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Abstract –This paper describes an open-source 
implementation of an event-based dynamic and 
active pixel vision sensor (DAVIS) for racing 
human vs. computer on a slot car track. The 
DAVIS is mounted in "eye-of-god" view. The 
DAVIS image frames are only used for setup and 
are subsequently turned off because they are not 
needed. The dynamic vision sensor (DVS) events 
are then used to track both the human and 
computer controlled cars. The precise control of 
throttle and braking afforded by the low latency of 
the sensor output enables consistent out-
performance of human drivers at a laptop CPU 
load of <3% and update rate of 666Hz. The sparse 
output of the DVS event stream results in a data 
rate that is about 1000 times smaller than from a 
frame-based camera with the same resolution and 
update rate. The scaled average lap speed of the 
1/64 scale cars is about 450km/h which is twice as 
fast as the fastest Formula 1 lap speed. A feedback-
controller mode allows competitive racing by 
slowing the computer controlled car when it is 
ahead of the human. In tests of human vs. 
computer racing the computer still won more than 
80% of the races.  

I. INTRODUCTION

The DAVIS is a neuromorphic camera that 
outputs static image frames concurrently with 
dynamic vision sensor (DVS) temporal contrast 
events [1][2]. DVS address-events (AEs) 
asynchronously signal changes of log intensity. The 
AE timestamp (in microseconds) codes the time of the 
events. Pixels with DVS output are neuromorphic 
abstractions of retinal ganglion cells in biological 
retinas. Their sub-ms latency, sparse output, and kHz 
pixel bandwidth has led to applications requiring high 
speed object tracking with short-latency feedback, e.g. 
[3][4]. In this work, we use the DVS outputs to track 
slot cars and control one of the cars to race 
competitively against human drivers. In this 
application, the DAVIS static frames were useful for 
setting up the sensor and adjusting focusing, but 

subsequently the frames were not needed and were 
turned off. 

II. HARDWARE AND SOFTWARE SETUP

Fig. 1 shows a racetrack together with sample DVS 
data produced by a single car driving around the track. 
The 240x180 pixel DAVIS was mounted in “eye of 
god” view over the table using a wide angle 2.6mm 
lens with a horizontal field of view of 81 to cover the 
slot car track. As the cars go around the track, they 
create DVS events, which are shown superimposed as 
3D space-time events over the photo of the track. 
These events are used as described later to track the 
cars and to control the computer car throttle and 
braking. The events captured from the DAVIS are 
transmitted to the host PC over a USB interface. 
Individual events are time-stamped with 1us 
resolution.  

Slot cars contain a DC motor, a pin to guide the 
car along the slot in the track, two brass brushes that 
pick up power from the metal rails of the track, and a 
magnet that helps hold the car onto the steel track 
rails. Power to the car is normally regulated by a 
simple throttle controller consisting of a wire-wound 
resistor. Racers attempt to go as fast as possible 
around the track without flying off it. We used a HO-
scale (1/64) system from AFX Racing 

Fig. 1. A track layout with the stream of DVS events (dots) 
caused by a moving car shown as dots in 3D space-time. 

The average event rate caused by a moving car is about 5k 
events/sec. 



(www.afxracing.com) with car chassis type 
SRT. The cars are 7cm in length, and the 
track (Fig. 2) had 15 turns in a length of 
805cm, or 900 pixels on the sensor image. 
The fastest lap times are about 4.1s. The 
slot car speed of 200cm/s scaled to 
Formula 1 size is 450km/h; for reference, 
the fastest average lap speed achieved in a 
Formula 1 race was 248km/h on a track 
with 11 turns (Monza 2003). Cars can 
accelerate to full speed in about 300ms and 
decelerate by friction in about the same 
time. The electronic motor braking 
(described later) slows the car even faster, 
allowing more aggressive driving. 

Implementation 

The software implementation of the slot 
car racer is open-sourced in the jAER 
project [5] in the package 
ch.unizh.ini.jaer.projects.virtualslotcar [6]. The main 
slot car racer class is SlotCarRacer. The throttle 
controller described in this paper is the class 
HumanVsComputerThrottleController. 

1) Car Tracking, Track Model, and Track
Masking 
The operator sees a view of the track and other 
information superimposed on the DAVIS sensor 
output as shown in Fig. 2.  Different parts of this 
display are labeled and are referred to below. 

Tracking (computed by the class CarTracker) uses 
a model of the car consisting of a rectangle that is 
constrained to move along the track model, which is a 
list of track vertices in sensor pixel coordinates. A 
CarCluster is a software object based on [4] that has a 
2D pixel position and a velocity along the track in 
track vertices per second. The track model is obtained 
in a semi-automated way in TrackDefineFilter by 
driving each car around alone, collecting a 2D event 
histogram, and then extracting a list of vertices spaced 
by minimum distances, starting from the peak of the 

histogram. This list is then updated manually using a 
GUI to drag, add, and delete vertices. 

Fig. 4 illustrates the car tracking update. Each 
DVS event input to CarTracker is first used to update 
the current car position according to the car velocity 
along the track, using the last update time and the 
current event time. This update implements the model 
inertia. Then the event is checked if it is near the 
location of the tracked car (shaded rectangle in Fig. 4 
and boundaries of boxes surrounding cars in Fig. 2).  
If so, the car model is updated by either advancing or 
retarding the car position along the track depending 
on whether the DVS event leads or lags the current 
car position. The amount of advancement or retarding 
is set by a ‘mixing factor’ (typically about 0.02) that 
mixes the DVS event position with the current car 
position with the mixing factor proportion. The update 
is done by projecting the vector ve from current car 
position to the event onto the track vector vt 
connecting the nearest track vertex to the next one 
along the track. A 2D lookup table (Fig. 3) maps pixel 
coordinates to the nearest track vertex, to speed up the 
search for the nearest track vertex. The car’s track 
velocity is updated when the nearest vertex changes. 
The car tracker lifetime is managed by a ‘mass’ that 
decays away exponentially with time between DVS 
events and is incremented with each event. If the mass 

Fig. 2. Display of the slot car track with state information. 

Fig. 3. Mapping from each pixel location to the nearest track 
vertex speeds up lookup of the nearest track vertex 

(number at each pixel location).  
Fig. 4. CarTracker car position update. 



falls below a certain value, the car is considered to be 
lost and tracking must be reinitialized. 

2) Slot Car Throttle and Braking Hardware
We designed a slot car controller PCB (Fig. 5) to 
control the power to up to 4 slot car tracks from a 
computer over a full-speed USB2.0 interface. This 
controller controls power to the cars by 1.5kHz PWM 
modulation of the 17V track power, and also can short 
the car motor across a 20 resistor for electronic 
braking. Only one track controller is currently used 
and the other track is controlled by the human using 
the standard throttle. The controller is updated with 
polling interval of 1ms. The full PCB design of this 
controller and its firmware are available in the jAER 
project [7]. A prototype design did not use 
optocouplers and the results were frequent resets of 
the USB microcontroller due to large voltage 
transients caused by sparking of the car contact to the 
track which propagated back through the electronics. 
The final design of Fig. 5 uses optocouplers to correct 
this problem.  

3) Throttle Control
Controlling the computer car consists of setting the 
throttle value or applying the brake at each vertex of 
the track model based on a vector of throttle/brake 
settings called a throttle profile. An example throttle 
profile is shown in Fig. 6. We investigated a number 
of methods to optimize the throttle profile. Eventually 
we found that the fastest method is to 1) determine an 
initial throttle profile by settings derived automatically 
from the track curvature so that straight sections have 
higher initial throttle; 2) examining the car visually 

and then gradually increasing the throttle or applying 
brake by eye, using a GUI interface to “paint” throttle 
and brake settings. An evolutionary method was also 
developed to learn the optimum throttle profile by 
inserting throttle increases and seeing if they result in 
successful laps. After a crash, the insertion is removed 
or braking points are inserted. The required learning 
time is currently still considerably longer than by 
manual adjustment of the profile and more work 
needs to be done to understand the optimum strategy. 

To make racing more competitive, a mode can be 
enabled that slows the computer down from its 
optimum throttle value to a minimum value, 
depending on how far ahead is the computer car. 
Typically a value of one third of the total track for 
complete slow-down is effective for resulting in 
exciting side-by-side racing.   

III. RESULTS

A series of YouTube videos document the 
evolution of the slot car racer since 2010 [8]–[10]. 
The final video shows the setup and a race between 
computer and human, including control that slows the 
computer car when it is ahead of the human. 

A sample of two recorded laps by the computer 
controlled car is shown in Fig. 7. This data is taken 
from a different track. Over two laps, the car position 
increases and then wraps back to vertex 0. At the end 
of the straightway, motor braking rapidly decreases 
the car speed, as indicated by the “braking” arrow. 
During the last lap, motor braking is disabled (“No 
braking”), resulting in a crash after the straightway.  

A series of ten 3-lap races between human and 
computer had the following results: The first human 
had 1 win, 2 losses, and 7 DNF (did not finish, i.e. 
crashed). The second human had 3 wins, 4 losses, and 
3 DNFs, however after the feedback control to slow 
the computer car was turned off halfway through the 
series of ten races, the second human was no longer 
able to win. 

Processing cost and throughput: Processing 
SlotCarRacer on a Lenovo W510 Core i7 laptop 
results in a CPU load of 1% to 3% for the Java virtual 
machine, when graphical rendering is disabled.  

The update interval on the host computer was 
determined by instrumenting the USB data packets 
received by the high-priority USB processing thread 

Fig. 5. The slot car controller PCB controls up to 4 lanes [7]. 
A: interface circuit of a single lane for throttle and brake 
control. The optocoupler pulldown outputs (OptThrOut & 
OutBrOut) feed the power MOSFET gates through RC low 

pass filters with=0.5ms. A fuse F1 protects against 
shorts. R16 is a power resistor for motor braking. B: 

Fabricated PCB with USB cable (bottom) and track/power 
connections (top). 

Fig. 6. Throttle and brake profile that achieves 4.1s lap times on 
track in Fig. 2. 



using the Java method 
System.nanoTime(). All the slot car racer 
processing is done in this thread, rather 
than the display rendering thread, which 
runs at most 60Hz. The DAVIS camera 
includes a feature called ‘early packet 
timer’ which ensures that USB FIFOs 
are committed to the host with intervals 
of at most 1.5ms, and on the host side 
the processing intervals closely matched 
this interval. 

IV.  CONCLUSION

Conventional machine vision using 
frame-based sensors faces a fundamental 
latency-power tradeoff. Low latency can only be 
achieved by processing at a high frame rate, which 
burns more power. The CPU load of less than 3% 
achieved in the slot car racer is a result of the low data 
rate averaging 5keps (thousand events per second) per 
car. The staring camera scenario is ideal for using the 
DVS, since only the small moving slot cars create 
DVS events. The early packet timer transmits 
available events from the camera at a minimum rate of 
1/1.5ms=666Hz, which means that most packets sent 
to the host contain only about 7 events per car. This is 
a small amount of data to process. By comparison, if 
the 240x180 pixel image could be transmitted to the 
host at 666Hz, it would mean a data rate of 29M 
pixels/s, which would be a factor of about 1000 times 
more data. 

The slot car racer robot is a popular demonstration 
of the use of a DAVIS sensor, mainly because racing 
is fun and it is a contest between human and computer 
that involves quick reaction times. The principle of 
operation is simple and easy to explain. In practice, 
because the computer is so precise, and because it can 
use motor braking, it is practically unbeatable and so 
to produce the illusion of a competitive race it is 
necessary to enable the mode where the computer car 
is slowed down if it is ahead.  

The control of the car is in some sense open-loop 
because the throttle and brake are applied according to 
the instantaneous position of the car on the track, 
regardless of the car’s speed. Future enhancements 
could focus on developing an adaptive model-based 
controller that regulates the speed of the car to a 
desired level that is safe for the curvature. Our 
attempts to do this were not successful because the 
model is surprisingly complex. The physics of car 
movement along the track and the action of the power 
applied to the car on its speed are complicated by 
track curvature, friction, individual car variability, 
motor heating, etc. However the short latency of 
sensor measurement could enable visual feedback on 
throttle control. 
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Fig. 7. Slot car position and speed vs. time on a different track. Two laps are 
completed successfully using motor braking to slow down just after track vertex 0. 
On the last lap, motor braking is disabled, resulting in a crash. 


