
Human vs. Computer Slot Car Racing using an Event and Frame-Based
DAVIS Vision Sensor

T. Delbruck1, M. Pfeiffer1, R. Juston2, G. Orchard3, E. Müggler4, A. Linares-Barranco5, M.W. Tilden6

1: Institute of Neuroinformatics, Univ. of Zurich and ETH Zurich, Switzerland,
2: Biorobotics Team, Institute of Movement Sciences, CNRS / Aix-Marseille Univ.

3: Singapore Institute for Neurotechnology (SINAPSE)
4: Robotics and Perception Group, Univ. of Zurich

5: Robotics and Technology of Computers Lab, Univ. of Seville
6: Design consultant, Wowwee Ltd, Hong Kong

Abstract –This paper describes an open-source
implementation of an event-based dynamic and
active pixel vision sensor (DAVIS) for racing
human vs. computer on a slot car track. The
DAVIS is mounted in "eye-of-god" view. The
DAVIS image frames are only used for setup and
are subsequently turned off because they are not
needed. The dynamic vision sensor (DVS) events
are then used to track both the human and
computer controlled cars. The precise control of
throttle and braking afforded by the low latency of
the sensor output enables consistent out-
performance of human drivers at a laptop CPU
load of <3% and update rate of 666Hz. The sparse
output of the DVS event stream results in a data
rate that is about 1000 times smaller than from a
frame-based camera with the same resolution and
update rate. The scaled average lap speed of the
1/64 scale cars is about 450km/h which is twice as
fast as the fastest Formula 1 lap speed. A feedback-
controller mode allows competitive racing by
slowing the computer controlled car when it is
ahead of the human. In tests of human vs.
computer racing the computer still won more than
80% of the races.

I. INTRODUCTION

The DAVIS is a neuromorphic camera that
outputs static image frames concurrently with
dynamic vision sensor (DVS) temporal contrast
events [1][2]. DVS address-events (AEs)
asynchronously signal changes of log intensity. The
AE timestamp (in microseconds) codes the time of the
events. Pixels with DVS output are neuromorphic
abstractions of retinal ganglion cells in biological
retinas. Their sub-ms latency, sparse output, and kHz
pixel bandwidth has led to applications requiring high
speed object tracking with short-latency feedback, e.g.
[3][4]. In this work, we use the DVS outputs to track
slot cars and control one of the cars to race
competitively against human drivers. In this
application, the DAVIS static frames were useful for
setting up the sensor and adjusting focusing, but

subsequently the frames were not needed and were
turned off.

II. HARDWARE AND SOFTWARE SETUP

Fig. 1 shows a racetrack together with sample DVS
data produced by a single car driving around the track.
The 240x180 pixel DAVIS was mounted in “eye of
god” view over the table using a wide angle 2.6mm
lens with a horizontal field of view of 81 to cover the
slot car track. As the cars go around the track, they
create DVS events, which are shown superimposed as
3D space-time events over the photo of the track.
These events are used as described later to track the
cars and to control the computer car throttle and
braking. The events captured from the DAVIS are
transmitted to the host PC over a USB interface.
Individual events are time-stamped with 1us
resolution.

Slot cars contain a DC motor, a pin to guide the
car along the slot in the track, two brass brushes that
pick up power from the metal rails of the track, and a
magnet that helps hold the car onto the steel track
rails. Power to the car is normally regulated by a
simple throttle controller consisting of a wire-wound
resistor. Racers attempt to go as fast as possible
around the track without flying off it. We used a HO-
scale (1/64) system from AFX Racing

Fig. 1. A track layout with the stream of DVS events (dots)
caused by a moving car shown as dots in 3D space-time.

The average event rate caused by a moving car is about 5k
events/sec.

(www.afxracing.com) with car chassis type
SRT. The cars are 7cm in length, and the
track (Fig. 2) had 15 turns in a length of
805cm, or 900 pixels on the sensor image.
The fastest lap times are about 4.1s. The
slot car speed of 200cm/s scaled to
Formula 1 size is 450km/h; for reference,
the fastest average lap speed achieved in a
Formula 1 race was 248km/h on a track
with 11 turns (Monza 2003). Cars can
accelerate to full speed in about 300ms and
decelerate by friction in about the same
time. The electronic motor braking
(described later) slows the car even faster,
allowing more aggressive driving.

Implementation

The software implementation of the slot
car racer is open-sourced in the jAER
project [5] in the package
ch.unizh.ini.jaer.projects.virtualslotcar [6]. The main
slot car racer class is SlotCarRacer. The throttle
controller described in this paper is the class
HumanVsComputerThrottleController.

1) Car Tracking, Track Model, and Track
Masking
The operator sees a view of the track and other
information superimposed on the DAVIS sensor
output as shown in Fig. 2. Different parts of this
display are labeled and are referred to below.

Tracking (computed by the class CarTracker) uses
a model of the car consisting of a rectangle that is
constrained to move along the track model, which is a
list of track vertices in sensor pixel coordinates. A
CarCluster is a software object based on [4] that has a
2D pixel position and a velocity along the track in
track vertices per second. The track model is obtained
in a semi-automated way in TrackDefineFilter by
driving each car around alone, collecting a 2D event
histogram, and then extracting a list of vertices spaced
by minimum distances, starting from the peak of the

histogram. This list is then updated manually using a
GUI to drag, add, and delete vertices.

Fig. 4 illustrates the car tracking update. Each
DVS event input to CarTracker is first used to update
the current car position according to the car velocity
along the track, using the last update time and the
current event time. This update implements the model
inertia. Then the event is checked if it is near the
location of the tracked car (shaded rectangle in Fig. 4
and boundaries of boxes surrounding cars in Fig. 2).
If so, the car model is updated by either advancing or
retarding the car position along the track depending
on whether the DVS event leads or lags the current
car position. The amount of advancement or retarding
is set by a ‘mixing factor’ (typically about 0.02) that
mixes the DVS event position with the current car
position with the mixing factor proportion. The update
is done by projecting the vector ve from current car
position to the event onto the track vector vt
connecting the nearest track vertex to the next one
along the track. A 2D lookup table (Fig. 3) maps pixel
coordinates to the nearest track vertex, to speed up the
search for the nearest track vertex. The car’s track
velocity is updated when the nearest vertex changes.
The car tracker lifetime is managed by a ‘mass’ that
decays away exponentially with time between DVS
events and is incremented with each event. If the mass

Fig. 2. Display of the slot car track with state information.

Fig. 3. Mapping from each pixel location to the nearest track
vertex speeds up lookup of the nearest track vertex

(number at each pixel location).
Fig. 4. CarTracker car position update.

falls below a certain value, the car is considered to be
lost and tracking must be reinitialized.

2) Slot Car Throttle and Braking Hardware
We designed a slot car controller PCB (Fig. 5) to
control the power to up to 4 slot car tracks from a
computer over a full-speed USB2.0 interface. This
controller controls power to the cars by 1.5kHz PWM
modulation of the 17V track power, and also can short
the car motor across a 20 resistor for electronic
braking. Only one track controller is currently used
and the other track is controlled by the human using
the standard throttle. The controller is updated with
polling interval of 1ms. The full PCB design of this
controller and its firmware are available in the jAER
project [7]. A prototype design did not use
optocouplers and the results were frequent resets of
the USB microcontroller due to large voltage
transients caused by sparking of the car contact to the
track which propagated back through the electronics.
The final design of Fig. 5 uses optocouplers to correct
this problem.

3) Throttle Control
Controlling the computer car consists of setting the
throttle value or applying the brake at each vertex of
the track model based on a vector of throttle/brake
settings called a throttle profile. An example throttle
profile is shown in Fig. 6. We investigated a number
of methods to optimize the throttle profile. Eventually
we found that the fastest method is to 1) determine an
initial throttle profile by settings derived automatically
from the track curvature so that straight sections have
higher initial throttle; 2) examining the car visually

and then gradually increasing the throttle or applying
brake by eye, using a GUI interface to “paint” throttle
and brake settings. An evolutionary method was also
developed to learn the optimum throttle profile by
inserting throttle increases and seeing if they result in
successful laps. After a crash, the insertion is removed
or braking points are inserted. The required learning
time is currently still considerably longer than by
manual adjustment of the profile and more work
needs to be done to understand the optimum strategy.

To make racing more competitive, a mode can be
enabled that slows the computer down from its
optimum throttle value to a minimum value,
depending on how far ahead is the computer car.
Typically a value of one third of the total track for
complete slow-down is effective for resulting in
exciting side-by-side racing.

III. RESULTS

A series of YouTube videos document the
evolution of the slot car racer since 2010 [8]–[10].
The final video shows the setup and a race between
computer and human, including control that slows the
computer car when it is ahead of the human.

A sample of two recorded laps by the computer
controlled car is shown in Fig. 7. This data is taken
from a different track. Over two laps, the car position
increases and then wraps back to vertex 0. At the end
of the straightway, motor braking rapidly decreases
the car speed, as indicated by the “braking” arrow.
During the last lap, motor braking is disabled (“No
braking”), resulting in a crash after the straightway.

A series of ten 3-lap races between human and
computer had the following results: The first human
had 1 win, 2 losses, and 7 DNF (did not finish, i.e.
crashed). The second human had 3 wins, 4 losses, and
3 DNFs, however after the feedback control to slow
the computer car was turned off halfway through the
series of ten races, the second human was no longer
able to win.

Processing cost and throughput: Processing
SlotCarRacer on a Lenovo W510 Core i7 laptop
results in a CPU load of 1% to 3% for the Java virtual
machine, when graphical rendering is disabled.

The update interval on the host computer was
determined by instrumenting the USB data packets
received by the high-priority USB processing thread

Fig. 5. The slot car controller PCB controls up to 4 lanes [7].
A: interface circuit of a single lane for throttle and brake
control. The optocoupler pulldown outputs (OptThrOut &
OutBrOut) feed the power MOSFET gates through RC low

pass filters with=0.5ms. A fuse F1 protects against
shorts. R16 is a power resistor for motor braking. B:

Fabricated PCB with USB cable (bottom) and track/power
connections (top).

Fig. 6. Throttle and brake profile that achieves 4.1s lap times on
track in Fig. 2.

using the Java method
System.nanoTime(). All the slot car racer
processing is done in this thread, rather
than the display rendering thread, which
runs at most 60Hz. The DAVIS camera
includes a feature called ‘early packet
timer’ which ensures that USB FIFOs
are committed to the host with intervals
of at most 1.5ms, and on the host side
the processing intervals closely matched
this interval.

IV. CONCLUSION

Conventional machine vision using
frame-based sensors faces a fundamental
latency-power tradeoff. Low latency can only be
achieved by processing at a high frame rate, which
burns more power. The CPU load of less than 3%
achieved in the slot car racer is a result of the low data
rate averaging 5keps (thousand events per second) per
car. The staring camera scenario is ideal for using the
DVS, since only the small moving slot cars create
DVS events. The early packet timer transmits
available events from the camera at a minimum rate of
1/1.5ms=666Hz, which means that most packets sent
to the host contain only about 7 events per car. This is
a small amount of data to process. By comparison, if
the 240x180 pixel image could be transmitted to the
host at 666Hz, it would mean a data rate of 29M
pixels/s, which would be a factor of about 1000 times
more data.

The slot car racer robot is a popular demonstration
of the use of a DAVIS sensor, mainly because racing
is fun and it is a contest between human and computer
that involves quick reaction times. The principle of
operation is simple and easy to explain. In practice,
because the computer is so precise, and because it can
use motor braking, it is practically unbeatable and so
to produce the illusion of a competitive race it is
necessary to enable the mode where the computer car
is slowed down if it is ahead.

The control of the car is in some sense open-loop
because the throttle and brake are applied according to
the instantaneous position of the car on the track,
regardless of the car’s speed. Future enhancements
could focus on developing an adaptive model-based
controller that regulates the speed of the car to a
desired level that is safe for the curvature. Our
attempts to do this were not successful because the
model is surprisingly complex. The physics of car
movement along the track and the action of the power
applied to the car on its speed are complicated by
track curvature, friction, individual car variability,
motor heating, etc. However the short latency of
sensor measurement could enable visual feedback on
throttle control.

Acknowledgements
This work was supported by the Swiss NCCR Robotics, EU
projects SeeBetter (FP7-ICT-270324) and Visualise (FP7-ICT-
600954), Samsung and the DARPA SyNAPSE project. Prototypes
were built at the 2010 Telluride Neuromorphic Cognition
Engineering Workshop and the 2014 Capo Caccia Cognitive
Neuromorphic Engineering Workshop. The implementation
described here was demonstrated at the 2014 European Computer
Vison Conference.

References
[1] P. Lichtsteiner, C. Posch, and T. Delbrück, “A 128 x 128

120dB 15us Latency Asynchronous Temporal Contrast
Vision Sensor,” IEEE J Solid-State Circuits, vol. 43, no. 2,
pp. 566–576, 2008.

[2] C. Brandli, R. Berner, M. Yang, S.-C. Liu, and T. Delbruck,
“A 240x180 130 dB 3us Latency Global Shutter
Spatiotemporal Vision Sensor,” IEEE J. Solid-State Circuits,
vol. Early Access Online, 2014.

[3] A. Bolopion, Z. Ni, J. Agnus, R. Benosman, and S. Regnier,
“Stable haptic feedback based on a dynamic vision sensor for
microrobotics,” in 2012 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2012, pp. 3203–
3208.

[4] T. Delbruck and M. Lang, “Robotic Goalie with 3ms
Reaction Time at 4% CPU Load Using Event-Based
Dynamic Vision Sensor,” Front. Neurosci., vol. 7, p. 223,
Nov. 2013.

[5] jAER, jAER Open Source Project. 2007 [Online]. Available:
http://jaerproject.org

[6] “jAER / Code / [r5522]
/jAER/trunk/src/ch/unizh/ini/jaer/projects/virtualslotcar.”
[Online]. Available:
http://sourceforge.net/p/jaer/code/HEAD/tree/jAER/trunk/src
/ch/unizh/ini/jaer/projects/virtualslotcar/. [Accessed: 25-Oct-
2014]

[7] “jAER / Code / [r5522]
/devices/pcbs/SlotCarControllerPCB.” [Online]. Available:
http://sourceforge.net/p/jaer/code/HEAD/tree/devices/pcbs/S
lotCarControllerPCB/. [Accessed: 25-Oct-2014]

[8] slotCarRacingTelluride2010.wmv. 2010 [Online]. Available:
http://youtu.be/ALneVn-Ls2Q?list=UU70-
pVoJ4pwIAxqpgcR7oxg. [Accessed: 06-Oct-2014]

[9] Slot car racer controlled by DVS Capo Caccia 2014. 2014
[Online]. Available: http://youtu.be/CnGPGiZuFRI.
[Accessed: 03-Oct-2014]

[10] Slot Car Racing with DAVIS neuromorphic vision sensor.
2014 [Online]. Available: http://youtu.be/AsO1TWS8_VA.
[Accessed: 28-Oct-2014]

Fig. 7. Slot car position and speed vs. time on a different track. Two laps are
completed successfully using motor braking to slow down just after track vertex 0.
On the last lap, motor braking is disabled, resulting in a crash.

