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on how the command and the feedback are supplied, known
as: feedforward, feedback or adaptive control. Alternatively,
the knowledge about biological structures involved in the
generation of movements provided by neuroscience can be ex-
ploited in the form of models and Neuromorphic Engineering
(NE) implementations to develop novel approaches to artificial
motor control. The NE community has been already quite
active in integrating sensors and computational devices with
several robotic platforms (significative examples are [1], [2]).
In comparison, very little work has been carried out so far for
the development of neuromorphic motor controllers.

To our knowledge, the first neuromorphic controller was
proposed by Fukuda and colleagues [3]. They proposed a
hierarchical neural network controller applied to a robotic
manipulator. The model was based on the neuron’s firing rates,
therefore ignoring the role of spikes. We propose to use the
spikes to directly drive the motor, therefore removing delays
on the execution and reducing computational load. This first
attempt did not trigger much research in the NE community
and only many years later new publications presenting neuro-
morphic motor controllers appeared. For example, a Dynamic
Vision Sensor (DVS) has been used as visual input or as a
feedback provider [4] [5] where the tasks were to balance
a pencil and to generate pointing movements. Further work
introduced the use of Proportional Integral and Derivative
(PID) controllers based on small network of spiking neurons
implemented on Field Programmable Gate Arrays (FPGAs) or
SpiNNaker [6]–[8]. However, this controllers were developed
under industrial constrains that might not fit the neuromorphic
engineering goals. More recent work presented in [9] and [10]
describes the use of neuromorphic hardware to control the
robot motor torques and a small robotic arm, respectively. The
differences between the present work with the former is that
we are considering a single motor instead of a whole system
and with the latter is that we are considering the biological
features of the spinal cord instead of the basal ganglia. In
the latest work in this field a brain-like neural controller
including a cerebellum model and a musculoskeletal robot
were presented [11]. Dedicated computational cores were used
to translate the spike trains to motor commands. In our work
this computational stage is replaced with a direct interface of
the spike train with the Direct Current (DC) motor.

Abstract—Despite being well established in robotics, classical 
motor controllers have several disadvantages: they pose a high 
computational load, therefore requiring powerful devices, they 
are not easy to tune and they are not suited for neuroprosthetics. 
In contrast, bio-inspired controller do not transform the output 
of the controller therefore no delays are introduced and a smooth 
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to new tasks within the same hardware robotic platform. We 
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for low-level motor control. The proposed neural network acts 
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directly interfaced with commercial DC motors. The simulated 
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and paves the way to the implementation bio-inspired motor 
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with neuroprosthetic. The network presented is inspired by the 
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of time and supplied to the simulated motor: Pulse Frequency 
Modulation (PFM) modulation is used. This paper presents the 
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I. INTRODUCTION

Conventional motor controllers range from very simple 
proportional actions to complex fuzzy logic or chaotic con-
trollers. They are designed to work under specific constraints 
and environments. In contrast, biological motor control ex-
hibits amazing flexibility; for instance, a group of muscles 
can be trained to do any task. In particular, the last stage of 
muscle control, namely local motor control or short-loop, is 
well understood and can be imitated for designing efficient 
control architectures.

The classical approach to motor control focuses on tech-
niques aimed at producing precise movements. These control 
techniques are general and they can be adapted depending



Given our aim of replicating and exploiting biological
strategies, a spike based implementation is a natural choice.
This paper focuses on motor control and specifically on
how we can use neuromorphic hardware to control a motor
following a biological approach. The objective of the work
presented here is to design a new low level control method
based on biological features that could be used in robotics. Our
long term plan aims at the integration of NE hardware with
DC motors. To this end we simulated Leaky Integrate and Fire
(LIF) neurons interconnected through excitatory and inhibitory
synapses emulating biological dynamic properties such as an
instantaneous rise and single-exponential decay and used the
output of our network model to drive a simulated DC motor
using its transfer function to relate voltage applied versus angle
reached over time.

In this paper we describe the biological background and
the methodology followed II-A, the network model proposed
(II-B), the results for the software simulations of the control
model (III), and finally discuss current achievements (IV).

II. METHODOLOGY

A. What can we borrow from biology?

Since we want to use the control method for robotics,
we have to focus on motors instead of muscles and that is
the reason why we do not consider key aspects of muscles
such as elastic properties, agonist-antagonist mechanism, etc.
In contrast, motors do not only pull but push just by inverting
the polarity of the voltage applied to its terminals. A key point
in biology is how the proprioceptive information related to the
muscles is transmitted to the central nervous system: using the
spindles (to provide length and velocity data) and the Golgi
tendon organs (to provide tension data) [12]. Our objective is to
control either the position or the speed therefore we are going
to focus on how spindles work. In general terms, spindles are
neurons placed along the intrafusal fibres that respond to the
changes in length of the muscle. Their output is a constant
rate proportional to the muscle length [12]. In a similar way
we are going to use the encoder of a DC motor to generate
a spiking signal proportional to the position or velocity of the
motor to provide feedback to the neural controller. Regarding
the actuation, the stretching of the fibres of a muscle happens
when the central nervous system recruits the neurons called
alpha motoneurons [12]. The amount of strength depends on
the discharge to these motoneurons. Our approach mimics this
behaviour.

B. Network model

The designed network is shown in figure 1. We propose
four different neuron populations: two populations to drive
the motor in each direction (clockwise and counter clockwise)
and two populations to provide feedback from the motor to
the neural controller. The alpha motoneurons CW and alpha
motoneurons CCW output spikes are directly connected to
the motor and drive CW and CWW movements respectively.
The motor encoder’s output consist of two square signals
which are out of phase (channel A and B) and it is provided
to the spindle populations. The reference is shared by both
alpha motoneurons populations and the input Direction selects
what type of connection is created between the reference and

Fig. 1. Control network diagram. The dotted arrows represent connections
between neuron populations and the motor and the solid arrows connections
between neuron populations. Orange-filled circles represent dynamic popula-
tions, inhibitory connections in black and excitatory connections in red. The
stimulus to the network is supplied using the reference population and the
input direction selects the type of connection, between the stimulus and the
alpha motoneuron populations, to be created.

the motoneuron populatios: excitation for the clockwise mo-
toneuron and inhibition for the counter-clockwise motoneuron,
whenever there is a clockwise movement and the contrary for
counter-clockwise movements. The spindles populations are
excited with the turn of the motor in each direction (channel
A for clockwise and channel B for counter-clockwise). The
four neuron populations are modelled using the LIF model 1

τm ∗ du

dt
= −(u−R ∗ (I(t) + I0)) (1)

where τm is the neuron membrane time constant, u is the
membrane potential, I(t) is the dynamic injected current and
I0 is a constant current that could be injected. The model
fires a spike whenever the threshold is reached and then the
membrane potential is reset. The reference population provides
input pulses at a rate proportional to the target position (in
degrees) and the direction input specifies the direction of
the turn by determining the sign of the connection from the
reference to the alpha motorneurons. During a clockwise turn
command, the reference excites the CW population and inhibits
the CCW population; the opposite occurs for the counter
clockwise direction. Within this mechanism, we make our
controller flexible since the turn direction can be selected and
changed online. As soon as the motor starts turning, the spindle
populations are stimulated by the encoder signal; eventually
they will start firing and inhibiting the corresponding alpha
motoneuron population, therefore stopping the turning of the
motor. If, due to motor inertia, the position is overreached,
the cross connection between the encoder populations and the
alpha motoneurons will correct the position by exciting the
opposite motoneuron population. Each population comprises
30 neurons with local recurrent random connections. These
connections introduce variability in the response which is
integrated by upstream neurons to produce a smooth response
over time.

C. Motor driver

Our approach uses directly the output rate from the alpha
motoneuron populations to drive the motor, i.e. the information
we are sending to the motor (the spikes) is encoded in the
firing rate. Therefore, we have used a modulation based on
the frequency: PFM. PFM uses a squared waveform to carry
the information. The pulse width is fixed and the analog



information is carried by the frequency. This means that the
frequency of the square wave will be modified according to
the analog value to transmit. The amount of time when all
the power is supplied to the load is fixed [6]. The idea of
using the frequency as the information carrier links precisely
with using the firing rate of the alpha motoneurons to drive the
motor. If we compare our approach with the well-known Pulse
Width Modulation (PWM), we found that PWM uses a fixed
frequency squared waveform to carry the analog value. The
modulator will spread each pulse according to the analog value,
introducing a delay. Thus, the width of each pulse will have a
relationship with the analog value to transmit. Therefore, the
period of time when all the power is supplied to the load is
variable. The use of PFM is validated by the interest of those
working on neuroprosthetic [13] because it is the most natural
way to interface spikes coming from biological neurons. The
motor we plan to use in the final system is a DC Motor from
Maxon (Model 310007). Following the specifications of the
company, the dynamic properties of the motor can be modelled
using its differential equations 2 [14]. The motor model is
included within the simulator by using a fake neuron that
follows these equations.

Vs = La × dia
dt

+Ra × ia + ke × dθ

dt
(2)

kt × ia = J × d2θ

dt2
+B × dθ

dt
(3)

where Vs and ia are the voltage and current applied to the
motor terminals, θ is the angle reached by the motor and La,
Ra, ke, kt, J and B are the motor parameters given by the
manufacturer. In the eventual hardware implementation, the
output of the alpha motoneurons will use a dedicated digital
bus to interface the digital circuit that will generate the PFM
signal to drive the motor with the right polarity according to
the turning direction.

D. Feedback

A feed-forward controller relies on the execution of the
motor command assuming that the target was reached after
the predicted time. This approach is not robust to interferences
and cannot be used for moving targets with unpredictable
trajectories. In these cases feedback plays a crucial role. In
our controller, low-level feedback is introduced by using the
output of the encoder included within the DC motor which is
analogous to biological proprioceptive signals. Specifically, the
encoder currently in use (Maxon MR225778) is an incremental
encoder with three output channels (two quadrature output
channels plus the index channel to detect a full turn). The two
quadrature channels will be interfaced using a digital circuit
(eventually implemented on an FPGA). The circuit could either
generate pulses according to the switching frequency of the
channels (rate proportional to the speed of the motor) or
generate a rate according to the number of pulses received
from channel A or B (rate proportional to the position of the
motor). Depending on how we want to control the motor, one
of these firing rates will excite the encoder neuron population
implemented on the analog chip. In the simulations we present
in this paper, we have designed a position control network.
Therefore the spindle populations (interfaced by the encoder
channels) receive pulses at a rate proportional to the position
of the motor. Equation 1 is a first approximation to the analog

neuron circuit implemented in the chips [15] we plan to use
in our hardware implementation. With no input current (no
turn by the motor), the spindle population will not be firing
and with each spike received by the encoder (encoding 0.72
degrees each), an increasing firing rate will be generated at
its output. The firing rate generated by this block follows the
equation 4. This behaviour mimics the response of biological
spindle neurons to muscle length variations. Given a fix set of
parameters (τm, R, I0 and the threshold) the output rate will
depend on the input current. This output rate will inhibit the
corresponding alpha motoneuron population which is receiving
excitation from the reference. This reference stimulus is the
input to our network. Eventually, it will be set by higher
structures in the hierarchy beyond the scope of this work.

III. RESULTS

The network designed has been simulated using the spiking
neural network simulator Brian [16]. The simulations include
all the elements shown in 1: the four neuron populations and
two equation blocks for the motor function and the encoder’s
channels dynamics.Firstly, we tune the connection between the
encoder channels and the spindle populations. To be consistent
with both the biological spindle (which rate ranges from 0
to 100s−1 [17]) and the computational limitation of having a
significant rate variation at each reference step, we fixed the
parameters with the values: τm = 25.4ms, R = 10Ω, I0 =
2mA and the uth = 20mV . With these values, the equation 4
is used to compute the equivalent of the firing rate generated
by the spindle population. The encoder has a resolution of 500
pulses per full turn, i.e. one pulse every 0.72 degrees, which
fixes the best achievable resolution of the system. Hence, each
time the motor turns 0.72 degrees, the equation block used to
include the motor in our simulations fires a spike. This spike
excites the corresponding spindle population. Therefore, the
spindle population firing rate is proportional to the encoder
resolution.

fencoder = 1/

⎛
⎜⎜⎝τ × ln

⎛
⎜⎜⎝

R×
(
Angle

1440
+ I(t)

)

R×
(
Angle

1440
+ I(t)

)
− Vth

⎞
⎟⎟⎠
⎞
⎟⎟⎠
(4)

Directly using the highest resolution would lead to a spindles
firing rate much higher than the biological one. Therefore,
we have artificially increased the step size three times, up
to 2.16 degrees which means 166 steps for a full turn of
the motor. Every time the encoder fires a spike, the current
injected to the spindle population is increased by 50uA. We
run tests to study how the system responds to a range of
pulse width of the PFM signal which drives the motor. The
position reached will depend on both the pulse width and the
amplitude. For this specific motor, we have fixed the amplitude
to 12 Volts according to the manufacturer datasheet. The tests
show the expected linear relation between the pulse width
and the angle reached: Angle = 0.02 × pulse width with
the angle in degrees and the pulse width in μs. We have
selected a pulse width of 100 μs (3.3 μs for each the 30
neurons in the population) for the PFM signal to drive the
motor. Figure 2a shows the entire controller behaviour. The
reference for this test is set to 100 spikes per second during
3 seconds and then 50 spikes per second during 2 seconds



(a) Test I (b) Test II

Fig. 2. Test I: Evolution over time of the position of the motor in response to an input reference of 100 Hz (turn command of 179.28 degrees) for 3 seconds
and of 50 Hz (turn command of 73.44 degrees) for the following two seconds without changing the direction input. The input PFM signal for the CW alpha
motoneuron population is shown in green and the PFM signal for the CCW alpha motoneuron population is shown in value. Test 2: Angle reached by the motor
(10.16, 35.56, 63.78, 123.19, 106.20, 178.52, 173.53, 194.91, 228.7 and 275.73) for the following set of angle references (7, 32.4, 62.64, 95.04, 125.28, 157.68,
190, 222.48, 259.2 and 289.44) degrees. The experiment lasts five seconds each.

(5 seconds total); for both, the clockwise direction is active.
The cross connection between the spindle and the opposite
alpha motoneuron population are causing both the oscillation
around the set reference and the possibility of updating the
reaching point when the reference changed. According our
initial calibration procedure, the motor should reach 179.28
degrees (before the reference change) but, as shown in the
figure, it reaches 172.05 degrees. The error of 4.35% is due to
random variations in the inhibition from the spindle population
to the alpha motor neuron population. To confirm this, we run
10 simulations restarting the network each time for the first
three seconds and obtained a mean error of: 17.45 degrees
(10.56%) and a standard deviation of 2.92 degrees. Once the
inhibition starts having effect, it inhibits a random number of
neurons of the motoneuron population while the rest of the
neurons will continue making the motor turn. Figure 2b shows
the behaviour of the motor controller when a set of references
are set.

IV. DISCUSSION AND CONCLUSION

Our simulations show that it is possible to create a network
of LIF neurons to control a DC motor. The proposed network
exploits some of the features present in the biological coun-
terpart and can be applied to robotic platforms with several
degrees of freedom. Our results show that the proposed con-
troller can achieve an accurate behaviour reaching the target
position with an mean percentage error of 10.56%. This work
is an important step towards our long term goal of building a
neuromorphic controlled robotic arm able to perform reliable
and adaptable reach movements. To this end, we designed the
simulation to be compatible with our hardware and we will
use this results to guide the hardware implementation.

ACKNOWLEDGMENT

This work was supported by the Spanish grant (with
support from the European Regional Development Fund)
COFNET (TEC2016-77785-P) and the DFG funded Excel-
lence Cluster 227 (CITEC, University of Bielefeld).

REFERENCES

[1] C. Bartolozzi, F. Rea et al., “Embedded neuromorphic vision for
humanoid robots,” in CVPR 2011 WORKSHOPS. IEEE, 2011, pp.
129–135.

[2] T. Delbruck and M. Lang, “Robotic goalie with 3 ms reaction time at
4% cpu load using event-based dynamic vision sensor,” Neuromorphic
Engineering Systems and Applications, p. 16, 2015.

[3] T. Fukuda, T. Shibata et al., “Neuromorphic control for robotic manip-
ulator,” in Engineering Systems with Intelligence, ser. Microprocessor-
Based and Intelligent Systems Engineering, S. Tzafestas, Ed. Springer
Netherlands, 1991, vol. 9, pp. 197–204.

[4] J. Conradt, M. Cook et al., “A pencil balancing robot using a pair of aer
dynamic vision sensors,” in Circuits and Systems, 2009. ISCAS 2009.
IEEE International Symposium on, May 2009, pp. 781–784.

[5] F. Perez-Peña, A. Morgado-Estevez et al., “Neuro-inspired spike-based
motion: from dynamic vision sensor to robot motor open-loop control
through spike-vite,” Sensors, vol. 13, no. 11, pp. 15 805–15 832, 2013.

[6] A. Jimenez-Fernandez, G. Jimenez-Moreno et al., “A neuro-inspired
spike-based PID motor controller for multi-motor robots with low cost
FPGAs,” Sensors, vol. 12, no. 4, pp. 3831–3856, 2012.

[7] F. Galluppi, C. Denk et al., “Event-based neural computing on an
autonomous mobile platform,” in Robotics and Automation (ICRA),
2014 IEEE International Conference on, 2014, pp. 2862–2867.

[8] A. Webb, S. Davies, and D. Lester, “Spiking neural PID controllers,” in
Neural Information Processing, ser. Lecture Notes in Computer Science,
B.-L. Lu, L. Zhang, and J. Kwok, Eds., vol. 7064. Springer Berlin
Heidelberg, 2011, pp. 259–267.

[9] S. Menon, S. Fok et al., “Controlling articulated robots in task-space
with spiking silicon neurons,” in Biomedical Robotics and Biomecha-
tronics (2014 5th IEEE RAS EMBS International Conference on, 2014,
pp. 181–186.

[10] F. Perez-Peña, A. Morgado-Estevez et al., “Spike-based VITE control
with dynamic vision sensor applied to an arm robot,” in Circuits and
Systems (ISCAS), 2014 IEEE International Symposium on, 2014, pp.
463–466.

[11] C. Richter, S. Jentzsch et al., “Scalability in neural control of muscu-
loskeletal robots,” arXiv preprint arXiv:1601.04862, 2016.

[12] M. L. Latash, Fundamentals of Motor Control, 1st ed. Elsevier, 2012.

[13] J. J. Abbott and S. G. Meek, “Digital emulation of pulse frequency
modulation for neuroprosthetic sensory feedback,” IEEE Transactions
on neural systems and rehabilitation engineering, vol. 15, no. 1, pp.
131–135, 2007.

[14] K. Ogata and Y. Yang, Modern control engineering, 5th ed. Prentice
Hall, 2009.

[15] E. Chicca, F. Stefanini et al., “Neuromorphic electronic circuits for
building autonomous cognitive systems,” Proceedings of the IEEE, pp.
1–22, 2014.

[16] D. F. Goodman and R. Brette, “The brian simulator,” Frontiers in
neuroscience, vol. 3, p. 26, 2009.

[17] A. Prochazka and M. Gorassini, “Models of ensemble firing of muscle
spindle afferents recorded during normal locomotion in cats,” The
Journal of physiology, vol. 507, no. 1, pp. 277–291, 1998.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


