smooth function.

6.1.1. H = 1/2 surfaces in H2 × R. We will regard H2 × R = E3(−1, 0) in its
Minkowski model, i.e.

H2 × R = {(x0, x1, x2, x3) : x0 > 0,−x2
0 + x2

1 + x2
2 = −1} ⊂  L3 × R =  L4.

Using this model, the unit normal vector η of an immersed surface ψ = (N, h) : Σ →
H2 ×R takes values in the de Sitter 3-space, and {η, N} is an orthonormal frame for the
Lorentzian normal bundle of ψ in  L4. Moreover, if u is the angle function of the surface
(that is, the last coordinate of η) and we assume that u 6= 0 (that is, that ψ is nowhere
vertical, or equivalently, that it is a multigraph), then we can write

1

u
(η +N) = (G, 1), (12)

for a certain map G : Σ → H2.

Definition 6.4 ([FeMi1]). The map G given by (12) will be called the hyperbolic Gauss
map of an immersed (nowhere vertical) surface in H2 × R.

The main property of the hyperbolic Gauss map is the following [FeMi1]:

Theorem 6.5 (Fernández-Mira). The hyperbolic Gauss map of a CMC surface with
H = 1/2 in H2 ×R is a harmonic map into H2, and admits Weierstrass data {−Q,λu2},
where Qdz2, λ|dz|2 and u are, respectively, the Abresch-Rosenberg differential, the metric,
and the angle function of the surface.

Conversely, if Σ is simply connected, any harmonic map G : Σ → H2 admitting
Weierstrass data is the hyperbolic Gauss map of some H = 1/2 surface in H2 × R.

Moreover, the space of H = 1/2 surfaces in H2 × R with the same hyperbolic Gauss
map G is generically two-dimensional, and it can be recovered from G by a representation
formula.

The proof of the direct part of the above result follows from equations (2) and the
very definition of G. The converse part is an integrability argument. This result is of
great importance for the rest of this section, since it allows the use of harmonic maps in
the description of surfaces of critical CMC.

6.1.2. Minimal surfaces in Nil3. The existence of this harmonic Gauss map for
H = 1/2 surfaces in H2 × R was extended by B. Daniel [Dan2] to the case of minimal
surfaces in Nil3 = E3(0, 1

2
).

This time, the harmonic Gauss map is given by the Lie group Gauss map of the
surface. Indeed, if we identify the Lie algebra of Nil3 with the tangent space at a point
by left multiplication, we can stereographically project the unit normal vector field to
obtain a map taking values in the extended complex plane. More specifically, we will
consider the model of Nil3 given in Section 2 and its canonical frame of left-invariant
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fields {E1, E2, E3}. If N =
∑
NiEi is the unit normal of X : Σ → Nil3, then the Gauss

map of X is given by

g =
N1 + iN2

1 +N3

: Σ → C.

Now, if the surface is nowhere vertical we can orient it so that u = 〈N,E3〉 is positive,
and so g takes values in the unit disc D. By identifying H2 with (D, ds2P ), where ds2P is
the Poincaré metric, Daniel obtained in [Dan2]:

Theorem 6.6 (Daniel). The Gauss map of a nowhere vertical minimal surface is har-
monic into H2.

Conversely, let g : Σ → H2 be a harmonic map defined on a simply connected oriented
Riemann surface into H2, and assume that g is nowhere antiholomorphic (i.e., gz does
not vanish at any point). Take z0 ∈ Σ and X0 ∈ Nil3.

Then there exists a unique conformal nowhere vertical minimal immersion X : Σ →
Nil3 with X(z0) = X0 having g as its Gauss map. Moreover, X can be uniquely recovered
from g through an adequate representation formula.

Furthermore, it can be checked that the Weierstrass data of g as above are {−Q,λu2},
where Qdz2, λ|dz|2 and u are, respectively, the Abresch-Rosenberg differential, the metric,
and the angle function of the surface defined in Section 2.

As we saw in Section 3, minimal surfaces in Nil3 and H = 1/2 surfaces in H2 ×R are
related by the sister correspondence, and sister surfaces have the same metric and angle
function (in particular, the condition of being nowhere vertical is preserved). As in this
case the sister surfaces have opposite Abresch-Rosenberg differentials, it turns out that
their respective harmonic Gauss maps are conjugate to each other.

The relation between minimal surfaces in Nil3 and H = 1/2 surfaces in H2×R can be
made more explicit by means of the theory of spacelike CMC surfaces in  L3, as follows.

Theorem 6.7 ([FeMi3]). Let X = (F, t) : Σ → Nil3 be a simply connected nowhere
vertical minimal surface with metric λ|dz|2 and angle function u, and ψ = (N, h) : Σ →
H2 × R its sister surface.

Then f := (F, h) : Σ →  L3 is a spacelike H = 1/2 surface in the Minkowski 3-space
with metric λu2|dz|2 and Hopf differential −Qdz2, where Qdz2 is the Abresch-Rosenberg
differential of X.

6.1.3. CMC
√
−κ/2 surfaces in ˜PSL(2,R). In a forthcoming paper [DFM], the

authors and B. Daniel will prove that there exists also a harmonic Gauss map for critical
CMC surfaces in the remaining case, i.e. the universal covering of the group PSL(2,R),
and will derive a representation formula for them.

6.2. Half-space theorems. One of the most important results in the global
study of minimal surfaces in R3 is the classical half-space theorem by Hoffman and Meeks
[HoMe]. This theorem says that any properly immersed minimal surface in R3 lying in a
half-space must be a plane parallel to the one determining the half-space. The main tools
used here are the maximum principle and the existence of catenoids, a 1-parameter family
of minimal surfaces converging to a doubly-covered punctured plane P , and intersecting
the planes parallel to P in compact curves.

The analogous version for CMC one half surfaces in H2 × R was proved in [HRS]. In
this setting, horocylinders play the role of the planes in R3.



18 Isabel Fernández and Pablo Mira

Theorem 6.8 (Hauswirth-Rosenberg-Spruck). The only properly immersed CMC one
half surfaces in H2 × R that are contained in the mean convex side of a horocylinder C
are the horocylinders parallel to C.

Also, the only properly embedded CMC one half surfaces in H2 × R containing a
horocylinder in its mean convex side are the horocylinders.

Proof. The main point here is to construct a family of CMC one half surfaces in H2 × R
to be used in the same way as catenoids in the proof of the half-space theorem in R3.
This is achieved by means of compact annuli with boundaries, contained between two
horocylinders.

For the case of Nil3, we must distinguish between horizontal and vertical half-spaces.
The equivalent to the half-space theorem for surfaces lying in a horizontal half-space
is proved by using the family of rotational annuli [AbRo2]. The corresponding vertical
version has been obtained in [DaHa], by constructing first a family of horizontal catenoids,
i.e. properly embedded minimal annuli (non-rotational) with a geometric behaviour good
enough to apply the Hoffman-Meeks technique.

Theorem 6.9 (Daniel-Hauswirth). The only properly immersed minimal surfaces in
Nil3 that are contained in a vertical half space are the vertical planes parallel to the one
determining the half-space.

Proof. Using the representation formula for minimal surfaces in Nil3 (see Theorem 6.6),
it is possible to construct horizontal catenoids in Nil3. These surfaces are a 1-parameter
family of properly embedded minimal annuli, intersecting vertical planes {x2 = c} in a
non-empty closed convex curve. Moreover, the family converges to a double covering of
{x2 = 0} minus a point. They are obtained by integrating a family of harmonic maps
that belong to a more general family used in the construction of Riemann type minimal
surfaces in H2 × R [Ha]. Once we have these catenoids, we finish by using the maximum
principle similarly to the Euclidean case.

6.3. The classification of entire graphs. In this section we will describe
the space of entire graphs of critical CMC in E3(κ, τ ). Such a description follows from
the works of Fernández-Mira [FeMi1, FeMi3], Hauswirth-Rosenberg-Spruck [HRS] and
Daniel-Hauswirth [DaHa], and is contained in Theorems 6.10 and 6.11. We expose here
a unified perspective to this subject. First, we have

Theorem 6.10 ([DaHa, FeMi3, HRS]). The following conditions are equivalent for a
surface of critical CMC in E3(κ, τ ):

(1) It is an entire graph.

(2) It is a complete multigraph.

(3) u2 ds2 is a complete Riemannian metric (where u is the angle function and ds2 the
metric of the surface).

In particular, the sister correspondence preserves entire graphs of critical CMC.

Let us make some comments on this theorem. First, Hauswirth, Rosenberg and
Spruck proved (2) ⇒ (1) for H = 1/2 surfaces in H2 × R. Second, the authors proved
in [FeMi3] that (3) ⇒ (1) (for any surface in E3(κ, τ ), not necessarily CMC), and that
(1) ⇒ (3) holds for minimal surfaces in Nil3. Finally, Daniel and Hauswirth showed that
(2) ⇒ (1) holds for minimal surfaces in Nil3. The rest of the cases can be easily obtained
from these results and the sister correspondence (this was first observed in [DHM]).
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Proof. It is immediate that (1) ⇒ (2). Also, by an eigenvalue estimate, the authors
proved in [FeMi3] that for arbitrary surfaces in E3(κ, τ ) it holds u2 ds2 ≤ gF , where
F = π ◦ ψ is the projection onto M2(κ) of ψ. Thus, if u2 ds2 is complete, F is a local
diffeomorphism with complete pullback metric, and by standard topological arguments,
F is a diffeomorphism, i.e. (3) ⇒ (1) holds.

That (1) ⇒ (3) holds for minimal surfaces in Nil3 was also proved in [FeMi3]: let
X = (F, t) : Σ → Nil3 be an entire minimal graph. By Theorem 6.7, there is an entire
spacelike CMC graph f = (F, h) : Σ →  L3, whose induced metric is ds2f = u2 ds2. Now
we can apply a theorem by Cheng and Yau [ChYa] which says that spacelike entire CMC
graphs in  L3 have complete induced metric. Hence u2 ds2 is complete, as wished.

We will now prove that (2) ⇒ (1) holds for minimal surfaces in Nil3. Let us observe
that once this is done, we can also prove the theorem for surfaces of critical CMC in all
the spaces E3(κ, τ ). Indeed, as any simply connected surface of critical CMC is the sister
surface of some minimal surface in Nil3, and as the correspondence preserves the metric
and the angle function (therefore it preserves conditions (2) and (3) by passing to the
universal covering), we can easily translate the theorem for the case of minimal surfaces
in Nil3 to the rest of the spaces. It is important here that we proved (3) ⇒ (1) in all
spaces.

So, we only need to prove (2) ⇒ (1) for minimal surfaces in Nil3. This was done
by Daniel and Hauswirth [DaHa]. For that, they used their half-space theorem in Nil3
(Theorem 6.9) and an adaptation to Nil3 of the previous proof of (2) ⇒ (1) for the case
of H = 1/2 surfaces in H2 × R given by Hauswirth-Rosenberg-Spruck [HRS].

In order to prove (2) ⇒ (1) for minimal surfaces in Nil3, we argue by contradiction.
Assume that there exists a complete multigraph Σ that is not entire. Then there exists
an open set Σ0 ⊂ Σ that is a graph over a disc D ( R2 of a function f , and a point
q ∈ ∂D such that f does not extend to q.

Step 1: For any sequence of points {qn} in D converging to q, the sequence of normal
vectors at the points pn = (qn, f(qn)) ∈ Σ0 converges to the horizontal vector orthogonal
to ∂D at q.

Indeed, as the surface is a multigraph, its angle function u = 〈N,E3〉, where N
denotes the unit normal vector, is a Jacobi function that does not vanish. As a result of
this, Σ is (strongly) stable, and has bounded geometry. This means that locally around
any pn we can write the surface as the graph (in exponential coordinates) over a disc of
radius δ of its tangent plane, where δ is a universal constant depending only on Σ. This
neighborhood of pn will be denoted by G(pn). The limit of the normal vectors {N(pn)}
must be a horizontal vector since otherwise, the piece G(pn) of bounded geometry could
be extended as a graph beyond q, which is impossible. Moreover, the limit vector must
be normal to ∂D at q since Σ0 is a graph over D.

Step 2: The function f defining the graph Σ0 diverges at q. Moreover, as we approach
q, and after translating the surface to the origin, the surfaces converge to a piece of the
(translated) vertical plane P passing through q and tangent to ∂D.

That f diverges at q is a consequence of the completeness of Σ, and the last part can
be proved by following the ideas of Collin and Rosenberg in [CoRo]. We will assume that
P is the plane {x1 = c}.

Step 3: Σ contains a graph G over a domain of the form Uǫ = (c − ǫ, c) × R ⊂ R2.
Moreover, this graph is disjoint from P and asymptotic to it as one approaches q.

The graph G is obtained by analytical continuation of the surfaces G(pn) used in the
first step, and after a careful study of the behavior of the intersection curves of these
graphs and the planes parallel to P .
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Finally, the contradiction follows from the half-space theorem (Theorem 6.9). Re-
call that, although G has boundary and the theorem is formulated for surfaces without
boundary, its proof applies to this case, and so we are done.

Once here, we investigate the Bernstein problem for entire graphs of critical CMC
in E3(κ, τ ), i.e. the classification of such entire graphs (recall here that CMC graphs in
E3(κ, τ ) satisfy the elliptic PDE (5)). The terminology comes from the classical Bernstein
theorem: entire minimal graphs in R3 are planes. Equivalently, any solution to the
minimal graph equation

(1 + f2
y )fxx − 2fxfyfxy + (1 + f2

x)fyy = 0 (13)

defined on the whole plane is linear.
It is interesting to compare this result with the Bernstein problem in Nil3, i.e. the

classification of entire minimal graphs in Nil3. This corresponds to classifying all global
solutions to the PDE (6). Observe that taking τ = 0 in (6) we obtain the classical
equation (13), i.e. the classical case considered by Bernstein appears as a limit of the
Heisenberg case.

There exists, however, a great difference between both situations. The following result
classifies the entire graphs of critical CMC in E3(κ, τ ), by parametrizing the moduli space
of such entire graphs in terms of holomorphic quadratic differentials. It was obtained first
for minimal graphs in Nil3 by the authors [FeMi3], and shortly thereafter by Daniel and
Hauswirth [DaHa] for H = 1/2 graphs in H2×R. The general case follows easily from the
Heisenberg case and Theorem 6.10, using the sister correspondence (this was observed
first in [DHM]).

Theorem 6.11 (Fernández-Mira, Daniel-Hauswirth). Let Qdz2 denote a holomorphic
quadratic differential on Σ ≡ C or D, such that Q 6≡ 0 if Σ ≡ C, and let H2 = −κ/4.

There exists a 2-parameter family of entire CMC H graphs in E3(κ, τ ) whose Abresch-
Rosenberg differential agrees with Qdz2. These graphs are generically non-congruent.

And conversely, these are all the entire graphs of critical CMC in E3(κ, τ ).

At this point, the proof for the case of minimal surfaces in Nil3 is a consequence of
Theorem 6.7 and the following result by Wan and Wan-Au [Wan, WaAu] on spacelike
entire CMC graphs in  L3: for any holomorphic quadratic differential as above, there exists
a unique (up to isometries) spacelike entire CMC 1/2 graph in  L3 with Hopf differential
Qdz2. The 2-parameter family of non-congruent graphs in E3(κ, τ ) comes from the loss
of ambient isometries (from 6 dimensions to 4 dimensions) when passing from  L3 to Nil3.

The remaining cases of critical CMC graphs follow since by Theorem 6.10 the sister
correspondence preserves entire graphs.

6.4. Open Problems. As explained in Section 3, entire graphs are stable. It
is conjectured that entire graphs and vertical cylinders are the only stable critical CMC
surfaces (this has been proved for parabolic conformal type in [MaPR]). Related to this
is the question of non-existence of complete stable H > 1/2 surfaces in H2 × R (proved
for H > 1/

√
3 by Nelli-Rosenberg, [NeRo2]).

Also, not much is known about properly embedded surfaces of critical CMC and
non-trivial topology. Can one obtain them by conjugate Plateau constructions, or by
integrable systems techniques? Another remarkable problem is to establish the strong
half-space theorem in Nil3: are two disjoint properly embedded minimal surfaces in Nil3
necessarily two parallel vertical planes, or two parallel entire minimal graphs?
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7. Minimal surfaces in H2 × R and S2 × R

Minimal surfaces in product spaces admit a special treatment, due to several reasons.
One of them is the following: if ψ = (N,h) : Σ →M2 ×R is a minimal surface immersed
in the product space M2×R, where (M2, g) is a Riemannian surface, then the horizontal
projection N : Σ → M2 is a harmonic map and the height function h : Σ → R is a
harmonic function. This implies, for instance, that compact minimal surfaces in M2 ×R
only exist if M2 is compact (in particular, if M2 = S2), and the only ones are the slices
M2 × {t0}.

Another important fact about minimal surfaces in M2 × R is that there is a natural
notion of minimal graph over a domain Ω ⊂ M2, and that this graph satisfies a simple
elliptic PDE in divergence form. This fact together with general existence results for
solutions to the Plateau problem in Riemannian 3-manifolds allows a good control on the
geometry of the surface. Some of the most interesting results of the theory of minimal
surfaces in product spaces come from the interplay between the information provided by
harmonic maps and by Plateau constructions and the minimal graph equation.

Starting with the pioneer work of H. Rosenberg [Ros], and W.H Meeks and H. Rosen-
berg [MeRo1, MeRo2], the theory of minimal surfaces in M2 ×R has developed substan-
tially in the last decade. We will only talk here about a few results of special relevance
to the theory, and not mention many other important results.

7.1. The Collin-Rosenberg theorem. The classical Bernstein theorem in
R3 states that planes are the only entire minimal graphs in R3. This theorem can be
extended to the case of product spaces: any entire minimal graph in M2 × R, where
(M2, g) is a complete surface of non-negative curvature, is totally geodesic.

In contrast, in the product space H2 × R there is a wide variety of entire minimal
graphs. For instance, in [NeRo1] Nelli and Rosenberg solved the Dirichlet problem at
infinity for the minimal graph equation in H2 × R. They proved that any Jordan curve
at the ideal boundary S1 ×R ≡ ∂∞H2 ×R of H2 ×R which is a graph over S1 ≡ ∂∞H2 is
the asymptotic boundary of a unique entire minimal graph in H2 × R (see [GaRo] for a
proof of this in the more general case of entire minimal graphs in M2 ×R, where (M2, g)
is complete, simply connected and with KM ≤ c < 0).

All these entire minimal graphs are hyperbolic, that is, they have the conformal type
of the unit disk. The problem of existence of entire minimal graphs of parabolic type
(i.e. with the conformal type of C) is much harder, and was solved recently by Collin and
Rosenberg [CoRo].

Theorem 7.1 (Collin-Rosenberg). There exist entire minimal graphs in H2 × R of
parabolic conformal type.

As the projection onto H2 of a minimal graph is a harmonic diffeomorphism, the above
theorem has the following consequence, which solves a major problem in the theory of
harmonic maps and disproves a conjecture by R. Schoen and S.T. Yau.

Corollary 7.2 (Collin-Rosenberg). There exist harmonic diffeomorphisms from C onto
H2.

The proof by Collin and Rosenberg is a good example of the interaction between the
harmonicity properties of the minimal immersion and the use of Plateau constructions
and the minimal graph equation.
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The main idea in the proof is to construct first (non-entire) minimal graphs in H2×R
of Scherk type over ideal geodesic polygons, having alternating asymptotic values +∞
and −∞ on the sides of the polygon. This generalizes a classical construction by Jenkins
and Serrin in the case of minimal graphs over bounded domains in R3. This construction
is done as follows:

Let Γ be an ideal polygon of H2, so that all the vertices of Γ are at the ideal boundary
of H2 and Γ has an even number of sides A1, B1, A2, B2..., Ak, Bk, ordered clockwise. At
each vertex ai, we consider a small enough horocycle Hi with Hi ∩ Hj = ∅. Each Ai

(resp. Bi) meets exactly two horocycles. Denote by Ãi (resp. B̃i), the compact arc of
Ai(resp Bi) which is the part of Ai outside the two horodisks. We denote by |Ai| the

length of |Ãi|. Define B̃i and |Bi| in the same way.
Now we can consider a(Γ) =

∑k

i=1
|Ai| and b(Γ) =

∑k

i=1
|Bi|. We observe that

a(Γ) − b(Γ) does not depend on the choice of the horocycle Hi at ai, since horocycles
with the same point at infinity are equidistant. Keeping in mind these data, we can state
the following theorem by Collin-Rosenberg [CoRo] (see also Nelli-Rosenberg [NeRo1]):

Theorem 7.3. ([NeRo1], [CoRo]) There is a (unique up to additive constants) solution
to the minimal surface equation in the polygonal domain P , equal to +∞ on Ai and −∞
on Bi, if and only if the following conditions are satisfied:

1. a(Γ) = b(Γ),

2. For each inscribed polygon P in Γ, P 6= Γ, and for some choice of horocycles at the
vertices, one has

2a(P) < |P| and 2b(P) < |P|.

All these examples have the conformal type of C. Once there, Collin and Rosenberg
designed a way of enlarging a given Scherk-type graph over the interior of some Γ ⊂ H2

into another one with more sides, and so that: (1) the extended surface is C2-close to the
original one over an arbitrary compact set in the interior of Γ, and (2) there is a control
on the conformal radius on adequate compact annuli on the surface.

By passing to the limit in this sequence of minimal graphs over larger and larger
domains, they obtained an entire minimal graph in H2 × R which, by the control on the
conformal radii of these annuli, has the conformal type of C.

Remark 7.4. The Collin-Rosenberg theorem has been extended by J.A. Gálvez and H.
Rosenberg [GaRo] to more general product spaces M2 × R: there exist entire minimal
graphs of parabolic conformal type on M2 × R, where (M2, g) is any complete simply
connected Riemannian surface with Gaussian curvature KM ≤ c < 0 (KM not constant).

7.2. Minimal surfaces of finite total curvature in H2 × R. One
of the most studied families among minimal surfaces in R3 are the complete minimal
surfaces of finite total curvature (FTC for short). A minimal surface Σ is said to have
FTC if its Gaussian curvature K satisfies

∣∣∣∣
∫

Σ

K dA

∣∣∣∣ <∞.

By classical theorems of Huber and Osserman, complete FTC minimal surfaces in
R3 are conformally equivalent to a compact Riemann surface minus a finite number of
points. Moreover, the Gauss map extends meromorphically to the punctures, and the
total curvature of the surface is a multiple of −4π. A key point here is that the Gauss
map of a minimal surface in R3 is conformal.
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In H2 ×R there is no conformal Gauss map for minimal surfaces. Nonetheless, using
the global theory of harmonic maps into H2, L. Hauswirth and H. Rosenberg [HaRo] were
able to prove that a similar situation holds in H2 × R.

Theorem 7.5 (Hauswirth-Rosenberg). Let X be a complete minimal immersion of Σ in
H2 × R with finite total curvature. Then

1. Σ is conformally equivalent to a Riemann surface punctured at a finite number of
points, Σ ≡Mg − {p1...., pk}.

2. Qdz2 := h2
z dz

2 is holomorphic on M and extends meromorphically to each punc-
ture. If we parameterize each puncture pi by the exterior of a disk of radius r, and
if Q(z)dz2 = z2mi(dz)2 at pi, then mi > −1.

3. The third coordinate u of the unit normal tends to zero uniformly at each puncture.

4. The total curvature is a multiple of 2π:

∫

Σ

KdA = 2π

(
2 − 2g − 2k −

k∑

i=1

mi

)
.

As a consequence, every end of a finite total curvature surface is uniformly asymptotic
to a Scherk type graph described in Theorem 7.3.

Proof. The first step is to prove that locally around an end, Qdz2 only has at most a finite
number of zeroes. Then a Huber theorem and an argument of Osserman give that the ends
are conformally a punctured disk, and Qdz2 extends meromorphically to the puncture.
The final part of the behavior of Qdz2 follows from the fact that Qdz2 = h2

zdz
2, where h

is the height function of the surface.
To prove that u goes to 0 at the ends, take an annular neighborhood of an end where

Qdz2 does not vanish. Then reparameterize this annulus by w =
∫ √

Qdz. The metric
conformal factor in these coordinates satisfies a sinh-Gordon equation, and the Gaussian
curvature monotonically decreases to zero. Then, estimates on the growth of solutions
of the sinh-Gordon equation allows one to conclude that, at a finite total curvature end,
the tangent plane becomes vertical and the metric becomes flat.

Finally, the expression for the total curvature follows from Gauss-Bonnet formula and
the estimates for the sinh-Gordon equation obtained before.

In [HaRo], the following question was also raised: are there complete non simply
connected minimal surfaces with FTC in H2 × R? Notice that rotational catenoids have
infinite total curvature. Actually, at that time, the only known complete FTC minimal
surfaces were the Scherk type graphs.

This question was positively answered by J. Pyo [Pyo] and also, independently, by
Rodŕıguez and Morabito [RoMo]. Pyo constructed a 1-parameter family of genus zero
properly embedded minimal surfaces in H2 × R with k ends for k ≥ 2, similar to the
k-noids in R3 (although the first ones are embedded and the k-noids in R3 are not). They
have total curvature 4π(1 − k), and are asymptotic to vertical planes at infinity. These
surfaces are obtained as the conjugate surfaces of minimal graphs over infinite geodesic
triangles in H2 that are asymptotic to vertical planes at infinity.

Very shortly thereafter, M. Rodŕıguez and F. Morabito discovered independently a
larger family of FTC minimal surfaces, containing the previous ones. It is a (2k −
2)-parameter of properly embedded FTC minimal surfaces of genus zero with k ends,
obtained as the limits of simply periodic minimal surfaces called saddle towers, that are
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invariant by a vertical translation of vector (0, 0, 2l). Taking limits when l → ∞, they
obtain genus zero minimal surfaces with k ends and total curvature 4π(1 − k) that are
symmetric with respect to the reflection over the slice H2 × {0}. The surfaces found by
Pyo appear when the ends are placed in symmetric positions.

7.3. Open problems. In [Ha], L. Hauswirth constructed a family of Riemann
type minimal surfaces in H2×R and S2×R, characterized by the property of being foliated
by curves of constant curvature. It is a conjecture by W. Meeks and H. Rosenberg that
in S2 ×R they are the only properly embedded minimal annuli. An approach for solving
this conjecture using integrable systems techniques has been recently developed by L.
Hauswirth and M. Schmidt. Another natural problem is to obtain classification results
for properly embedded minimal surfaces of finite total curvature and a given simple
topology in R3.

Schoen and Yau proved there is no harmonic diffeomorphism from the disk to a
complete surface of non-negative curvature. Can there be such a harmonic diffeomorphism
onto a complete parabolic surface? This is a question by J.A. Gálvez.

References

[AbRo1] U. Abresch, H. Rosenberg, A Hopf differential for constant mean curvature
surfaces in S2 × R and H2 × R, Acta Math. 193 (2004), 141–174.

[AbRo2] U. Abresch, H. Rosenberg, Generalized Hopf differentials, Mat. Contemp. 28
(2005), 1–28.

[AEG1] J.A. Aledo, J.M.Espinar, J.A. Gálvez, Height estimates for surfaces with positive
mean curvature in M× R. Illinois Journal of Math., 52 (2008), 203-211.

[Bon] F. Bonahon, Geometric structures on 3-manifolds. In Handbook of Geometric
Topology, pages 93–164. North-Holland, Amsterdam, 2002.

[ChYa] S.Y. Cheng, S.T. Yau, Maximal spacelike hypersurfaces in the Lorentz-Minkowski
spaces, Ann. of Math. 104 (1976), 407–419.

[CoRo] P. Collin, H. Rosenberg, Construction of harmonic diffeomorphisms and minimal
graphs, Ann. of Math., to appear (2007).

[Dan1] B. Daniel, Isometric immersions into 3-dimensional homogeneous manifolds,
Comment. Math. Helv. 82 (2007), 87-131.

[Dan2] B. Daniel, The Gauss map of minimal surfaces in the Heisenberg group, preprint,
2006, arXiv:math/0606299.

[DFM] B. Daniel, I. Fernández, P. Mira, Surfaces of critical constant mean curvature.
Work in progress.

[DaHa] B. Daniel, L. Hauswirth, Half-space theorem, embedded minimal annuli and
minimal graphs in the Heisenberg group. Proc. Lond. Math. Soc. (3), 98 no.2 (2009),
445–470.

[DHM] B. Daniel, L. Hauswirth, P. Mira, Constant mean curvature surfaces in homo-
geneous manifolds, preprint, 2009. Published preliminarly by the Korea Institute for
Advanced Study.

[DaMi] B. Daniel, P. Mira, Existence and uniqueness of constant mean curvature spheres
in Sol3. Preprint, 2008, arXiv:0812.3059

http://arxiv.org/abs/math/0606299
http://arxiv.org/abs/0812.3059


Constant mean curvature surfaces in 3-dimensional Thurston geometries 25

[dCF] M.P. do Carmo, I. Fernández, Rotationally invariant CMC disks in product space,
Forum Math. 21 (2009), 951–963.

[EGR] J.M. Espinar, J.A. Gálvez, H. Rosenberg, Complete surfaces with positive extrin-
sic curvature in product spaces, Comment. Math. Helv., 84 (2009), 351–386.

[EsRo] J.M. Espinar, H. Rosenberg, Complete constant mean curvature surfaces in ho-
mogeneous spaces, Comment. Math. Helv., to appear (2009).

[FeMi1] I. Fernández, P. Mira, Harmonic maps and constant mean curvature surfaces in
H2 × R, Amer. J. Math. 129 (2007), 1145–1181.

[FeMi2] I. Fernández, P. Mira, A characterization of constant mean curvature surfaces in
homogeneous 3-manifolds, Diff. Geom. Appl., 25 (2007), 281–289.

[FeMi3] I. Fernández, P. Mira, Holomorphic quadratic differentials and the Bernstein
problem in Heisenberg space. Trans. Amer. Math. Soc., 361, no 11, (2009), 5737–
5752.

[FoWo] A.P. Fordy, J.C. Wood. Harmonic maps and integrable systems. Aspects of Math-
ematics, vol. E23, by Vieweg, Braunschweig/Wiesbaden, 1994.

[GMM] J.A. Gálvez, A. Mart́ınez, P. Mira, The Bonnet problem for surfaces in homoge-
neous 3-manifolds, Comm. Anal. Geom. 16 (2008), 907–935.

[GaRo] J.A. Gálvez, H. Rosenberg, Minimal surfaces and harmonic diffeomorphisms from
the complex plane onto a Hadamard surface. Preprint, 2008, arXiv:0807.0997.

[Ha] L. Hauswirth, Minimal surfaces of Riemann type in three dimensional product man-
ifolds. Pacific J. Math., 224, no.1 (2006), 91–117.

[HaRo] L. Hauswrith, H. Rosenberg. Minimal surfaces of finite total curvature in H×R.
Mat. Contemp. 31 (2006), 65–80.

[HRS] L. Hauswirth, H. Rosenberg, J. Spruck. On complete mean curvature 1

2
surfaces

in H2 × R. Comm. Anal. Geom., 16, no.5 (2008), 989–1005.

[HoMe] D. Hoffman, W. H. Meeks III. The strong halfspace theorem for minimal surfaces.
Invent. Math. 101, no.2 (1990), 373–377.

[HsHs] W.Y. Hsiang, W.T. Hsiang, On the uniqueness of isoperimetric solutions and
imbedded soap bubbles in noncompact symmetric spaces I, Invent. Math. 98 (1989),
39–58.

[Lee] H. Lee. Extension of the duality between minimal surfaces and maximal surfaces.
Preprint, 2009.
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