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Abstract 

The ability to reprogram somatic cells into induced pluripotent stem cells (iPSCs) holds 

great potential for clinic applications, however, acquired genomic instability is one of the 

major concerns for its clinical use. The reprogramming process is accompanied by the 

induction of DNA damage, of which double-strand breaks (DSBs) are the most cytotoxic. 

To minimize the impact of these damages, cells have developed two main repair pathways: 

Homologous Recombination (HR) and Non-Homologous End-Joining (NHEJ). The choice 

between both mechanisms is a complex and highly regulated process and the right balance 

is critical to ensure the maintenance of genomic stability. One of the best-known decision 

points is DNA end resection which leads to HR activation, and the nuclear protein CtIP is 

its major regulator.  In this thesis, we investigated the role of DNA end resection and CtIP 

during the reprogramming process and we revealed that reprogramming is associated 

with high CtIP protein levels and a hyper-activation of DNA end resection. Moreover, CtIP 

is essential for the maintenance of genomic stability and reprogramming in a resection-

defective environment has long-term consequences on stem cell self-renewal and 

differentiation. Furthermore, we show that the pluripotency factor KLF4 plays an 

important role in regulating DNA damage repair processes and the balance between them 

acting upon the HR pathway, specifically promoting DNA-end resection. 

  



 

 

  



 

 
 

Resumen 

La inestabilidad genómica adquirida es una de las principales preocupaciones para el uso 

clínico de células madre pluripotentes inducidas (iPSCs). Todos los métodos de 

reprogramación están acompañados de la inducción de daño en el ADN, de los cuales los 

cortes de doble cadena (DSBs) son los más citotóxicos y mutagénicos. Para reparar los DSBs 

existen dos mecanismos principales y alternativos: la unión de extremos no homólogos 

(NHEJ) y la recombinación homóloga (HR). La elección entre uno u otro tipo de reparación 

es un proceso complejo y altamente regulado, y el uso de cualquiera de ellos en un 

momento inadecuado genera un aumento de la inestabilidad genómica, un fenómeno 

estrechamente asociado con el desarrollo del cáncer. Sin embargo, se considera que el 

procesamiento de los extremos del corte, o resección, es un paso clave en esta decisión ya 

que conduce a la reparación por HR y bloquea eficientemente la NHEJ. La resección está 

fuertemente regulada por muchas señales celulares diferentes, siendo CtIP el componente 

más conocido de esta red reguladora. Durante esta tesis, investigamos el papel de la 

resección y del factor CtIP durante el proceso de reprogramación celular y revelamos que 

durante el proceso los niveles de CtIP aumentan y la resección está hiper-activada. 

Además, demostramos que el factor de resección CtIP es esencial para el mantenimiento 

de la estabilidad genómica y la reprogramación en un entorno defectuoso de resección 

tiene consecuencias a largo plazo limitando el mantenimiento del estado de pluripotencia 

de las células reprogramadas o autorrenovación y su posterior diferenciación. Por otro 

lado, observamos que Krüppel-like factor 4 (KLF4), uno de los cuatro factores utilizados 

para reprogramar células diferenciadas adultas en células madre pluripotentes inducidas, 

parece tener un papel importante en la regulación de los procesos de reparación de cortes 

de doble cadena y en el balance entre ambas vías. De hecho, encontramos que KLF4 actúa 

sobre la vía de recombinación homóloga, promoviendo específicamente la resección.  
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1. DNA damage and genomic stability  

Life depends on the ability of cells to store, retrieve, and translate the information 

required to make and maintain a living organism. So, the high-fidelity transmission of the 

genetic information stored in DNA is critical for the maintenance of genome integrity and 

viability of the cells. However, DNA is constantly exposed to damage induced by 

environmental agents or generated spontaneously during cell metabolism. It has been 

estimated that every cell is subject to more than 10.000 DNA lesions per day (Hoeijmakers, 

2009). To counteract DNA damage, cells have developed strategies that respond and 

repair DNA lesions to maintain genome integrity (Ciccia and Elledge, 2010). Thus, the 

absence or impairment of such mechanisms can lead to DNA mutations or chromosome 

aberrations that contribute to genomic instability which is associated with human 

premature ageing, predisposition to various types of cancer and with inherited diseases 

(Aguilera and Gómez-González, 2008). 

Endogenous DNA damage occurs at a high frequency compared with exogenous 

damage and the types of damage produced are identical or very similar to those caused 

by some environmental agents (Jackson and Loeb, 2001) (Figure I1). Spontaneous DNA 

alterations may occur due to DNA mismatches, insertions and deletions caused during 

DNA replication (Jackson and Bartek, 2009). Moreover, by-products derived from cellular 

metabolism, including reactive oxygen species (ROS), can also attack DNA and produce 

DNA damage. These ROS include superoxide, hydrogen peroxide, hydroxyl radicals and 

singlet oxygen (De Bont and van Larebeke, 2004; Jackson and Bartek, 2009). Exogenous 

DNA damage can be produced by exposure to physical sources, including ultraviolet (UV) 

light and ionizing radiation (IR) (Ciccia and Elledge, 2010; Hoeijmakers, 2009). In addition, 

a variety of DNA lesions can be produced by chemical agents, such as the case of alkylating 

agents, crosslinking agents topoisomerase inhibitors or cigarette smoke (Cheung-Ong et 

al., 2013; Phillips et al., 1988) (Figure I1).  

The wide diversity of types of DNA-lesion provokes the need of multiple and distinct 

DNA-repair mechanisms (Figure I1). Accordingly, cells have evolved specific repair 
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mechanisms to counteract DNA damage and maintain genomic stability. DNA lesions can 

occur in many different forms. The most common lesions are chemical modifications that 

alter the structure of the nucleotides (Lindahl, 1993), including abasic sites, bulky adducts, 

covalent binding between nucleotides of both DNA strands (intrastrand and interstrand 

crosslinks), pyrimidine dimers and insertion/deletion mismatches (De Bont and van 

Larebeke, 2004). Another major type of DNA damage are single strand breaks (SSB) in 

which the phosphodiester backbone is cut in one strand of the double helix, interrupting 

the continuity of the DNA (Caldecott, 2008). Even though there are specific repair 

pathways for each type of modifications, which include base excision repair (BER), 

nucleotide excision repair (NER) and mismatch repair (MMR), they act basically by 

removing the damaged base of a nucleotide and inserting new bases to fill the gap using 

Figure I1. Types, sources and repair of DNA lesions. 

DNA damage can be caused by various exogenous and/or endogenous sources (top). DNA lesions can 

occur in many different forms that can affect one or both DNA strands (middle) and each modification 

requires specific machinery for repair (bottom). (Modified from (Genois et al., 2014; Hoeijmakers, 2001).  

https://www.researchgate.net/figure/Types-of-DNA-damage-sources-and-cellular-responses-to-damage-Illustration_fig1_233871774
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the complementary strand as a template (Hoeijmakers, 2009; Jackson and Bartek, 2009). 

On the other hand, if the damage affects both strands simultaneously, it produces a double 

strand break (DSB) which is the most cytotoxic form of damage and requires more complex 

repair mechanisms (Figure I1).  

 

1.1. DNA Double Strand Breaks (DSBs) 

DNA double-strand breaks (DSBs) arise regularly in cells and are highly toxic and 

potentially dangerous. In mammalian cells, DSBs can arise following exposure to 

exogenous agents, such as ionizing radiation (IR), topoisomerase poisons and radio-

mimetic chemicals (Jackson, 2002), but can also be caused by endogenous sources. 

Naturally occurring DSBs are generated spontaneously during DNA synthesis when the 

replication fork encounters unrepaired DNA lesions, triggering fork collapse (Pfeiffer et al., 

2000). Moreover, during certain specialized cellular processes such as meiosis or the 

diversification of immunoglobulins, DSBs are programmed by the cell. On the one hand, 

meiotic DSB repair is essential for correct chromosome segregation at the first meiotic 

division and generates gametes with allele combinations distinct from the parental 

germline. On the other hand, DSB-induced rearrangements at immunoglobulin genes are 

critical for the multiplicity of antigen receptor diversity over limited numbers of loci 

(Chapman et al., 2012). 

Regardless of the source, accurate repair of DSBs is essential for the successful 

maintenance and propagation of genetic information. Failure or lack of repair may result 

in cell death or mutations and gross chromosomal rearrangements, including deletions 

and translocations (Aguilera and Gómez-González, 2008). Indeed, defective DSB repair is 

associated with various developmental, immunological, and neurological disorders, and is 

a major driver in cancer (Jackson and Bartek, 2009; McKinnon, 2009). The repair of DSBs 

is carried out by more complex repair mechanisms. Moreover, cells respond to DNA DSBs 

through the actions of systems that detect the DNA lesion and then trigger various 

downstream events. This network of cellular pathways is known as the DNA damage 

response (DDR) (Jackson and Bartek, 2009). 
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1.2. The DNA Damage Response (DDR) 

The DNA damage response (DDR) is a complex network of signal transduction 

pathways that senses DNA damage, mainly DSBs, and trigger various downstream events 

to repair DNA lesions and maintain genome integrity.  The DDR controls the coordination 

of important cellular processes including cell cycle checkpoints, transcription, translation, 

DNA repair, metabolism, and cell fate decisions, such as apoptosis or senescence, to 

prevent the replication of damaged DNA and the inheritance of damaged DNA by daughter 

cells (Ciccia and Elledge, 2010; Jackson and Bartek, 2009). Like all classic signal 

transduction cascades, the DDR uses sensors, mediators, transducers and effectors (Zhou 

and Elledge, 2000)(Figure I2). It requires proteins recruitment to damage, that normally 

occurs in a hierarchical manner, and also involves multiple posttranslational modifications 

(Lukas and Bartek, 2004; Polo and Jackson, 2011). DNA damage is directly recognized by 

sensor proteins that bind broken DNA in a sequence-independent manner. This event then 

triggers the recruitment and activation of transducer proteins, with the help of mediators. 

Then, the transducer proteins transmit the damage signal to various effector proteins that 

participate in a wide spectrum of cellular processes which leads to the repair of the lesion 

(Jackson, 2002; Maréchal and Zou, 2013; Polo and Jackson, 2011) (Figure I2). 

In mammalian cells, the main sensors that recognize DNA DSBs are the KU70-KU80 

heterodimer and the MRE11-RAD50-NBS1 (MRN) complex (Polo and Jackson, 2011) 

(Figure I2). They bind rapidly to the site of damage and lead to the activation of transducer 

kinases. Ataxia-telangiectasia mutated (ATM), ATM and Rad3-related (ATR), and DNA-

dependent protein kinase catalytic subunit (DNA-PKcs) are the most upstream DDR kinases 

(Ciccia and Elledge, 2010; Maréchal and Zou, 2013) (Figure I2). Following the initial 

activation, the kinases phosphorylate many different substrates involved in DDR signalling, 

including histones and proteins involved in the regulation of chromatin structure. In 

response to DNA damage, those kinases phosphorylate over 700 different substrates in 

mammalian cells (Matsuoka et al., 2007). Chiefly among them, these kinases mediate the 

phosphorylation of the histone variant H2AX, considered one of the earliest events in the 

cellular response to DSBs. Phosphorylation of H2AX at the S139 residue, known as γH2AX, 

occurs within seconds after DNA damage and spreads over large chromatin domains 
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flanking the DNA breaks  (Savic et al., 2009). Moreover, H2AX phosphorylation induces the 

binding of the mediator protein MDC1 which is required for γH2AX spreading (Stewart et 

al., 2003; Stucki et al., 2005) (Figure I2). Formation of γH2AX extensive regions amplifies 

the initial signal and initiates the recruitment and accumulation of many different DDR 

factors at DNA lesions which form structures known as ionizing radiation-induced foci 

(IRIF) that can be visualized by microscopy (Bekker-Jensen et al., 2006; Stucki et al., 2005).  

One well-established feature of the DNA damage response is the activation of DNA-

damage checkpoints which slow down or arrest the cell-cycle progression to avoid cell-

cycle transitions until repair has taken place (Abraham, 2001; Kastan and Bartek, 2004). In 

Figure I2. The DNA damage response (DDR) pathway. 

Schematic representation of DDR molecular components that are recruited to DSBs in a hierarchical 

manner. DNA damage is recognized by sensor proteins (Ku70/80 or MRN) and triggers the recruitment 

and activation of transducer proteins (ATM, ATR) with the help of mediators (MDC1 and others). 

Transducer proteins amplify the signalling cascade by targeting many effector proteins (CHK1, CHK2, 

p53) that participate in a wide spectrum of cellular processes including transcriptional induction, cell 

cycle arrest, DNA repair, progression towards apoptosis or senescence, etc. 
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response to DNA damage, three different and major cell cycle–checkpoints can be 

activated in the DDR: G1/S, intra-S phase, and G2/M checkpoints (Lukas et al., 2004). The 

main checkpoint effector kinases are CHK1 and CHK2 which are activated by ATR and ATM 

phosphorylation, respectively (Figure I2). Active effector kinases phosphorylate numerous 

downstream targets and leads to reduce cyclin-dependent kinase (CDK) activity which is 

essential to establish a cell cycle arrest (Kastan and Bartek, 2004). This arrest can be 

reversed once the damage has been repaired. However, if the damage cannot be repaired, 

DDR signalling triggers programmed cell death via induction of p53 (Jackson and Bartek, 

2009). 

 

1.3. DNA DSBs repair pathways 

In mammals, there are different DSB repair pathways which can be categorized in 

two big families of mechanisms depending on whether sequence homology is required: 

non-homologous end joining (NHEJ) and homologous recombination (HR) (Figure I3). 

NHEJ involves the direct ligation of DNA ends through a process largely independent 

of homology. It is highly efficient but it is also considered to be an error-prone process 

because nucleotides can be lost or gained at the ends previous to ligation (Chiruvella et 

al., 2013). This is the major pathway that repair DSBs in vertebrate cells and it can function 

throughout the cell cycle, but is of particular importance during G0 and G1 phases when 

HR is highly suppressed (Rothkamm et al., 2003) (Figure I3). NHEJ is initiated by the high-

affinity binding of KU70/KU80 heterodimer to both ends of the broken DNA molecule, 

which protects them from degradation (Dynan and Yoo, 1998) (Figure I3). DSB-bound KU 

then recruits and activates DNA-PKcs that initiates an extensive signalling cascade and 

facilitate the recruitment of XRCC4/XLF/DNA Ligase IV complex which carries out the 

ligation of the DNA ends to complete repair (Cottarel et al., 2013; Grawunder et al., 1997) 

(Figure I3). HR, by contrast, is commonly considered to be error-free and requires the use 

of an undamaged homologous sequence as a template to copy and accurately restore the 

DNA sequence (San Filippo et al., 2008). Therefore, this pathway is restricted to the S and 

G2 phases of the cell cycle when a sister chromatid is available (Rothkamm et al., 2003) 
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(Figure I3). In HR, the search for a homologous sequence requires the processing of DNA 

ends to generate single-strand DNA (ssDNA) containing a 3′-hydroxyl overhang. This 

intermediate is generated by nucleolytic degradation in a process termed DNA end 

resection, which is mediated by the MRN complex and CtBP-interacting protein (CtIP) 

(Huertas, 2010) (Figure I3). The ssDNA overhangs generated by DNA resection are rapidly 

coated by the replication protein A (RPA) complex, which prevents the formation of 

secondary structures. Afterwards, RPA is displaced by RAD51 forming RAD51 filaments 

needed for strand invasion (San Filippo et al., 2008) (Figure I3).  

Alternatively, end resection can also provide an intermediate for other minor repair 

pathways: single-strand annealing (SSA) and one form of alternative NHEJ (alt-NHEJ) 

known as microhomology-mediated NHEJ (MMEJ) (Figure I3). On the one hand, MMEJ seal 

the break in a mechanism that shares elements with both NHEJ and HR. It is a KU-

independent NHEJ pathway that requires limited resection and involves alignment and 

subsequent ligation of microhomologous sequences of 5-25 bp close to the break, thereby 

resulting in deletions flanking the original break (McVey and Lee, 2008; Sfeir and 

Symington, 2015) (Figure I3). On the other hand, SSA require more extensive end resection 

and it is used only when two long homologous regions flank the DSB site, leading to the 

annealing of complementary strands from each repeated sequence (Figure I3). This results 

in the deletion of one of the repeats and the intervening sequence and, therefore, loss of 

genetic information (Morrical, 2016). Thus, both SSA and MMEJ are always mutagenic 

pathways associated with deletions and chromosomal rearrangements (Symington and 

Gautier, 2011). 
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Figure I3. DSB repair pathways. 

The two main repair pathways to repair DSBs are non-homologous end joining (NHEJ) and homologous 

recombination (HR). NHEJ (left green panel) starts with the recognition of the DNA ends by the KU70/80 

heterodimer and then, others factors (DNA-PKcs, XRCC4/XLF/LIG4) are subsequently recruited to carry 

out the direct ligation of both DNA ends. This mechanism can function throughout the cell cycle but is 

the predominant repair pathway used in G1. During HR (right green panel), the repair of DSB is initiated 

by the resection of the DNA ends which requires the action of the MRN complex and CtIP to generate 

single-stranded DNA that is protected by RPA complex. The single-strand DNA is required to search for 

a homologous template for repair. Alternatively, there are minor repair pathways that require end 

resection: microhomology-mediated NHEJ (MMEJ) and single-strand annealing (SSA). SSA (right purple 

panel) require extensive end resection that exposes single strand regions with long homologous 

sequences (red boxes) of greater than 25 nucleotides flanking the DSB site. Then, the complementary 

single strands from each repeated sequence anneal and are processed for ligation resulting in the 

deletion of the sequence between the repeats. MMEJ (left purple panel) share molecular components 

and intermediates with both NHEJ and SSA and it requires limited resection and subsequent ligation of 

microhomologous sequences of 5-25 bp (red boxes) close to the break, resulting in genomic deletions.  
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1.4. DNA end resection 

The decision between HR and NHEJ relies, mostly, on the activation or not of 

extensive processing of the DNA ends known as DNA end resection (Huertas, 2010; 

Symington, 2014). This consists in the degradation of one strand of the DNA at each side 

of the break in a 5’-3’ polarity that uncovers long tails of 3’OH protruding ssDNA that is 

immediately coated by the protecting complex RPA (Huertas, 2010; Symington, 2014) 

(Figure I4). Resected DNA is required for HR, but efficiently blocks canonical NHEJ.  

In eukaryotes, DNA end resection occurs in two distinct steps (Gravel et al., 2008; 

Mimitou and Symington, 2008; Zhu et al., 2008) (Figure I4). First, there is an initial short-

range resection that is slow and consists of limited 5′ DNA end degradation (Mimitou and 

Symington, 2008). This step is mainly carried out by the MRE11-RAD50-NBS1 (MRN) 

complex and CtIP in human cells (Paull and Gellert, 1998; Sartori et al., 2007). MRE11 is 

the catalytic component of the MRN complex and appears to be the critical nuclease 

responsible for short-range resection. It has a variety of enzymatic activities, including 3’ 

to 5’ exonuclease activity on double stranded DNA (dsDNA) and endonuclease activity on 

5′-terminated DNA strands and on other DNA structures (Paull and Gellert, 1998; Trujillo 

et al., 1998). Since resection generates 3’ overhang, a bidirectional model has been 

proposed (Garcia et al., 2011). According to this, DNA is first nicked in the 5’-terminated 

strand away from the break by MRE11 endonuclease activity (Figure I4).  Then, starting 

from the nick, the 3’ to 5’ exonuclease activity can degrade the DNA toward the DSB end 

leaving 3’ ssDNA tails (Garcia et al., 2011; Mimitou and Symington, 2008; Shibata et al., 

2014) (Figure I4). Besides the importance of MRN in resection, the complex by itself is not 

enough to initiate the process. Recruitment of CtIP and its physical interaction with MRN 

complex is also required; in fact, it has been shown that phosphorylation of CtIP specifically 

promotes the MRE11 endonuclease activity (Anand et al., 2016; Huertas et al., 2008; 

Mimitou and Symington, 2008; Peterson et al., 2013; Sartori et al., 2007). Moreover, the 

tumour suppressor protein Breast Cancer 1 (BRCA1) binds to CtIP-MRN complex to add 

processivity to DNA end resection (Cruz-García et al., 2014). CtIP possesses a 5’-flap 

endonuclease  
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Figure I4. DNA end resection mechanism. 

Homologous recombination (HR) is initiated by DNA-end resection which occurs in two distinct steps. 

First, the MRN complex recruits CtIP and BRCA1 and starts the short-range DNA end resection with an 

endonucleolytic cleavage of the 5’-terminated DNA strand mediated by the endonuclease activity of 

MRN. Then, the 3’ to 5’ exonuclease activity of the MRN complex degrade the DNA toward the DSB end 

leaving short 3’ ssDNA tails that can be extended by a second phase known as long-range resection. The 

formation of extensive 3′ ssDNA overhangs by the long-range resection is catalysed by either the 

exonuclease activity of EXO1 (right) or the combined helicase/nuclease activities of BLM/DNA2 (left), 

and extensive ssDNA tails are rapidly coated by RPA complex for protection. 
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activity but there is controversy whether this activity is necessary (Makharashvili et al., 

2014; Wang et al., 2014a) or not (Anand et al., 2016) for resection. Upon initiation 

of resection by MRN complex and CtIP, DNA end resection tracks are extended by a second 

phase known as long-range resection (Figure I4). Two separate pathways have been 

described for long-range resection in human cells, dependent on either the exonuclease 

activity of EXO1 or the combined helicase/nuclease activities of BLM/DNA2 (Gravel et al., 

2008; Nimonkar et al., 2011; Zhu et al., 2008). These pathways lead to the formation of 

extensive 3′ ssDNA overhangs that facilitate successful homology search and repair. 

Short-range resection is essential for the repair of DSBs with protein or chemical 

adducts at the 5′ ends because the nucleases activities of EXO1 and DNA2 cannot directly 

process these ends. However, it has been shown that resection at a clean DSB with free 

DNA ends can be initiated by DNA2 via its endonuclease activity. In this model, the MRN 

complex promotes the recruitment of DNA2 to the DNA end which cleaves the 5′ strand 

DNA 10–20 nucleotides away from the end approximately (Paudyal et al., 2017).  

 

1.5. DNA DSBs repair pathway choice  

The right balance between different DNA DSB repair pathways is critical to ensure 

the maintenance of genomic stability, as failure to accurate repair is associated with the 

acceleration of tumorigenesis and several human genetic syndromes (Huertas, 2010). 

Consequently, it is a complex and highly regulated process, and although the exact 

mechanisms that control the repair pathway choice are not completely understood yet, 

multiple layers of control have been involved in this regulation (Chapman et al., 2012).  

One of the key events that has a major impact in regulating the balance between HR 

and NHEJ is DNA end resection which leads to HR activation and impairs NHEJ (Huertas, 

2010). DNA end resection is highly regulated and responds to many different cellular 

signals (Hartlerode and Scully, 2009; Huertas, 2010; Sartori et al., 2007). Regarding 

regulation, cell cycle has a major influence on the choice of the repair pathway through 

the cyclin-dependent kinases (CDKs) activity, which mediates phosphorylation of multiple 
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substrates to promote or not end resection (Huertas, 2010; Wohlbold and Fisher, 2009) 

(Figure I5). In addition, there are accessory factors that also contribute to repair pathway 

choice via modulation of end resection. For instance, the balance between the pro-

resection factor BRCA1 and the anti-resection factors 53BP1, RIF1 and the shieldin 

complex (SHLD1, SHLD2 and SHLD3) modulate pathway choice by either promoting or 

preventing end resection (Daley and Sung, 2014; Dev et al., 2018; Escribano-Díaz et al., 

2013; Gupta et al., 2018; Noordermeer et al., 2018) (Figure I5). Resection is reduced in G1 

phase of the cell cycle and is activated in S/G2, when the sister chromatid is available to 

perform a precise repair by homologous recombination (Branzei and Foiani, 2008). In G1 

cells, 53BP1 is localized at the break and is phosphorylated by ATM which leads to the 

recruitment of RIF1, an effector that antagonize with BRCA1 (Chapman et al., 2013; 

Escribano-Díaz et al., 2013; Zimmermann et al., 2013) (Figure I5). Moreover, shieldin 

complex is recruited to double-strand-break sites in a 53BP1- and RIF1-dependent manner 

and interacts with RIF1 by SHLD3 subunit (Gupta et al., 2018; Noordermeer et al., 2018). 

Then, SHLD2 interacts with single-stranded DNA leading to DNA end resection inhibition 

and directing the repair towards NHEJ, possibly by occluding access to resection nucleases 

(Noordermeer et al., 2018) or by antagonising the replacement of RPA with BRCA2/RAD51 

on resected ssDNA (Dev et al., 2018) (Figure I5). As cells progress to S and G2 phases, CDK 

phosphorylates CtIP at T847 which is required for DNA end resection initiation (Huertas 

and Jackson, 2009). Moreover, CDK-mediated phosphorylation of CtIP at S327 promotes 

its interaction with BRCA1 which in turn antagonize RIF1 (Chen et al., 2008; Escribano-Díaz 

et al., 2013) which is required for SHLD3 assembly and shieldin function (Gupta et al., 2018) 

and increase (Gupta et al., 2018) and accelerates the speed of resection (Cruz-García et al., 

2014) (Figure I5). 

Other factors involved in DSB pathway choice are the regulation of chromatin status, 

in which histone post-translational modifications (PTM) play a key role (Price and 

D’Andrea, 2013), the transcriptional status of loci (Aymard et al., 2014), the structure of 

ends (Liao et al., 2016) or nuclear position (Lemaître et al., 2014). 
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1.6. CtBP-interacting protein (CtIP)  

The human CtIP gene, that is located at chromosome 18q11.2, encodes for an 897-

amino acid nuclear protein (Fusco et al., 1998) (Figure I6). CtIP was initially identified as a 

cofactor for the transcriptional repressor CtBP (carboxy-terminal binding protein) 

(Schaeper et al., 1998). Subsequently, in a yeast two-hybrid screen, CtIP was also identified 

as a direct interaction partner for other proteins including breast cancer 1 protein (BRCA1) 

(Wong et al., 1998; Yu et al., 1998) and retinoblastoma protein (Rb) (Fusco et al., 1998), 

which gives the CtIP alternative name: Retinoblastoma-binding protein 8 (RBBP8). Since 

Figure I5. Regulation of DSB repair pathway choice.  

In G1 cells, ATM-phosphorylated 53BP1 recruits RIF1 to the break and the shieldin complex interacts 

with RIF1, which in turn inhibits DNA end resection by antagonising BRCA1 and directs the repair towards 

canonical NHEJ. During S/G2 phase of the cell cycle, CDK-phosphorylated CtIP both directly increases its 

resection activity and facilitates interaction with BRCA1 which negatively regulates RIF1 and promotes 

DNA end resection and therefore, HR. 
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its identification, CtIP has been shown to modulate transcription, DNA replication, DNA 

repair, cell cycle progression and checkpoint activation (You and Bailis, 2010). However, it 

is now better known for its role in DNA double-strand break (DSB) repair by promoting end 

resection (Huertas and Jackson, 2009; Sartori et al., 2007). 

CtIP functional homologs have been identified in many eukaryotic species: 

Saccharomyces cerevisiae (Sae2), Schizosaccharomyces pombe (Ctp1), Caenorhabditis 

elegans (COM-1), Xenopus (xCtIP), chicken, mice, and Arabidopsis thaliana (AtGR1) (You 

and Bailis, 2010). Despite low sequence homology, there are conserved sequences limited 

to small regions in its amino and carboxyl terminal ends (Andres and Williams, 2017) 

(Figure I6). The N-terminal region of CtIP contains a coiled-coil domain (amino acid 

residues 45 to 160 ) that is responsible for protein homodimerization (Dubin et al., 2004) 

(Figure I6). Recent evidence suggests that CtIP exists as constitutive tetramers. 

Tetramerization is mediated by short sequence motifs present at the start of parallel 

coiled-coil segments located in the amino-terminal region. The ends of 2 coiled-coil dimers 

come together generating a homotetramer, also known as the tetrameric helical dimer of 

dimers or THDD (Andres et al., 2015; Forment et al., 2015). Moreover, the amino-terminus 

of CtIP (especially residues 22–45), as well as the carboxy-terminal region (the last 108 

residues), are independently capable of binding to MRN, playing a critical role in targeting 

CtIP to sites of DNA breaks, DNA-end resection and G2/M checkpoint activation (Sartori et 

al., 2007; Yuan and Chen, 2009) (Figure I6). The C-terminal region also contains a CDK 

phosphorylation site (T847), essential for CtIP function in DNA end resection, which is 

functionally analogous to S267 in S. cerevisiae Sae2 (Huertas and Jackson, 2009). As well, 

CCAR2 interacts with CtIP thought the C-terminal part of CtIP (from amino acid 650 to the 

end of the protein) to block DNA end resection (López-Saavedra et al., 2016) (Figure I6). 

Additionally, a DNA binding domain is present in the 509-557 region of CtIP, and two key 

lysine residues conserved in vertebrates within this region (K513 and K515) are important 

for CtIP recruitment to DNA damage (You et al., 2009) (Figure I6). 
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1.7. Functions and regulation of CtIP 

A large body of evidence suggests that CtIP coordinates transcription, DNA 

replication and DNA damage repair through its interactions with diverse families of 

proteins (Figure I6). CtIP was originally identified as a transcription regulator, and is known 

to interact with several proteins to act either as a correpressor or a coactivator for the 

expression of different subsets of genes (Li et al., 1999; Liu and Lee, 2006; Schaeper et al., 

1998; Yu et al., 1998). Moreover, CtIP is able to regulate cell cycle progression by its 

association with Rb. In the G1 phase of the cell cycle, CtIP binds Rb and releases Rb-

mediated transcriptional repression of E2F, thus promoting expression of genes required 

for S phase entry, such as Cyclin D1 (Liu and Lee, 2006). CtIP is also required for DNA 

damage-dependent cell cycle arrest. BRCA1 interacts at G2 phase with the transcriptional 

co-repressor complex of CtIP and CtBP through its BRCT domains (Yu et al., 1998) in a 

manner dependent on the CDK-dependent phosphorylation of CtIP S327 (Figure I6). This 

phosphorylation of CtIP and its association with BRCA1 facilitate the ATM/ATR-dependent 

phosphorylation of CtIP after DNA damage (Foray et al., 2003) at S664 and S745, leading 

Figure I6. Structure and modifications of human CtIP protein.  

The structure of human CtIP presents the oligomerization domain (in red) which contains a coiled-coil 

domain, the nuclease domain (in green), the DNA binding domain (in blue) and the Sae2-like region 

which is conserved from yeast to humans (in orange). CtIP is subjected to many different post-

translational modifications. Residues subject to different modifications are marked in purple (CDK-

mediated phosphorylation), blue (ATM or ATR-mediated phosphorylation) and green (sumoylation). The 

sites of interaction with other proteins are marked with brackets. 
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to dissociation of the CtIP–CtBP repressor complex from BRCA1, which in turn, activate 

transcription of cell cycle inhibitor genes required for G2/M checkpoint activation, such as 

p21 and Gadd45A (Li et al., 2000). Other studies indicate that CtIP participates in the 

surveillance of ongoing DNA replication and in the processing of DNA intermediates that 

arise during replication. Accordingly, CtIP directly localizes at DNA replication foci by direct 

interaction with PCNA through a Replication Foci Targeting Sequence (RFTS). The CtIP-

PCNA interaction is implied in the stabilization of stalled replication forks (Gu and Chen, 

2009). Additionally, CtIP has been found to participate in the detection and resolution of 

replication stress caused by interstrand cross-link (ICL) by directly binding with 

components of the FANC complex (Duquette et al., 2012; Murina et al., 2014; Unno et al., 

2014). Despite its contribution in transcription, replication and cell cycle, the best known 

role of CtIP is to promote initiation of DNA end resection and consequently, activate the 

repair by HR (Huertas and Jackson, 2009; Sartori et al., 2007; You et al., 2009). Interaction 

between CtIP and the MRN complex is necessary for this function (Sartori et al., 2007), but 

the exact mechanism is not fully understood. At ‘clean’ broken ends, the MRN-CtIP 

complex seems to promote the recruitment of DNA2 which initiates DNA end resection 

(Paudyal et al., 2017). In contrast, at DNA ends with an altered structure like 

topoisomerase adducts, there is controversy about the role of CtIP. On the one hand, CtIP 

has been proposed to stimulate the endonuclease activity of MRE11 (Anand et al., 2016). 

On the other hand, it has been suggested that CtIP possess an endonuclease activity that 

is required for the processing of these ‘dirty’ ends (Makharashvili et al., 2014).  

CtIP is subjected to many different post‐translational modifications which control 

the interaction with other proteins and its multiple roles in different branches of DNA 

metabolism (Makharashvili and Paull, 2015) (Figure I6). Among these modifications, CtIP 

is known to be a target of phosphorylation induced by CDK, as well as ATM and ATR kinases 

(Huertas and Jackson, 2009; Peterson et al., 2013; Sartori et al., 2007; Wang et al., 2013a; 

Yu and Chen, 2004) (Figure I6). Importantly, CDK-mediated phosphorylation of T847 is 

essential for DNA end resection initiation (Huertas and Jackson, 2009), whereas CDK-

dependent phosphorylation of S327 is required for its interaction with BRCA1 (Yu and 

Chen, 2004) which accelerates the speed of resection (Cruz-García et al., 2014). CDK2-

mediated phosphorylation of T315 and S276 phosphorylation are involved in PIN1-CtIP 
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interaction and PIN1-mediated isomerization of CtIP respectively (Steger et al., 2013). This 

modification leads to CtIP polyubiquitylation and trigger its degradation. Moreover, a 

cluster of CDK-mediated phosphorylation sites situated in the middle of CtIP is involved in 

DNA end resection. Phosphorylation of the middle cluster promotes the interaction of CtIP 

with NBS1, which is a prerequisite for DNA damage-induced CtIP phosphorylation by ATM 

(Wang et al., 2013a). The ATM phosphorylation sites on CtIP, S664 and S745 (Figure I6), 

were reported to block interaction with BRCA1 after DNA damage (Li et al., 2000) and ATR-

dependant phosphorylation of T859 (Figure I6) in response to damage is essential for CtIP 

recruitment to DSB and, consequently, for DNA end resection and HR (Peterson et al., 

2013). Nevertheless, recruitment of CtIP to break sites also depends on two ubiquitin-

mediated post-translational modifications (Schmidt et al., 2015; Yu et al., 2006). CtIP has 

also been shown to be constitutively sumoylated by CBX4 at K896 (Figure I6) which is 

essential for its recruitment to damaged DNA (Soria-Bretones et al., 2017) 

 

2. DNA Damage and genomic instability in Stem Cells 

2.1. Types of Stem Cell 

Stem cells (SCs) are non-specialized cells found in all multicellular organisms from 

the early stages of development to the end of life. They are characterized by the ability to 

unlimited or prolonged self-renew and the capacity to differentiate into a diverse range of 

specialized cell types, thus to form tissues and organs (Hui, Hongxiang; Tang, Yongming; 

Hu, Min; Zhao, 2011). There are many types of stem cells that can be categorized according 

to their differentiation potential and sources. While some of them are physiological stem 

cells (embryonic and adult stem cells), others are artificial (induced pluripotent stem cells) 

or pathological (cancer stem cells) (Figure I7). 
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Figure I7. Types of stem cells  

A totipotent cell, such as the zygote, has the potential to create an entire organism. The totipotent zygote 

undergoes several mitotic divisions to form the blastocyst. The blastocyst has the inner cell mass from 

which derive the embryonic stem cells (ESC). ESCs are pluripotent and have the capacity to differentiate 

into cells of all three dermal layers (endoderm, mesoderm and ectoderm).  Adult stem cells (ASC) are 

more specialized cells that are produced from pluripotent stem cells and are present in all tissues. They 

are multipotent and have the capacity to differentiate into multiple specialised cell types of their tissue 

of origin. Finally, differentiated cells are nullipotent and are not capable to give rise to other cell types. 

There are other types of stem cells that are artificial (induced pluripotent stem cells) or pathological 

(cancer stem cells). The induced pluripotent stem cells (iPSC) are pluripotent cells generated by 

reprogramming from differentiated cells. Cancer stem cells (CSC) can be created from stem cells (ESC, 

ASC) which obtain the ability to generate tumours due to a genetic mutation or can be reprogrammed 

from cancer cells (red arrows). The turning arrow indicates the self-renewal capacity of stem cells. 
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On the one hand, embryonic stem cells (ESCs) are derived from the inner cell mass 

of the blastocyst after approximately five days of development (Evans and Kaufman, 1981; 

Thomson, 1998). ESCs are considered to be pluripotent as they are able to differentiate 

into cells derived from the three germ layers (ectoderm, endoderm, and mesoderm) and 

they can also be maintained in an undifferentiated state for a prolonged period in culture 

under defined conditions (Yao et al., 2006) (Figure I7). Several factors have been 

associated with the stemness state and are considered as pluripotency markers. Among 

them, NANOG and OCT4 are essential transcription factors that regulate self-renewal and 

pluripotency of ES cells (Liang et al., 2008; Shi and Jin, 2010). 

On the other hand, adult or somatic stem cells (ASCs) are found among 

differentiated cells in postnatal tissues. They have the ability to renew themselves and 

they are multipotent, therefore they can differentiate into specialized cell types of their 

tissue of origin (Figure I7). They play important roles contributing to tissue homeostasis 

and repairing adult tissues in which they reside (Alison and Islam, 2009). Adult stem cells 

can be found in a number of various tissues of the adult organism including bone marrow, 

peripheral blood, brain, spinal cord, dental pulp, blood vessels, skeletal muscle, epithelia 

of the skin and digestive system, cornea, retina, liver, and pancreas (Alison and Islam, 

2009). 

Induced pluripotent stem cells (iPSC) are the third type of stem cells. They are an 

artificial type of pluripotent stem cells that have similar properties to embryonic stem cells 

but they are derived from a non-pluripotent cell, typically an adult somatic cell, by a 

process called reprogramming (Takahashi and Yamanaka, 2006) (Figure I7). The first 

evidence that differentiation of cells is reversible was reported in 1962 when Gurdon could 

develop normal tadpoles by transplanting the nucleus from a mature intestinal cell 

of Xenopus laevis tadpoles into enucleated eggs (Gurdon, 1962). These experiments were 

essential for following studies and later, in 2006, mouse somatic cells were reprogrammed 

into induced pluripotent stem cells by simple expression of four defined transcription 

factors: octamer-binding transcription factor 3/4 (OCT3/4 or OCT4), SRY-related high-

mobility group box protein-2 (SOX2), the oncoprotein c-MYC, and Krüppel-like factor 4 

(KLF4) (Takahashi and Yamanaka, 2006) (Figure I8). iPSCs have also been derived from a 
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number of different species, including humans (Takahashi et al., 2007; Yu et al., 2007), rats 

(Li et al., 2009), rhesus monkeys (Liu et al., 2008), pigs (Ezashi et al., 2009) and dogs 

(Shimada et al., 2010) among others, by expression of the so-called four Yamanaka factors. 

iPSCs are currently useful tools for drug development, modelling of diseases, and 

regenerative medicine, and potentially have therapeutic uses without the controversial 

use of embryos and avoiding immune rejection. Nevertheless, regardless of the methods 

used to reprogram adult cells, iPSCs still present significant risks that limit its clinical 

application. 

Finally, emerging evidence has pointed out a sub-group of stem-like cells within 

tumours, known as cancer stem cells (CSC), which exhibit characteristics of both cancer 

cells and stem cells such as self-renewal ability and multi-lineage differentiation to drive 

tumour growth and heterogeneity. Most CSCs are believed to exhibit resistance 

mechanisms against conventional anti-cancer therapies such as radiation and 

chemotherapy (Bao et al., 2006; Jeon et al., 2011) eventually resulting in tumour 

recurrence. The first evidence of CSCs existence came in 1994 with a study of human acute 

myeloid leukaemia where a subpopulation of cells CD34+/CD38- capable of initiating 

tumours were isolated (Lapidot et al., 1994). Two different theories about the origin of 

Figure I8. General diagram of reprogramming process and differentiation 

Somatic cells can be reprogrammed into induced pluripotent stem cells (iPSCs) by using the four 

Yamanaka transcription factors: OCT3/4, SOX2, KLF4 and c-MYC. The resulting iPSCs can be expanded 

(represented as a turning arrow) and differentiated into the desired cell type from any of the three germ 

layers of the human body.  
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CSCs have been suggested: one theory believes that CSCs arise from stem cells which 

obtain the ability to generate tumours due to a genetic mutation or environmental 

alteration (Rubio et al., 2005; Shiras et al., 2007); the other suggests that cancer cells can 

be reprogrammed to become CSCs (Eun et al., 2017) (Figure I7). 

Stem cells, including ESCs and iPSCs, harbour significant potential for regenerative 

medicine, but prior to its use in clinic, ensuring genomic stability of stem cells is required 

for safe clinical application (Vitale et al., 2017). 

 

2.2. DNA damage repair in Stem cells. 

Stem cells are vital for the generation and maintenance of intercellular 

heterogeneity and tissue homeostasis. Nevertheless, SCs are particularly exposed to DNA 

damage of endogenous or exogenous origin (Blanpain et al., 2011; Vitale et al., 2017), 

which can have catastrophic consequences for the tissues and lead to embryonic lethality, 

developmental defects, aging-related degenerative disorders, and oncogenesis (Behrens 

et al., 2014). Nevertheless, both pluripotent and multipotent stem cells have a large 

capacity to repair and prevent the accumulation of DNA lesions or avoid their propagation 

to daughter cells by their DNA damage response and apoptosis induction capacity which 

vary in the different types of stem cells (Vitale et al., 2017). Thus, SCs rely on a very robust 

DNA damage response (DDR), which is an important mechanism for stem cell safety and 

efficacy for regenerative purposes. 

 

2.2.1 DNA damage repair in Adult Stem cells. 

Adult stem cells (ASCs) resident in adult tissues possess high proliferative capacity 

allowing to carry out regenerative activities in response to tissue damage throughout the 

life of the organism. ASCs are susceptible to DNA damage due to constant genotoxic stress 

from endogenous processes, which leads to the activation of the DNA damage response 

and initiates DNA repair, cell cycle arrest, and ultimately apoptosis or cellular senescence. 
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Nevertheless, the mechanisms of response to DNA damage vary between tissues (Blanpain 

et al., 2011). 

Hematopoietic stem cells (HSCs), which regenerate the blood system, are one of the 

best-studied adult tissues in terms of its hierarchical development and the properties of 

HSCs in each site differ (Orkin and Zon, 2008). HSCs exist in two dynamic pools: one of 

active cells that proliferate and progressively differentiate; and quiescent cells which 

persist for prolonged periods in a reversible non-proliferating state that ensure the lifelong 

production of all the diverse hematopoietic cell types (Orkin and Zon, 2008). HSCs are very 

sensitive to the acquisition of mutations upon exposure to endogenous and exogenous 

sources of DNA damage, including replication stress and microenvironmental genotoxins. 

Such pronounced sensitivity is, at least in part, due to the lack of an efficient G1-S DNA 

damage checkpoint (Moehrle et al., 2015). Stem cell quiescence has been shown to be one 

of the mechanisms that protect adult HSCs function, since there is evidence that with each 

round of division the HSC function is deteriorated, so older HSCs are less capable to 

regenerate the blood system (Beerman et al., 2013; Chambers et al., 2007). This state of 

quiescence results in low metabolic activity, low levels of reactive oxygen species (ROS) 

and less replication to protect HSCs from the accumulation of endogenous DNA damage 

and telomere shortening (Pietras et al., 2011; Walter et al., 2015; Wilson et al., 2008). 

However, there is also evidence that quiescent stem cells are also vulnerable to the 

accumulation of DNA damage and mutations because they employ the error-prone NHEJ 

pathway to repair DSBs, while proliferating HSCs use the high-fidelity HR (Mohrin et al., 

2010). To ensure that damage accrued during quiescence is repaired prior to 

differentiation or self-renewal divisions, cells exit from G0 and entry to cell cycle which 

promotes the induction of DNA repair and the switch of the repair mechanism from NHEJ 

toward HR  (Beerman et al., 2014; Walter et al., 2015) or the combination of both 

pathways. 

On the other hand, non-hematopoietic adult stem cells prevent the propagation of 

DNA damage differently depending on the tissue of origin. For instance, mammary stem 

cells (MaSCs) have been shown to possess more resistance to apoptosis and they efficiency 

repair DSBs by increasing NHEJ activity. This is possibly due to the upregulation of 53BP1, 
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a pro-NHEJ protein, and downregulation of pro-apoptotic proteins like BAX and Caspase-3 

(Chang et al., 2015). Hair follicle stem cells (HFSCs) are also more resistant to cell death 

due to the upregulation of BCL-2 and they use NHEJ preferentially, at least during 

quiescence (Sotiropoulou et al., 2010). Upon activation of SCs, BRCA1 becomes essential, 

so it is possible that HR and NHEJ are differentially used at distinct stages of development 

and activation (Sotiropoulou et al., 2013). DNA damage in mesenchymal stem cells (MSCs) 

activates key repair pathways and cell cycle checkpoints (Prendergast et al., 2011). This 

high resistance to DNA damage seems to depend on NHEJ since there is an increase in the 

level of KU70 and in the phosphorylation of DNA‐PKcs as well as ATM after damage by 

radiation (Oliver et al., 2013). Skeletal muscle stem cells or satellite cells, accurately repair 

DSBs by NHEJ which depends on DNA-PKcs (Vahidi Ferdousi et al., 2014). Unlike 

hematopoietic stem cells, where substantial genomic rearrangements and mutations are 

observed, skeletal muscle stem cells have the capacity to perform accurate and high 

efficient repair (Mohrin et al., 2010; Vahidi Ferdousi et al., 2014). Neural stem cells (NSCs) 

were also shown to be more resistant to DNA DSBs than differentiated neurons. During 

nervous system development, each DNA DSB repair pathway is required at different 

stages, being HR particularly important for proliferating cells and NHEJ for differentiating 

cells (Lee and McKinnon, 2007). In fact, NSCs carry out HR to repair DNA damage occurring 

during S and G2 phases (Rousseau et al., 2012) and high levels of DNA-PKcs expression and 

activity were found in NSPCs and neurons indicating that NHEJ activity also occurs 

(Kashiwagi et al., 2018). In the same manner, ASCs resident in the rest of tissues of the 

organism activate different DNA damage responses to repair DNA lesions. Despite such 

control and activation of DNA damage repair pathways, ASCs tend to accumulate 

mutations and chromosomal abnormalities (Ben-David et al., 2011). 

 

2.2.2. DNA damage repair in Embryonic Stem cells. 

Embryonic stem cells show a high proliferation rate and the time required to 

complete a full cell cycle is shorter than differentiated cells. The cell cycle in ESCs displays 

abbreviated G1 and G2 phases and so, S phase occupies a large proportion of time (50-
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70%) (White and Dalton, 2005). ESCs are susceptible to generation of endogenous damage 

from replication errors due to the shorter G1 phase which causes replication stress in the 

following S phase (Ahuja et al., 2016). In addition, it has been reported that mouse ESCs 

lack a G1 checkpoint following DNA damage, which can be explained by two theories. One 

supports that p53 is not activated after DNA damage which prevents the transcription of 

target genes like the cell cycle inhibitor p21 (Suvorova et al., 2016). The other is that Chk2 

does not phosphorylate Cdc25a which promotes an increase in Cdk2 activity and thus the 

cell cycle continues (Hong and Stambrook, 2004). Human ESCs has also been shown to fail 

in G1 checkpoint activation in response to ionizing radiation, but can temporarily arrest in 

the G2 phase upon ATM activation (Filion et al., 2009; Momčilović et al., 2009).  

In spite of this, the accumulation rate of mutations in ESCs is low (Cervantes et al., 

2002), suggesting that ESCs may use mechanisms to ensure genomic stability. ESCs employ 

two main strategies to diminish DNA damage and genomic instability. On one hand, more 

efficient DNA repair activity is presented in ESCs compared with differentiated cells 

(Maynard et al., 2008) and, on the other hand, apoptotic or differentiation programs are 

activated to eliminate cells with damaged DNA from the stem cell population (Qin et al., 

2007). In response to DSBs, ESCs preferentially employ HR over the error-prone NHEJ 

(Adams et al., 2010a; Serrano et al., 2010; Tichy et al., 2010). In fact, the levels of proteins 

involved in HR have been shown to be highly elevated in ESCs (Adams et al., 2010a; Serrano 

et al., 2010; Tichy et al., 2010). In addition to HR-mediated DSB repair, it has been shown 

that human ESCs can also use high fidelity NHEJ through a DNA-PK-independent 

mechanism to repair DSBs induced by I-SceI endonuclease (Adams et al., 2010b) or DNA-

PK-dependent NHEJ mechanism for repair of radiation-induced DSBs during the late G2 

stage of the cell cycle (Bogomazova et al., 2011). The other mechanisms that ESCs use to 

avoid the propagation of genetic lesions are to initiate apoptosis or to lose pluripotency 

by differentiation (Qin et al., 2007). In response to DNA damage, human ESCs undergo cell 

death via Caspase-related mitochondrial apoptosis dependent of p53 (Filion et al., 2009; 

Grandela et al., 2007; Qin et al., 2007) while mouse ESCs mainly undergo apoptosis via 

p53-independent mechanisms (Aladjem et al., 1998). Moreover, p53 activation leads to 

differentiation by suppressing the expression of pluripotency genes, such as NANOG (Lin 

et al., 2005; Qin et al., 2007). 
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2.2.3. DNA damage repair in iPSCs and the reprogramming process. 

One of the major concerns about the use of induced pluripotent stem cells (iPSCs) 

in clinic applications is the accumulation of diverse genetic abnormalities (Mayshar et al., 

2010; Peterson and Loring, 2014). These genetic variations, such as aneuploidies, 

chromosomal copy number variations (CNVs) and single nucleotide variations (SNVs), can 

come from different sources during iPSC generation and maintenance. For instance, they 

can be inherited from reprogrammed somatic cells, induced by the reprogramming 

process or accumulated during subsequent expansion of iPSCs in culture (Liang and Zhang, 

2013). iPSCs were initially derived integrating the four factors OCT4, SOX2, KLF4, and c-

MYC (OSKM) (Figure I8) by retroviral transduction but since then, many methods have 

been developed and modified to increase efficiency and minimize or remove the 

integration of vector sequences into the iPSC genome (Malik and Rao, 2013). However, 

genomic instability is intrinsically associated with the reprogramming process itself and 

does not depend on the method (Ben-David and Benvenisty, 2012; Gore et al., 2011; 

Mayshar et al., 2010). Reprogramming factors accelerate growth rate, so in iPSCs, the 

metabolisms change from oxidative respiration to oxidative glycolysis (Folmes et al., 2011; 

Varum et al., 2011). This can increases the oxidative stress by accumulation of reactive 

oxygen species (ROS) and replication stress by collapsed replication forks, leading to DNA 

damage (Banito et al., 2009; Esteban et al., 2010; Ruiz et al., 2015). Moreover, the 

reprogramming process also induces DNA DSBs independently of the method used 

(González et al., 2013). 

iPSCs share numerous resemblances with ESCs, such as the susceptibility to 

accumulate DNA lesions, a shortened G1 phase (Ghule et al., 2011) and the lack of G1 

checkpoint (Momcilovic et al., 2010). Furthermore, iPSCs also share numerous similarities 

in their DDR with ESCs, including G2/M cell cycle arrest, efficient DNA repair and high 

expression of genes involved in DNA damage signalling and repair (Momcilovic et al., 

2010). It has been found higher expression of several HR (RAD52, MRE11, NBS1) and NHEJ 

(XRCC4 and LIGIV) genes (Momcilovic et al., 2010). Different DDR pathways have also been 

found to be involved during the reprogramming process. In fact, ATM deficiency impairs 

reprogramming efficiency and increases genomic instability in iPSCs (Kinoshita et al., 
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2011). Furthermore, reprogramming process has also been observed to require both HR 

and NHEJ genes and a decrease in reprogramming efficiency has been reported due to the 

lack of HR genes, including BRCA1, BRCA2, and RAD51 (González et al., 2013), and NHEJ 

genes, including LIGIV and DNA-PKc (Felgentreff et al., 2014; Tilgner et al., 2013). 

Reprogramming is limited to ensure iPSC genomic integrity by a p53-mediated DNA 

damage response. The activation of p53 acts as a barrier for cell reprogramming by 

inducing apoptosis to eliminate suboptimal cells carrying DNA damage (Marión et al., 

2009). Defects in p53 have been shown to improve reprogramming efficiency but also 

increase genetic instability (Sarig et al., 2010). 

 

2.2.4. DNA damage repair in Cancer Stem Cells. 

Similar to ASCs, cancer stem cells (CSCs) can exist in a cycling and quiescent state 

(Kreso and Dick, 2014). The dormant cells were shown to survive to conventional 

chemotherapy and contribute to tumour recurrence (Kreso and Dick, 2014). CSCs also 

present a robust DNA damage response compared to differentiated cancer cells. They 

possess a highly efficient ability to protect cellular DNA by activating DNA repair pathways, 

including BER, NER, MMR and DSBs repair, to process DNA damage. Different types of CSCs 

have shown an increased efficiency of DSBs repair by HR (Lim et al., 2012), as well as NHEJ 

(Yuan et al., 2014), and they display increased levels of multiple repair components 

(Ahmed et al., 2015; Bao et al., 2006; Desai et al., 2014). This efficient DDR appears to 

confer radioresistance (Ahmed et al., 2015; Bao et al., 2006; Desai et al., 2014; Yuan et al., 

2014). Moreover, CSCs activate intracellular systems to eliminate ROS in order to 

safeguard themselves from damage or cell death caused by ROS (Diehn et al., 2009; 

Nagano et al., 2013).  In this way, they maintain low ROS levels and redox homeostasis 

which are required for CSCs self-renewal (Wang et al., 2013b). 

Such robust activation of these pathways in CSCs permits to put up with high levels 

of replication stress and survive to DNA damaging agents. Therefore, specific inhibition of 

these repair pathways together with the treatment with radiotherapy or chemotherapy 

could improve therapy response and clinical outcome. 
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2.3. The reprogramming factor Krüppel like factor 4 

The Krüppel-like factor 4 was initially identified by two groups who differently 

named it gut enriched Krüppel like factor (GKLF) because of its high expression in the 

gastrointestinal tract (Shields et al., 1996), and epithelial zinc finger (EZF) as it was highly 

expressed in the skin epithelium (Garrett-Sinha et al., 1996). Later, GKLF/EZF was renamed 

Krüppel like factor 4 (KLF4) to avoid confusion since it has been also found in other tissues 

including lung (Jean et al., 2013), male and female reproductive tracts (Behr and Kaestner, 

2002; Godmann et al., 2010), thymus (Panigada et al., 1999), lymphocytes (Fruman et al., 

2002), cornea (Chiambaretta et al., 2004) and cardiac myocytes (Cullingford et al., 2008). 

It was named Krüppel like due to its high homology with the Drosophila Krüppel gene 

involved in segmentation of the developing embryo (Preiss et al., 1985). 

The human KLF4 gene that is mapped on chromosome 9q31, encodes for a 513-

amino acid protein. The gene is conserved among vertebrates species, having 91% 

sequence similarity between human and mouse KLF4 (Yet et al., 1998). KLF4 belong to the 

Sp/XKLF family, a group of transcription factors containing three C2H2-type zinc fingers, 

which play an important role in many fundamental biologic processes (Philipsen and Suske, 

1999). Several domains have been characterized in KLF4, which include a transcriptional 

activation domain within its amino terminus, a repression domain next to it (Geiman, 

2002; Yet et al., 1998), followed by a NLS (nuclear localization signal) sequence having 

PKRGRR repeats  (Shields and Yang, 1997) and the carboxyl DNA binding domain which has 

the three C2H2 zinc finger motifs (Philipsen and Suske, 1999) (Figure I9). Each C2H2 zinc 

finger consists of two antiparallel β-strands followed by an α-helix.  Although one report 

suggests that KLF4 prefers to bind a RRGGYGY sequence (R=A/G and Y=C/T) (Shields and 

Yang, 1998), in general, KLF4 interacts with CACCC elements on target genes (Yet et al., 

1998). In addition to these domains, a PEST sequence, that may act as a signal peptide 

for protein degradation, is reported to be located between the activation and inhibitory 

domains (Chen et al., 2005b) (Figure I9).  
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2.4. Regulation of KLF4 

Expression of KLF4 is highly regulated at both transcriptional and post-

transcriptional levels. Previous studies have shown that hypermethylation in the KLF4 

promoter downregulates its expression in many types of cancer (Cho et al., 2007; 

Nakahara et al., 2015; Yang and Zheng, 2014). Another important mechanism in 

modulating the expression of KLF4 are micro-RNA (Tian et al., 2010; Xu et al., 2009). 

Furthermore, many others stimuli, like serum starvation (Chen et al., 2005b), oxidative 

stress (Cullingford et al., 2008), or DNA damage (Zhou et al., 2009), can take part in KLF4 

regulation.  

At post-translational levels, KLF4 is also known to be subjected to multiple 

modifications including phosphorylation, sumoylation, acetylation and methylation 

(Figure I9). Phosphorylation at S132 negatively regulates KLF4 resulting in induction of ESC 

differentiation and triggering the ubiquitination and degradation of Klf4 (Kim et al., 2012). 

Phosphorylation at S245 results in suppression of its transcriptional activities 

(Gunasekharan et al., 2016). KLF4 is acetylated by p300/CBP at K225 and K229 which 

regulates the ability of KLF4 to transactivate target genes and to inhibit proliferation (Evans 

Figure I9. Structure and modifications of human KLF4 protein.  

The structure of human KLF4 presents an activation domain (in green), a repression domain (in red), a 

PEST sequence that may act as a signal peptide for protein degradation (yellow box with diagonal lines), 

a nuclear localization signal (in purple) and a DNA binding domain which contains three C2H2 zinc finger 

(in blue). KLF4 is subjected to many different post-translational modifications. Residues subject to 

different modifications are marked in purple (phosphorylation), blue (ubiquitination), red (p300/CBP-

mediated acetylation), green (PIAS1-mediated sumoylation) and orange (PRMT5-mediated 

methylation).  
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et al., 2007). Mouse KLF4 has been shown to be both sumoylated at a single lysine residue 

(K275) and interacts physically with SUMO-1 via SUMO-interacting motif (SIM) which is 

required for KLF4- transactivation of target genes (Du et al., 2010).  In human, K269 

sumoylation inhibits KLF4-dependent transcription (Tahmasebi et al., 2013). Furthermore, 

sumoylation of human KLF4 mediated by PIAS1 promotes its degradation (Kawai-Kowase 

et al., 2009). Ubiquitination of multiple lysine residues, including K32, K52, K232 and K252, 

has been shown to be responsible for proteasomal degradation of KLF4 (Lim et al., 2014). 

Recently, it has been published that KLF4 is methylated by the protein arginine 

methyltransferase PRMT5 at R374, R376 and R377, which stabilizes KLF4 (Hu et al., 2015). 

 

2.5. Role of KLF4 in biological processes and cell homeostasis 

KLF4 is a transcription factor that can both activate or repress transcription 

depending on the target gene. Initially, KLF4 was associated with growth arrest (Shields et 

al., 1996) and later, it was shown that KLF4 inhibits cell proliferation by up- or down-

regulating some genes involved in cell cycle control (Chen et al., 2003) including, for 

example, downregulation of cyclin D1 expression (Chen et al., 2003; Shie, 2000) and 

upregulation of cyclin-dependent kinase inhibitor 1 (CDKN1A/p21) (Chen et al., 2003; 

Zhang et al., 2000). Moreover, KLF4 has been shown to block G1/S progression of the cell 

cycle (Chen et al., 2001) and it is also required for p53-dependent G1/S (Yoon et al., 2003) 

and G2/M (Yoon and Yang, 2004) checkpoints in response to DNA damage. KLF4 is also 

involved in the decision of cells to undergo apoptosis or not. In fact, KLF4 has been found 

to suppress p53-dependent apoptotic pathway (Talmasov et al., 2015; Zhou et al., 2009), 

but under certain conditions and contexts, KLF4 may switch to a pro-apoptotic role (Li et 

al., 2010b; Wang et al., 2015). After DNA damage induced by γ-radiation, KLF4 was found 

to prevent centrosome amplification by suppressing cyclin E, which control centrosome 

duplication together with Cdk2 (El-Karim et al., 2013; Yoon et al., 2005). Finally, KLF4 

appears to be important to regulate inflammation (Feinberg et al., 2005). 
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2.6. Role of KLF4 in stem cells and reprogramming 

KLF4 is one of the four factors used to induce pluripotency in somatic cells since  

2006, when Takahashi and Yamanaka demonstrated for the first time that mouse 

fibroblasts could be reprogrammed into induced pluripotent stem cells (Takahashi and 

Yamanaka, 2006). Nevertheless, the precise role of KLF4 in cell reprogramming is not clear. 

Indeed, in 2007 human iPSC were produced using NANOG and LIN28 instead of c-MYC and 

KLF4 (Yu et al., 2007). Therefore, it has even been suggested that KLF4 is not absolutely 

required but it might increase the reprogramming efficiency.  

Recently, it has been proposed that KLF4 plays a dual role by repressing factors 

associated with differentiation at early time points and activating pluripotency targets at 

late time points of reprogramming process (Polo et al., 2012). Moreover, overexpression 

of KLF4 inhibits differentiation of stem cells, suggesting a role in self-renewal (Li et al., 

2005). The self-renewal ability and pluripotency characterize stem cells and it has been 

shown that in culture it is required the leukaemia inhibitory factor (LIF) to maintain stem 

cells in an undifferentiated state (Smith et al., 1988), through activation of STAT3 (Matsuda 

et al., 1999). In response to LIF, KLF4 expression is activated rapidly and KLF4 forms a 

complex with OCT4 and SOX2 to regulate NANOG expression (Zhang et al., 2010). NANOG 

is well established as a key factor in maintenance of stemness (Mitsui et al., 2003). 

Therefore, KLF4 acts as a mediator between LIF-STAT3 and NANOG to regulate self-

renewal and pluripotency (Zhang et al., 2010). 

 

2.7. Role of KLF4 in cancer 

Numerous evidences have implicated KLF4 in the development and progression of 

many cancers, acting as both an oncogene or a tumour suppressor depending on the 

cellular, tissue, and genetic contexts (Rowland et al., 2005). 

KLF4 expression is frequently decreased in various human cancer types, such as 

colorectal (Zhao et al., 2004), gastric (Wei et al., 2005), lung (Hu et al., 2009), intestinal 



Introduction  

  
 

53 
 

(Ton-That et al., 1997) or prostate cancer (Jerónimo et al., 2011). In colorectal and gastric 

cancers, KLF4 was shown to undergo promoter hypermethylation, mutations in the open 

reading frames and loss of heterozygosity (Wei et al., 2005; Zhao et al., 2004). This 

downregulation could contribute to cellular hyperproliferation and malignant 

transformation, supporting the role of KLF4 as a tumour suppressor and consistent with 

its role in cell cycle arrest and growth inhibition. Furthermore, KLF4 overexpression inhibits 

colony formation, migration, and invasion in colon cancer cells (Dang et al., 2003). 

Although KLF4 can acts as tumour suppressor in multiple tissues, KLF4 has also been 

identified as an oncogene and high levels of KLF4 expression have been found in primary 

breast ductal carcinoma (Foster et al., 2000; Pandya et al., 2004) and squamous cell 

carcinoma (Foster et al., 2005; Huang et al., 2005). It has been shown that elevated KLF4 

expression is detected in up to 70% of breast carcinomas and nuclear localization of KLF4 

is associated with a more aggressive phenotype and poor prognosis (Pandya et al., 2004). 

Moreover, KLF4 is essential for the maintenance of breast cancer stem cells and cell 

migration and invasion (Yu et al., 2011). 
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Objectives 

 

1. Analysis of the requirement for DNA end resection and its major 

regulator, CtIP, during the reprogramming process. 

2. Investigation of the consequences of CtIP downregulation during cell 

reprogramming for self-renewal and differentiation. 

3. Study the role of the pluripotency factor KLF4 in DNA double strand 

breaks repair. 
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CHAPTER 1 

Chapter one 

 

 

1. DNA end resection increases upon mouse cell 

reprogramming  

Maintenance of genomic stability is a key element for the proper self-renewal and 

differentiation capacities of stem cells, being crucial for the suitable use of induced 

pluripotent stem cells (iPSCs) in clinic applications (Peterson and Loring, 2014). Given that 

cellular reprogramming increases DNA damage and genetic instability, mainly by 

replication stress (Ruiz et al., 2015) after the forced expression of Yamanaka factors (OCT4, 

SOX2, KLF4, and c-MYC), we wonder if DNA end resection, an essential step in Homologous 

Recombination, could be required for the reprogramming to iPSC. 

To address this objective, we used a previously reported mouse embryonic 

fibroblast (MEF) cell line bearing a doxycycline-inducible system with the four murine 

reprogramming factors Klf4, Oct4, Sox2, and c-Myc to carry out the reprogramming 

process (Abad et al., 2013). This cell line will be abbreviated as MEFs-i4F hereinafter. Thus, 

we generated mouse induced pluripotent stem cells (miPSCs) by doxycycline treatment 

and we analysed cellular levels of DNA end resection in MEFs-i4F and their corresponding 

iPSCs. For this, we developed a novel strategy as a readout of DNA end resection based on 

a long pulse of bromodeoxyuridine (BrdU) to allow one strand of every DNA molecule to 

be labelled and its subsequent detection by fluorescence-activated cell sorting (FACS) 
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analysis using native conditions. BrdU epitope is hidden in double-stranded DNA and 

thereby it is not accessible for an anti-BrdU antibody under native conditions unless the 

epitope is exposed after the formation of ssDNA by resection. With this new method we 

could observe more exposed BrdU in miPSCs than in primary MEFs-i4F, showing that a 

higher amount of endogenously arising ssDNA appeared in reprogrammed cells (Figure 

R1A). In fact, the increased BrdU signal intensity in miPSCs following reprogramming was 

comparable to that seen after treating primary cells with high doses of ionizing radiation 

(IR) (Figure R1B). We confirmed that such excess ssDNA that appear during reprograming 

was due to canonical DNA end resection, as it disappeared when the key resection factor 

CtIP was depleted (Figure R1C).  

As BrdU detection by FACS is a low-resolution technique to study DNA end resection 

and is unable to measure how fast resection is taking place, we performed Single Molecule 

Analysis of Resection Tracks (SMART) assay (Cruz-García et al., 2014) in miPSCs and MEFs-

i4F. SMART is a high-resolution technique that measures the length of resected DNA in 

Figure R1. DNA end resection increases in reprogrammed cells 

(A) Fluorescence-activated cell sorting (FACS) analysis of BrdU exposed under native conditions after the 

formation of ssDNA in MEFs-i4F (blue line) and their respective reprogrammed miPSCs (red line). p values 

were calculated using the Kolmogorov-Smirnov test by CellQuest Pro software (* p<0.05; ** p<0.01; *** 

p<0.001). A representative graph out of at least three independent experiments is shown. (B) Same as 

(A) but in MEFs-i4F either untreated (-IR; blue line) or 1 h after irradiation with 10 Gy (+IR; black line). 

(C) Same as (A) but in miPSCs reprogrammed upon depletion of Ctip (shCtip; green line) or expressing 

shRNA control (shNT; red line). 
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individual DNA fibres (see Figure R2A for representative images). Interestingly, miPSCs 

greatly increased the extension of resection, showing significantly longer tracks of ssDNA 

compared with the primary differentiated parent cells (Figure R2B and R2C). Again, we 

also confirmed that the higher processivity of the resection machinery in miPSCs was 

similar to that observed in MEFs-i4F exposed to IR and depends on CtIP activity (Figure 

Figure R2. The extension of DNA end resection is promoted during reprogramming 

(A) Representative fluorescence microscopy images of individual DNA fibres obtained by SMART in 

MEFs-i4F and miPSCs obtained from them. (B) Representative scatter plot of SMART in MEFs-i4F and 

miPSCs. Each dot corresponds to the length of an individual ssDNA fibre and the red line shows the 

median length of the population. (C) Median of resected DNA length obtained by SMART technique 

relative to MEFs-i4F. For each replica, at least 300 individual ssDNA fibres were measured. The average 

and standard error of the mean (SEM) of three independent experiments are shown. A Student’s t-test 

was performed to compare both samples (* p<0.05; ** p<0.01; *** p<0.001). (D) Same as (B) but in 

MEFs-i4F untreated (-IR) or 1 h after irradiation with 10 Gy (+IR) and in miPSCs reprogrammed in the 

presence of shCtIP or the control shNT. 
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R2D).  

All of these results demonstrated a hyper-activation of DNA end resection due to 

cell reprogramming in mouse cells, which likely reflects an attempt of repair by HR in order 

to minimize the impact of the DNA damage caused endogenously during such process.  

 

2. CtIP levels increase during miPSCs formation 

The role of CtIP as a major regulator of DNA end resection is clearly established 

(Huertas and Jackson, 2009; Sartori et al., 2007; You et al., 2009). As just mentioned above, 

we observed that CtIP was required for an hyperactivation of resection in miPSCs (Figure 

R1C and R2D), so we wondered if CtIP was essential for reprogramming and maintenance 

of miPSC. In agreement, studying CtIP expression either by mRNA or protein levels, we 

observed an increase in miPSCs respect to primary MEFs-i4F (Figure R3A and R3B). 

Moreover, this increase was concurrent with the expression of the pluripotency marker 

Figure R3. CtIP levels increases in miPSCs 

(A) Representative western blot image of the indicated proteins and α-tubulin as loading control from 

whole protein extract of MEFs-i4F not induced with doxycycline (-) and miPSC formed after induction 

with 1 μg/ml doxycycline (+). At least three experiments were performed. (B) Ctip mRNA expression 

analysed by RT-qPCR in MEFs-i4F and their respective miPSC. Error bars represent SEM of three 

independent experiments performed with technical triplicates. Values were normalized to the 

housekeeping gene actin and relativized to MEFs-i4F. (C) Same as (B) but for Nanog mRNA.  
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NANOG (Figure R3A and R3C). Furthermore, miPSCs also showed higher levels of γH2AX 

(Figure R3A), a marker of DSB induction, which is consistent with the raised incidence of 

DSBs already known in iPSC due to oxidative and replicative stress caused by the 

accelerating growth rate (Banito et al., 2009; Esteban et al., 2010; Ruiz et al., 2015).  

These results clearly suggested that CtIP upregulation caused an hyper-activation of 

DNA end resection in iPSCs, most likely to manage an increased load of DSBs that have to 

be repaired by homologous recombination.  

 

3. CtIP is required for efficient cell reprogramming  

Since our data supported a CtIP-dependent hyperactivation of DNA end resection in 

reprogrammed cells, and given that the reprogramming process induces DSBs in iPSCs 

(González et al., 2013) and efficient reprogramming requires functional repair pathways 

to favour error-free dedifferentiation (Felgentreff et al., 2014; González et al., 2013; 

Tilgner et al., 2013), we hypothesized that CtIP and its upregulation might be imperative 

during cell reprogramming to avoid genomic instability. In agreement with this, we used 

MEFs-i4F to study the expression at the protein level of some components involved in the 

DDR at different time points during reprogramming and we observed a progressive 

increase in CHK1, γH2AX, and CtIP protein levels that follows the progression of the 

reprogramming process (Figures R4), supporting the idea that replication stress causes 

DNA damage and CHK1 activation during reprogramming (Ruiz et al., 2015), and CtIP is 

expressed to counteract such effect. 

Then, we decided to test the functional requirement of CtIP for cell reprogramming. 

Therefore, we firstly transduced MEFs-i4F with lentivirus harbouring short hairpin RNA 

(shRNA) specifically targeting Ctip (shCtip) or a non-target sequence as a control (shNT), 

and we forced the reprogramming process by doxycycline treatment. Then, three weeks 

after induction, we analysed reprogramming efficiency measured as the number of miPSCs 

colonies formed from the same number of MEFs-i4F cells. We observed a dramatic and 
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significant reduction of the number of colonies with stem cell-like morphology in CtIP 

depleted cells compared with shNT control cells (Figure R5A). Moreover, CtIP-depleted 

colonies were smaller than control ones (Figure R5B). As an additional readout of CtIP 

depletion in primary MEFs-i4F, and in agreement with results published previously (Chen 

et al., 2005a), we observed less proliferation in CtIP-downregulated MEFs-i4F(Figure R5C).  

CtIP loss leads to DNA damage accumulation associated with defective homologous 

recombination (Polato et al., 2014) so, as expected, we also detected that the amount of 

the DNA damage marker γH2AX increased slightly but significantly in cells containing 

shCtip versus those with the control shNT, as shown by both immunoblot and FACS 

analysis (Figure R5D and R5E). Even though this difference was also observed in MEFs-i4F 

(Figure R5E -Dox), it was more intense in reprogrammed cells (Figure R5E +Dox), in 

agreement with CtIP playing a more critical role in repairing DNA damage during cell 

reprogramming. Pluripotent status was confirmed by the observation of NANOG protein 

levels (Figure R4 and R5D).  Hence, we conclude that during reprogramming the response 

to DNA damage is enhanced, including CtIP expression. As a consequence, the lack of CtIP 

hampers considerably the efficiency of cell reprogramming, most likely by the 

accumulation of damage due to replication stress. 

Figure R4. DDR proteins increases during reprogramming 

Representative Western blot showing CtIP, CHK1, γH2AX, NANOG and α-tubulin protein levels. Samples 

were obtained from MEFs-i4F at day 0, 10 and 15 after reprogramming induction with 1 μg/ml 

doxycycline. At least three independent experiments were performed. 
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Figure R5. CtIP loss impairs reprogramming and leads to DNA damage accumulation 

(A) The efficiency of reprogramming in miPSCs transduced with shCtip and shNT lentivirus prior to 

induction of reprogramming with doxycycline. Reprogramming efficiency was measured as the number 

of formed colonies normalized to the number of cells seeded. Error bars represent SEM of three 

independent experiments performed with technical triplicates. (B) Representative optical microscope 

pictures of morphology and size of miPSC colonies (+Dox) reprogrammed in the presence of shCtip             

or shNT. Non-reprogrammed MEFs-i4F (-Dox) were used as colony absence control. (C) Cell growth           

in MEFs-i4F depleted for CtIP (red) or expressing a control shRNA (black). Cell proliferation was 

monitored each hour for 72 hours in the xCELLigence Real Time Cell Analyzer. At least three independent 

experiments using technical duplicate were performed and a representative growth curve is shown.       

(D) A representative western blot of the indicated proteins in samples from MEFs-i4F (-Dox) and their 

respective miPSCs formed after 10 days of doxycycline treatment (+Dox). shCtip and shNT lentivirus were 

transduced prior to reprogramming. (E) FACS quantification of cells positive for γH2AX in MEFs-i4F              

(-Dox) or reprogrammed miPSC at day 10 (+Dox) downregulated for CtIP (black bars) or expressing                

a control shRNA (white bars) previous to reprogramming. Error bars indicate SEM of three independent 

experiments. A Student’s t-test statistical analysis was performed in (A) and (E) (* p<0.05; ** p<0.01;  

*** p<0.001). 
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4. CtIP deficiency during mouse cell reprogramming causes 

genomic instability  

To strengthen our hypothesis that CtIP is necessary for cell reprogramming to avoid 

genomic instability, we performed a Comparative Genomic Hybridization array (aCGH) for 

the detection of genomic copy number variations (CNV). CNVs involve alterations in the 

number of copies of a region of DNA which can either be amplifications and deletions 

ranging from 1 kb to many megabases. We analysed CNVs between two clones of miPSC 

reprogrammed in the presence of shCtip or shNT at early passes after reprogramming. We 

found a large difference in the number of CNV between miPSCs reprogrammed in CtIP 

depletion condition and their respective control cells (Figure R6). Thus, in agreement with 

our hypothesis, genomic instability was found to be enhanced during cell reprogramming 

under CtIP deficiency.  

 

 

 

Figure R6. CtIP deficiency causes genomic instability during reprogramming 

Copy number variation (CNV) of genomic DNA between miPSCs obtained in the presence of shCtip or 

shNT during cell reprogramming. CNVs were detected using SurePrint G3 Mouse CGH 4x180K 

Microarray. Two independent experiments are shown.  
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5. CtIP deficiency triggers apoptosis during reprogramming. 

Since we observed a noteworthy drop in the number of miPSC colonies formed by 

reprogramming in a CtIP-downregulated situation, we set out to further investigate the 

causes of this reduced viability of miPSCs. Taking into account that pluripotent cells control 

genome integrity and avoid the propagation of genetic lesions by the elimination of 

damaged cells by undergoing regulated cell death (RCD) or losing pluripotency when DNA 

damage is unresolvable (Vitale et al., 2017), we considered that the induction of apoptosis 

could explain the low number of colonies obtained. The cell death by apoptosis results in 

extensive fragmentation of DNA, so apoptotic cells can be identified on DNA content 

frequency histograms as cells with a sub‐G1 DNA content (Nicoletti et al., 1991). Thus, to 

test if unrepaired DNA damage during cell reprogramming in the absence of CtIP triggers 

apoptosis, we performed DNA fluorescence histograms of propidium iodide-stained 

reprogrammed mouse cells expressing the shCtip or the control one and we quantify the 

percentage of apoptotic cells in the sub-G1 peak. Interestingly, we observed that 

reprogrammed mouse cells expressing an shRNA against Ctip showed a strong and 

significative increase in sub-G1 cells 10 days after doxycycline induction (Figures R7A and 

R7B), compared with reprogrammed cells expressing a control shRNA or MEFs-i4F 

depleted for CtIP. This large rise was exclusive for reprogramming cells given that it was 

not noticed between CtIP-downregulated MEFs-i4F and shNT expressing MEFs-i4F (Figure 

R7A -Dox). Therefore, the reduced proliferation observed in CtIP-downregulated MEFs-i4F 

(Figure R5C) was not associated with an increase in sub-G1 phase cells while the reduced 

number of miPSC colonies formed in such circumstances did. 

Caspases are protease enzymes that play essential roles in programmed cell death. 

Among them, caspase-3 is a central death protease in the process of apoptosis which 

initiates DNA fragmentation and consequently, is an important marker of the apoptotic 

signalling pathway (Porter and Jänicke, 1999; Wolf et al., 1999). Indeed, we observed an 

increase of proteolytic cleavage and activation of caspase-3 measured at protein level in 

cells reprogrammed in the presence of short hairpin Ctip (shCtip) at day 10 after 

reprogramming (Figure R7C), confirming that the increased levels of sub-G1 were due to 

induced apoptosis. 

https://www.sciencedirect.com/topics/nursing-and-health-professions/death
https://www.sciencedirect.com/topics/nursing-and-health-professions/proteinase
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These data altogether provide strong evidence that CtIP plays a role avoiding the 

genomic instability generated specifically during cell reprogramming. Nevertheless, when 

CtIP is absent, it is suggested that excessive damage causes the observed induction of 

apoptosis to avoid spreading the damage. 

Figure R7. CtIP deficiency during reprogramming activates apoptosis. 

(A) The percentage of cells with a sub‐G1 DNA content was quantified by FACS analysis in MEFs-i4F (-

Dox) and their respective miPSCs (+Dox) downregulated for CtIP (black bars) or expressing a control 

shRNA (white bars). For each analysis 10.000 single cells were analysed and the average and SEM of 

three independent experiments are shown. A Student’s t-test statistical analysis was performed (ns: not 

significant; * p<0.05; ** p<0.01; *** p<0.001). (B) Representative flow cytometry histograms of cell cycle 

distribution of miPSCs reprogrammed in the presence of shCtip or shNT. Marker indicates the sub-G1 

population of cells. (C) Immunoblot of proactive and active/cleavage caspase-3 in reprogrammed MEFs-

i4F (+Dox) bearing the indicated shRNAs, at day 10. α-tubulin was used as a loading control. A 

representative western blot is shown out of three independent experiments. 
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6. Normal CtIP levels during reprogramming are required for 

maintenance of iPSCs 

Our previous results showed that fewer cells reprogrammed in the absence of CtIP 

resulted in viable miPSCs-forming colonies due to an increased apoptosis. Nonetheless, 

some cells did managed to survive and become miPSCs, but at the cost of accumulating 

genomic variations as we have described previously. Such increased genomic instability 

might alter the ability of iPSCs to self-renew and to differentiate. Thus, and to deepen our 

understanding about the role of CtIP in iPSCs, we wondered whether the downregulation 

of CtIP during reprogramming could affect the subsequent self-renewal and differentiation 

capacity of the resultant miPSCs. For this, we first selected several miPSC clones produced 

in the presence of shCtip or the control shRNA. Colonies from each clone were analysed 

for the presence of the shRNA taking advantage of the presence of an enhanced green 

fluorescence protein (eGFP) gene on the plasmid encoding the shRNAs. The eGFP gives rise 

to brighter fluorescence than normal GFP from Aequoria victoria. Interestingly, we 

determined that all control shNT-harbouring miPSC clones maintained higher numbers of 

eGFP-expressing cells than shCtip-harbouring miPSCs, suggesting that the cells that 

continued growing and maintaining cell pluripotency had a tendency to lose the cassette 

containing eGFP and the shRNA against Ctip (Figure R8A-C). Thus, collectively, our data 

suggested that miPSC colonies reprogrammed in the presence of CtIP depletion suffer a 

natural selection that favours cells with higher CtIP expression. This could explain the still 

high CtIP levels observed in cells reprogramed in the presence of shCtip (Figure R4). 

In order to study the kinetics of loss of shCtip expression, we separated the 

population of eGFP-positive miPSCs generated from cells containing either shNT or shCtip 

by fluorescence-activated cell sorting (FACs). Then, starting from a population enriched for 

eGFP positive miPSCs, we investigated the eGFP disappearance during growth as a  proxy 

for the maintenance of the shRNA. We found that eGFP cells were rapidly purified from 

the cell population containing shCtip compared with control cells, with a reduction in the 

number of eGFP-positive cells of up to 50% after only three passages (Figure R8D).  
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Figure R8. Stability of shRNA-eGFP cassette in reprogramming and miPSCs maintenance. 

(A) Representative bright field (BF) and eGFP fluorescence images of miPSC colonies obtained after 

reprogramming in the presence of shCtip or shNT. (B) Percentage of eGFP-positive cells in miPSC colonies 

isolated after reprogramming in the presence (white bars) or absence (black bars) of CtIP measured by 

flow cytometry. 6 independent clones of shNT expressing iPSC (1-6) and 10 of shCtIP bearing (1-10) were 

analysed. (C) Average percentage of eGFP-positive cells of the clones of shNT and shCtip miPSCs shown 

in (B). Error bars indicate SEM of different clones (n=6 and n=10). (D) miPSCs bearing a cassette 

containing eGFP and shRNA against Ctip (red line) or a control sequence (black line) were enriched for 

eGFP expression by fluorescence-activated cell sorting (FACs). From the eGFP-enriched population, the 

percentage of eGFP-positive miPSCs was measured during subsequence passages of the cells by FACS. 

The average and SEM of five independent experiments are plotted. (E) Same as (D) but in primary MEFs-

i4 bearing the shCtip-eGFP or the shNT-eGFP. At least three independent experiments were performed. 

Statistical analysis was performed in (C), (D) and (E) using a Student’s t-test (ns: not significant; * p<0.05; 

** p<0.01; *** p<0.001). 
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Strikingly, this effect was specific for iPSC cells that had been reprogrammed in the 

presence of shCtip and was not observed in primary MEFs-i4F with shCtip (Figure R8E), 

suggesting that iPSC are particularly sensitive to the loss of CtIP. 

Next, we performed a self-renewal assay after enriching the populations of eGFP-

positive cells. For this, we measured the number of colonies formed from the same 

amount of miPSCs reprogrammed either in the presence or absence of CtIP. 

Unsurprisingly, reprogrammed cells depleted for CtIP formed less-viable colonies than 

control cells (Figure R9A) and were also smaller (Figure R9B). CtIP knockdown efficiency 

and pluripotent status were checked at protein level (Figure R9C). To differentiate whether 

this effect of CtIP deficiency was due to defects gained during cell reprogramming or 

acquired during the pluripotent state of the reprogrammed cells, we transduced already-

reprogrammed miPSCs with either the shRNA against Ctip  or against a control sequence 

and analysed them for self-renewal by colony formation. Interestingly, in this scenario, 

CtIP downregulation did not modify self-renewal capacity compared with control cells, as 

a similar number of colonies of the same size were formed in both conditions (Figure R9D 

and R9E). Again, CtIP knockdown efficiency and pluripotent status were checked at protein 

level (Figure R9F). Along the same lines, we performed a self-renewal assay in a 

physiological stem cell line, the murine D3 embryonic stem cell line (ES-D3), 

downregulated or not for CtIP. Likewise, ES-D3 was not affected by CtIP depletion either 

in the number of colonies (Figure R10A) or their size (Figure R10B). CtIP knockdown 

efficiency and pluripotent status were checked at protein level (Figure R10C). 
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Figure R9. The levels of CtIP during reprogramming affect iPSC maintenance 

(A) miPSCs reprogrammed in the presence of shCtip-eGFP (black bars) or the shNT-eGFP (white bars) 

were enriched for eGFP expression by FACs. The same amount of eGFP-positive miPSCs were seeded at 

low density and the number of colonies formed was measured and relativized to control. Error bars 

represent SEM of three independent experiments performed with technical triplicates. (B) The size of 

each colony formed from miPSCs reprogrammed in the presence of shCtip-eGFP (black bars) or shNT-

eGFP (white bars) was measured using Adobe Photoshop CS6 and relativized to control. Error bars 

represent SEM of three independent experiments performed with technical triplicates. (C) miPSCs 

reprogrammed in the presence of shCtIP or control shNT were immunoblotted to analyse CtIP, NANOG 

and α-tubulin as loading control. A representative western blot is shown out of three independent 

experiments. (D) Same as (A) but with miPSCs reprogrammed in the presence of CtIP, and then 

transduced with the shRNA against CtIP (black bars) or control shNT (white bars). (E) Same as (B) but 

with miPSCs transduced with the shRNA against CtIP after reprogramming. (F) Same as in (C) but with 

cells transduced with the shCtip after reprogramming. Statistical analysis was performed in (A), (B), (D) 

and (E) using a Student’s t-test (ns: not significant; * p<0.05; ** p<0.01; *** p<0.001). 
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7. Normal CtIP levels during reprogramming are required for 

differentiation of iPSCs 

As mentioned in the introduction section, the main characteristics of stem cells are 

the ability of long-term self-renewal and the capacity to differentiate into specialized cells. 

Therefore, as self-renewal was compromised by inherited defects aroused upon cell 

reprogramming in the absence of CtIP, we wondered whether the differentiation process 

could also be jeopardized in a similar way. To study differentiation, we took advantage of 

the formation of embryoid bodies (EBs). EBs are complex three-dimensional cell 

aggregates comprising the three embryonic germ layers (Itskovitz-Eldor et al., 2000) and 

whose formation is an intermediate step during the differentiation of pluripotent stem 

cells into specialized cell types. Pluripotent stem cells are induced to differentiate into EBs 

by seeding them in suspension on non-adhesive plates and removing factors that support 

pluripotency. In this way, we forced mouse embryoid body differentiation from several 

clones, by removing the growth factor, leukaemia inhibitory factor (LIF) for 6 days. CtIP 

Figure R10. CtIP downregulation does not affect D3 embryonic stem cells colony formation. 

(A) The number of colonies formed from the same amount of D3 embryonic stem cells (ES-D3) 

transduced with shNT (white bars) or shCtip (black bars) seeded at low density was measured. Error bars 

represent SEM of three independent experiments. (B) The size of colonies formed from D3 embryonic 

stem cells depleted (black bars) or not (white bars) of CtIP. At least 300 colonies for each condition were 

measured. The average and SEM of three independent experiments are plotted. (C) A representative 

western blot of the indicated proteins in samples from ES-D3 cells expressing the indicated shRNAs. A 

Student’s t-test was performed in (A) and (B) (ns: not significant; * p<0.05; ** p<0.01; *** p<0.001). 
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and NANOG protein level, to follow differentiation, were checked by western blot (Figure 

R11A). We observed that miPSCs reprogrammed under CtIP depletion also generated 

embryoid bodies smaller than their respective control cells, hence showing a clear 

deficiency in differentiation (Figure R11B and R11C).  

Then, we assessed if this defect was a consequence of problems inherent to 

Figure R11. CtIP during reprogramming is essential for iPSCs differentiation. 

(A) Western blot analysis of indicated proteins in embryoid bodies (EBs) generated from miPSCs 

reprogrammed in the presence of shCtip or shNT. A representative western blot is shown of three 

independent experiments. (B) Size of EBs generated at 6 days after spontaneous differentiation of 

miPSCs reprogrammed in the presence of shCtIP or control shNT and enriched for eGFP expression by 

FACs. At least 300 EBs of each condition were measured. The average and SEM of three independent 

experiments are plotted. (C) Representative bright field (BF) and eGFP fluorescence images of EBs 

formed from miPSC downregulated or not for CtIP. (D) Same as (A), but with cells reprogrammed in the 

presence of CtIP and then transduced with shCtip or shNT. (E) Same as (B) but with cells transduced with 

shCtip or shNT after reprogramming. Statistical significance in (B) and (E) was obtained by a Student’s t-

test (ns: not significant; * p<0.05; ** p<0.01; *** p<0.001). 

 



Results · Chapter one 

  
  

77 
 

reprogramming in a CtIP-defective environment rather than a consequence of the loss of 

an active role of CtIP in stem cell differentiation. So, we analysed differentiation by 

inducing EBs formation in miPSC transduced with shCtip or shNT after reprogramming as 

well as in murine ES-D3 embryonic stem cells. Again, we checked CtIP and NANOG protein 

level in EBs formed from miPSCs (Figure R11D) and from ES-D3 (Figure R12A). Similarly to 

self-renewal, CtIP downregulation in already-reprogrammed miPSCs (Figure R11E) or ES-

D3 cells (Figure R12B) did not affect their differentiation capacity. 

Collectively, our data confirmed that genomic instability created during cell 

reprogramming under CtIP deficiency is the main cause of impairment of iPSCs self-

renewal and differentiation. 

  

Figure R12. CtIP downregulation does not affect D3 embryonic stem cells differentiation. 

(A) A representative western blot of the indicated proteins. Samples were obtained from embryoid 

bodies derived from ES-D3 cells expressing the indicated shRNAs. (B) Size of EBs derived from ES-D3 cells 

expressing shCtip or a control shRNA. At least 300 EBs of each condition were measured. The average 

and SEM of three independent experiments are plotted. A Student’s t-test statistical analysis was 

performed (ns: not significant; * p<0.05; ** p<0.01; *** p<0.001). 
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CHAPTER 2 

Chapter two 

 

 

1. KLF4 affects DNA break repair pathway choice 

Since our data in chapter 1 support that cells hyper-activate DNA end resection 

during cell reprogramming in order to deal with the damage induced by the process, we 

decided to analyse if some of the master regulators of cell stemness might regulate 

resection, and therefore the balance between homologous recombination (HR) and non-

homologous end joining (NHEJ). As mentioned in the introduction (section 2.1), cell 

stemness is controlled by a series of master regulators, including the aforementioned 

Yamanaka factors (NANOG, OCT3/4, SOX2 and KLF4), among others. Interestingly, in a 

general screening searching for regulators of the balance between DNA double strand 

break repair pathways (López-Saavedra et al., 2016) using the SeeSaw Reporter system 

(SSR) (Gomez-Cabello et al., 2013), KLF4 was detected as a candidate gene that favour HR. 

On the contrary, neither NANOG nor the other factors used by Yamanaka for 

reprogramming did significantly alter the HR/NHEJ balance in the screening.  

First, to validate the screening result we analysed again the balance between NHEJ 

and HR using the SSR system (Figure R13A) in the human osteosarcoma cell line (U2OS) 

downregulated for KLF4 using an additional siRNA. Moreover, siRNA targeting the 

canonical recombination and resection factor CtIP was used as a control. As expected, we 

obtained an imbalance towards NHEJ when either KLF4 or CtIP are depleted (Figure R13B), 

as predicted by the screening. Next, in order to confirm the results of KLF4 with the SSR, 

we used different reporter systems in U2OS to analyse the ability to perform specific DSB 
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repair pathways. As the SSR system compares non-homologous end joining with single-

strand annealing (SSA), we first used U2OS cells harbouring a single copy of the SA-GFP 

reporter system, which measures such recombination subpathway, by the formation of an 

active GFP gene upon I‐SceI-induced DSB (Figure R14A). SSA is a specific type of HR that is 

dependent on extent of resection but Rad51-independent (Stark et al., 2004). As expected, 

we observed that KLF4 downregulation impairs, slightly but statistically significant, this 

particular repair pathway, albeit to a lesser extent than the canonical resection factor CtIP 

(Figure R14B). Next, to check classical recombination, we used the DR-GFP reporter (Figure 

R15A) in which an active GFP gene is formed when cells repair an I-SceI-induced DSB by 

Rad51-dependent gene conversion (Pierce et al., 1999). Importantly, we also observed an 

impairment of this pathway when KLF4 was downregulated (Figure R15B). So, we conclude 

that the two different subtypes of HR were compromised when KLF4 was depleted. Finally,  

Figure R13. KLF4 controls the balance between NHEJ and HR. 

(A) Schematic representation of the SeeSaw reporter system (SSR). A GFP gene is flanked by two 

truncated parts of RFP gene that share 302 bp of homology (marked in grey) and two I-SceI-target sites 

were cloned downstream of GFP. After generation of a DSB by I-SceI expression the damage can be 

repaired by NHEJ, restoring the GFP gene or by HR using homologous sequence, thus creating a 

functional RFP gene. (B) U2OS cells harbouring a single copy of SSR were transfected with the indicated 

siRNAs. The siNT and siCtIP were used as negative and positive controls, respectively. The NHEJ:HR ratio 

was calculated and normalized to siNT control. The average and SEM of four independent experiments 

are shown. A Student’s t-test statistical analysis was performed (* p<0.05; ** p<0.01; *** p<0.001). 
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Figure R14. Downregulation of KLF4 impairs single strand annealing. 

(A) Schematic representation of the SA-GFP reporter. Such reporter consists of two truncated copies of 

the GFP which have 266 bp of homology (marked in grey) and are separated by 2.7 Kb. Repair of the I-

SceI-mediated DSB by single strand annealing (SSA) restores an active GFP gene with the deletion of one 

of the repeats and the intervening region. (B) The efficiency of SSA was calculated as the percentage of 

GFP positive cells using U2OS cells bearing a single copy of the SA-GFP reporter and depleted for the 

indicated genes by siRNAs. This percentage was normalized with the control siNT and plotted. Bars 

represent the average and SEM of at least three independent experiments and a Student’s t-test 

statistical analysis was performed (* p<0.05; ** p<0.01; *** p<0.001). 

 

Figure R15. Absence of KLF4 impairs gene conversion. 

(A) Schematic representation of the DR-GFP reporter which is formed by two non-functional copies of 

the GFP (homologous sequences are marked in grey). The upstream repeat contains the recognition site 

for the I-SceI endonuclease and an 812-bp internal GFP fragment (iGFP) can repair the I-SceI-mediated 

DSB by gene conversion and results in a functional GFP gene. (B) The efficiency of gene conversion was 

calculated as the percentage of GFP positive cells using U2OS cells bearing a single copy of the DR-GFP 

reporter and transfected with siNT, siKLF4 or siCtIP. This percentage was normalized with the cells 

transfected with siNT. Bars represent the average and SEM of at least three independent experiments 

and statistical significance was calculated with a Student’s t-test (* p<0.05; ** p<0.01; *** p<0.001). 
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we used EJ5-GFP reporter (Figure R16A) to measures NHEJ (Bennardo et al., 2008). This 

reporter leads to GFP expression when a DSB induced by I-SceI is repaired through multiple 

classes of NHEJ events, including classical and alternative NHEJ. In agreement with a role 

of KLF4 in controlling DSB repair pathway choice, its absence mildly increased NHEJ (Figure 

R16B). Thus, we confirmed that KLF4 depletion unbalance the ratio between DSB repair 

factors both hampering recombination and increasing NHEJ. 

 

2. KLF4 is required for survival to DSB inducing agents 

Several studies have shown that cells defective in DSB repair are sensitive toward 

many DNA damaging agents. Thus, as KLF4 affects DSB repair pathway choice, we wonder 

if KLF4 could also have an effect in cell sensitivity to various genotoxic agents. To test this 

Figure R16. KLF4 depletion increases NHEJ. 

(A) Schematic representation of the EJ5-GFP reporter which contains GFP separated from a promoter 

by a puromycin gene that is flanked by two I-SceI sites. I-SceI induced DSB can be repaired by NHEJ, both 

conservative (right) or mutagenic (left), recreating an active GFP gene, containing or not a functional       

I-SceI target site. (B) The efficiency of NHEJ was calculated as the percentage of GFP positive cells 

normalized with the siNT using U2OS cells bearing a single copy of EJ5-GFP reporter and transfected with 

the indicated siRNAs. Bars represent the average and SEM of at least three independent experiments 

and statistical significance was calculated with a Student’s t-test (* p<0.05; ** p<0.01; *** p<0.001). 
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hypothesis, we performed clonogenic assays and measured colony formation in cells 

either downregulated or overexpressing KLF4 upon treatment with three different DSB 

induced agents: camptothecin (CPT), etoposide (VP-16) and ionizing radiation (IR). CPT is 

a topoisomerase I inhibitor which induces replication-associated DSBs in the S phase of the 

cell cycle while VP-16, an inhibitor of topoisomerase II, and IR cause DSBs directly in all 

phases of the cell cycle. Hence, U2OS cells downregulated or overexpressed for KLF4 were 

treated with different doses of IR or different concentrations of CPT or VP-16. Due to the 

low levels of KLF4 endogenous protein in U2OS cells that makes complicated its detection 

by western blot, we analysed protein downregulation and overexpression efficiency by 

mRNA levels using qRT-PCR (Figure R17A-C). As expected, impaired homologous 

recombination by KLF4 downregulation rendered cells hypersensitive to IR (Figure R18A), 

or the topoisomerase poisons CPT (Figure R18B) and VP-16 (Figure R18C). Interestingly, 

overexpression of KLF4 promotes hyper-resistance to CPT (Figure R18E) but displayed no 

significant difference to control in cells treated with IR (Figure R18D) or etoposide (Figure 

R18F). CPT creates single-strand breaks (SSB) that are converted into DSBs during 

Figure R17. KLF4 expression levels 

(A) Depletion efficiency of KLF4 at the level of mRNA, measured by RT-qPCR, in U2OS cells transfected 

either with siNT control sequence or siKLF4. Error bars represent SEM of three independent experiments 

performed with technical triplicates. Values were normalized to the housekeeping gene actin and 

relativized to the control siNT. A Student’s t-test statistical analysis was performed (* p<0.05; ** p<0.01; 

*** p<0.001). (B) Depletion efficiency of CtIP at the level of mRNA, measured by RT-qPCR, in U2OS cells 

transfected either with siNT control sequence or siCtIP. Other details as in (A). (C) Same as (A) but in 

cells transfected with the pMX-KLF4 vector, to overexpress the protein, or the control pMX plasmid. 
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replication and, therefore, could not be repaired by NHEJ and are strictly dependent on 

the action of HR. Thus, this hyper-resistance to CPT in cells overexpressing KLF4 could be 

explained by a more active HR. On the contrary, most breaks caused by IR or etoposide 

will be readily repaired by either NHEJ or HR, thus a small increase in HR will have little or 

no effect in the sensitivity to those agents.  

However, considering that the usage of DSB repair pathway is regulated by the cell 

Figure R18. KLF4 avoid cell sensitivity to DSB inducing agents 

(A) Percentage of survival population, compared with the untreated control, in U2Os cells transfected 

with siRNAs against the indicated genes upon exposure to the mentioned doses of ionizing radiation. 

The average and SEM of three independent experiments are plotted. Colony number at each dose were 

normalized with the corresponding untreated sample. (B) Same as (A), but in cells treated for 1 hour 

with the indicated concentrations of camptothecin (CPT). (C) Same as (A), but in cells treated for 1 hour 

with the indicated concentrations of etoposide (VP-16). (D) Same as (A), but in cells transfected with a 

plasmid expressing KLF4 (pMX-KLF4) or an empty vector pMX. (E) Same as (B), but in cells transfected 

with a plasmid expressing KLF4 (pMX-KLF4) or an empty vector pMX. (F) Same as (C), but in cells 

transfected with a plasmid expressing KLF4 (pMX-KLF4) or an empty vector pMX. Statistical significance 

was calculated with a Student’s t-test (* p<0.05; ** p<0.01; *** p<0.001). 
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cycle (Rothkamm et al., 2003), and that KLF4 has been proposed to affect cell cycle 

progression (Ghaleb and Yang, 2017), we reasoned that was critical to exclude that the 

phenotypes observed in both reporter systems and cell sensitivity were due to a cell cycle 

arrest in our cellular system. Indeed, in our experimental setup, cell cycle progression was 

not affected by altering KLF4 levels (Figure R19A and R19B). Thus, these findings strongly 

suggest that KLF4 is involved in DSB repair pathway choice and it is necessary to avoid cell 

sensitivity to treatments that induce DSB. 

 

3. KLF4 is required for DNA end resection 

As mentioned in the introduction, the balance between HR and NHEJ is mostly 

regulated by controlling the licensing of DNA end resection. Resection gives rise to long 

single-stranded DNA (ssDNA) tails that are immediately coated by RPA protein complex for 

protection. The accumulation of RPA at the sites of the break produces foci that can be 

visualized by immunofluorescence. In order to test the impact of KLF4 to DNA end 

resection, we depleted KLF4 by siRNA or overexpressed the protein in U2OS and analysed 

Figure R19. KLF4 does not affect cell cycle progression. 

(A) Cell cycle distribution of U2OS cells transfected either with siNT control sequence or with siRNAs 

against KLF4 and CtIP as indicated. The average and SEM of at last three independent experiments are 

plotted. (B) Same as (A) but in cells transfected with a plasmid expressing KLF4 (pMX-KLF4) or the control 

pMX vector. 
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the formation of RPA foci in response to exposure to high dose of IR (10Gy), as a readout 

of resection (Figure R20). The damage‐induced phosphorylation of H2AX (γH2AX) was used 

as a sensitive marker of DSB (Figure R20A and R20C). In agreement with a role favouring 

HR over NHEJ, KLF4 depletion using two different siRNAs partially impaired RPA foci 

formation, albeit to a lesser extent than downregulation of the core resection factor CtIP 

(Figure R20A and R20B). Conversely, KLF4 overexpression showed the opposite phenotype 

and a mild increase of cells positive for RPA foci was readily observed (Figure R20C and 

R20D). 

RPA foci formation is a low-resolution technique so, in order to confirm the 

phenotype observed we used the high-resolution method SMART, that gives information 

about the length of DNA resected in individual DNA fibres (Cruz-García et al., 2014). 

Interestingly, not only the number of breaks that were resected responded to KLF4 levels 

but the length of ssDNA formed during resection was reduced in cells depleted of KLF4 

(Figure R21A-C) and increased in cells overexpressing KLF4 (Figure R21D-F).  

Hence, these results lead us to conclude that KLF4 plays an active role in DSB repair 

by promoting both initiation and speed of DNA end resection. 
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Figure R20. KLF4 affects DNA end resection. 

(A) Representative fluorescence microscopy images of RPA foci (red) and γH2AX foci (green).  Cells 

transfected with the indicated siRNAs were irradiated (10 Gy) and collected one hour later for 

immunofluorescence. An example of cell defined as RPA foci positive cells is indicated by a full white 

arrow, while an example of RPA foci negative cell is marked with an empty arrow. Cell nuclei are stained 

with DAPI (blue). (B) The percentage of cells positive for RPA foci upon DSB induction by ionizing 

radiation is plotted. Graph represents the average and SEM of three independent experiments. At least 

200 cells were measured in each experiment. (C) Same as (A) but in cells bearing the pMX-KLF4 or the 

pMX empty vector, as indicated. (D) Same as (B) but in cells bearing the pMX-KLF4 or the pMX empty 

vector, as indicated. Statistical significance in (B) and (D) was calculated by Student’s t-test comparing 

each condition to siNT or pMX cells, respectively (* p<0.05; ** p<0.01; *** p<0.001). 
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Figure R21. KLF4 affects the speed of DNA end resection. 

(A) Representative fluorescence microscopy images of individual DNA fibres obtained by SMART in U2OS 

cells transfected with siNT or siKLF4. (B) Representative scatter plot of SMART of one representative 

experiment in U2OS cells transfected with the indicated siRNAs. Each dot corresponds to the length of 

an individual ssDNA fibre and the red line shows the median length of the population. (C) Median of 

resected DNA length obtained by SMART technique. The graph represents the average and SEM of three 

independent experiments. For each replica, at least 300 individual ssDNA fibres were measured. 

Statistical significance was calculated with a Student’s t-test (* p<0.05; ** p<0.01; *** p<0.001).                 

(D) Same as (A), but in cells overexpressing KLF4 (pMX-KLF4) and control cells (pMX). (E) Same as (B), 

but in cells overexpressing KLF4 (pMX-KLF4) and control cells (pMX). (F) Same as (C), but in cells 

overexpressing KLF4 (pMX-KLF4) and control cells (pMX). 
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4. KLF4 affects the recruitment of pro- and anti-resection 

proteins to DSBs sites 

It has been shown previously that the license of resection is strongly regulated by 

many different aspects of cellular metabolism, being the mutually exclusive localization of 

pro- and anti-resection factors at sites of DSBs one of the best defined regulatory events 

(Chapman et al., 2013; Dev et al., 2018; Escribano-Díaz et al., 2013; Gupta et al., 2018; 

Zimmermann et al., 2013). Thus, we decided to investigate the implication of KLF4 in the 

foci formation of the pro-resection factor BRCA1 and the anti-resection protein RIF1. For 

this, we depleted or overexpressed KLF4 in U2OS and analysed the foci formation of both 

proteins by immunofluorescence after exposure to 10 Gy of ionizing radiation (Figure 

R22A, R22C, R23A and R23C). Indeed, we observed that KLF4 downregulation, in  

agreement  with   a   hampered  resection,  caused  a  mild   but  consistent  increased 

accumulation of RIF1 measured as the average number of foci per cell (Figure R22A and 

R22B) while KLF4 overexpression impaired RIF1 localization (Figure R22C and R22D).  

On the contrary, also in concordance with the previous data, we observed a 

reduction of BRCA1 recruitment in KLF4 downregulated cells (Figure R23A and R23B) as 

well as an increase in BRCA1 foci formation when KLF4 is overexpressed (Figure R23C and 

R23D). 
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Figure R22. KLF4 affects RIF1 foci formation. 

(A) Representative fluorescence microscopy images of RIF1 (red), γH2AX (green) and DAPI staining.  Cells 

transfected with the indicated siRNAs were irradiated (10 Gy) and collected one hour later for 

immunofluorescence using an anti-RIF1 antibody. (B) The number of RIF1 foci per cell relative to control 

is plotted. Graph represents the average and SEM of three independent experiments. (C) Same as (A) 

but in cells overexpressing wild type KLF4 (pMX-KLF4) or not (pMX). (D) Same as (B) but in cells bearing 

the pMX-KLF4 or the pMX empty vector, as indicated. Statistical significance in (B) and (D) was calculated 

by Student’s t-test (* p<0.05; ** p<0.01; *** p<0.001). 
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Figure R23. KLF4 affects BRCA1 foci formation. 

(A) Representative fluorescence microscopy images of BRCA1 (red), γH2AX (green) and DAPI staining.  

Cells transfected with the indicated siRNAs were irradiated (10 Gy) and collected one hour later for 

immunofluorescence using an anti-BRCA1 antibody. An example of cell defined as BRCA1 foci positive 

cells is indicated by a full white arrow, while an example of BRCA1 foci negative cell is marked with an 

empty arrow. (B) The percentage of cells positive for BRCA1 foci upon DSB induction by ionizing radiation 

is plotted. Graph represents the average and SEM of three independent experiments. At least 200 cells 

were measured in each experiment. (C) Same as (A) but in cells bearing the pMX-KLF4 or the pMX empty 

vector, as indicated. (D) Same as (B) but in cells overexpressing or not wild type KLF4. Statistical 

significance in (B) and (D) was calculated by Student’s t-test (* p<0.05; ** p<0.01; *** p<0.001). 
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5. Arginine methylation of KLF4 is essential for its activity in 

DNA end resection 

As mentioned in the introduction section, KLF4 is subjected to multiple post-

translational modifications. Recently, it has been shown that KLF4 directly interacts with 

the protein arginine N-methyltransferase 5 (PRMT5) which catalyses the methylation of 

three specific arginine residues R374, R376 and R377 on KLF4 (Hu et al., 2015). This post-

translational modification is proposed to affect KLF4 roles in maintaining genomic stability 

and carcinogenesis (Hu et al., 2015).  Additionally, preliminary data from our laboratory 

showed that PRMT5 also interact with the key resection factor CtIP and its downregulation 

hampers both Rad51-dependent and Rad51-independent recombination, as well as DNA 

end resection, mimicking KLF4 and CtIP depletion (López-Saavedra and Cepeda-García, 

unpublished results). Thus, we wondered if PRMT5 effect in DNA end resection might be 

mediated, at least partially, through the methylation of KLF4.  

In order to establish a genetic relationship between PRMT5 and KLF4 for DNA end 

resection, we first produced a mutant form of KLF4 that cannot be methylated by PRMT5 

(KLF4-3RK). For this, we mutated the KLF4 methylation sites replacing the three arginines 

by lysines (R374K, R376K and R377K). Then, we analysed the formation of RPA foci in U2OS 

cells depleted or not of endogenous KLF4 and complemented by transient expression with 

either the control empty vector pMX, the siRNA resistant wild type KLF4 or the methylation 

deficient mutant KLF4-3RK (Figure R24A and R24B). In agreement with our previous results 

shown in Figure R20D, expression of ectopic KLF4 wild type protein in cells that retain 

endogenous KLF4 expression rendered cells more prone to resect DNA breaks (Figure 

R24B). Moreover, such wild type form of the protein complemented the resection defect 

observed upon depletion of endogenous KLF4 (Figure R24B). On the contrary, 

overexpression of the non-methylable KLF4, neither caused hyper-resection in control 

cells that maintain endogenous KLF4 nor complemented the defect in DNA end resection 

caused by endogenous KLF4 downregulation (Figure R24B). Levels of ectopic KLF4 are 

shown in Figure R24C. 
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Figure R24. PRMT5-mediated methylation of KLF4 is essential for its role in DNA end resection. 

(A) Representative fluorescence microscopy images of RPA (red), γH2AX (green) and DAPI staining in 

cells transfected with a siRNA against KLF4 or a control sequence, as indicated, and bearing a plasmid to 

express the wild type or non-methylable version of KLF4 (KLF4 and KLF4-3RK, respectively) or an empty 

vector (pMX). Cells were irradiated (10 Gy) and collected one hour later for immunofluorescence using 

an anti-RPA antibody. An example of cell defined as RPA foci positive cells is indicated by a full white 

arrow, while an example of RPA foci negative cell is marked with an empty arrow. (B) The percentage of 

cells positive for RPA foci upon DSB induction by ionizing radiation as described in (A) is plotted. Graph 

represents the average and SEM of three independent experiments. At least 200 cells were measured 

in each experiment. Statistical significance was calculated using a two-way ANOVA, but only biologically 

relevant statistical differences are shown for simplicity (* p<0.05; ** p<0.01; *** p<0.001). (C) Cells 

overexpressing wild type or non-methylable KLF4 were depleted for endogenous KLF4 or transfected 

with a control siRNA. Protein samples from those cells were resolved in an SDS-PAGE gel and blotted 

with the indicated antibodies. 
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Figure R25. KLF4 overexpression does not rescue the defect on DNA end resection caused by PRMT5 

depletion. 

(A) Representative fluorescence microscopy images of RPA (red), γH2AX (green) and DAPI staining in 

cells transfected with a siRNA against PRMT5 or a control sequence, as indicated, and bearing a plasmid 

to express the wild type or non-methylable version of KLF4 (KLF4 and KLF4-3RK, respectively) or an 

empty vector (pMX). Cells were irradiated (10 Gy) and collected one hour later for immunofluorescence 

using an anti-RPA antibody. An example of cell defined as RPA foci positive cells is indicated by a full 

white arrow, while an example of RPA foci negative cell is marked with an empty arrow. (B) The 

percentage of cells positive for RPA foci upon DSB induction by ionizing radiation as described in (A) is 

plotted. Graph represents the average and SEM of three independent experiments. At least 200 cells 

were measured in each experiment. Statistical significance was calculated using a two-way ANOVA, but 

only biologically relevant statistical differences are shown for simplicity (* p<0.05; ** p<0.01;                      

*** p<0.001). (C) Cells overexpressing wild type or non-methylable KLF4 were depleted for endogenous 

PRMT5 or transfected with a control siRNA. Protein samples from those cells were resolved in an SDS-

PAGE gel and blotted with the indicated antibodies. 
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Given that PRMT5 seems to be upstream and in the same pathway as KLF4 for DNA 

end resection, RPA foci formation was also examined after overexpression of both the wild 

type KLF4 and the non-methylable mutant in cells downregulated for PRMT5 (Figure R25A 

and R25B). Strikingly, PRMT5 depletion was epistatic over KLF4 overexpression, both in 

cells expressing wild type or non-methylable variant of the protein (Figure R25B), in 

agreement with a genetic connection. Depletion of PRMT5 even eliminates the KLF4-

overexpression induction of resection. Levels of ectopic KLF4 and endogenous PRMT5 are 

shown in Figure R25C.  

Thus, genetically we can conclude that KLF4 role in resection is controlled by 

PRMT5-mediated methylation. 

 

6. KLF4 affects TIP60 protein level 

KLF4 is a transcription factor involved in a wide range of cellular processes. Thus, we 

reasoned that its role in resection might imply a control in the expression levels of proteins 

involved in DNA resection. However, we failed to see any changes in the amounts of core 

pro- or anti- resection proteins such as CtIP, etc (Figure R26). Thus, we hypothesized that 

it might affect other accessory resection proteins. Interestingly, PRMT5 has been already 

involved in regulating homologous recombination by modulating the action of the histone 

acetyltransferase (HAT) TIP60 at DNA breaks (Clarke et al., 2017). It has been described 

that some histone modifications regulate the recruitment and retention of 53BP1 to DSBs. 

In fact, the affinity of 53BP1 for H4K20me2 has been shown to be reduced by acetylation 

of histone H4 on lysine 16 by TIP60 and therefore allowing DNA end resection and HR 

(Jacquet et al., 2016). Accordingly, we wondered if KLF4 role in HR might be related also 

to TIP60. For this, we measured TIP60 expression at the protein level after overexpression 

of the wild type and non-methylable mutant version of KLF4. Indeed, KLF4 overexpression 

increased TIP60 protein levels (Figure R27A and R27B). Therefore, we conclude that there 

is a regulatory axis encompassing KLF4-PRMT5-TIP60 that affects DNA end resection and 

homologous recombination. 
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Figure R26. KLF4 does not affect the expression of some proteins involved in DSB repair. 

A representative western blot of protein samples from cells downregulated or not for KLF4 and bearing 

a plasmid to express the wild type KLF4, a non-methylable form of the protein (KLF4-3RK) or an empty 

vector (pMX) resolved in SDS-PAGE and blotted with the indicated antibodies. α-tubulin is used as a 

loading control.  

 

Figure R27. KLF4 overexpression controls TIP60 levels. 

(A) A representative western blot of protein samples from cells downregulated or not for KLF4 and 

bearing a plasmid to express the wild type KLF4, a non-methylable form of the protein (KLF4-3RK) or an 

empty vector (pMX) resolved in SDS-PAGE and blotted with the indicated antibodies. (B) TIP60 protein 

levels were quantified from western blot images under the same conditions as (A) using a Li-Cor Odyssey 

system. Data are shown normalized to α-tubulin (loaging control) and relative to pMX control. The 

average and SEM of at least three independent experiments are shown. Statistical significance was 

calculated using a two-way ANOVA (* p<0.05; ** p<0.01; *** p<0.001) 
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The ability to reprogram somatic cells into induced pluripotent stem cells (iPSCs), 

which possess similar properties to physiological embryonic stem cells, holds great 

potential for biomedical research and clinic applications. However, evidence of DNA 

damage and genomic instability in iPSCs is one of the biggest concerns for their proper 

clinical use (Mayshar et al., 2010; Peterson and Loring, 2014) since genomic instability is 

associated with cancer and compromises the safety of iPSCs. Thus, an in-depth 

understanding of the causes and consequences of genetic abnormalities that arise during 

iPSCs formation is required. These genetic variations can come from different sources 

during iPSC generation and maintenance, however, they are highly linked with the 

reprogramming process itself, mainly by replication stress (Ruiz et al., 2015). The 

reprogramming process induces DNA double strand breaks (DSBs), the most cytotoxic type 

of damage, most likely due to replication problems that increase the risk of fork collapse 

(Zeman and Cimprich, 2014). Therefore, we aimed to study the role of DNA end resection 

as a relevant inherent mechanism that minimizes genomic instability during this process. 

Here, we demonstrate that DNA end resection is, indeed, hyper-activated during iPSCs 

formation and it is required for efficient reprogramming. In fact, depletion of CtIP, a key 

protein in resection (Huertas and Jackson, 2009; Sartori et al., 2007), impairs 

reprogramming. Several studies have shown that embryonic stem cells (ESCs) 

preferentially employ homologous recombination (HR) over the error-prone non-

homologous end joining (NHEJ) in response to DSBs (Adams et al., 2010a; Serrano et al., 

2010; Tichy et al., 2010), although it is suggested that NHEJ also have a role in repair of 

DSBs in humans ESCs (Adams et al., 2010b; Bogomazova et al., 2011). Likewise, iPSCs, 

which share numerous similarities with ESCs including enhanced DNA repair and high 

expression of genes involved in DNA damage signalling and repair, have been shown to 

require an intact HR pathway for an efficient reprogramming (González et al., 2013). 

Accordingly, it is not surprising that DNA end resection is essential for the process since it 

is the key decision point involved in the decision between DSBs repair pathways (Huertas, 

2010). We have revealed that cells undergoing reprogramming not only have an increase 

in the number of breaks that are resected, but also an increase in resection processivity, 

measured as the length of resected DNA, compared with the parental somatic cells or 

already-differentiated cells. Moreover, we found a progressive upregulation of CtIP and 
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checkpoint kinase 1 (CHK1) that follows the progression of the reprogramming. In 

agreement, increasing levels of CHK1 has been suggested to increase the efficiency of 

reprogramming limiting the replication stress (Ruiz et al., 2015). These findings are 

consistent with the requirement of an efficient repair mechanism and DDR machinery to 

allow successful cell reprogramming and to control genetic stability during the process 

(Kinoshita et al., 2011). Besides, a higher expression of several HR (RAD52, MRE11, NBS1) 

and NHEJ (XRCC4 and LIGIV) genes in pluripotent cells have already been reported 

(Momcilovic et al., 2010). 

A probable explanation for this upregulation of resection and its bona fide regulator 

CtIP is the high incidence of DNA damage during reprogramming, mostly DSBs. CtIP is 

known to be a key player in maintaining genomic stability (Huertas and Jackson, 2009), 

and we reasoned that CtIP could be appropriately activated to repair DSBs generated by 

the presence of reprogramming factors. This idea is consistent with the increased γH2AX 

level, a robust marker for DSBs, that we found during reprogramming and that was already 

reported in previous works (González et al., 2013; Ruiz et al., 2015). Phosphorylation of 

histone H2AX has been implicated in the maintenance of genomic stability in response to 

DSBs (Rogakou et al., 1998), however, also occurs in response to replication stress at the 

sites of stalled replication forks, being also a hallmark of cells enduring replication stress 

(Ward and Chen, 2001). Moreover, CHK1 plays a central role in DNA replication checkpoint 

induced by replication stress. Helicase and polymerase uncoupling leads to accumulation 

of single-stranded DNA (ssDNA) bound by RPA at stalled forks. RPA-coated ssDNA recruits 

the complex ATR-ATRIP and activates ATR which subsequently phosphorylates and 

activates the main effector kinase CHK1, turning on the intra-S checkpoint to stabilize or 

repair stalled forks and to prevent late origin firing (Jossen and Bermejo, 2013; Zou and 

Elledge, 2003). Reprogramming in human and mouse cells has been associated with 

increased levels of replication stress (Ruiz et al., 2015), so it could be hypothesized that 

the detected ssDNA is formed by helicase-polymerase uncoupling during replication 

instead of resection. Moreover, the increase in CHK1 and CtIP during reprogramming could 

be in concordance with this hypothesis, since CHK1 is essential in replication stress 

response and CtIP has been reported to have a role in the response to replication fork 

stalling (Przetocka et al., 2018). However, while the role of CtIP initiating DNA 
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end resection generates ssDNA overhangs, in stalled replication forks CtIP limits the 

accumulation of ssDNA by protecting stalled forks from nucleolytic degradation (Przetocka 

et al., 2018). Thus, we reason that the increase in ssDNA observed in this thesis is mainly 

due to an increase in the resection process since CtIP depletion led to a decrease in BrdU 

exposure and fibres length, contrary to an expected RPA-ssDNA increase if CtIP was 

protecting replication forks (Przetocka et al., 2018). Similarly to our observations with CtIP 

depletion, reprogramming efficiency was also reported to be impaired by downregulation 

of BRCA1, which accelerates DNA resection through its interaction with CtIP (Cruz-García 

et al., 2014). Moreover, other HR factors, like BRCA2 and RAD51, are required for 

successful reprogramming (González et al., 2013).  

The low efficiency of reprogramming might be attributed to apoptosis since our 

results show an increase in the expression of apoptotic marker cleaved caspase 3 during 

reprogramming in the absence of CtIP, suggesting activation of the mitochondrial-

dependent apoptosis pathway. Thus, impairment of HR-mediated DSB repair by selective 

CtIP depletion during mouse cell reprogramming interferes with iPSC generation by 

triggering apoptosis despite the existence of a functional NHEJ in these cells. This 

observation is in agreement with the two main strategies that pluripotent cells employ to 

diminish DNA damage and genomic instability, as activation of apoptosis or differentiation 

programs to eliminate cells with damaged DNA from the stem cell pool (Qin et al., 2007). 

These data are consistent with an increase of apoptotic cells observed during 

reprogramming of MEFs deficient in HR genes Brca1, Brca2 or Rad51 (González et al., 

2013). Conversely, it has been previously reported that caspases 3 and 8 are activated by 

OCT4 and play key roles in mediating the human fibroblasts reprogramming through 

inactivation of retinoblastoma (Rb) protein, which regulates cell cycle progression (Li et al., 

2010a). This could explain the basal level of activation of caspase 3 also detected in cells 

containing shNT, however, this activation was significantly higher in cells reprogrammed 

in CtIP deficiency, probably to activate apoptosis. 

We also observed that CtIP deficiency during mouse cell reprogramming not only 

drastically impairs the reprogramming process but also endangers the future of the 

formed iPSCs by critically hampering their growth, maintenance of pluripotent state and 
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their further differentiation to embryoid bodies (EBs). However, curiously and 

unexpectedly, the drastic effects of CtIP deficiency are highly specific to the cell 

reprogramming process, since the depletion of CtIP in already established iPSCs or ESCs 

does not reduce the ability of cells to self-renew or differentiate in EBs. It is suggested that 

CtIP contributes to the regulation of cell cycle progression at the G1/S transition by its 

association with Rb. Unphosphorylated Rb represses S-phase transition by directly binding 

to E2F transcription factor family and, therefore, cannot activate the transcription of the 

genes encoding the key components of the G1/S transition and the replication of the DNA. 

CDK-mediated phosphorylation of RB and direct interaction between CtIP and Rb are 

required for disrupting its association with E2F factors, thus activating S-phase genes 

expression, as well as for increasing CtIP expression (Liu and Lee, 2006). Indeed, 

inactivation of CtIP leads to early embryonic lethality by arresting cells in G1, being CtIP 

essential for the S-phase entry in inner stem cells of blastocysts (Chen et al., 2005a). In 

pluripotent stem cells, including ESCs and iPSCs, Rb is mostly phosphorylated, being unable 

to inhibit E2F and therefore, allowing the passage of cells into S phase leading a fast G1/S 

phase transition (Hindley and Philpott, 2013; Nevins, 2001). However, further 

investigations are necessary to see if there is also a connection between CtIP and Rb during 

reprogramming to regulate the cell cycle progression. Moreover, the influence of cell cycle 

in the reprogramming process is not completely known but, it has been observed that 

more slowly dividing or older cells reprogram worst and the activity of cyclins and CDKs 

correlates with efficiency of reprogramming (Mahmoudi and Brunet, 2012; Ruiz et al., 

2011), like cyclin D1 overexpression and localization controls reprogramming (Edel et al., 

2010). Thus, it is possible that reprogramming requires a different cell cycle structure, 

being CtIP more important, to that required for the maintenance of pluripotency, which 

would be supported by the observation that the treatment of ESCs with chemical inhibitors 

to slow the cell cycle has no impact on self-renewal or differentiation potential (Stead et 

al., 2002).  Although this could explain the importance of CtIP essentially during 

reprogramming, our data support the idea that the requirement of CtIP during 

reprogramming is mostly associated with its role in resection and the maintenance of 

genomic stability. Thus, most of all of the effects due to CtIP deficiency during 

reprogramming are likely caused by the genomic aberrations acquired by cells during 
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reprogramming. This is supported by the fact that cells that survive during reprogramming 

in the absence of CtIP and become iPSCs have increased genomic variations with respect 

to iPSCs generated under normal CtIP level.  Thus, in the absence of CtIP, DSBs created 

during reprogramming would be repaired through more mutagenic repair pathways, 

thereby increasing mutagenesis and chromosomal rearrangements (Ceccaldi et al., 2016). 

This is consistent with an increase in DNA damage and genetic instability that would 

ultimately lead to apoptosis during reprogramming. These severe genomic consequences 

correlate with the well-established roles of CtIP in DNA end resection, HR and DSB repair 

pathway choice (Gomez-Cabello et al., 2013; Huertas and Jackson, 2009; Sartori et al., 

2007), rather than reflecting a novel role of CtIP in the reprogramming process. Moreover, 

previous studies have shown that defects in Fanconi anemia (FA) complementation group 

decreases the efficiency of reprogramming (Müller et al., 2012), suggesting a potential link 

between HR and reprogramming since several FA pathway components promote HR repair 

(Kee and D’Andrea, 2010). Indeed, it has been shown that in response to 

interstrand crosslinks (ICL) DNA damage, FANCD2 physically interacts with CtIP which is 

essential to promote DNA end resection at the DSB generated during ICL processing to 

facilitate HR (Murina et al., 2014; Unno et al., 2014; Yeo et al., 2014). Likewise, MEFs 

deficient in BRCA1, a central component in HR, have problems for cell reprogramming and 

the derived iPSCs are unable to establish colonies (Gonzalez et al., 2013).  

It is quite well established that ESCs and iPSCs exhibit a cell cycle with an abbreviated 

G1 phase and a longer S phase. This would be in concordance with the requirement of HR 

in pluripotent cells, as during S and G2 phases cells preferentially repair DNA by HR when 

sister chromatids are available to act as homologous templates (Rothkamm et al., 2003; 

Yang et al., 2016). Thus, we suggest that although both pluripotent and differentiated cells 

can likely repair their DNA by both NHEJ and HR, the latter would be the main mechanism 

able to deal with the endogenous damage during cell reprogramming. We hypothesize 

that this is due to the amount of DNA damage and the nature of the DNA lesion in these 

different situations. Most of the DSBs that can be attributed to endogenous processes are 

caused by stress during DNA replication. Replication stress, due to the presence of a stalled 

replication fork, readily causes the appearance of one-ended DNA DSBs and are commonly 

resolved mainly by HR or microhomology-mediated end joining to restore replication 

https://www.sciencedirect.com/topics/immunology-and-microbiology/cross-linking
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(Aguilera and Gómez-González, 2008; Petermann and Helleday, 2010; Shibata, 2017). 

However, this would not fully explain why CtIP is more important during reprogramming 

than in cells already reprogrammed because replicative stress levels are also high in 

already established iPSCs. It is well-known that other endogenous sources, like reactive 

oxygen species (ROS), can produce DSBs (Cannan and Pederson, 2016). Moreover, ROS can 

alter replication through different mechanisms, leading to replication forks arrest. The 

metabolic change in iPSCs from oxidative respiration to oxidative glycolysis (Folmes et al., 

2011; Varum et al., 2011) maintains low levels of intracellular ROS limiting the risk of 

cellular and genomic damage during self-renewal (Zhou et al., 2016). Nevertheless, ROS 

levels have been reported to early increase during reprogramming and gradually 

decreased over time, being required increased ROS levels as well as ROS signalling during 

the initial stage of nuclear reprogramming but not during proliferation and maintenance 

of iPSC (Zhou et al., 2016). Hence, increased ROS levels during reprogramming could lead 

to more collapsed forks and the generation of DSBs, which could explain why CtIP is 

essential during iPSC formation for effective repair but not in maintenance of iPSCs already 

established. In the absence of CtIP, those breaks would be erroneously repaired, inducing 

the observed CNV differences and other chromosomal abnormalities. Indeed, CtIP is 

essential for cell viability in cells that have been exposed to mutagens that result in high 

levels of DNA damage (Huertas and Jackson, 2009; Sartori et al., 2007) or chromosomal 

aberrations (Huertas and Jackson, 2009). Strikingly, and in agreement with this idea, our 

data suggest that cell reprogramming in wild type mouse fibroblasts causes an increase in 

DNA end resection that is comparable with high doses of ionizing radiation. 

In summary, we propose a novel role of DNA end resection during cell 

reprogramming. Our data reveal that CtIP and resection are essential during 

reprogramming to minimize the impact of replication-induced DNA damage and maintain 

genomic stability. Moreover, reprogramming in a CtIP-defective environment has long-

term consequences on self-renewal and differentiation (Figure D1).  

Collectively, the available data from us and previous reports suggest that cells from 

patients with deficient DDR and DNA repair pathways could not be efficiently 

reprogrammed and used in regenerative medicine. However, to yield this powerful tool a 
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future as a clinical standard procedure, more investigations are needed to elucidate which 

others genes are specifically required to avoid genomic instability during the 

reprogramming process.  

 

Figure D1. DNA end resection during cell reprogramming.  

(A) During cell reprogramming, the CtIP levels increase progressively leading to an increase in DNA end 

resection to repair DSBs by the error-free pathway homologous recombination. CtIP and resection are 

essential to minimize the genomic instability caused by the large amount of DNA damage caused due to 

replicative stress, thus obtaining viable iPSCs that maintain their capacity for self-renewal and 

differentiation. (B) During reprogramming in a CtIP-defective environment DNA end resection, and 

therefore, HR, cannot be activated to repair the replication-induced damage, accumulating a large 

amount of genomic instability. CtIP deficiency during reprogramming has long-term consequences and 

leads to the generation of unviable or defective iPSCs that present hampered self-renewal and 

differentiation. 
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Interestingly, in a general screening searching for regulators of the NHEJ versus HR 

balance (López-Saavedra et al., 2016), the master regulator of cell stemness KLF4 was 

found as a positive candidate. KLF4 plays important roles in many fundamental biologic 

processes, being its role in cell reprogramming well established, as one of the four factors 

sufficient to induce pluripotency (Takahashi and Yamanaka, 2006). Moreover, KLF4 was 

found to play an essential role in modulating the DNA damage response and repair 

mechanisms to maintain genetic stability (El-Karim et al., 2013; Hagos et al., 2009; Yoon et 

al., 2005). According to these data, KLF4 might be involved in regulating DNA damage 

repair during mouse reprogramming, so we aimed to investigate the role of KLF4 in DSBs 

repair more in-depth. 

Here, we have demonstrated that KLF4 levels control the repair pathway choice for 

DSBs, mainly by controlling the licensing of DNA end resection. KLF4 promotes both 

initiation and processivity of DNA end resection, leading to repair by HR. Interestingly, this 

means that during induced cell reprogramming with Yamanaka factor, whereas the 

process itself induces the accumulation of DNA damage (Blasco et al., 2011), the 

overexpression of KLF4 facilitates the repair of those breaks preferentially by HR instead 

of the more frequent NHEJ of somatic cells. Strikingly, this induced preference for HR could 

also explain, at least partially, why cells become so dependent of DNA end resection and 

HR during reprogramming (González et al., 2013).  

KLF4 downregulation clearly impairs resection even in cells with naturally low 

endogenous levels of KLF4, as U2Os cells. Therefore, our data support a model in which 

KLF4 levels are intrinsically relevant for the DNA damage response. In ESCs, HR is enhanced 

(Adams et al., 2010a; Serrano et al., 2010; Tichy et al., 2010) and this could be mediated 

by KLF4. By controlling DNA end resection, KLF4 might also modulate the activation of DNA 

damage checkpoint, as created RPA-coated ssDNA stimulates the binding of ATRIP which 

enables the recruitment of the ATR-ATRIP complex to the sites of DNA damage and 

initiates the checkpoint signalling (Zou and Elledge, 2003). Indeed, both master checkpoint 

kinases, ATM and ATR, are oppositely regulated by DNA end resection in a length-

dependent manner. Single-stranded overhangs reduce ATM activation and potentiate ATR 

activation, thereby DNA end resection is an essential element in promoting the ATM-ATR 
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switch (Shiotani and Zou, 2009). This might explain why ESCs are largely dependent on ATR 

for efficient DSBs repair by HR (Adams et al., 2010a), which is consistent with the early 

embryonic lethality observed in mice due to ATR gene inactivation (de Klein et al., 2000). 

Otherwise, INO80, which increases expression of key pluripotency factors including OCT4, 

NANOG, SOX2, KLF4 and ESRRB in ESCs (Wang et al., 2014b), has been shown to function 

together with YY1 to regulate HR (Wu et al., 2007). Moreover, it has been recently 

reported that YY1 regulates the expression of KLF4 at transcriptional levels (Morales-

Martinez et al., 2019) and loss of YY1 is related to chromatid and chromosome aberrations 

(Wu et al., 2007). Thus, we can speculate that YY1 and INO80 would increase KLF4 levels 

leading to an increment in the DSBs repair by the HR pathway, in concordance with 

enhanced HR in ESCs. We show that KLF4 does not affect cell cycle progression, however, 

it has been previously reported that overexpression of KLF4 induces cell cycle arrest 

through the transcriptional activation of p21 and the inhibition of cyclin D1 (Chen et al., 

2001; Shie, 2000; Song et al., 2013) among others. More importantly, upon ionising 

radiation and in response to DNA damage, KLF4 expression is induced and it is required to 

activate G1/S (Yoon et al., 2003) and G2/M (Yoon and Yang, 2004) checkpoints. In spite of 

the effect of KLF4 over cell cycle that could modify the balance between NHEJ and HR 

which are regulated by the cell cycle (Rothkamm et al., 2003), we suggest that the role of 

KLF4 in resection is independent of its role in cell cycle progression as cell cycle was not 

affected by altering KLF4 levels in our hands. Considering the role of KLF4 as checkpoint 

activator and now, based on our results, as inductor of the error-free HR repair pathway, 

is not surprising that cells knocked out for KLF4 are genetically unstable and accumulate 

DNA breaks (El-Karim et al., 2013; Hagos et al., 2009). KLF4 has also been found to suppress 

p53-dependent apoptotic pathway by directly inhibiting p53 and 

suppressing BAX expression (Choi et al., 2018; Ghaleb et al., 2007; Talmasov et al., 2015; 

Zhou et al., 2009) but under certain conditions and contexts, KLF4 may switch its role from 

anti-apoptotic to pro-apoptotic role (Li et al., 2010b; Wang et al., 2015). Indeed, although 

KLF4 was first identified as a potential tumour suppressor agreeing with its role in cell cycle 

arrest, it has also been identified as an oncogene that could be explained by its role in 

suppressing p53-dependent apoptosis. Consistent with this, KLF4 expression has been 

found either increased (Foster et al., 2000; Pandya et al., 2004) or decreased (Wei et al., 
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2005; Zhao et al., 2004) in various human cancer types. Thus, KLF4 might possess a 

context-dependent activity in checkpoint activation and cell cycle progression as well as in 

apoptosis. 

KLF4 is highly regulated by many stimuli and modifications (Chen et al., 2005b; 

Cullingford et al., 2008; Yang and Zheng, 2014). Post-translational modifications (PTMs), 

such as phosphorylation, acetylation and ubiquitylation among others, can regulate 

protein stability, subcellular localization, interactions with other proteins and activities of 

target proteins. KLF4 is known to be subjected to multiple modifications including 

phosphorylation (Gunasekharan et al., 2016; Kim et al., 2012), sumoylation (Du et al., 

2010; Tahmasebi et al., 2013), acetylation (Evans et al., 2007), ubiquitylation (Lim et al., 

2014), glutamylation (Ye et al., 2018) and methylation (Hu et al., 2015). Therefore, 

understanding KLF4 regulation could enhance our comprehension about the double 

function of KLF4 as both tumour suppressor and oncogene. In fact, in human 

papillomaviruses-positive keratinocytes, it has been observed that KLF4 expression and 

activities are disturbed by post-transcriptional and post-translational modifications 

(Gunasekharan et al., 2016). 

Based on the importance of modifications in KLF4, we investigated whether any 

post-translational modification could be important for its role in resection. Interestingly, 

PRMT5-mediated arginine methylation of KLF4 has an important effect on tumorigenesis 

and DNA damage response (Hu et al., 2015). Furthermore, since an increase of KLF4 

methylation as well as interaction between KLF4 and PRMT5 was observed after ionizing 

radiation (Hu et al., 2015), we anticipated that this post-translational modification might 

be involved in DNA end resection role of KLF4. As hypothesized, we found that this 

methylation is, indeed, required for proficient DNA end resection since either the ectopic 

expression of a methylation-deficient mutant (KLF4-3RK) or downregulation of PRMT5 

impaired the resection. KLF4 methylation by PRMT5 is proposed to stabilize the protein by 

preventing its degradation, so it would be reasonable to believe that the requirement for 

resection is probably due to the fact that such post-translational modification controls 

KLF4 levels (Hu et al., 2015). In fact, we can clearly show a direct correlation of KLF4 

expression and DNA resection efficiency. Despite the aforementioned role in controlling 
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KLF4 level, we propose a more direct role of this modification since DNA end resection is 

also impaired even when the protein level of non-methylable KLF4 (KLF4-3RK) has not yet 

decreased by degradation. 

Given that KLF4 is a transcription factor, it is possible that KLF4 affects resection and 

recombination through the control of other factors, either directly or indirectly by 

regulating genes important for repair at the level of gene expression. Surprisingly, we 

found that the expression levels of histone acetyltransferase KAT5, also known as TIP60, 

were affected by KLF4. Indeed, the overexpression of KLF4 increased TIP60 protein levels 

while the KLF4-3RK mutant was unable to do it. Interestingly, TIP60 promotes HR repair 

over NHEJ by acetylating the histone H4K16, which disrupts 53BP1 binding and thereby 

releases DNA end resection inhibition (Jacquet et al., 2016). Moreover, PRMT5 has been 

shown to control homologous recombination-mediated repair by regulating the 

methylation of RUVBL1, which is critically required for the acetyltransferase activity of 

TIP60 at DNA breaks to facilitate recombination (Clarke et al., 2017). Here we show that 

all these three proteins are related and form a regulatory axis in promoting homologous 

recombination repair. Thus, we can speculate that the role of KLF4 in DNA end resection 

is through TIP60 acetyltransferase activity, by regulating the expression of TIP60 or by the 

physical interaction between TIP60 and KLF4 that has been previously demonstrated (Ai 

et al., 2007). Indeed, KLF4 has also been involved in the modulation of chromatin structure 

controlling histone H4 acetylation and deacetylation at the promoters of target genes 

through recruitment of p300/CBP histone acetyltransferases or histone deacetylases 

respectively (Evans et al., 2007). Moreover, the histone acetyltransferases CBP and p300 

have been shown to promote homologous recombination at different levels, both by 

contributing to the transcriptional activation of recombination genes, such as BRCA1 and 

RAD51 (Ogiwara and Kohno, 2012) but also by acetylating recombination proteins at DSB 

sites (Qi et al., 2016; Yasuda et al., 2018). However, if this relies on KLF4 and/or PRMT5 

too or is an independent event must be discovered in future studies.  

Altered expression of both, PRMT5 and KLF4, has been related with many types of 

cancers and more specifically breast cancer (Fletcher et al., 2011; Li et al., 2013; Wang et 

al., 2017; Yang and Bedford, 2013). Some breast cancers are strongly associated with 
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altered homologous recombination and mutations in BRCA1 are linked with triple-negative 

breast cancer (Afghahi et al., 2016). However, the influence of KLF4 as tumour suppressor 

or oncogene remains controversial in breast cancer. Indeed, although some reports have 

shown that 70% of breast carcinomas have elevated KLF4 expression that is associated 

with poor prognosis as it is required for cell migration and invasion (Foster et al., 2000; 

Pandya et al., 2004; Yu et al., 2011), others suggest that KLF4 inhibits tumour progression 

and metastasis (Yori et al., 2010, 2011). Recently, it has been discovered that PRMT5 

controls TIP60 RNA splicing (Hamard et al., 2018). In hematopoietic cells, PRMT5 depletion 

caused aberrant splicing of TIP60 which cannot carry out its acetyltransferase activity 

leading to impaired HR (Hamard et al., 2018). Interestingly, KLF4 is also subjected to 

alternative splicing producing the cytoplasmic version KLF4α (Ferralli et al., 2014). 

Moreover, KLF4α has been shown to antagonize with the KLF4 full-version by retaining it 

in the cytoplasm and thereby impeding its function as tumour-suppressor in the nucleus 

(Ferralli et al., 2014). Thereby, the alternative splicing of KLF4, and maybe also TIP60, might 

explain the different role of KLF4 as a tumour suppressor or oncogene in different types of 

cancers by allowing or impeding the already known KLF4 functions including cell cycle 

arrest, apoptotic suppression and the new function discovered in this thesis, homologous 

recombination induction.  

Actually, numerous studies have implicated KLF4 in the regulation of cancer stem 

cells (CSCs). In fact, both PRMT5 and KLF4 expression are essential for breast CSCs survival 

and propagation (Chiang et al., 2017; Qi et al., 2019; Yu et al., 2011). It is known that CSCs 

have, in general, an increased repair efficiency (Lim et al., 2012; Yuan et al., 2014) which 

confers resistance to conventional chemotherapy and radiotherapy (Ahmed et al., 2015; 

Bao et al., 2006; Desai et al., 2014; Kreso and Dick, 2014; Yuan et al., 2014), which might 

be explained by higher levels of KLF4 driving DSBs repair through HR. Moreover, 

deregulation of KLF4 PRMT5-mediated methylation induces carcinogenesis (Hu et al., 

2015). Thus, it is possible that the role of KLF4 and PRMT5 in cancer might be caused by 

an altered recombination pattern. Indeed, our data would suggest that KLF4 inhibition 

might sensitize cancer cell towards ionising radiation in tumours with high rates of HR, 

while in those tumours in which HR is impaired, such as triple-negative breast cancer, an 

increase in KLF4 can lead to repair DNA lesions through the hampered recombination, 
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causing cell death in the process. Hence, although additional studies are required, our 

observations might have an impact on the understanding and potential treatment of 

cancer in the future. 
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Conclusions 

1. CtIP protein levels increase upon mouse cell reprogramming leading to a hyper-

activation of DNA end resection, most likely to deal with the increase in DNA 

damage caused endogenously during the process in order to maintain genomic 

stability. 

2. CtIP deficiency during reprogramming causes genomic instability and hence, hinders 

the process efficiency by inducing apoptosis to avoid spreading the damage. 

Moreover, iPSC formed in the absence of CtIP are compromised in self-renewal and 

their ability to differentiate.  

3. KLF4 is involved in DSB repair pathway choice and its absence impairs HR and 

stimulates NHEJ. As a consequence, KLF4 is required to avoid cell sensitivity to DSB 

inducing agents such as camptothecin, etoposide and ionizing radiation. 

4. KLF4 promotes both initiation and processivity of DNA end resection, leading to 

repair by HR. Mechanistically, KLF4 affects the recruitment of pro- and anti-

resection proteins to DSBs sites such as RIF1 foci and BRCA1. 

5. PRMT5-mediated methylation of arginine residues R374, R376 and R377 on KLF4 is 

required for its role in DNA end resection.  
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1. Cell culture procedures 

1.1. Cell lines, growth media and conditions 

Cell lines used in this thesis were C57BL/6 mouse embryonic fibroblast carrying a 

doxycycline-inducible tetracistronic cassette encoding the four murine reprogramming 

factors Oct4, Sox2, Klf4, and c-Myc (MEFs-i4F), mouse induced-pluripotent stem cells 

(miPSCs), D3 mouse embryonic stem cells (ES-D3), human embryonic kidney (HEK293T), 

human osteosarcoma (U2OS) or cells lines derived from them harbouring different 

constructs (Table M1). 

MEFs-i4F, HEK293T and U2OS cells were cultured in high-glucose Dulbecco’s 

Modified Eagle Medium (DMEM; Sigma, D6546), supplemented with 10% fetal bovine 

serum (FBS; Sigma, F7524), 2 mM L-glutamine (Gibco, 25030024), 100 U/ml penicillin and 

100 μg/ml streptomycin (Gibco, 15140122). miPSCs were cultured on plates coated with 

0.1% gelatin (Sigma, G1890) using Dulbecco's Modified Eagle Medium/Nutrient Mixture F-

12 with GlutaMAX Supplement (DMEM/F12 + GlutaMAX; Gibco, 10565018) supplemented 

with 20% knockout serum replacement (Gibco, 10828028), 1.000 U/mL Leukaemia 

Inhibitory Factor (LIF; Millipore, ESG1107), 1% non-essential amino acids (Gibco, 

11140035), 0.1 mM b-mercaptoethanol (Gibco, 31350010), 100 U/ml penicillin and 100 

μg/ml streptomycin (Gibco, 15140122); and ES-D3 which were cultured in DMEM 

supplemented with 15% FBS, 1% non-essential amino acids, 1 mM sodium pyruvate, 100 

U/ml penicillin, 100 μg/ml streptomycin, 0.1 mM 2-mercaptoethanol, and 1,000 U/ml 

mouse LIF. Stable cell lines derived from the above-mentioned ones were cultured in the 

same conditions but adding either 0.5 mg/ml G418 (Sigma, A1720) or 1 μg/ml puromycin 

(Sigma, P8833) to the medium, according to the selection marker of the inserted plasmid. 

HEPA class 100 incubators (Thermo) were used to maintained cell lines at 37ºC and 

5% CO2. 

Trypsin-EDTA solution (Sigma, T4049) or accutase (Invitrogen, 00-4555-56) were 

used to detach the cells when required. To seed specific numbers of cells, an automatic 
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cell counter was used (Z2 Coulter Counter, Beckman Coulter). 

For long-term preservation of the cells, they were harvested and pelleted by 

centrifugation at 500 g for 3 minutes. Cells were then resuspended in freezing solution 

(10% dimethyl sulfoxide [DMSO] in FBS; or 10% DMSO in KSR for iPSCs), aliquoted in tubes 

and maintained at -80ºC for at least 24 hours. Then, they were transferred to liquid 

nitrogen-containing tanks for long-term storage. 

 

1.2. Mouse cell reprogramming into iPSC 

1.5 x 105 C57BL/6 primary MEFs carrying a doxycycline-inducible tetracistronic 

cassette encoding the four murine reprogramming factors Oct4, Sox2, Klf4, and c-Myc 

(MEFs-i4F) were seeded per well on a 12-well plate. MEFs-i4F were cultured in miPSC 

medium supplemented with 1 mg/mL doxycycline (Sigma, D9891) to induce the expression 

of OSKM and to promote reprogramming. Medium was changed every 24 hours for 21 

days or until iPSCs colonies appeared. iPSCs were then expanded in 6-well gelatin-coated 

plates and in iPSC medium without doxycycline. 

 

1.3. Isolation of iPSCs colonies 

After reprogramming, iPSCs were seeded in 6-well plates to isolate colonies grown 

from single cells. When iPSCs had formed isolated colonies of a suitable size, culture 

medium was removed and PBS was added to the plate. Each colony was identified under 

an inverted optical microscope and manually picked up by aspirating with the aid of an 

automatic pipette in sterile conditions. Each colony was placed in a 96-well plate and 

trypsin was added for 5 min at 37ºC to detach the cells. Then, separated cells from a colony 

were seeded in a well of a 24-well plate coated with 0.1% gelatin and containing 1 ml of 

iPSC media. 

 



Materials and methods 

  
 

121 
 

1.4. Proliferation assay 

After transduction with shCtip and shNT particles, 2x103 MEFs-i4F per well were 

seeded in 96-well plates to measure real-time proliferation in the xCELLigence RTCA DP 

(ACEA Biosciences), which uses non-invasive electrical impedance monitoring to quantify 

cell proliferation. The impedance of electron flow caused by adherent cells is reported 

using a parameter called Cell Index (CI), where CI = (impedance at time point n – 

impedance in the absence of cells)/nominal impedance value. Cell proliferation was 

monitored each hour for 72 hours and all experiments were performed using technical 

duplicate for each sample in three independent experiments. 

 

1.5. GFP-shRNA stability analysis 

The populations of miPSCs reprogrammed either in the presence or absence of CtIP 

were enriched by cell sorting (see paragraph 3.2.5.) taking advantage of the presence of a 

GFP gene on the plasmids shNT and shCtip. After the enrichment, 1.5 x 105 miPSCs were 

seeded in 6-well plates and maintained for 3 weeks changing the media every day and 

passed in a 1:3  ratio once a week. The percentage of GFP was measured by flow cytometry 

during each passage of the cells using a BD FACSCalibur Flow Cytometer (BD Biosciences, 

342975). 

 

1.6 Colony formation assay 

miPSCs reprogrammed either in the presence or absence of CtIP were enriched by 

cell sorting (see paragraph 3.2.5.) and 1 x 105 miPSCs were seeded in 6 well plates in 

triplicates. The media was changed every day until colony formation and then, several 

pictures were taken with an optical microscope. The number of colonies was counted and 

relativized to the control siNT. Colonies were also analysed for size using Adobe Photoshop 

CS6 (Adobe Systems Incorporated). At least 300 colonies for condition of three 
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independent experiments were measured. 

For ES-D3, 2000 cells depleted or not of CtIP were seeded in 6-well plate by 

triplicate. 5 days after, the number of colonies was measured as mentioned above.  

 

1.7. Embryoid bodies formation 

ES-D3 and miPSCs were detached with accutase, counted, and replated onto ultra-

low attachment 6-well plates with iPSC regular medium without LIF for 3–4 days to induce 

differentiation. Embryoid bodies were analysed for size and number through microscopy 

images using Adobe Photoshop CS6 (Adobe Systems Incorporated). 

 

1.8. siRNA Transfection 

For transient protein knockdown, siRNA transfection was performed using 

Lipofectamine RNAiMAX transfection reagent (Thermo Fisher, 13778150) following 

manufacturer's instructions.  

Briefly, cells were seeded in different plate formats, accordingly to the requirements 

of each specific experiment, and grown for 24 hours. The day of transfection, medium was 

replaced by fresh DMEM supplemented with L-glutamine but without antibiotics and cells 

were incubated with a mix of siRNA and RNAiMAX diluted in Opti-MEM (Gibco, 11058-

021). Cells were then incubated at 37ºC for 6 hours before replacing the media with fresh 

complete DMEM to minimise cell death. All siRNA-mediated knockdowns were validated 

48 hours after transfection by quantitative RT-PCR or western blot. The list of all siRNAs 

used in this thesis can be found in Table M2. 
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1.9. Plasmid DNA Transfection 

Plasmids used in this thesis are listed in Table M3. Two alternative strategies were 

used to introduce plasmid DNA into human cells depending on the experiment: 

Transfection with FuGene or transfection with calcium phosphate. 

 

1.9.1. FuGENE transfection 

FuGENE 6 Transfection Reagent (Promega, E2691) was used to transfect expression 

vectors following manufacturer’s instructions. Different plate formats were used for 

transfection depending on the requirements of each specific experiment. For 60-mm 

plates, 300.000 cells were seeded the day before transfection. Then, 3 µg of plasmid DNA 

was mixed with FuGENE in a 3:1 FuGENE:DNA ratio, and diluted in Opti-MEM. Solution was 

incubated 15 min at room temperature and finally was added dropwise to the plate with 

gentle rocking.  

 

1.9.2. Calcium phosphate transfection 

Calcium phosphate transfection protocol was used to introduce the plasmids 

required for lentivirus production in HEK293T cells. For 100-mm plates, 2.7x106 cells were 

seeded and grown for 24 hours. The media was changed with fresh one at least 30 minutes 

before transfection. The three plasmids required were mixed in a 3:2:1 ratio, i.e. 15 μg of 

the vector containing DNA of interest, 10 μg of the vector required to produce the viral 

capsid (p8.91), and 5μg of the vector encoding the viral envelope (pVSVG) (Table M3).  

The DNA mix was prepared in a volume of 0.5 ml containing 250 mM CaCl2 and was 

added dropwise while bubbling into 0.5 ml of 2x HEPES buffered saline (HBS; Sigma, 

51558). The mix was incubated for 30 min at room temperature and added dropwise to 

the plates with gentle rocking. The day after transfection, the medium was removed and 

cells were washed once with PBS before adding fresh medium to minimise cell death. 

Some experiments required larger or smaller plates, so volumes were scaled accordingly 

in those cases. 
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1.10. Lentivirus production and transduction 

Lentiviral particles harbouring shRNA specifically targeting Ctip or a non-target 

sequence as a control, or bearing the pRRL_sEF1a_HA.NLS.SceOPT.T2A.TagBFP vector, to 

express the restriction enzyme I-SceI and the blue fluorescent protein (BFP), were 

produced in HEK293T cells by transfecting with the specific plasmids together with  p8.91 

and pVSVG as described in the previous section. From that point onward, all procedures 

were carried out in a P2 biological safety room. 48 h after transfection, medium was 

collected and filtered using 0.45 μm Surfactant-free Cellulose Acetate (SFCA) Sterile filters 

(Minisart NML; Sartorius, 16555) to retrieve the viral particles while removing cellular 

debris. Then, lentiviral particles were pelleted by centrifugation at 22.000 rpm for 1 hour 

and 30 min at 4ºC. Supernatant was removed and viruses were resuspended in DMEM and 

stored in aliquots at -80ºC until use. Before infection, viral production was titrated by BFP 

(for particles containing the I-SceI enzyme) or GFP (for viruses bearing the shRNA 

constructs) expression using flow cytometer (see paragraph 3.2.3).  

For transduction, lentiviral particles were diluted in DMEM supplemented with 8 

μg/ml hexadimethrine bromide (Polybrene; Sigma, H9268) with a multiplicity of infection 

(MOI) of 10, i.e. 10 virus particles are added per cell during infection, and this solution was 

added to the plates. Cells were washed the next day with fresh medium to remove viral 

residues and hexadimethrine bromide.  CtIP knockdown was validated by western blot. 

 

2. Molecular biology procedures 

2.1. Nucleic acids manipulations 

2.1.1. Plasmid DNA amplification 

Plasmid DNA was amplified by transforming competent cells of the DH5α strain of 

Escherichia coli (Model Organism Service, CABIMER) using the heat shock protocol. Briefly, 

0.1 ml of competent bacteria were mixed with plasmid DNA and incubated on ice for 30 
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min. Cells were then placed at 42ºC for 85 seconds and returned to the ice for 5 min for a 

heat shock. Then, 1 ml of LB (Formedium, LB-Broth Lennox) broth was added and the 

transformed cells were incubated at 37ºC for 30 min. Cultures were harvested by 

centrifugation at 6000 rpm for 2 min and plated on LB agar plates supplemented with 100 

μg/ml ampicillin (Sigma, A9518) or 25 μg/ml kanamycin (Sigma, K4000) depending on the 

antibiotic resistance cassette of the transformed plasmid. 

Plasmid DNA was purified from one single colony using PureYield Plasmid Maxiprep 

System (Promega, A2393), PureYield Plasmid Midiprep System (Promega, A2492) or 

NucleoSpin Plasmid EasyPure Miniprep System (Macherey-Nagel, 740727), following the 

manufacturer's instructions. DNA concentration was quantified by measuring 260 nm 

absorbance using a NanoDrop ND-1000 spectrophotometer. 

 

2.1.2. DNA digestion with restriction enzymes 

For DNA cloning and plasmid checking, restriction endonucleases from Takara or 

New England Biolabs were used according to manufacturer's instructions. DNA fragments 

were resolved in agarose gels as described in the following section. 

 

2.1.3. DNA electrophoresis in agarose gels 

DNA electrophoresis was performed on gels containing a variable percentage of 

agarose (Pronadisa, 8010.22) depending on the size of the bands to differentiate, and 

RedSafe (Intron Biotechnology, 21141) for DNA staining, both diluted in 1x TAE buffer (40 

mM Tris-HCl pH7.6, 20 mM acetic acid, and 1 mM EDTA). Loading buffer (Takara) was 

added to DNA samples prior to loading in the gel, and 1 kb DNA ladder (gTPbio, 

GTPBM0002) was used for size estimation of the bands. Stained DNA fragments were 

visualized using an ultraviolet transilluminator (Bio-Rad) and analysed by Quantity One 

software. 
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2.1.4. Site-directed mutagenesis 

Directed changes in the DNA sequence of plasmids were performed using 

QuickChange Lightning Site-Directed Mutagenesis kits (Agilent Technologies, 210518) 

according to manufacturer's instructions. Briefly, mutagenesis was performed by PCR 

using designed mutagenic primers (Table M4). After the PCR, parental DNA was degraded 

by DpnI nuclease digestion. Finally, mutation-containing synthesized DNA was 

transformed into competent bacteria and amplified. Candidates were sent to CNIO 

Genome Unit (Madrid, Spain) for DNA sequencing. 

 

2.1.5. RNA extraction 

RNA extracts were obtained from cells using NZY Total RNA Isolation kit (NZYtech, 

MB13402) according to manufacturer's instructions. RNA concentration was quantified by 

measuring 260 nm absorbance using a NanoDrop ND-1000 spectrophotometer, and the 

RNA quality was checked by visualization on a 1% agarose gel. 

To remove trace amounts of DNA, 1 μg RNA was treated with RQ1 RNase-Free 

DNase (Promega, M6101) according to manufacturer's instructions 

 

2.1.6. Reverse transcription 

To synthesize complementary DNA (cDNA), 1 μg RNA was subjected to reverse 

transcription reaction using Maxima H Minus First Strand cDNA Synthesis kit (Thermo 

Scientific, K1652) according to manufacturer's instructions.  

 

2.1.7. Quantitative PCR (qPCR) 

Quantitative PCR from cDNA was performed in triplicate with iTaq Universal SYBR 

Green Supermix (Bio-Rad, 172-5124) following manufacturer's instructions. DNA primers 

used for qPCR are listed in Table M4. qPCR was performed in an Applied Biosystem 7500 

FAST Real-Time PCR system. The comparative threshold cycle (Ct) method was used to 
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determine relative transcripts levels (Bulletin 5279, Real-Time PCR Applications Guide, Bio-

Rad), using an endogenous housekeeping gene, β-actin, as an internal control. Expression 

levels relative to β-actin were determined with the formula 2-ΔΔCt (Livak and Schmittgen, 

2001). 

 

2.2. Protein analysis 

2.2.1. Protein extraction under denaturing conditions 

Protein extraction was carried out by lysing the cells in Laemmli buffer 2x (125 mM 

Tris-HCl pH 6.8, 4% SDS, and 20% glycerol) using a plastic cell scraper (Sarstedt, 83.1830). 

Alternatively, cells were harvested with trypsin, rinsed with PBS and resuspended in 

Laemmli 2X buffer. To reduce sample viscosity, protein extracts were passed through a 

syringe with a 0.5x16 mm needle (BD Plastipak, 303175) at least 10 times.  

Protein concentration was determined by the measurement of absorbance at 280 

nm using a NanoDrop ND-1000 spectrophotometer. 

 

2.2.2. SDS-PAGE electrophoresis 

Proteins were separated by size in 29:1 acrylamide:bis-acrylamide gels prepared at 

different concentrations according to the molecular weight of the proteins to analyse.  

SDS-PAGE was performed according to previously described method (Laemmli, 

1970). Samples were diluted to obtain similar protein concentration and then SDS-PAGE 

loading sample buffer 4x (250 mM Tris-HCl pH6.8, 8% SDS, 40% glycerol, 20%                              

β-mercaptoethanol (Sigma, M6250) and bromophenol blue) was added to a final 

concentration of 1x. Samples were incubated at 100ºC for 5 min and then loaded into the 

gels. Prestained protein ladder (gTPbio, GTPBM003) was also loaded as a molecular weight 

marker. Electrophoresis was performed in a Mini-PROTEAN Tetra Cell (Bio-Rad) with 

running buffer (25 mM Tris-HCl pH 8.3, 190 mM glycine, and 0.1% SDS) at 100-150 V. 
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2.2.3. Western blot analysis 

After electrophoresis, proteins were wet-transferred using Mini Trans-Blot system 

(Bio-Rad) for 1-2 h at 400 mA in transfer buffer (25 mM Tris-HCl pH 8.3, 190 mM glycine, 

20% methanol and 0.1% SDS) into PVDF membranes (Immobilon-FL; Millipore, IPFL00010) 

previously activated in methanol for 1 min and equilibrated in transfer buffer. Commercial 

Odyssey Blocking Buffer (LI-COR Biosciences, 927-40000) was used for blocking the 

membrane for at least 1 hour at room temperature to reduce background signal with the 

antibodies, and then, membranes were incubated overnight at 4ºC with the appropriate 

primary antibodies (Table M5) diluted in Odyssey Blocking Buffer containing 0.1% Tween-

20. Then, three washes of 5 minutes were performed with 0.1% Tween-20 in TBS, followed 

by 1 hour incubation at room temperature protected from ambient light with the 

corresponding IRDye secondary antibodies (Table M6) diluted in blocking buffer containing 

0.1% Tween-20. Afterwards, membranes were washed again three times with 0.1% 

Tween-20 in TBS and dried before scanning. Image acquisition was performed in Odyssey 

CLx Imaging System (LI-COR Biosciences) at two infrared wavelengths (700 and 800 nm) 

for differential imaging of both anti-rabbit and anti-mouse secondary antibodies at the 

same time. ImageStudio v.2.1 software was used for scanning and analysis of the images. 

 

3. Cell biology procedures 

3.1. DSBs repair assays in vivo 

3.1.1. Description of repair systems 

To study the effect of KLF4 in DSB repair pathways, we used different repair systems 

in which a DSB is generated by the rare-cutting I-SceI endonuclease, whose 18-bp 

recognition sequence has been integrated into the sequence. The repair of the damage 

results in the expression of a fluorescent protein (GFP or RFP) that could be quantified by 

flow cytometry. 
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To analyse DSB repair by homologous recombination, SA-GFP and DR-GFP reporters, 

which each one measures a different HR pathway, (Figure M1A and M1B) were used. 

SA-GFP reporter (Stark et al., 2004) (Figure M1A) consists of two GFP gene 

fragments (5’GFP and 3’GFP), which have 266 bp of homology (marked in grey) and are 

separated by 2.7 Kb. I-SceI site is present in the downstream GFP fragment inside the 

region of homology. Repair of the I-SceI-generated DSB by single-strand annealing (SSA) 

results in a functional GFP gene after annealing of complementary strands of both GFP 

fragments, followed by appropriate DNA-processing steps that produce a 2.7 kb deletion 

in the chromosome. The reporter can also be repaired by other homology-directed repair 

(HDR), but this repair does not restore a functional GFP gene. 

DR-GFP system  (Pierce et al., 1999) (Figure M1B) was used to measure homology-

directed repair efficiency, specifically short tract gene conversion. This reporter is 

composed of two differentially mutated GFP genes oriented as direct repeats and 

separated by the puromycin N-acetyltransferase gene. The upstream repeat is a full-length 

GFP gene mutated at a BcgI restriction site to contain the recognition site for the I-SceI 

endonuclease. This mutation consists of a substitution of 11 bp of wild-type GFP sequence 

with those of the I-SceI site that supplies two in-frame stop-codons, which terminate 

translation and inactivate the protein. The downstream repeat is an 812-bp 

internal GFP fragment (iGFP). Homologous sequences in the two mutated GFP genes 

(marked in grey) are separated by 3.7 Kb. Repair of the I-SceI-induced DSB by a non-

crossover gene conversion, using iGFP sequence as a donor of wild-type sequence 

information to the broken gene for repairing, reconstructs a functional GFP gene, 

expression of which can be scored by cellular fluorescence. There are other possible 

homologous recombination outcomes, including crossover recombination, long tract gene 

conversion or SSA pathway. These events retain only the 5’ fragment of the GFP gene that 

would encode a carboxy-terminal truncation, so there will be no accumulation of 

fluorescence in the cells.  

Otherwise, NHEJ was measured by EJ5-GFP (Bennardo et al., 2008) (Figure M1C) 

which detects multiple classes of NHEJ events and thus can be considered an assay for 

total-NHEJ.  This reporter contains a promoter that is separated from a GFP coding cassette 
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by a puromycin gene that is flanked by two I-SceI sites in the same orientation. Once the 

two DSBs are produced after I-SceI expression, the puromycin gene is excised by NHEJ 

repair and the promoter is joined to the rest of the expression cassette, leading to 

Figure M1. DSBs repair reporter systems used. 

(A) Schematic representation of the SA-GFP reporter which measures DSB repair by single strand 

annealing (SSA). (B) Schematic representation of the DR-GFP reporter which measures DSB repair by 

gene conversion. (C) Schematic representation of the EJ5-GFP reporter which measures DSB repair by 

total-NHEJ, both conservative (right) or mutagenic (left). (D) Schematic representation of the SeeSaw 

reporter system (SSR) that measures the balance between NHEJ and HR.  
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restoration of GFP gene. The repair of the breaks results in reconstitution of the I-SceI site 

as the two I-SceI-induced DSBs have complementary 3’ overhangs. Alternatively, NHEJ 

could fail to restore the I-SceI site, generating an I-SceI resistant site that shows evidence 

of microhomology, suggesting that this repair product is one measure of alternative-NHEJ.   

Finally, SeeSaw Reporter (SSR) system (Gómez-Cabello et al., 2013) (Figure M1D)  

was used to analyse the influence in the repair pathway choice by measuring the balance 

between NHEJ and HR. This reporter consists of the GFP gene flanked by a 5’- and a 3’-end 

truncated portions of the RFP gene that share 302 bp of homology with each other 

(marked in grey). Two sequences recognized by the meganuclease I-SceI were inserted 

downstream of the GFP gene, close to each other in an inverted orientation.  Since the I-

SceI target site is not palindromic, the repair of the inverted I-SceI-mediated breaks by 

NHEJ destroys the target sequence. Once DSBs are induced by the expression of the I-SceI 

meganuclease, cells could repair the damage through a classical NHEJ-type of repair, 

leading to GFP gene restoration and hence fluoresce in green. Alternatively, when 

resection takes place, thereby inhibiting classical NHEJ, the homologous regions of the RFP 

fragments are exposed and used to repair the damage by SSA. In this case, the repair 

excises the GFP gene and creates a functional RFP gene, giving rise to cells that fluoresce 

in red. 

 

3.1.2. DSBs repair assays in vivo 

Cells bearing a single copy integration of SA-GFP, DR-GFP, EJ5-GFP or SSR systems 

(Figure M1A-D) were used to analyse the role of KLF4 in the different DSB repair pathways.  

To carry out the assays, 60.000 cells were plated per well in 6-well plates. One day 

after seeding, the indicated proteins were downregulated by using siRNAs against them. 

The medium was changed after 6-8 hours. The following day, cells were infected with 

lentivirus harbouring I-SceI and BFP with a MOI of 10. DMEM containing lentiviral particles 

was supplemented with 8 µg/ml hexadimethrine bromide to enhance transduction, as 

indicated in section 1.10. DMEM including hexadimethrine bromide but without lentivirus 

was added to another set of depleted cells as control of basal fluorescence. After 24 hours, 



Materials and methods 

  
 

132 
 

cells were washed with fresh medium and maintained in culture during an additional day. 

Cells were then harvested and fixed with 4% paraformaldehyde followed by the analysis 

by flow cytometry of the blue, green and, in the case of SSR, red fluorescence, as described 

in paragraph 3.2.4. 

The repair frequency for SA-GFP, DR-GFP and EJ5-GFP reporters was calculated as 

the percentage of green cells from 10.000 events positive for blue fluorescence (i.e. 

transduced with the I-SceI construct). The same cells not infected with pBFP-ISceI plasmid 

were considered as the background of green fluorescence (Bennardo et al., 2008; Pierce 

et al., 1999; Stark et al., 2004). Otherwise, the balance between NHEJ and HR with the SSR 

was calculated by dividing the number of cells expressing GFP by the number of cells 

expressing RFP from the total 10.000 blue-positive events analysed, again normalizing with 

the basal fluorescence observed in the samples without I-SceI infection (Gomez-Cabello et 

al., 2013). To facilitate the comparison between experiments, the percentage or the ratio 

calculated were normalized with the control siNT. 

 

3.2. Flow cytometry 

3.2.1. Cell cycle analysis  

Cells were harvested by trypsinization, centrifuged at 400 g for 5 min, and washed 

once with PBS. Cells were fixed by adding 2 ml of cold 70% ethanol dropwise while 

vortexing at low speed and incubated at 4ºC overnight. Cells were then centrifuged, 

washed once with PBS to remove excess of ethanol, and incubated with PBS containing 

250 μg/ml RNaseA (Sigma, R6148) and 10 μg/ml propidium iodide (Fluka, 81845) for 30 

min at 37ºC in the dark. Finally, samples were analysed in a BD FACSCalibur Flow 

Cytometer (BD Biosciences, 342975) and CellQuest Pro software. At least 10,000 events 

were recorded for each sample. 

Cell cycle profiles were analysed using ModFit LT 3.0 (Verity Software House, Inc; 

Topsham, ME, USA). 
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3.2.2. DNA-end resection analysis  

3.5 x 105 MEFs-i4F and miPSCs were grown on 60-mm plates in the presence of 10 

mM BrdU (Sigma, B5002) for 16–18 hours, harvested using accutase, centrifuged at 400 g 

for 5 min and washed once with PBS. Cells grown in absence of BrdU were used as FACS-

negative control. Cells were fixed with 4% paraformaldehyde for 10 min at 4ºC, 

centrifuged, washed once with PBS and permeabilized with 0.1% Triton X-100 in PBS. Cells 

were then centrifuged, washed with PBS, and blocked with 5% FBS in PBS for 45 min at 

room temperature. After blocking, cells were centrifuged and incubated with an anti-BrdU 

mouse monoclonal antibody (Table M5) for 1-2 hours at room temperature, and then 

centrifuged and incubated with the appropriate secondary antibody (Table M6) for 30 min 

at room temperature. Additional control cells without primary antibody were used to set 

up FACS conditions. Cells were then washed with PBS, centrifuged and resuspended in PBS. 

Finally, samples were analysed in a BD FACSCalibur Flow Cytometer (BD Biosciences, 

342975) and CellQuest Pro software. At least 10,000 events were recorded for each 

sample. 

 

3.2.3. Titration of lentiviral production 

As mentioned before (section 1.10.), production of lentiviruses harbouring pBFP-

ISceI plasmid was titrated by measuring BFP expression using a flow cytometer and shRNA 

bearing particles by measuring GFP. To do so, 25.000 cells per well were seeded in 12-well 

plates. The following day, culture medium was removed and 300 µl fresh medium 

supplemented with 8 µg/ml hexadimethrine bromide was added. Then, viruses were 

diluted 1/10 in medium, and 0, 5, 10 or 20 µl of this solution was added to each well for 

infection. After 6 hours of incubation at 37ºC in a P2 biological safety room, the volume 

was completed with 700 µl fresh DMEM. Next day, cells were washed with DMEM and 

incubated for another 24 hours upon addition of fresh medium. Finally, cells were 

harvested by trypsinization and pelleted by centrifugation at 800 g for 5 minutes in FACs 

tubes. Samples were washed with PBS and resuspended in 200 µl PBS.  The percentage of 

BFP or GFP positive cells was measured by cytometry using BD FACSAria (BD Biosciences) 
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and FACSDiva v5.0.3 software. The highest dilution factor that resulted in 25-50% of the 

cells positive for BFP or GFP signal was used to calculate viral titer. 

 

3.2.4. Fluorescent protein analysis 

DNA double-strand breaks repair systems restore the expression of a fluorescent 

protein when a specific pathway repairs the damage (see paragraph 3.1.1.). Cells bearing 

a single copy integration of the reporters SA-GFP, DR-GFP, EJ5-GFP or SSR were 

downregulated for the indicated genes and infected with lentiviruses harbouring pBFP-

ISceI plasmid to generate the break (see paragraph 3.1.2.). Cells were then harvested with 

trypsin, spun down at 500 g for 5 minutes and washed with PBS. Cells were fixed with 4% 

paraformaldehyde for 20 minutes at 4ºC in the dark and later rinsed and resuspended in 

150 µl of fresh PBS. Samples were analysed by flow cytometry using BD FACSAria and 

FACSDiva v5.0.3 software. The percentage of green cells, and red cells in the case of SSR 

system, was calculated from a total of 10.000 events that were BFP positive, i.e. harbouring 

the I-SceI nuclease.  

Furthermore, as mentioned before (section 1.5.), taking advantage of the presence 

of a GFP gene on the plasmids shNT and shCtip, miPSC self-renewal was analysed by flow 

cytometry. miPSCs transducted with shNT or shCtip were seeded in 6-well plates and 

maintained changing the media every day. Cells were passed once a week for three weeks 

and in each pass, part of the cells were collected in FACs tubes. Cells harvested were 

centrifuged at 300 g for 5 min and washed with PBS once. Samples were then centrifuged, 

resuspended in PBS and GFP expression in each cell was then measured by cytometry using 

BD FACSCalibur Flow Cytometer (BD Biosciences, 342975) and CellQuest Pro software. At 

least 10,000 events were scored for each sample. 

 

3.2.5. Cell sorting 

Cells expressing GFP were harvested using accutase, centrifuged at 300 g for 5 min, 

and washed once with PBS. Cells were then centrifuged, 5x106 cells were resuspended in 

500 µl sorting solution (1X PBS and 5 mM EDTA) and filtered using 70 μm Sterile Cell 
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Strainers (Corning, 352350). Cells expressing GFP were separate from the total population 

by cytometry using BD FACSAria (BD Biosciences), and they were collected in FBS (Sigma, 

F7524). Sorted cells were centrifuged, resuspended in DMEM and cultured.  

 

3.3. Clonogenic survival assay 

To study cell survival after damage, clonogenic assays with different DSB-inducing 

agents were performed as described previously (Puck et al., 1956).  

Double-strand breaks were produced by ionizing radiation, PARP inhibition or by 

treatment with topoisomerase inhibitors camptothecin (Sigma, C9911) and etoposide 

(VP16; Sigma, E1383). First, U2OS cells were subjected to downregulation or 

overexpression of indicated proteins and seeded in 6-well plates at different 

concentrations in triplicates. For IR, 250 and 500 cells were seeded and for PARPi, CPT and 

VP16 treatments, 500 and 1000 cells were seeded per well. The following day, DNA was 

damage by different procedures. On the one hand, cells were irradiated with doses of 0, 2 

or 4 Gy using an irradiator device that emits gamma rays (BIOBEAM GM 8000, Gamma-

Service Medical GmbH). On the other hand, acute treatments (1 hour) with different 

concentrations of PARP or topoisomerase inhibitors were used, using DMSO as control. 

Concentrations used for such treatments were 0.01 µM, 0.1 µM and 10 µM μM of PARP 

inhibitor Olaparib (AstraZeneca, AZD2281), 0.01 µM, 0.05 µM and 0.1 µM of camptothecin 

and 5 µM and 10 µM of etoposide. Cells were incubated with drugs or DMSO for 1 hour 

and then were washed twice with PBS and fresh medium was added to each well. Cells 

were then grown at 37ºC for 8-9 days to allow colonies formation. Once colonies were big 

enough, they were fixed and visualized by staining with 0.5% crystal violet (Merck, 

1.15940.0025) diluted in 20% ethanol, followed by washes with water to remove the 

excess of staining. The plates were dried and the number of colonies per well was scored 

for each condition and normalized to the untreated condition for each cell type. 
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3.4. Microscopy  

3.4.1. RPA/γH2AX foci immunofluorescence 

U2OS cells downregulated or overexpressed for different proteins were seeded on 

coverslips (Labolan, 20012). Cells growing on coverslips were irradiated (10 Gy) or mock 

treated, incubated for 1 hour to allow foci formation, washed once with cold PBS and 

collected. Coverslips were treated with pre-extraction buffer (25 mM Tris-HCl pH 7.5, 50 

mM NaCl, 1 mM EDTA, 3 mM MgCl2, 300 mM sucrose and 0.2% Triton X-100) for 5 min on 

ice to remove the nucleoplasmic and cytoplasmic proteins, leaving behind the chromatin-

bound and matrix-associated proteins. Cells were then washed once with cold PBS, fixed 

with 4% paraformaldehyde (w/v) in PBS for 15 minutes on ice, washed three times with 

PBS and incubated for 1 h with blocking buffer (5% FBS in PBS). Afterwards, cells were co-

stained with the appropriate primary antibodies (Table M5) in blocking buffer for 2 h at 

room temperature, washed three times with PBS and then co-immunostained with the 

appropriate secondary antibodies (Table M6) in blocking buffer for 1 hour at room 

temperature in the dark. Coverslips were washed again with PBS, dehydrated into 

increasing concentrations of ethanol, dried and mounted onto glass slides using 

Vectashield mounting medium containing 4',6-diamidino-2-phenylindole (DAPI) (Vector 

Laboratories, H-1200). Samples were visualized using Leica AF6000 fluorescence 

microscope and a 63x objective. In each experiment, at least 200 cells were analysed. 

 

3.4.2. BRCA1/γH2AX foci immunofluorescence 

U2OS cells downregulated or overexpressed for different proteins were grown on 

coverslips, irradiated (10 Gy) or mock treated, incubated for 1 hour to allow foci formation, 

washed once with cold PBS and collected. Coverslips were treated with pre-extraction 

buffer (10 mM PIPES pH 6.8, 50 mM NaCl, 3 mM EDTA, 300 mM sucrose, 0.5% Triton X-

100 and 1X protease inhibitor [Roche, 11873580001]) for 5 min on ice and washed once 

with cold PBS. Cells were subjected to fixation, blocking, staining and mounting as 

previously described (section 3.4.1.). 
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3.4.3. RIF1/γH2AX foci immunofluorescence 

U2OS cells were downregulated or overexpressed for different proteins. Cells were 

grown on coverslips, irradiated (10 Gy) or mock-irradiated the next day and incubated for 

1 hour at 37ºC for foci formation before being collected. Cells were washed once with cold 

PBS, fixed with 4% paraformaldehyde (w/v) in PBS for 15 min at room temperature, 

washed twice with PBS and permeabilized with 0.25% Triton X-100 diluted in PBS for 15 

min at room temperature. Coverslips were washed twice with PBS and blocked for at least 

1 hour with 5% FBS diluted in PBS. Incubation with primary and secondary antibodies, 

coverslips mounting and analysis were carried out as for RPA/γH2AX foci 

immunofluorescence (paragraph 3.4.1.), using the appropriate antibodies (Tables M5 and 

M6). 

 

3.4.4. Single-molecule analysis of resection tracks (SMART) 

SMART assay was performed as previously described (Huertas and Cruz-García, 

2018). The different cell lines were seeded at the required density to reach 80% confluence 

at the time of harvest. Cells were transfected with the indicated siRNAs or plasmids and 

grown in the presence of 10 µg/ml bromodeoxyuridine (BrdU) for 20-24 hours. Cultures 

were then irradiated (10 Gy) and incubated for 1 hour at 37ºC, with the exception of miPSC 

that were not irradiated after treatment with BrdU. Cells were harvested using accutase, 

centrifuged at 400 g for 5 min, resuspended in PBS and embedded in 1 vol of 1% low 

melting agarose (Bio-Rad, 161-3111) diluted in PBS and poured into a casting mould to 

create agarose plugs. For DNA extraction, plugs were incubated in a solution of TE-50 (10 

mM Tris-HCl pH 8 and 50 mM EDTA) containing 1% sarkosyl (Sigma, L5125) and 0.2 mg/ml 

proteinase K (Sigma, P2308) at 50ºC overnight and 6 hours more with a new preparation 

of the same buffer. Plugs were then washed four times with TE-50 for 10 min with gentle 

shaking and washed again four times with TE (10 mM Tris-HCl pH8 and 1 mM EDTA) for 5 

min. Afterwards, to release DNA fibres from the agarose, each plug was melted in 2.5 ml 

of 50 mM 2-(N-morpholino) ethanesulfonic acid (MES) pH 5.7 by incubating 20 - 30 min at 

65ºC. Then, solution was cooled down to 42ºC before adding 3 U β-agarase I (New England 
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Biolabs, M0392L) diluted in 100 µl MES and incubated overnight at 42ºC. To stretch DNA 

fibres, silanized coverslips (Genomic Vision, COV-002-RUO) were dipped into the DNA 

solution for 15 min at room temperature and pulled out at constant speed (300 μm/sec). 

Coverslips were baked for at least 2 hours at 65ºC for DNA crosslinking. For 

immunodetection, coverslips were fixed to slides and blocked with 1% BSA in PBS with 

0.1% Triton X-100 (PBS-T) for 15 min and incubated with anti-BrdU mouse monoclonal 

antibody (Table M5) diluted in PBS-T for 45 min at room temperature. Slides were washed 

five times with PBS-T for 2 min each and then incubated with the fluorescent secondary 

antibody (Table M6) diluted in PBS-T for 30 min at room temperature in the dark. Finally, 

coverslips were washed again with PBS-T, dried, mounted with 20 µl ProLong Gold 

Antifade Reagent (Molecular Probes, P36930) and stored at -20ºC. 

DNA fibres were observed with a Nikon Eclipse NI-E fluorescence microscope with 

automatized stage and a 40x objective. The images were recorded and processed with NIS 

ELEMENTS Nikon software. For each experiment, at least 200 DNA fibres were analysed, 

and their length was measured with Adobe Photoshop CS4 Extended version 11.0 (Adobe 

Systems Incorporated). 

 

3.5. Array Comparative Genomic Hybridization 

For array comparative genomic hybridization, CNV was detected from genomic DNA 

isolated from iPSC clones and hybridized to SurePrint G3 Mouse CGH Microarray 4x180K 

(CNV) (Agilent Technologies) following manufacturer’s instructions. CNV was identified 

using Agilent CytoGenomics v2.0 analysis software, following ADM-2 algorithm suggested 

by Agilent Technologies. The assay was carried out by the CNIO service. 
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4. Statistical analysis 

Statistical analyses used for each experiment are specified in the pertinent figure 

legend. All analyses were performed with PRISM software (Graphpad Software Inc.). 

Statistically significant differences were labelled with one, two, or three asterisks if                  

p < 0.05, p < 0.01 or p < 0.001, respectively. Biologically relevant comparisons that were 

not statistically significant are stated as ns. 
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5. Tables of materials 

Table M1. Cell lines used in this thesis. 

Cell line Description Selection Source/Reference 

MEFs-i4F 

C57BL/6 primary MEFs carrying a 

doxycycline-inducible tetracistronic 

cassette encoding the four murine 

reprogramming factors Oct4, Sox2, 

Klf4, and c-Myc 

No 
Kind gift from M. Serrano 

(Abad et al., 2013)  

miPSC 
Mouse induced-pluripotent stem 

cells 
No This study 

ES-D3 Embryonic stem cells No 
Kind gift of B. Soria and K. 

Hmadcha (CABIMER)  

U2OS Human osteosarcoma No ATCC-HTB-96 

HEK293T Human embryonic kidney No ATCC CRL-11268 

U2OS DR-GFP 
U2OS cell line with DR-GFP 

reporter integrated 
Puromycin 

Kind gift from Dr. S. P. 

Jackson  

U2OS SA-GFP 
U2OS cell line with SA-GFP reporter 

integrated 
Puromycin 

Generated in our lab by Ana 

López Saavedra using 

hprtSAGFP plasmid 

(Addgene, 41594) 

U2OS EJ5-

GFP 

U2OS cell line with EJ5-GFP 

reporter integrated 
Puromycin 

Generated in our lab  by Ana 

López Saavedra  using 

pimEJ5GFP plasmid 

(Addgene, 44026) 

U2OS SSR 
U2OS cell line with SSR reporter 

integrated 
G418 

Generated in our lab by Dr. 

Daniel Gómez Cabello 

(Gomez-Cabello et al., 2013) 
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Table M2. siRNAs used in this thesis. 

siRNA Sense sequence (5’-3’) Source 

Non-target (NT) UGGUUUACAUGUCGACUAA Sigma 

CtIP GCUAAAACAGGAACGAAUC Sigma 

KLF4#1 CCGAGGAGUUCAACGAUCU Sigma 

KLF4#2 GACCUGGACUUUAUUCUCU Sigma 

PRMT5 CCGCUAUUGCACCUUGGAA Sigma 
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Table M3. Plasmids used in this thesis. 

Plasmid Description 
Selection 
marker 

Source/Reference 

pRRL_sEF1a_

HA.NLS.SceOP

T.T2A.TagBFP 

Vector containing the I-SceI and BFP 

genes for simultaneous induction of 

the endonuclease and labelling of 

the transfected cells 

Ampicillin 
Addgene (31484) 

(Certo et al., 2011) 

p8.91 
Vector used for expression of 

lentiviral capsid proteins 

Ampicillin/ 

Puromycin 

Kind gift from Dr. 

Felipe Cortés Ledesma 

pVSVG 
Vector used for expression of 

lentiviral envelope proteins 

Ampicillin/ 

Puromycin 

Kind gift from Dr. 

Felipe Cortés Ledesma 

pLKO.1 eGFP 

shNT 

Vector used for expression of shRNA 

against a non-target sequence 
 Sigma (SHC005) 

pLKO.1 eGFP 

shCtip 

Vector used for expression of shRNA 

against Ctip 

Ampicillin/ 

Puromycin 

Generated in our lab  

by Ana López Saavedra 

from pLKO.1-mshCtip 

plasmid 

 

pMX Mammalian Expression, Retroviral Ampicillin 
Kind gift from Dr. S. P. 

Jackson 

pMX-KLF4 pMX vector containing KLF4 gene Ampicillin 
Kind gift from Dr. 

Francisco Bedoya 

pMX-KLF43K 
pMX vector containing mutant 

R374K, R376K and R378K KLF4 gene 
Ampicillin This study 
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Table M4. Primers used in this thesis. 

Primer name Sequence (5’-3’) Use 

ACTB qPCR Fw ACGAGGCCCAGAGCAAGA RT-qPCR of Actin 

ACTB qPCR Rv GACGATGCCGTGCTCGAT RT-qPCR of Actin 

mCtIP qPCR Fw TTCCTGCTCAAGACACCGATT RT-qPCR of mouse Ctip 

hCtIP qPCR Rv CGTCTGAGTAGAAGGAAAACCAACT RT-qPCR of mouse Ctip 

NANOG qPCR Fw AGCAGATGCAAGAACTCTCCTCCA RT-qPCR of Nanog 

NANOG qPCR Rv CCGCTTGCACTTCATCCTTTGGTT RT-qPCR of Nanog 

KLF4 qPCR Fw ACCCACACAGGTGAGAAACC RT-qPCR of KLF4 

KLF4 qPCR Rv ATGTGTAAGGCGAGGTGGTC RT-qPCR of KLF4 

hCtIP qPCR Fw AGAAATTGGCTTCCTGCTCAAG RT-qPCR of CtIP 

hCtIP qPCR Rv GAAAACCAACTTCCCAAAAATTCTC RT-qPCR of CtIP 

Mut. KLF4 Fw 
GGAGCCCAAGCCAAAGAAGGGAAAA

AAATCGTGGCCCCGGAAAAG 

Mutation R374K, R376K and R378K of 

KLF4 with QuickChange Multisite kit 

Mut. KLF4 Rv 
CTTTTCCGGGGCCACGATTTTTTTCCC

TTCTTTGGCTTGGGCTCC 

Mutation R374K, R376K and R378K of 

KLF4 with QuickChange Multisite kit 
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Table M5. Primary antibodies used in this thesis. 

Antibody  Species Reference/Suppliers Application (dilution) 

α-tubulin Mouse Sigma (T9026) WB (1:500) 

CtIP Mouse Kind gift from R. Baer WB (1:500) 

BrdU Mouse Amersham (RPN202) SMART, Flow Cyt (1:500) 

γH2Ax Rabbit Cell Signaling (2577L) IF (1:500), WB (1:1000) 

NANOG Rabbit Bethyl Laboratories (A300-397A) WB (1:500) 

CHK1 Mouse Santa Cruz (sc-8408) WB (1:500) 

Caspase-3 Mouse Novus (31A1067) WB (1:50) 

KLF4 Rabbit Santa Cruz (sc-20691) WB (1:500) 

RPA32 Mouse Abcam (ab2175) IF (1:500) 

BRCA1 Mouse Santa Cruz (sc-6954) IF (1:500) 

RIF1 Goat Santa Cruz (sc-55979) IF (1:100) 

TIP60 Mouse Santa Cruz (sc-166323) WB (1:500) 

PRMT5 Rabbit Abcam (ab31751) WB (1:1000) 
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Table M6. Secondary antibodies used in this thesis. 

Antibody  Species Reference/Suppliers Application (dilution) 

Alexa Fluor 594 anti-mouse Goat Invitrogen (A11005) IF, SMART (1:1000) 

Alexa Fluor 488 anti-rabbit Goat Invitrogen (A11034) IF (1:1000) 

Alexa Fluor 647 anti-mouse Goat Invitrogen (A21235) Flow Cyt (1:1000) 

Alexa Fluor 594 anti-goat Donkey Invitrogen (A11058) IF (1:1000) 

Alexa Fluor 488 anti-rabbit Donkey Invitrogen (A21206) IF (1:1000) 

IRDye 680RD anti-mouse IgG 

(H+L) 
Goat LI-COR (926-68070) WB (1:5000 - 1:15000) 

IRDye 800CW anti-rabbit IgG 

(H+L) 
Goat LI-COR (926-32211) WB (1:5000 - 1:15000) 
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SUMMARY
Acquired genomic instability is one of the major concerns for the clinical use of induced pluripotent stem cells (iPSCs). All reprogram-

mingmethods are accompanied by the induction of DNA damage, of which double-strand breaks are themost cytotoxic andmutagenic.

Consequently, DNA repair genes seem to be relevant for accurate reprogramming tominimize the impact of such DNA damage. Here, we

reveal that reprogramming is associated with high levels of DNA end resection, a critical step in homologous recombination. Moreover,

the resection factor CtIP is essential for cell reprogramming and establishment of iPSCs, probably to repair reprogramming-induced DNA

damage. Our data reveal a new role for DNA end resection in maintaining genomic stability during cell reprogramming, allowing DNA

repair fidelity to be retained in both human and mouse iPSCs. Moreover, we demonstrate that reprogramming in a resection-defective

environment has long-term consequences on stem cell self-renewal and differentiation.
INTRODUCTION

The ability to generate induced pluripotent stem cells

(iPSCs) has been heralded to have great potential in regen-

erative medicine and research (Yu et al., 2007; Takahashi

and Yamanaka, 2006). However, this potential is currently

under debate, due to evidence that iPSCs can acquire DNA

damage and genomic instability during the reprogram-

ming process (Ruiz et al., 2015; Liang and Zhang, 2013;

Gore et al., 2011; Mayshar et al., 2010). In fact, even just

expressing the reprogramming factors, regardless of the

methodology used to generate them, causes DNA damage,

mainly by replication stress (Ruiz et al., 2015; Gonzalez

et al., 2013; Tilgner et al., 2013). It is critical, however, to

obtain ‘‘safe’’ iPSCs that are genetically identical to their

parent cells for clinical use. An essential prerequisite for

this is to obtain a thorough understanding about how the

DNA repair machinery acts in these cells.

Several pieces of evidence suggest that pluripotent stem

cells need more active DNA repair pathways than somatic

differentiated cells (Rocha et al., 2013). Supporting this

view, members of the DNA damage response (DDR)

have been shown to prevent genomic instability in iPSCs

(Hong et al., 2009; Kawamura et al., 2009; Li et al., 2009).

Indeed, proteins involved in the repair of DNA double-

strand breaks (DSBs), in both homologous recombination

(HR) and non-homologous end joining (NHEJ), have a rele-

vant role in reprogramming efficiency (Gonzalez et al.,

2013; Ruiz et al., 2013; Tilgner et al., 2013). HR is required
432 Stem Cell Reports j Vol. 8 j 432–445 j February 14, 2017 j ª 2016 The A
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for an error-free repair of DSBs, using homologous se-

quences (normally from the sister chromatid) (Heyer

et al., 2010), and for restarting replication forks stalled dur-

ing replication stress (Petermann and Helleday, 2010). In

contrast, NHEJ competes with HR for DSB repair in a

more error-prone pathway (Gomez-Cabello et al., 2013;

Huertas, 2010; Lieber, 2008). DNA end resection is a key

event that regulates the DSB repair pathway choice be-

tween NHEJ and HR. This mechanism generates single-

strand DNA (ssDNA) by 50 to 30 degradation at both sides

of a break (Huertas and Jackson, 2009; Jackson and Bartek,

2009). Although resected DNA is an obligate substrate for

HR, it blocks NHEJ (Heyer et al., 2010). CtIP is a major

player in the decision between HR and NHEJ as it allows

for ssDNA formation, precluding binding of the NHEJ ma-

chinery to DNA breaks (Huertas, 2010). DNA end resection

is highly regulated bymultiple signals, including cell-cycle-

dependent CtIP phosphorylation (Sartori et al., 2007).

Cells depleted of CtIP fail to repair DNA DSBs by HR, are

sensitive to DNA damaging agents, and accumulate chro-

mosomal aberrations in response to DNA damage (Sartori

et al., 2007; Huertas and Jackson, 2009).

Here, we identified DNA end resection as one of the pre-

dominant mechanisms required for cell reprogramming in

human andmouse iPSCs (miPSCs), most likely based on its

function in repairing replication-induced DNA insults. In

addition, we have determined that CtIP is essential for re-

programming efficiency in both organisms. Cells deficient

for CtIP underwent apoptosis rather than reprogramming,
uthor(s).
ecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. DNA End Resection Is an Essential Mechanism for Cell Reprogramming
(A) FACS analysis of BrdU exposed by DNA end resection in MEFs and their respective reprogrammed cells (miPSCs). p Values were calculated
using the Kolmogorov-Smirnov test. At least three independent experiments were performed. Representative histogram is shown.
(B) Resected DNA length obtained by SMART technique in MEFs and miPSCs. Error bars indicate ±SEM of three independent experiments.
(C) Representative images of DNA fibers visualized with the anti-BrdU antibody.
(D) Same as (A) except using human foreskin fibroblasts (HFFs) and the human iPSCs (hiPSCs) derived from them. At least three inde-
pendent experiments were performed. Representative histogram is shown.
(E) Same as (B) except using human cells. Error bars indicate ±SEM of three independent experiments.
(F) Same as (C) except using human cells.

(legend continued on next page)
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probably due to an unbearable load of DNA damage during

the process. Those cells that could reprogram with low

levels of CtIP acquired a burden in terms of genomic muta-

tions that compromised their long-term survival and

ability to differentiate again. We suggest that CtIP has a

genomic stability protector role during reprogramming.

Exploiting such a role could contribute to creating geneti-

cally stable iPSCs that meet clinical safety standards for

use in regenerative medicine.
RESULTS

DNA End Resection Increases in Mouse and Human

iPSCs

Cell reprogramming per se, by the expression of reprogram-

ming factors (OCT4, SOX2, KLF4, and c-MYC), increases

DNA damage and genetic instability, mainly by replication

stress (Ruiz et al., 2015). Here, we used a previously re-

ported mouse embryonic fibroblast (MEF) cell line bearing

the doxycycline-inducible system of mouse genes of Klf4,

Oct4, Sox2, and c-Myc to carry out the reprogramming pro-

cess (Abad et al., 2013). First, we analyzed cellular levels of

DNA end resection in MEFs and their corresponding iPSCs

generated by doxycycline treatment. We developed a new

strategy for a readout of DNA end resection based on bro-

modeoxyuridine (BrdU) detection by fluorescence-acti-

vated cell sorting (FACS) analysis using native conditions.

In contrast to standard proliferation assays using BrdU

incorporation, this assay is based on a BrdU epitope that

is hidden in double-stranded DNA, and thereby unavai-

lable to anti-BrdU antibodies under native conditions. Crit-

ically, the assay is non-responsive to DNA replication, and

the epitope is only exposed after formation of ssDNA by

resection. This novel method demonstrated that miPSCs

had more exposed BrdU than primary MEFs not treated

with doxycycline, showing that a higher amount of endog-

enously occurring breaks were resected in reprogrammed

cells (Figure 1A). We further confirmed that this increased

BrdU signal intensity was indeed due to canonical DNA

end resection, as it disappeared when the key resection

factor CtIP was depleted (Figure S1A).

These results demonstrated that the DNA end resection

process was activated in miPSCs in the absence of exoge-

nous damage, most likely due to replication stress and

DNAdamage generated during cell reprogramming.Wehy-

pothesized that this resection activation reflects not only
(G) MEFs and miPSCs were immunoblotted to analyze the indicated
A representative western blot is shown.
(H) Same as (G) except showing protein levels in HFFs and hiPSCs.
sentative western blot is shown.
See also Figures S1–S3.
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an increased number of breaks being processed, but also

a higher processivity of the resection machinery itself.

Thus, we analyzed whether the length of resected DNA

was longer in miPSCs than in MEFs, using a high-resolu-

tion technique to measure the length of resected DNA

in individual DNA fibers (Cruz-Garcia et al., 2014). We

demonstrated that miPSCs generated significantly longer

tracks of ssDNA compared with the primary differentiated

parent cells (Figures 1B and 1C). A 50% increase in the me-

dian length of resected DNA was observed in pluripotent

cells with respect their MEF control (Figures 1B and 1C).

Again, we could demonstrate that this was caused by acti-

vation of the canonical resection machinery, as this

increased length of ssDNA depended on CtIP activity (Fig-

ure S1C). Strikingly, the number of lesions and the amount

of resected DNA following reprogramming to iPSCs was

equivalent to that seen after treating primary cells with

high doses of exogenous damage (Figures S1B and S1C),

in agreement with the idea that this process represents a

severe challenge for genomic integrity.

To address whether the activation of resection during cell

reprogramming was evolutionarily conserved, we investi-

gated whether DNA end processing also increases during

reprogramming of primary human cells. We used four

retroviral vectors bearing one of the OSKM factors (OCT4,

SOX2, KLF4, or c-MYC) to generate human iPSCs (hiPSCs)

from human foreskin fibroblasts (HFFs). Similar to miPSCs,

hiPSCs showed both increased ssDNA-BrdU exposure, indi-

cating a higher number of resected DSBs (Figure 1D) and

longer resected tracks (Figures 1E and 1F) than the parental

HFF somatic cells, despite the lack of any exogenous source

of DNA damage. In fact, this effect in hiPSCs was more

exacerbated than in miPSCs, as hiPSCs had up to a 3-fold

gain on the length of resected DNA. All of our results

point toward a hyper-activation of DNA resection during

reprogramming in mouse and human cells, which likely

minimizes the impact of the DNA damage caused during

the process.
CtIP Levels Increase in miPSCs and hiPSCs

CtIP activates DNA end processing in HR and is known to

be a major regulator of DNA end resection (Cruz-Garcia

et al., 2014;Wang et al., 2013; Nakamura et al., 2010; Huer-

tas and Jackson, 2009; Huertas et al., 2008; Sartori et al.,

2007). Indeed, we observed that CtIP was required for

the resection hyper-activation observed in miPSCs (Figures
proteins. At least three independent experiments were performed.

At least three independent experiments were performed. A repre-
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Figure 2. CtIP Deficiency Impairs Mouse Cell Reprogramming
(A) Doxycycline-inducible OSKM MEFs were transduced with shCtIP and shNT lentivirus prior to induction with doxycycline. Re-
programming efficiency was analyzed by counting the number of colonies in triplicate of each biological sample. Error bars indicate ±SEM
of a biological triplicate.
(B) Representative pictures of miPSC morphology.
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(D) Representative cell-cycle plots of reprogrammed MEFs in each condition. At least three independent experiments were performed.

(legend continued on next page)
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S1A and S1C). Congruently, we observed that CtIP expres-

sion and protein levels increased in miPSCs with respect

to primary MEFs, concurrent with the expression of the

pluripotency marker Nanog (Figures 1G and S2A–S2C).

We confirmed by immunoblot that hiPSCs also incre-

mented the expression and protein levels of CtIP in a

concomitant manner to NANOG and OCT4 (Figures 1H,

S2D, and S2E). These results clearly suggested that the hy-

per-active DNA resection in iPSCs requires CtIP upregula-

tion during the reprogramming process, most likely to

manage an increased load of DSBs that have to be repaired

by HR. Thus, both mouse and human iPSCs showed

intrinsic increased levels of CtIP and DNA end resection

compared with their parent cells.

CtIP Is Required for Efficient Cell Reprogramming for

Both Mouse and Human Cells

To determine the relevance of CtIP and its upregulation

during cell reprogramming, we forced the induction pro-

cess in cells with reduced levels of the CtIP protein. For

this, we transduced MEFs with short hairpin RNA (shRNA)

lentivirus against CtIP or control shRNA (shNon-Target

[shNT]), which also contained the OSKM factors under

doxycycline induction, and then analyzed them for reprog-

ramming (Figure S2A). Three weeks after induction, we

observed a dramatic and significant reduction of the num-

ber of colonies with stem cell-like morphology in CtIP-

depleted cells comparedwith shNTcontrol cells (Figure 2A).

Moreover, CtIP-depleted colonies were smaller than con-

trol ones (Figure 2B). In agreement with results published

previously (Chen et al., 2005), and as a control of the

CtIP depletion effects in primary MEFs, we observed less

proliferation in CtIP-downregulated MEFs (Figure S3A).

However, this reduced proliferation was not associated

with an increase in sub-G1 phase cells (Figure 2C, –Dox),

even though, as expected, CtIP deficiency provoked a sig-

nificant increase in DNA damage, as measured by gH2ax

(Figures 2F and 2G). Interestingly, in agreement with

the idea that unrepaired DNA damage during cell reprog-

ramming triggers apoptosis as a consequence of genomic

instability, we observed that reprogrammed mouse cells

expressing an shRNA against CtIP showed a strong increase

in sub-G1 cells 10 days after doxycycline induction (Figures

2C and 2D), compared with either reprogrammed cells

expressing a control shRNA or MEFs depleted for CtIP.
(E) Immunoblot of proactive and active/cleavage caspase-3 in repr
A representative western blot is shown of three independent experim
(F) FACS quantification of cells positive for gH2ax. Other details as in
(G) The indicated proteins were immunodetected in samples from OSK
A representative western blot is shown of three independent experim
t Test statistical analyses in (A), (C), and (F) were performed using a
See also Figures S2 and S3.
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Further, we observed an increase of proteolytic cleavage

and activation of caspase-3 in reprogrammed MEFs with

short hairpin CtIP (shCtIP) at day 10 (Figure 2E), confirm-

ing that the increased levels of sub-G1 were indeed due to

induced apoptosis.

We also detected that the amount of the DNA damage

marker gH2ax increased slightly but significantly in cells

containing shCtIP versus those with shNT, as shown by

both FACS analysis and immunoblot (Figures 2F and 2G).

Even though this difference was also observed in MEFs, it

was more intense in reprogrammed cells, in agreement

with CtIP playing a more critical role in repairing DNA

damage during cell reprogramming. This suggests that

excessive damage prompted the observed induction of

apoptosis. Pluripotent statuswas confirmed by the observa-

tion of Nanog protein levels (Figures 2G, S2A, and S2C).

Efficient reprogramming requires functional repair path-

ways to favor an error-free dedifferentiation. In agreement

with this, DDR was activated during reprogramming pro-

cess, as shown by the increase in Chk1, gH2ax, and CtIP

protein levels (Figures 2G and S2A). Reprogrammed cells

that had downregulated CtIP also had increased DNA dam-

age levels compared with reprogrammed control cells at

10 days after doxycycline induction (Figure 2G), support-

ing the idea that replication stress causes DNA damage

and Chk1 activation during reprogramming (Ruiz et al.,

2015).

Congruently, hiPSCs obtained from HFF cells by expres-

sion of OSKM factors in the presence of an shRNA against

CtIP showed an increased sub-G1 peak (Figures 3A and

3B), an enrichment of the activated form of caspase-3 (Fig-

ure 3C) and elevated numbers of gH2AX-positive cells (Fig-

ure 3D), when compared with the same cells reprogramed

bearing a control shRNA. In addition, expressing shCtIP

constitutively during reprogramming completely blocked

iPSC colony generation, while expressing control shRNA

had no effects (not shown). We wondered whether this

strong effect was due to cell death caused by a lack of

CtIP in HFF cells (e.g., an excessive depletion of CtIP) or re-

flected a problem during reprogramming. Strikingly, CtIP

depletion in HFF cells without OSKM expression neither

changed their proliferation rate (Figure S3B) nor signifi-

cantly induced DNA damage or apoptosis, measured as

sub-G1 cells (Figures 3A and 3D). Thus, we conclude that

the lack of iPSCs was not caused by problems in HFF cells,
ogrammed MEFs at day 10 (+Dox) bearing the indicated shRNAs.
ents.
(C).

M-induced MEFs after 10 days of continuous doxycycline treatment.
ents.
t least three independent experiments.
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but by a critical role of CtIP in human cell reprogramming.

To confirm this relevant role, we next generated iPSCs with

limited CtIP downregulation by using an isopropyl b-D-1-

thiogalactopyranoside (IPTG)-inducible shRNA (shCtIP-

IPTG) and titrating IPTG concentration. Indeed, and

similar to miPSCs, HFF cells partially depleted of CtIP by

IPTG induction also formed fewer colonies, confirming

that they had an impaired reprogramming efficiency (Fig-

ure 3E). In addition, colonies partially deficient for CtIP

were smaller than control colonies (Figure 3F). Indeed,

although we were able to expand several clones from the

iPSCs with an IPTG-induced control shRNA (shNon-target

[shNT] clones), we only successfully expanded one clone of

iPSCs bearing the shCtIP-IPTG under IPTG induction (CtIP

C1 clone; Figure 3G). Interestingly, we could recover CtIP

expression on this clone by removing IPTG. As an addi-

tional control, we reprogrammed HFF cells containing

shCtIP-IPTG to iPSCs in the absence of IPTG (C4 clone)

(Figure 3G). Hence, by adding IPTG at different time

points, we could compare distinct states of HFF cells after

reprogramming: (1) reprogrammed in the absence of CtIP

(C1 clone); (2) reprogrammed in the presence of CtIP and

depleted of CtIP once pluripotency had been established

(C4 clone); and (3) always with CtIP (Figure 3G). Analyzing

these reprogrammed clones for chromosome number vari-

ation, we found that the C1 clone (reprogrammed without

CtIP) had a significant increase in chromosomal aberra-

tions, measured as aneuploidy, compared with those from

the other two conditions (Figure 3H). This is in agreement

with our results showing increased DNA damage markers

when CtIP is absent during reprogramming (Figure 3D).

We provide strong evidence that CtIP plays a role in avoid-

ing the genomic instability generated specifically during

cell reprogramming.

Normal CtIP Levels during Reprogramming Are

Required for Maintenance and Differentiation

of iPSCs

Due to the difficulty of expanding iPSC colonies fromMEFs

orHFFs reprogrammed in the absence of CtIP, wewondered
(C) Reprogrammed HFF cells bearing the indicated shRNAs at day 10 w
caspase-3. A representative western blot is shown of three independe
(D) Percentage of positive cells for gH2AX. Other details as in (A).
(E) Reprogramming efficiency of human cells containing an IPTG-induc
analyzed in three independent experiments. Error bars indicate ±SEM
(F) Representative images of hiPSC morphology in cells harboring the
as indicated.
(G) Western blot analysis against the CtIP and OCT4 proteins in HF
presence (+) or absence (�) of IPTG. A representative western blot is
(H) Analysis of chromosomes per metaphase in iPSCs harboring IPTG-
absence (�) of IPTG. Tukey’s multiple comparison test was used with
See also Figure S2.
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whether the genomic instability generated during reprog-

ramming in CtIP-downregulated cells affected self-renewal

and differentiation attributes. In fact, it is known that defi-

ciency in BRCA1, another protein involved in HR and DNA

end resection that interacts with CtIP, impairs mainte-

nance of iPSCs in culture (Gonzalez et al., 2013). To deepen

our understanding about the role of CtIP, we selected

several miPSC clones obtained in the presence of shCtIP

or a control shRNA. Taking advantage of the presence of

theGFP gene on the plasmid, we analyzed the permanence

of GFP cells in the colonies as a proxy for the presence of

the shRNA targeting CtIP. We determined that all control

shNT-harboring iPSC colonies maintained higher numbers

of GFP cells than shCtIP iPSCs, suggesting that the cells

that continued to grow and to maintain cell pluripotency

had a tendency to lose the cassette containing GFP and

the shRNA against CtIP (Figures 4A and 4B). Strikingly,

this effect was specific for iPSC cells that had been reprog-

rammed in the presence of shCtIP and was not observed

in primaryMEFs with shCtIP (Figure S4). Thus, collectively,

miPSC colonies reprogrammed with CtIP depletion had a

natural selection favoring cells with normal CtIP expres-

sion (Figure 4C). This could explain the high CtIP levels

in cells bearing shCtIP (Figure S2A). To study the kinetics

of loss of shCtIP expression, we sortedGFP-positivemiPSCs

generated from cells containing either shNT-GFP or shCtIP-

GFP and analyzed them for GFP disappearance during

growth (Figure 4D). We found that GFP cells were rapidly

purified from the cell population containing shCtIP-

GFP compared with control cells, with a reduction in

the number of GFP-positive cells of up to 50% after only

three passages. We next performed a self-renewal assay

using shCtIP- or shNT-miPSCs after enriching the pop-

ulations of shRNA-bearing cells by cell sorting, using

GFP as a marker. Again, reprogrammed cells depleted

for CtIP formed less-viable colonies than control cells

(Figures 4E and 4G). To differentiate whether this effect

of CtIP deficiency was due to defects gained during cell

reprogramming or those acquired during the plurip-

otent state of the reprogrammed cells, we transducted
ere immunoblotted to analyze for the proactive and active forms of
nt experiments.

ible shRNA against CtIP (shCtIP-IPTG) or the control shNT-IPTG was
. Statistical significance was performed using a t test.
inducible shCtIP-IPTG obtained in the presence or absence of IPTG,

F cells and hiPSC clones bearing the indicated shRNAs and in the
shown of three independent experiments.
inducible shCtIP or shNT and reprogrammed in the presence (+) or
n > 75.
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Figure 4. The Levels of CtIP During Re-
programming Affect iPSC Maintenance
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colonies isolated after MEFs reprogramming
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(B) Representative bright field (BF) and GFP
images of miPSCs obtained by microscopy.
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(n = 6 and n = 10). Statistical analysis was
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(D) Percentage of iPSCs harboring shCtIP-
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sages of the cells. The average and SD of five
independent experiments is plotted. t test
analysis for each passage is shown. **p <
0.01, ***p < 0.005.
(E) The same amount of miPSCs re-
programmed either in the presence (white
bars) or absence (black bars) of CtIP were
seeded at low density and the number of
each colony was measured. The relative
number of colonies formed from three in-
dependent experiments is plotted. The t test
was performed to compare both conditions.
(F) Same as (E) but with cells reprogrammed
in the presence of CtIP, and then transduced
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in (E). ns, not significant.
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(H) Same as in (G) but with cells trans-
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programming.
See also Figures S4 and S5.
already-reprogrammed iPSCs with either an shRNA against

CtIP or against a control sequence and analyzed them for

self-renewal by colony formation. Interestingly, in this

scenario, CtIP downregulation did not modify self-renewal

capacity compared with control cells (Figures 4F and 4H).

Along the same lines, the murine D3 embryonic stem cell

line (ES-D3) was not affected by CtIP depletion in self-

renewal experiments (Figures S5A–S5C).
As self-renewal was compromised by inherited defects

aroused upon cell reprogramming in the absence of CtIP,

we wondered whether the differentiation process could

also be jeopardized in a similar way. Despite the difficulty

in expanding CtIP-deficient miPSCs, we were able to force

mouse embryonic body differentiation from several clones,

by removing the growth factor, leukemia inhibitory factor

(LIF) for 6 days. We observed that miPSCs reprogrammed
Stem Cell Reports j Vol. 8 j 432–445 j February 14, 2017 439
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under CtIP depletion also generated embryonic bodies

(EBs) smaller than their respective control cell reprog-

rammed in the presence of the control shNT, hence

showing a clear deficiency in differentiation (Figures 5A–
440 Stem Cell Reports j Vol. 8 j 432–445 j February 14, 2017
5C). We then tested if, as for self-renewal, this defect was

a consequence of problems inherent to reprogramming

in aCtIP-defective environment rather than a consequence

of the loss of an active role of CtIP in stem cell



differentiation. Indeed, CtIP downregulation in already-re-

programmed miPSCs (Figures 5D and 5E) or ES-D3 cells

(Figures S5D–S5F) did not affect their differentiation capac-

ity. Collectively, these data confirmed that genomic insta-

bility created during cell reprogramming under CtIP defi-

ciency is the main cause of impairment of self-renewal

and the differentiation process of miPSCs.

To strengthen our hypothesis, we analyzed copy number

variation (CNV) between early passes of shNT- or shCtIP-

iPSC clones (two of each). We found a large difference in

the number of CNV (>50 CNV) between miPSCs reprog-

rammed with CtIP depletion and their respective control

cells with shNT (Figure 5F).
DISCUSSION

Genomic instability is one of the biggest concerns in the

potential clinical use of iPSCs (Rocha et al., 2013). The chal-

lenging field of regenerative medicine requires an in-depth

understanding of the causes and consequences of genetic

abnormalities that arise during the reprogramming process

(Studer et al., 2015; Tabar and Studer, 2014; Buganim et al.,

2013). Here, we study mouse and human reprogramming

to iPSCs, to elucidate the role of DNA end resection as a

relevant mechanism for avoiding genomic instability in

this process. We demonstrate that expression of the CtIP

protein, a key protein in DNA end resection (Sartori et al.,

2007), is upregulated during the formation of iPSCs and

is required for efficient reprogramming. A CtIP deficiency

during reprogramming not only drastically impairs the re-

programming process but also endangers the future of the

reprogrammed cells by critically limiting the maintenance

of their pluripotency state and their further differentiation

to EBs. All of these effects are likely caused by the genomic

aberrations acquired by cells during reprogramming. These

severe genomic consequences correlatewith thewell-estab-

lished roles of CtIP in DNA resection, HR, and DSB repair

pathway choice (Sartori et al., 2007; Huertas, 2010;

Gomez-Cabello et al., 2013; López-Saavedra et al., 2016),

rather than reflecting a novel role of CtIP in the reprogram-

ming process. Intriguingly, and unexpectedly, the drastic

effects of these CtIP roles are highly specific to the cell-re-

programming process: CtIP depletion in already-estab-

lished iPSCs or ES cells does not reduce the ability of the

cells to self-renew or differentiate into EBs.We hypothesize

that this phenomenon is related to the load of endoge-

nously induced DNA damage in these different situations.

Cell reprogramming severely increases replication stress

and therefore DNA damage (Ruiz et al., 2015) (see also Fig-

ures 1G, 2F, 2D, 3D, and S2A), while endogenous DNA

damage in fibroblasts or iPSCs (under normal cell culture

conditions) is low. Thus, these differences in the amount
of DNA damage could explain why CtIP is essential during

iPSC formation but not for maintenance of iPSCs or fibro-

blasts. Indeed, CtIP is essential for cell viability in cells

that have been exposed to mutagens that result in high

levels of DNA damage (Sartori et al., 2007; Huertas and

Jackson, 2009) or chromosomal aberrations (Huertas and

Jackson, 2009). Strikingly, and in agreement with this

idea, our data suggest that cell reprogramming in wild-

type human and mouse fibroblasts causes an increase in

DNA resection that is comparable with high doses of

ionizing radiation (Figure S1).

DDR and DNA repair genes have been shown to control

genetic stability during cell reprogramming (Lu et al., 2016;

Rocha et al., 2013; Hong et al., 2009; Kawamura et al., 2009;

Li et al., 2009). Along those lines, we have now demon-

strated that DNA end resection, a key process in DSB

repair by HR, is hyper-activated in cells undergoing reprog-

ramming compared with the parental somatic cells or

already-differentiated cells. During reprogramming, cells

not only have an increase in the amount of breaks that

are resected, but also a gain in processivity, measured as

the length of resected DNA. The most likely explanation

for upregulation of DNA end resection is the occurrence

of DNA damage during reprogramming. This idea is sup-

ported by an increase in the gH2AX marker levels after

expression of reprogramming factors, as observed by us

and others (Ruiz et al., 2015; Gonzalez et al., 2013; Tilgner

et al., 2013). Replication stress, due to the presence of a

stalled replication fork, is a major generator of DNA dam-

age, and this is commonly resolvedmainly by HR ormicro-

homology-mediated end joining (Petermann andHelleday,

2010; Aguilera and Gomez-Gonzalez, 2008). Hence, the

occurrence of DNA damage by replication stress during

iPSC development could explain both the upregulation

and essential role of DNA end resection in reprogramming.

Here we show that CtIP, a bona fide regulator of DNA end

resection (Huertas and Jackson, 2009; Huertas et al., 2008;

Sartori et al., 2007), is upregulated during cell reprogram-

ming, and that it is essential for this process. Similarly,

CHK1 has been suggested to be pertinent to generating

iPSCs (Ruiz et al., 2015). CtIP is known to be a key player

in maintaining genomic stability, and we reasoned that

CtIP could be appropriately activated to repair DSBs gener-

ated by the presence of reprogramming factors. Selective

CtIP depletion during mouse and human cell reprog-

ramming interferes with iPSC generation and triggers

apoptosis. In agreement with these data, BRCA1, which ac-

celerates DNA resection through its interaction with CtIP

(Cruz-Garcia et al., 2014), is also required for successful

reprogramming (Gonzalez et al., 2013). In addition, other

proteins linked to HR repair, such as BRCA2 and RAD51,

are critical for cell reprogramming, at least in mice (Gonza-

lez et al., 2013).
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We also observed that CtIP depletion during cell reprog-

ramming in mouse and human cells hampers the growth

and maintenance of their derived iPSCs. As a matter of

fact, the human C1 clone obtained from cells bearing an

inducible shRNA in the presence of IPTG showed the

same long-term problems in viability regardless of the

restoration of CtIP expression (data not shown, see Fig-

ure 3G for CtIP expression recovery). Likewise, Brca1-defi-

cient MEFs have problems for cell reprogramming, and

the derived iPSCs are unable to establish colonies (Gonza-

lez et al., 2013). This clearly differentiates proteins involved

in early steps of HR, such as CtIP and BRCA1 in resection,

from those affecting later steps, such as BRCA2 and

RAD51, which are in fact dispensable for iPSC colony

expansion (Gonzalez et al., 2013). We reasoned that iPSCs

are defective for DNA end resection, which is critical for

choosing between HR and NHEJ (Gomez-Cabello et al.,

2013). As mentioned before, we suggest that both pluripo-

tent and differentiated cells can likely repair their DNA by

bothNHEJ andHR, such that eliminating one of them only

has a mild effect on cell viability unless an exogenous

source of damage is present. However, during cell reprog-

ramming, recombination is the only mechanism able to

deal with the endogenous damage. We postulate that this

is due to the nature of the DNA lesion, as replication stress

will readily cause the appearance of one-ended DNA DSBs

and will require recombination to restore replication. In

the absence of CtIP, those breaks would be erroneously re-

paired, inducing the observed chromosomal abnormalities

and CNV differences (Figures 3H and 5F). Indeed, this

seems to be a recurrent mechanism that causes cells under-

going reprogramming to acquire a high degree of chromo-

somal instability. Even by analyzing cells from a single

clone that differentiated in the absence of CtIP (the C1

clone), we can observe that each metaphase has a different

number of chromosomes (Figure 3H). Thus, in the absence

of CtIP, DSBs created by replication stress would be re-

paired through more mutagenic repair pathways, thereby

increasing mutagenesis and chromosomal rearrangements

(Bunting et al., 2010). This is consistent with an increase in

DNA damage and genetic instability and would ultimately

lead to apoptosis during reprogramming.

We could not expand the only clone we were able to

obtain from CtIP-depleted hiPSCs (C1), but did establish

a few clones from CtIP-depleted miPSCs, albeit with low

efficiency. These clones showed high levels of alterations

in chromosome number and CNV with respect to iPSCs

generated under normal CtIP levels. These data are consis-

tent with early embryonic lethality (E4.0) observed for

CtIP knockout mice, which shows a slightly elevated

apoptosis (Chen et al., 2005). Although this lethality

has been previously associated with the retinoblastoma

protein, our data support the idea that the resection func-
442 Stem Cell Reports j Vol. 8 j 432–445 j February 14, 2017
tion of CtIP is required for embryonic viability (Polato

et al., 2014). Curiously, we found that established plurip-

otent cells, namely miPSCs and ES-D3 cells, did not

require CtIP protein (at least not in the absence of an

exogenous source of DNA damage). Cell reprogramming

seems to be one such source of internal stress, so it is

possible that other situations arise during normal embryo-

genesis in which CtIP, and specifically its resection activ-

ity, are essential.

Our data and those from previous reports suggest that

cells from patients with deficient DDR and DNA repair

pathways could not be efficiently reprogrammed and

used in regenerative medicine. However, more in-depth

investigations are needed to clarify which genes are specif-

ically required to avoid genomic instability during the

reprogramming process, to grant this powerful tool a

future as a clinical standard procedure. Indeed, we suggest

that, when studying self-renewal and differentiation of

iPSCs, it is of capital importance to discriminate between

the actual roles of repair proteins on those processes

and the inherent, long-term consequences of genomic

instability caused by reprogramming in a repair-defective

environment.
EXPERIMENTAL PROCEDURES

Cell Cultures
HEK293T, SNL, and C57BL/6 primary MEFs carrying a doxycy-

cline-inducible tetracistronic cassette encoding the fourmurine re-

programming factors Oct4, Sox2, Klf4, and c-Myc (provided by

M. Serrano) (Abad et al., 2013) were grown in DMEM (Sigma-

Aldrich) supplemented with 10% fetal bovine serum (FBS)

(Sigma-Aldrich), 100 units/mL penicillin and 100 g/mL strepto-

mycin (Sigma-Aldrich). HFF cells were growth in DMEM (Gibco)

supplemented with 20% FBS (ATCC, LGC Promochem) and

100 units/mL penicillin (Sigma-Aldrich). miPSCs were cultured

on gelatin-coated plates with DMEM/F12 + GlutaMAX (Gibco)

supplemented with 20% knockout serum replacement (Gibco),

1,000 U/mL LIF (Millipore), 1% non-essential amino acids,

0.1 mM b-mercaptoethanol, and 100 units/mL penicillin (Sigma-

Aldrich). hiPSCs were cultured on SNL feeders with DMEM/F12 +

GlutaMAX (Gibco) supplemented with 20% knockout serum

replacement (Gibco), 10 ng/mL basic fibroblast growth factor

(Miltenyi Biotec), 1% non-essential amino acids, 0.1 mM b-mer-

captoethanol, and 100 units/mL penicillin (Sigma-Aldrich).
Retroviral and Lentiviral Production
Retroviral and lentiviral particles were produced in HEK293T cells

as described previously (Gomez-Cabello et al., 2013) using the plas-

mids listed in Table S1. Lentiviruses harboring shRNA vectors

(Sigma) targeting human CtIP (CAG AAG GAT GAA GGA CAG

TTT), mouse CtIP (GCA AGG TTT ACA AGT CAA AGT), and a

non-target sequence (GCG CGA TAG CGC TAA TAA TTT) were

used.



Mouse and Human iPSC Reprogramming
For miPSCs, MEFs were seeded at 1.5 3 105 cells per well of a

12-well plate. MEFs were cultured in miPSC medium supple-

mented with 1 mg/mL doxycycline to induce the expression of

OSKM and promote reprogramming. Medium was changed every

24 hr for 21 days or until iPSCs colonies appeared. iPSCs were

then expanded in 6-well gelatin-coated plates and in iPSCmedium

without doxycycline. For hiPSCs, HFFs with low number of passes

were incubated with retroviral supernatants containing OCT4,

c-MYC, SOX2, and KLF4 three times for 48 hr each time. Cells

were then plated on irradiated (45 Gy) SNL feeders, the medium

was changed 1 day later to iPSCmedium, and cells were incubated

for a further 21–30 days. For IPTG induction reprogramming, HFFs

were transduced with an IPTG-inducible shCtIP lentivirus or the

respective shNT lentivirus as a control. After 48 hr, iPSC regular

medium with 1 mM IPTG (Sigma) was added to start the reprog-

ramming process and maintained during the whole process. Re-

programming efficiency was calculated as the number of colonies

normalized to the number of cells seeded.

Single-Molecule Analysis of Resection Tracks
iPSCs and differentiated cells (MEFs and HFFs) were seeded in

6-well plates at the required density to reach 80% confluence at

the time of harvest. Cells were grown in the presence of 10 mM

BrdU (GE Healthcare) for 24 hr and then harvested. Single-mole-

cule analysis of resection tracks (SMART) was performed as

described previously (Cruz-Garcia et al., 2014).

Immunoblotting
Protein extracts were prepared in Laemmli buffer (4% SDS/20%

glycerol, 120 mM Tris-HCl [pH 6.8]). Proteins were resolved by

SDS-PAGE, transferred to polyvinylidene fluoride (Millipore)mem-

brane and visualized by immunoblotting. Western blot analysis

used the antibodies listed in Table S2. Results were visualized and

quantified using an Odyssey Infrared Imaging System (LI-COR

Biosciences).

Flow-Cytometric Analysis of DNA End Resection
MEF cells, HFF cells, hiPSCs, and miPSCs were prepared for FACS

analysis as follows: cells were grown in the presence of 10 mM

BrdU (GE Healthcare) for 16–18 hr and then detached using Accu-

tase (eBioscence). Cells grown in absence of BrdU were used as

FACS-negative control. Cells were fixed with 4% paraformalde-

hyde for 10 min at 4�C, permeabilized with 0.1% Triton X-100 in

PBS, washed in PBS, and then blocked with 5% FBS in PBS. After

blocking, cells were incubated with an anti-BrdU mouse mono-

clonal antibodies (Table S2) for 1–2 hr at room temperature, and

then with the appropriate secondary antibody (Table S2) for

30 min at room temperature. Additional control cells without pri-

mary antibody were used to set up FACS conditions. Cells were

then washed and resuspended in PBS. Samples were analyzed

with a BD FACSCalibur flow cytometer (BD Biosciences, Ref:

342975). At least 10,000 events were recorded for each sample.

Flow-Cytometric Analysis Cell Cycle
Mouse and hiPSCs were grown in 6-well plates. After 2 days, Accu-

tase was added to remove the cells, which were then fixed with
70% ethanol at 4�C for at least 1 day. Cells were then washed

and resuspended in PBS. Samples were incubated with 1 mg/mL

propidium iodide and 10 mg/mL RNase (Sigma) for 20 min prior

to FACS analysis. Samples were analyzed with a BD FACSCalibur

flow cytometer (BD Biosciences). At least 10,000 events were re-

corded for each sample.

Karyotyping
hiPSCs were grown for 48 hr on gelatinized 6-well plates. At 3 hr

prior to cell collection, the medium was changed and supple-

mentedwith 0.1 mg/mL demecolcine (Sigma, D7385) for 2 hr. Cells

were washed, detached with Accutase, and centrifuged at 200 3 g

for 5 min at 4�C. iPSCs were then resuspended in hypotonic KCl

solution (0.56%) and incubated at 37�C for 10 min. Cells under-

went two rounds of fixation in methanol:glacial acetic acid (3:1)

and centrifugation, after which they were resuspended in fixation

solution and stained with DAPI. DAPI-stained chromosomes from

at least 75 cells were counted for each condition.

EBs
miPSCs growing in gelatinized 6-well plates were detached

with Accutase, counted, and replated onto ultra-low attachment

6-well plate with iPSC regular medium without LIF for 3–4

days. EBs were analyzed for size and number through microscopic

imagesusingAdobePhotoshopCS6 (Adobe Systems Incorporated).

Array Comparative Genomic Hybridization
For mouse array comparative genomic hybridization, CNVwas de-

tected from genomic DNA isolated from iPSC clones and hybrid-

ized to SurePrint G3 Human High-Resolution 13 1 MMicroarrays

(CNV) (Agilent Technologies) following manufacturer’s instruc-

tions. CNV was identified using Agilent CytoGenomics v2.0 anal-

ysis software, following ADM-2 algorithm suggested by Agilent

Technologies.

All iPSC clones were obtained at early passes after reprogram-

ming and colony selection.
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SUMMARY

Genomic instability can be a hallmark of both
human genetic disease and cancer. We identify
a deleterious UBQLN4 mutation in families with
an autosomal recessive syndrome reminiscent of
genome instability disorders. UBQLN4 deficiency
leads to increased sensitivity to genotoxic stress
and delayed DNA double-strand break (DSB) repair.
The proteasomal shuttle factor UBQLN4 is phos-
phorylated by ATM and interacts with ubiquitylated
MRE11 to mediate early steps of homologous
recombination-mediated DSB repair (HRR). Loss of
UBQLN4 leads to chromatin retention of MRE11,
promoting non-physiological HRR activity in vitro
and in vivo. Conversely, UBQLN4 overexpression
represses HRR and favors non-homologous end
joining. Moreover, we find UBQLN4 overexpressed
in aggressive tumors. In line with an HRR defect in
these tumors, UBQLN4 overexpression is associated
with PARP1 inhibitor sensitivity. UBQLN4 therefore
curtails HRR activity through removal of MRE11
from damaged chromatin and thus offers a therapeu-
tic window for PARP1 inhibitor treatment in UBQLN4-
overexpressing tumors.

INTRODUCTION

In response to genotoxic stress, cells activate a signaling network,

collectively referred to as the DNA damage response (DDR). The

DDR activates cell-cycle checkpoints, DNA repair pathways,

and, if damage is beyond repair capacity, triggers cell-death path-

ways (Reinhardt and Yaffe, 2013). Following DNA double-strand

breaks (DSBs), the DDR is primarily activated by the proximal ki-

nase ataxia telangiectasia mutated (ATM), which phosphorylates

a plethora of substrates, such as KAP-1, CHK2, p53, MRE11,

RAD50, NBS1, and others (Shiloh and Ziv, 2013).

The main DSB repair pathways are the canonical non-

homologous end joining (c-NHEJ) pathway and homologous
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DNA breaks are complex DNA lesions that can be repaired by two alternative mechanisms:

non-homologous end-joining and homologous recombination. The decision between them

depends on the activation of the DNA resection machinery, which blocks non-homologous

end-joining and stimulates recombination. On the other hand, post-translational

modifications play a critical role in DNA repair. We have found that the SUMO E3 ligase

CBX4 controls resection through the key factor CtIP. Indeed, CBX4 depletion impairs CtIP

constitutive sumoylation and DNA end processing. Importantly, mutating lysine 896 in CtIP

recapitulates the CBX4-depletion phenotype, blocks homologous recombination and

increases genomic instability. Artificial fusion of CtIP and SUMO suppresses the effects

of both the non-sumoylatable CtIP mutant and CBX4 depletion. Mechanistically, CtIP

sumoylation is essential for its recruitment to damaged DNA. In summary, sumoylation of

CtIP at lysine 896 defines a subpopulation of the protein that is involved in DNA resection

and recombination.
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ABSTRACT

Advanced ovarian cancer is an incurable disease. Thus, novel therapies are 
required. We wished to identify new therapeutic targets for ovarian cancer. ShRNA 
screen performed in 42 ovarian cancer cell lines identified the centriolar replication 
factor STIL as an essential gene for ovarian cancer cells. This was verified in-vivo in 
orthotopic human ovarian cancer mouse models. STIL depletion by administration 
of siRNA in neutral liposomes resulted in robust anti-tumor effect that was further 
enhanced in combination with cisplatin. Consistent with this finding, STIL depletion 
enhanced the extent of DNA double strand breaks caused by DNA damaging agents. 
This was associated with centrosomal depletion, ongoing genomic instability and 
enhanced formation of micronuclei. Interestingly, the ongoing DNA damage was 
not associated with reduced DNA repair. Indeed, we observed that depletion of 
STIL enhanced canonical homologous recombination repair and increased BRCA1 
and RAD51 foci in response to DNA double strand breaks. Thus, inhibition of STIL 
significantly enhances the efficacy of DNA damaging chemotherapeutic drugs in 
treatment of ovarian cancer.
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