
An Event-Driven Multi-Kernel Convolution
Processor Module for Event-Driven Vision Sensors

Luis Camuñas-Mesa, Carlos Zamarreño-Ramos, Alejandro Linares-Barranco, Member, IEEE,
Antonio J. Acosta-Jiménez, Teresa Serrano-Gotarredona, Member, IEEE, and

Bernabé Linares-Barranco, Fellow, IEEE

Abstract—Event-Driven vision sensing is a new way of sensing 
visual reality in a frame-free manner. This is, the vision sensor 
(camera) is not capturing a sequence of still frames, as in conven-
tional video and computer vision systems. In Event-Driven sen-
sors each pixel autonomously and asynchronously decides when to 
send its address out. This way, the sensor output is a continuous 
stream of address events representing reality dynamically continu-
ously and without constraining to frames. In this paper we present 
an Event-Driven Convolution Module for computing 2D convolu-
tions on such event streams. The Convolution Module has been 
designed to assemble many of them for building modular and hi-
erarchical Convolutional Neural Networks for robust shape and 
pose invariant object recognition. The Convolution Module has 
multi-kernel capability. This is, it will select the convolution kernel 
depending on the origin of the event. A proof-of-concept test proto-
type has been fabricated in a 0.35 m CMOS process and extensive 
experimental results are provided. The Convolution Processor has 
also been combined with an Event-Driven Dynamic Vision Sensor 
(DVS) for high-speed recognition examples. The chip can discrim-
inate propellers rotating at 2 k revolutions per second, detect sym-
bols on a 52 card deck when browsing all cards in 410 ms, or detect 
and follow the center of a phosphor oscilloscope trace rotating at 
5 KHz.

Index Terms—Address-event representation (AER), asyn-
chronous vision sensors and processors, high-speed imaging, 
image convolutions, image sensors, machine vision, neural net-
works hardware, neuromorphic circuits, robot vision systems, 
visual system.

I. INTRODUCTION

S TATE-OF-THE-ART artificial vision technology is
presently based on capturing and processing a sequence of

still image frames. Present day development trends are towards

This work was supported by EU Grant 216777 (NABAB), and Spanish 
Grant TEC2009-10639-C04-01 (VULCANO) with support from the European 
Regional Devel-opment Fund. The work of C. Zamarreño-Ramos was 
supported by a national FPU scholarship.
L. Camuñas-Mesa is with the Department of Engineering, University of Le-

icester, U.K.
C. Zamarreño-Ramos is with the Sevilla Microelectronics Institute (IMSE-

CNM-CSIC), Sevilla 41092, Spain.
A. Linares-Barranco is with the Department of Computer Architecture and 

Technology, University of Sevilla, Sevilla 41092, Spain.
A. Acosta-Jiménez is with the Sevilla Microelectronics Institute 

(IMSE-CNM-CSIC), Sevilla 41092, Spain, and also with the Department 
of Electronics and Electromagnetism, University of Sevilla, Sevilla 41092, 
Spain.
T. Serrano-Gotarredona and B. Linares-Barranco are with the Sevilla Micro-

electronics Institute (IMSE-CNM-CSIC), Spain, and also with the Department 
of Computer Architecture and Technology, University of Sevilla, Spain.

more pixels per frame to increase spatial resolution and higher
frame rates to increase temporal resolution. Unfortunately,
this trend also yields exponentially increasing data rate, thus
imposing higher computational and power demands on later
processing stages.
However, in the last years we have been witnessing a new

type of vision sensors appearing in the specialized literature,
which are not based on capturing sequences of frames. Taking
inspiration from biological retinas, the pixels in these sensors
decide when sending information out, as opposed to waiting
for an externally controlled periodic sampling instant. These
sensors are said to be “Event-Driven”, because each pixel
sends out an information event when it senses a given level of
luminance, or a level of spatial or temporal contrast. Example
Event-Driven sensors are: simple luminance to frequency
transformation sensors [1], time-to-first event coding sensors
[2]–[4], foveated sensors [5], [6], temporal contrast vision
sensors [7]–[11], motion sensing and computation systems
[12], [13], and spatial contrast sensors [9], [10], [14]–[16],
among many others. Of special interest for very high-speed ap-
plications are the so-called “Dynamic Vision Sensors” (DVS),
where each pixel autonomously computes the normalized time
derivative of the sensed light and provides an output
event with its coordinate when this amount exceeds a
preset contrast [7], [8], [11]. Fig. 1 illustrates the operation of
such sensor when observing a 7.5 KHz spiral on an analog os-
cilloscope operated in x-y mode and stimulated with two phase
shifted sinusoids of decreasing amplitude. The only ambient
light is that of the oscilloscope phosphor. Fig. 1(b) represents
in 3D coordinates the address events produced by the
sensor during about 500 s. The sensor provides events with
a latency of a few microseconds to milliseconds depending on
illumination, but relative inter-event temporal resolution is in
the order of hundreds of nano seconds. Thus, it is possible to
know when the oscilloscope spot crossed a pixel with sub-mi-
crosecond timing precision. In general, Event-Driven Sensors
share interesting properties such as fast sensing capability,
reduced information throughput, low power, and efficient
in-sensor pre-processing, which makes them attractive for low
power portable applications as well as high-speed scenarios.
But sensing is simply the first step in a vision system. The

next step is performing processing to achieve a desired func-
tionality, such as object recognition. As these Event-Driven
sensors provide information events with sub-microsecond time
resolution, it is obvious that the most efficient way of processing
would be event by event, as opposed to histogramming them
into artificial frames and use conventional frame-based image
processing techniques. Taking further inspiration from biology,



Fig. 1. Example of DVS (Dynamic Vision Sensor) high-speed Event-Driven
sensing. (a) The sensor is observing a 7.5 KHz spiral on an analog oscilloscope
with no other ambient light than the screen phosphor. (b) Address Events cap-
tured by the DVS during 500 m represented in 3D space. Dots are fast
OFF-ON positively signed events, while circles are slow ON-OFF negatively
signed events.

these frame-free event flows can be fed to “Event-Driven
Feature Extractor Modules.” This way, as in the brain [17],
a first layer would extract low level features such as short
oriented edges at different scales and angles, a second layer
would combine them into more complex shapes, and sub-
sequent layers would continue to combine simpler features
into more complex and specialized ones, until recognizing
specific objects. Such computational systems have been studied
intensively in the fields of computational neuroscience and
artificial vision [18]–[20]. Many of them can be described by
the computational paradigm known as “Convolutional Neural
Networks” or ConvNets in brief. ConvNets take direct inspira-
tion from Hubel and Wiesel Nobel Prize winning discoveries
[17]. Their first software implementation goes back to 1969
[21], with strong developments since the 90s starting with the
work at AT&T Bell Labs [22]. Today, ConvNets count with
many successful commercial applications such as AT&T/Lu-
cent-Technologies/NCR check reading ATM machines [23],
Microsoft OCR and handwritten character recognition sys-
tems [24], Thomson developments in face/object recognition
[25], France Telecom/Orange with face detection and recog-
nition, as well as text detection and recognition [26]–[28], or
Google developments for detecting faces and license plates in
StreetView images [29]. So far, ConvNets have been developed

for frame-based sensors, mostly as software programs, although
some digital hardware implementations have been reported
[30]–[35]. In this paper we present an Event-Driven Convolu-
tional Module (ConvModule) intended as a starting building
block for assembling expandable, modular, hierarchical and
reconfigurable ConvNet vision systems for Event-Driven
Vision Sensors.1 These ConvModules process the event flow
coming from the sensors event by event, with processing delays
in the range of a hundred nano seconds, thus preserving the
microsecond time resolution of the sensor events. Also, as input
and output event flows have negligible per-event processing
delays, the two flows are virtually simultaneous. This is a fun-
damental difference with respect to frame-based sensing and
processing systems, where the delay of the combined sensor +
processor systems can never be smaller than frame rate.
The paper is structured as follows. In the next Section we

quickly review the generic concept of Event-Driven convolu-
tion operation and summarize previous work as well as motiva-
tion for the present design. Section III describes the operation of
the presented ConvModule and introduces the architectural and
circuit changes with respect to previous designs. Section IV pro-
vides experimental characterization results of a fabricated chip
prototype, Section V discusses on scalability and future outlook,
Section VI compares with some frame-based GPU/FPGA im-
plementations, and finally Section VII draws conclusions.

II. EVENT-DRIVEN CONVOLUTION OPERATION
AND PREVIOUS WORK

Fig. 2 illustrates the operation of an Event-Driven
ConvModule (chip) when fed by events produced by an
Event-Driven vision sensor chip (like those reported by Del-
brück [7], Posch [11], or Leñero-Bardallo [8]). On the left,
there is an Event-Driven Vision Sensor chip, and on the right an
Event-Driven processor like the one reported in this paper. In the
Event-Driven Sensor chip, each pixel includes a photo sensor
and some pre-processing circuitry to compute, for example,
spatial or temporal contrast. Whenever a pixel detects a given
level of contrast, it requests access to the AER (Address Event
Representation) bus to send out its coordinate using asyn-
chronous handshaking [36]. The Event-Driven ConvModule
(chip) receives this event and sends it to a “Projection Field” of
pixels. Each pixel in the ConvModule accumulates the contribu-
tions of the incoming events, until reaching a threshold, in which
case it will send out a new event through the ConvModule output
AER port. If is the coordinate of the incoming event
and is a pixel within the Projection Field of this event,
the contribution of the input event to the projection field pixels
is weighted by a factor which depends on their relative spatial
positions . The 2D function
defines the convolution kernel. By accumulating the continuous
flow of input event kernel-weighted contributions, the output
flow of events represents the 2D convolution of the input flow
with kernel [37].

1Although reported event-driven ConvModule prototypes always occupy one
full chip, as in the present paper prototype, the ultimate goal would be to inte-
grate many of them in a NoC (Network on Chip) die, together with routing and
reconfiguration engines. But this is beyond the scope of the present paper. Sec-
tion V provides a futuristic outlook of what might be expected.



TABLE I
CONVMODULE CHIPS PERFORMANCE COMPARISON

i. Measured by stimulating one pixel only.

Fig. 2. Illustration of Event-Driven Convolution Processing. When an event
of coordinate (x, y) is received from an event-driven vision sensor, a contri-
bution is sent to a “Receptive Field” of pixels in the destination Event-Driven
ConvModule.

Fig. 3. Array of 24 Event-Driven Gabor filters. Each subfigure corresponds
to events captured during the same 40 ms time window, and each number in
the subfigure indicates the number of events captured during this 40 ms time
window. The subfigure on left margin is obtained from a DVS retina sensor.
The other 24 subfigures correspond to Event-Driven Convolution Filtering op-
erations usingGabor kernel of six different orientations and four different scales.
The input and all 24 outputs are simultaneous.

Fig. 3 shows an example simulation of AER flow con-
volution processing on real sensory data. The event flow
generated by a 128 128 pixel motion detection retina is sent
in parallel to an array of 24 ConvModules, each programmed
with a Gabor kernel of different scale and orientation. The
retina is looking at two persons walking and providing events

representing their moving silhouettes. These events are sent
to all 24 ConvModules in parallel, which compute the events
representing a 2D Gabor filter operation of the input. Each
sub-figure in Fig. 3 corresponds to assembling a 2D histogram
by collecting the events during the same 40 ms time window.
The events coming out of the sensor have a typical delay of
a few microseconds to milliseconds with respect to reality,
depending on ambient light [7], [8], [11]. The ConvModules
need about 100 ns to 1 m to process each event, depending on
kernel size. Each ConvModule needs to collect a given number
of space-time correlated input events to provide an output
event, depending on the ConvModule settings. For high-speed
processing, one can set this number to be around ten events
or less. In general, more relevant pixels in the sensor have
stronger signals and send out their events sooner or more fre-
quently. Consequently, more relevant events will be processed
first by later ConvModules. This way, in an object recognition
hierarchical ConvNet, recognition can be achieved as soon as
the sensor provides enough significant space-time correlated
events. We refer to this as the “pseudo-simultaneity” property
of event-driven convolution processing. This input-to-output
pseudo-simultaneity property of event-driven convolutions is
very attractive for hierarchical multi-layer ConvNets in object
recognition applications. One key requirement, however, is
that the sensor provides a sparse representation of the observed
reality in order to not saturate the finite peak event rate of the
AER links. In general, each ConvModule reduces the event rate
from input to output. Therefore, typically the highest event rate
is found at the sensor output. In Fig. 3, the input flow contains
980 events for the selected 40 ms time window. The number of
events produced by the ConvModules during the same 40 ms
varies from 227 to 846 events.
Table I summarizes the features of previously reported

Event-Driven ConvModule chips. The first event-driven
ConvModule chip was reported in 1997 by Venier et al. [38].
It implemented a hard-wired elliptic kernel, whose shape
could be fine tuned through analog biases. In 1999, Serrano
et al. reported an architecture to perform 2D event-driven
convolutions with kernels of more generic shape, as long as



the kernel could be decomposed into a horizontal and ver-
tical components [37]. In 2005 Choi
et al. [39] presented an event-driven ConvModule chip for
Gabor-like kernels, where again the shape of the kernels
could be fine tuned through analog biases. In 2006, Serrano
et al. presented an event-driven ConvModule chip for generic
kernels of arbitrary shape and size [40], where kernels were
uploaded on a kernel-RAM at start-up. All these event-driven
ConvModule chips used analog charge packet integration on
in-pixel capacitors to perform weighted event integration.
Given the severe area and current consumption restrictions
required per pixel, analog computing circuits were designed
to operate in weak inversion. Consequently, they suffered
from severe transistor mismatch and low computational preci-
sion. In particular, Serrano’s chip which included an in-pixel
calibration circuitry to improve precision, only managed to
reach an overall 3-bit precision. The limited precision, tedious
calibration process, and critical analog biasing motivated the
exploration of a fully digital pixel using digital adders and
accumulators to perform the weighted event integration. A
preliminary prototype was developed using conservative digital
circuit techniques and an oversized 18-bit precision for the
pixel accumulation registers [41]. Another severe limitation of
all previously reported event-driven ConvModule prototypes
was that they could only operate a single-kernel convolution.
However, for generic ConvNet systems assembly, each module
receives several visual input flows and requires to compute
and accumulate a convolution with different kernel for each.
Fig. 4 shows the multi-layer feed-forward structure of a typical
ConvNet architecture [21]–[31]. Typically, there are between
three to eight sequential layers. Each layer contains a set of
“Feature Maps” (FM). Each FM in the first layer after the
sensor receives input from the sensor only and computes a
single kernel convolution. However, FMs starting from the
second layer receive more than one visual flow, and for each
have to use a different kernel to compute and accumulate the
convolutions. The event-driven ConvModule we present in
this paper has multi-kernel capability and can compute and
accumulate different kernel convolutions in parallel for mul-
tiple simultaneous input flows. Also, the pixel accumulators
use a more realistic register size of 6 bits while using more
compact pass transistor logic circuits. As a result, pixel area is
approximately one fourth of the previous design, thus allowing
higher pixel density. Additionally, it allows for up to 32 sep-
arate kernels. Performing 32 kernel convolutions with prior
ConvModules, requires the use of 33 of them: one for each
kernel plus an extra one for adding all 32 outputs.

III. CONVMODULE DESCRIPTION

The architecture of the ConvModule is shown in Fig. 5(a).
It contains a synchronous controller with an internal clock,
a 32 32 4-bit words static kernel-RAM, a kernel parameter
lookup table (LUT), a column blocker, a 2’s complement block,
a left/right column shifter, an array of 64 64 pixels, and an
asynchronous event read out block which follows row-parallel
burst-mode event read-out [42].
Event-driven convolutions are performed as follows

[37]–[41]. Pixels in the “Pixel Array” (see Fig. 5(a))

Fig. 4. Typical hierarchical structure of a feed forward ConvNet architecture.

hold their state in a continuous and dynamic manner. When
the module receives an input event , kernel

(which is a 2D matrix stored in the “Kernel-RAM”) is
added/subtracted to the “Projection Field” of pixels around
“Event Address” , as illustrated in Fig. 5(a). Input
event sign determines whether the kernel is added or
subtracted. Independently of the input event flow, all pixels
“suffer” from a constant rate leak that will drive their state
to a resting level. When a pixel reaches a positive (negative)
threshold, it is reset to its resting level, and a positively (nega-
tively) signed output event is sent out through the AER output
port with the pixel’s coordinate. This way, ConvModules are
excellent spatio-temporal feature extractors, because if enough
input events representing the kernel spatial feature are received
close in time (to avoid the effect of the leak), output events
representing the location of these features are produced.
To perform these simplistic conceptual operations, the ma-

chinery described below is used. To devise this machinery, the
main strategic criterion was to perform each event kernel ad-
dition/subtraction as fast as possible. For this, kernel lines are
copied in one controller clock-cycle from the kernel-RAM to
the Pixel Array, and added-accumulated during the next clock-
cycle. Another strategic choice was to fully decouple the output
events read-out process from the input events convolution com-
putations, by having the synchronous controller take care of this
last process only. Next, we describe in more detail the different
operations.

A. Synchronous Controller

The controller is outlined in Fig. 5(b). At start-up, the kernels
are loaded onto the static kernel-RAM and other necessary
kernel parameters onto the kernel-LUT. Also, registers that
store configuration and control parameters are loaded at start-up.
Input asynchronous events are fed in through synchronizers
into a small 4-position FIFO. Then a Finite-State-Machine
(FSM), described in VHDL, controls the sequential operation
of copying appropriately the selected kernel onto the desired
pixels within the pixel array. Each incoming event includes:
1) a 14-bit event address ; 2) an event sign bit; and 3) a
5-bit kernel number to select one of up to 32 stored kernels.
Although the present ConvModule has only 64 64 pixels, it
can “see” a 128 128 input space. Configuration parameters

and define the pixel array position within



Fig. 5. (a) ConvModule architecture. (b) Controller block diagram.

the total 128 128 input space. This allows to assemble several
ConvModules in parallel, each processing a different 64 64
tile of the total 128 128 space. For processing larger spaces,
an extra address remapper module [44] would be required for
each 128 128 tile.

B. Controller Finite State Machine Description

Fig. 6 shows a simplified state transition diagram of the syn-
chronous controller FSM. By default it stays in a resting state
waiting for a new input event. Once an event is received and the

Fig. 6. Synchronous Controller FSM simplified state transition diagram.

kernel selected, the first computation is to detect whether the
selected kernel lies fully inside the pixel array, fully outside, or
whether some rows fall outside either from the bottom or the
top. If the kernel lies fully outside, the operation for this event
is finished, and the FSM returns to the resting state. In the other
cases, the FSM computes which kernel-RAM rows need to be
copied onto which pixel array rows and copies them sequen-
tially one after the other. Depending on the situation, these com-
putations differ, and the FSM follows three possible state paths:
‘Reading/Writing state2’ if the kernel lies fully inside the pixel
array, ‘Reading/Writing state1’ if the kernel top rows fall out-
side the pixel array, and ‘Reading/Writing state3’ if the bottom
kernel rows fall outside. For each row, all values are copied
in parallel. Since there is more than one kernel in the kernel-
RAM, the “Block_col” signal in Fig. 5(b) activates through the
“Column blocker” only those columns where the selected kernel
is stored. If the input event has negative sign, the 2’s comple-
ment block is activated to invert the sign of all weights of the
selected kernel, through FSM signal “invert_data”. FSM signal
“Horiz_shift” controls a switchmatrix (left/right column shifter)
to align the kernel-RAM columns where the selected kernel is
stored to the pixel array columns where it needs to be copied.
After a secured delay, the FSM enables the destination pixel
array row, so that the active kernel row is copied onto the cor-
responding pixel array row. This row copy operation is sequen-
tially repeated for all required kernel rows. The controller needs

clock cycles, where is the number of kernel



Fig. 7. Kernel parameters definition. (a) Kernel position and size within
Kernel-RAM and (b) kernel position with respect to input event coordinate
within pixel array space.

rows to copy. For each kernel stored, we need six extra parame-
ters, besides the values in the kernel-RAM. Fig. 7(a) shows one
kernel stored inside the 32 32 4-bit words kernel-RAM and the
four 5-bit parameters needed to define the kernel location and
size . Also, in general, the kernel
might not be centered with respect to the event address, but
could be displaced by and , as shown in Fig. 7(b). Every
time an input event is received, the FSM loads these six param-
eters from the kernel-LUT for the input event kernel number
and computes the sequence of FSM output control signals ap-
propriately. The rest of parameters stored in the configuration
registers are for (a) selecting internal or external clock, (b) en-
abling/disabling leak, (c) selecting accumulator limit, (d) se-
lecting whether positive or negative events are discarded (thus
reducing AER bus traffic if they will not be used), (e) setting
the leak rate accumulator limit, and (f) parameters and

which define the position of the 64 64 pixel array
within the total 128 128 visible input space.

C. Leak/Forgetting Capability

Besides the kernel row-wise copy operation, the controller
also generates a periodic signal for all pixels in the array, to per-
form a constant rate leak of the accumulated value. This is a nec-
essary feature in Event-Driven frame-free processing systems.
Note that a ConvModule provides output events at specific co-
ordinates if a set of space-time correlated input events represent
the “feature” defined by the kernel. Consequently, these corre-
lated input events have to be received during a time interval,
controlled by the leak-rate. This leak-rate is adjusted to the time
constant of the “reality” under observation. If the sensor is ob-
serving walking humans, this rate should be adjusted to be in
the range of tens to hundreds of milliseconds. If it is used in a
microscopic particle tracking application [45], then the required
time constant should be rather in the microsecond range.

D. Pixel Description

Fig. 8 shows the block diagram of the pixel. Kernel weights
(3-bit plus sign) are received column-wise, and added/sub-

tracted to a 6-bit accumulator, using 2’s complement logic.
Row-wise signal “Enable” comes from the FSM and enables
kernel addition of only one row of the pixel array. Signal
“Sel_forgetting” activates addition/subtraction of a fixed in-
teger for all pixels in the array, to perform the constant rate
leak. Leak addition or subtraction is selected depending on the

TABLE II
CHIP SPECIFICATIONS

pixel accumulator sign. The accumulator is monitored by a
comparison block that detects whether a positive or negative
threshold is reached. If reached, the accumulator is reset to
zero, and the pixel requests to send out a signed output event.
The in-pixel AER interface is standard for row-parallel event
read-out [42]. Fig. 9 shows the schematic of the 16-transistor
adder cell used. It employs pass transistor logic with buffering
of critical nodes.

IV. EXPERIMENTAL RESULTS

A test prototype chip holding the ConvModule has been
fabricated in the AMS 0.35 m CMOS technology with 3.3 V
power supply. A chip microphotograph is shown in Fig. 10
and specifications are summarized in Table II. It occupies
5.5 5.8 mm with each pixel using 58.0 53.8 m . A
close-up of the pixel layout is shown in Fig. 11 highlighting the
main parts. Pixel array is 64 64 with 6-bit adder/accumulator,
kernel-RAM array size is 32 32 with 4-bit 2’s complement
words. Controller clock operates at 100 MHz. Chip power
consumption depends greatly on input and output event traffic,
and an important fraction is consumed by the output event pads,
reaching a maximum of about 200 mW.

A. ConvModule Timing Characteristics

Fig. 12 shows a characteristic timing diagram of input and
output handshaking signals. Kernel weights and pixel thresh-
olds were set so that each input event would generate ten output
events, coming from five consecutive rows. Output and

signals are shorted. Events coming from the same row are
read out at a rate of 27 ns per event, while when switching to
a new row requires 60 ns. Measured input to output latency is
192 ns. Maximum sustained input event rate depends on the
number of kernel lines , since the controller needs

clock cycles for processing one event. Therefore, input
event rate varies between 1.47 and 16.6 Meps (mega events per
second) depending on , while output event rate can reach up
to 37 Meps.

B. Illustration of Luminance Processing

AER is highly inefficient when using rate coding to represent
a static luminance image, because the total number of events be-
comes excessively large. This is why, in practical AER vision



Fig. 8. Pixel block diagram.

Fig. 9. Pixel 16-transistor adder cell.

systems, a proper sensor with some kind of focal plane pre-pro-
cessing (such as spatial [2], [9], [10], [15], [16] or temporal
[7]–[11] contrast, or motion extraction [12], [13]) is used. Nev-
ertheless, in this section we show a luminance rate-coding ex-
periment to illustrate “pseudo-simultaneity” and “first-flash fea-
ture-extraction” [43].
Fig. 13 illustrates event flow processing for a luminance

rate-coded input event burst. The ConvModule was loaded with
a vertical 11 7 Gabor filter to extract vertical edges. Input flow
codes pixel light intensity with number of events per pixel (rate
coding). In Fig. 13(a) each pixel uses 0 to 16 events. Visual
input used 94 94 pixels and needed 90 k events. An 11 line
kernel needs 260 ns to be processed (4 22 clock cycles at
100 MHz). However, only events for the central 74 70 pixels
will be processed, as kernel size is 11 7 and ConvModule pixel
array is 64 64. These 90 k events were processed in 14.9 ms,
and Fig. 13(b) shows a representation of the 51 k output events
produced by the ConvModule during the same 14.9 ms. In

Fig. 13(c) and (d) we show the reconstructed input and output
images when collecting the events during the first 3.2 ms only,
and Fig. 13(e) and (f) corresponds to collecting events during
the first 1.7 ms only. As can be seen, reconstructed input and
output images degrade as less events per pixel are available.
However, vertical edges are detected quite well even during
the first milliseconds (see Fig. 13(d)), so that a fast preliminary
feature extraction (“first-flash feature-extraction”) takes place
during the first events of the input flow. Fig. 13 illustrates nicely
the “pseudo-simultaneity” property between input and output
flows of Event-Driven Convolutional processing, as input and
output events belong to the same time interval.

C. High Speed Moving Stimuli. Rotating Propellers

Fig. 13 illustrates Event-Driven convolution operation on
static input visual flow. Dynamic Vision Sensors are meant
for dynamic inputs, specially for very high speed, as each
sensor pixel computes the temporal derivative of the sensed



Fig. 10. Chip microphotograph.

Fig. 11. Close-up of pixel layout indicating main parts.

light. Fig. 14 illustrates the operation of the ConvModule
when receiving the events of two propellers of different shapes
rotating at 2000 revolutions per second, while moving slowly
across the field of view. These events are generated artificially
in a computer following the method explained elsewhere [40]
and sent to the ConvModule chip using an event data player
[44]. Fig. 14(a) shows the events collected during 50 ms (100
revolutions), while Fig. 14(b) for 50 s (one tenth of a revo-
lution). The ConvModule was programmed with a kernel to
detect the S-shaped propeller in horizontal position by simple
template matching: positive weights for propeller pixels and
negative weights for surrounding pixels. Kernel size is 23 23.
Fig. 14(c) shows the kernel weights, and Fig. 14(d) the output
of the ConvModule where the events follow the center of the
S-shape propeller and ignore the rectilinear one.

Fig. 12. Timing characterizations of input and output handshaking signals.

Fig. 13. Illustration of Event-Driven Luminance coding and convolution pro-
cessing. Kernel is an 11 7 vertical Gabor filter. Input space is 94 94 pixels
and output space is 64 64 pixels. (a) Full reconstruction of the 14.9 ms 90 k
event burst representing a luminance image with pixels having between 0 to 16
events each. (b) Convolution output 51 k event burst produced during the same
14.9 ms, with pixels producing between 0 to 20 signed events each. (c) Input
reconstruction of the first 11 k input events of the first 3.2 ms, with pixels having
between 0 to 2 events each. (d) Output reconstructed from the first 6.6 k events
of the first 3.2 ms, with pixels producing between 0 to 4 signed events each.
(e) Input reconstruction of the first 5.6 k input events of the first 1.7 ms, with
pixels having between 0 to 1 events each. (f) Output reconstructed from the first
3.3 k events of the first 1.7 ms, with pixels producing between 0 to 2 signed
events each.

D. Combining the ConvModule With a DVS Retina

The high-speed event based processing example in Fig. 14
uses synthetic input data. Fig. 15 illustrates Event-Driven
pattern recognition processing using real data from a 128 128
pixel Event-Driven DVS retina [8]. Performing robust shape
and scale invariant pattern recognition with Convolutional
Neural Networks requires large number of convolution mod-
ules, which is beyond the scope of the present article. However,
we can illustrate the high-speed potential for pattern recogni-
tion by simple template matching. This is the case illustrated in
Fig. 15. The retina events are filtered by a first center-on Con-
vModule and the output events are then processed by a second
ConvModule for template matching. Thus, our recognition



Fig. 14. 2 k rps propeller recognition. (a) 50 ms time capture of input stimulus events (100 revolutions). (b) 50 s time capture of input stimulus events (1/10
revolution). (c) Output events produced by the Event-Driven ConvModule during 50 ms, following the center of the S-shaped propeller. (d) Kernel programmed.

system is a simple sequence of two feed forward ConvModule
processing (see Fig. 15(a)). The retina is observing a person
browsing a 52 card deck at high speed, as shown in Fig. 15(b).
The 52 cards are swept in about 650 ms, although most of them
are browsed in 410 ms (see Fig. 15(c)), which gives an average
rate of about 8 ms per card. During these 410 ms the DVS retina
[8] generates about 460 k events, while peak event rate goes up
to 8 Meps. The DVS retina produces signed events. The sign bit
is ‘1’ for ON events (pixel light changed from dark to bright)
or ‘0’ for OFF events (pixel light changed from bright to dark).
We filtered out the OFF events and sent only the ON events
to the first ConvModule, programmed with the 7 7 center-on
kernel shown in Fig. 16(b), to enhance edges and symbols and
filter out noise. The ConvModule can “see” the full 128 128
input pixel space, but produces output events only for a 64 64
pixel window. Fig. 15(d) shows a 5 ms event capture from the
ON events sent to the first ConvModule obtained with the jAER
tool [46]. The output events of this first ConvModule are fed
to the second ConvModule programmed with the 31 31 pixel
template matching kernel shown in Fig. 15(e), to detect the
“clover” symbols on the cards. The second ConvModule also
produces 64 64 pixel output events, but we discard the most
external 15 pixel ring to avoid false detections by undesired
edge effects. Fig. 15(f) shows a versus time projection of the
events captured during 85 ms at the retina output (small dots),
first ConvModule output (circles) and second ConvModule
output (crosses). During these 85 ms six cards are browsed.
Cards 2 to 4 contain “clover” symbols, which are correctly
detected by the second ConvModule. Fig. 15(f) includes a 3 ms
zoom box at “card 2”, which are the events for one
“clover” symbol. The events within this box are zoomed out in
Fig. 15(g) as versus time and in Fig. 15(h) as versus . As

can be seen, the retina events for this “clover” symbol start at
about 26.3 ms and end at about 29 ms (2.7 ms total event time).
The first convolution output events start at 26.6 ms (300 s
after the input first event) and end at about 28 ms (1.4 ms total
event time). And the output events of the second convolution
come out at 27.8 ms, 1.5 ms after the first retina event and
1.2 ms before the last retina event, or 1.2 ms after the first filter
output event and 0.2 ms before the last one. Consequently,
this example also illustrates nicely the pseudo-simultaneity
processing of event-based systems, as recognition is achieved
while the input stimulus events are being produced by the
retina.
A final experiment that illustrates real data high-speed pro-

cessing using the multi-kernel capability of the ConvModule
is shown in Fig. 16(a). The same DVS retina [8] is looking
at a 5 KHz spiral on an oscilloscope (as in Fig. 1). The retina
sends its 128 128 pixel output events to a merger
module [44], where are the retina pixel coordinates, ‘ ’
is event sign, and ‘ ’ is a hard-wired 5-bit code to indicate
the origin module of the event. Thus all events produced by
the retina always have the same value ‘ ’. The merger output
goes to the ConvModule, whose output events are
fed back to the second merger input. The ConvModule “sees”
all 128 128 pixels but produces events only for a 64 64 pixel
central window. The events produced by the ConvModule have
a different code ‘ ’ than the retina. Consequently, the Con-
vModule receives input events from the retina and from itself
and will apply a different kernel depending on the origin of
the events. For the retina events it uses the center-on kernel in
Fig. 16(b) to enhance the center of the oscilloscope trace. And
for the events coming out of itself it uses the kernel in Fig. 16(c).
This kernel excites close by neighbors while it inhibits more dis-



Fig. 15. Browsing a 52 card deck. (a) Setup of experiment. (b) Snapshot of 1/60 exposure (17 ms) taken with a commercial camera. (c) Instantaneous event rate
of the half million events captured during 1.7 sec. (d) 5 ms event capture using a temporal derivative Event-Driven DVS retina. (e) 31 31 kernel used to detect
clover symbols. (f) 85 ms event capture from the retina output (small dots), first convolution output (circles) and second convolution output (crosses). Events are
projected on the y-time axes. During these 85 ms 6 cards are browsed. Cards 2 to 4 contain clover symbols. In ‘card2’ a 3 ms zoom box is shown. The events
corresponding to this zoom box are shown in (g) as versus time and in (h) as versus .

tant neighboring pixels, thus performing a soft-winner-takes-all
competition among ConvModule pixels. The result of this pro-
cessing is a sequence of small number of events following the
center of the oscilloscope trace. Fig. 16(d) shows in 3D coordi-
nates the 825 events from the retina (small dots) and the
90 events from the output of the ConvModule (thick dots with
line) during 500 s. The trace center is followed with a delay of
about 10 s with respect to the center of the input data events.
A similar experiment was reported in the past [44]

using ConvModule chips and a dedicated Event-Driven
Winner-Takes-All (WTA) chip to detect and follow the center
of a rotating circle. However, the maximum rotating speed
reported then was 4 revolutions per second and the WTA output
had a delay with respect to the retina first stimuli events of
about 4 ms.

V. SCALABILITY AND FUTURE PROJECTIONS

The availability of multi-kernel event-driven ConvModules
allows the assembly of arbitrary scale event-driven Convolu-
tional Neural Networks (ConvNets). Here we try to estimate a
futuristic projected performance of such systems.
The circuit techniques presented in this paper for building a

64 64 pixel ConvModule in a 5.5 5.8 mm die in 0.35 m can
be extrapolated for modern 40 nm technologies. Pixel dimen-
sions could be expected to be reduced by a factor of about 10.
Consequently, increasing die area to about 1 cm , would make
it realistic to handle pixel arrays of over one mega pixel, while
emulating about one giga synapses (with projection fields of size
32 32). Handling such large arrays results also in longer event
words, which would benefit from some kind of “event compres-
sion” technique to optimize communication bandwidth [47]. In



order to improve event throughput, processing pixels should
be tiled into slices to avoid very long lines and pipeline/paral-
lelize event processing. Off-chip event communication should
be done serially [48], [49], and possibly using multiple I/O ports
to improve inter-chip throughput. All this could probably im-
prove event throughput by a factor of 100 with respect to the
presented prototype. Consequently, we might consider as vi-
able, event throughputs in the order of 10 –10 eps (events per
second) per chip.
Then, many of these chips (in the order of a hundred) could

be assembled on a single PCB in a 2D grid array [50]. One
such (stackable) PCB could emulate a neural ConvNet structure
holding in the order of 10 neurons with 10 synapses, which
is about 1% of the human brain.
However, the most interesting way of scaling (besides

scaling pixel array size) is to allow for multiple size-config-
urable ConvModules with configurable inter-module AER
links within a single NoC (network on chip) die. This way, a
single mega pixel (or mega neuron) size 40 nm NoC die could
hold large numbers of individual ConvModules capable of
interchanging intra-chip events at extremely high speeds. Note
that ConvNets have usually large pixel array ConvModules
in the first layers, but then their size reduces in subsequent
layers, while the number of ConvModules is maximum at
intermediate layers. For example, a standard face recognition
ConvNet for 640 480 pixel inputs [32] uses four sequential
layers: the first layer with 2.4 10 neurons (in 8 ConvMod-
ules each with one 5 5 kernel), the second with 1.5 10
neurons (in 20 ConvModules, each with 8 5 5 kernels), the
third with 3.5 10 neurons (in 20 ConvModules, each with
20 5 5 kernels), and the fourth with 1.6 10 neurons (in 9
ConvModules, each with 180 1 1 kernels). Thus, total number
of neurons is about 4.4 10 , which could be fit into about five
40 nm 1 cm NoC dies.
Regarding size of kernel-RAM, reported ConvNet systems

for object recognition type tasks use kernel sizes in the order
of 10 10 at the most, for VGA-like input images. On the
other hand, what is more relevant for scaling up ConvNets
is to have room for enough kernels per ConvModule. The
maximum number of kernels per ConvModule is usually given
by the number of ConvModules in the previous layer, which
is normally less than a hundred. Therefore, when scaling up,
each ConvModule should allow for about 100 10 10 kernels,
at least, or 10 kernel values.
Regarding speed performance, since event-driven processing

presents the pseudo-simultaneity property, recognition would be
performed as soon as a sensor provides enough representative
input events. A 128 128 pixel DVS sensor observing moving
objects (as in Fig. 3) generates 10–100 keps, and a time be-
tween 10–40 ms provides enough events to recognize objects
moving at normal life speeds (the high-speed card symbols in
Fig. 15 needed about 10 times less time). Shaking the DVS
sensor to observe static objects increases event rate to about
1–2 Meps. A 512 512 pixel DVS sensor would generate 16
times more events, but then objects can be recognized in less
time, as enough representative events would be available about
16 times earlier. Consequently, we estimate that a reasonable

Fig. 16. Illustration of High-Speed Multi-kernel operation. (a) Setup: An
Event-Driven Vision Sensor is observing a 5 KHz spiral on a phosphor
oscilloscope (see Fig. 1) and is sending its output events to the Convolution
Chip through an event merger module; the convolution module output is fed
back to its input through the merger module. The ConvModule selects kernel
(b) if the event comes from the vision sensor, or kernel (c) if it comes from its
own output. Kernel (b) intends to highlight a circular shape of about 5 pixel
diameter, while kernel (c) implements a soft winner-takes-all type of inter-pixel
competition through mutual inhibition and slight self-amplification. (d) The
result is that the ConvModule output events (large circles) follow closely the
center of the oscilloscope trace (small dots) with an average update time of
about 10 s.

recognition time for an event-driven ConvNet fed by a 512 512
pixel sensor could be in the order of a millisecond (indepen-
dently of its scale).



TABLE III
FRAME-BASED CONVNETS FOR FACE DETECTION

VI. COMPARISON WITH STATE-OF-THE-ART FRAME-BASED
GPU AND FPGA CONVNETS

Some researchers have reported GPU and FPGA-based
hardware realizations of sophisticated Frame-based ConvNets
for recognition type of applications, showing extraordinary
performance figures, for both recognition rates and processing
times. Table III summarizes recognition delays of three ex-
ample systems that perform face recognition with ConvNets,
implemented either with GPUs [33] or FPGAs [30], [32], [34],
[35], when using VGA-like size input images. Nasse’s imple-
mentation on an Nvidia GeForce 8800GT GPU needs 209 ms
per input frame. NEC’s system implemented on a Virtex-5
FPGA requires 160 ms, while Yale/NYU’s system on a recent
Virtex-6 FPGA can do a similar task in 6 ms.
The main advantage of Frame-based realizations is that

the hardware can be time-multiplexed by fetching interme-
diate data between the processor and external memory, at the
cost of slowing down speed performance. Time-multiplexing
is not possible with Event-driven hardware as each neuron
holds its state at each instant. On the other hand, one main
advantage of event-driven hardware is that, because of the
pseudo-simultaneity property, processing delay is kept approx-
imately constant as hardware scales up. Another advantage is
that up-scaling is simple by simply assembling more modules
through asynchronous interconnect AER buses. However, large
scale event-driven ConvNets are still under development.

VII. CONCLUSIONS

We have presented an Event-Driven Multi-Kernel Convo-
lution Module chip for performing 2D kernel convolutions on
visual data coming from Event-Driven Dynamic Vision Sen-
sors (DVS). A ConvModule proof-of-concept test prototype
has been fabricated in a 0.35 m CMOS process, occupies
a small area of 5.5 5.8 mm , and can process an array of
64 64 pixels. Consequently, it is quite realistic to integrate
several tens of such modules in a Network on Chip (NoC)
die fabricated in a modern sub-100-nm CMOS technology.
The presented ConvModule includes multi-kernel capability,
which is a key property for assembling modular hierarchical
multi-ConvModule systems for object recognition systems,
following the computational paradigm known as “Convolu-

tional Neural Networks”. Event-driven sensing and processing
systems turn out to present very high-speed visual processing
and recognition capability, as events produced by the sensors
are processed immediately by subsequent stages, event by
event, resulting in “pseudo-simultaneity” between input and
output visual information event streams. We have illustrated
this by a series of experiments on static and dynamic visual
event-driven data. The presented ConvModule could discrim-
inate between propellers of different shapes rotating at speeds
of up to 2000 revolutions per second, it could detect playing
card symbols when browsing cards at an average rate of 8 ms
per card and producing recognition events while the card is still
being displayed, or it could detect and follow the center of an
oscilloscope trace rotating at 5 KHz.
Future work will concentrate on assembly and reconfig-

urability strategies for assembling tens or hundreds of Event-
Driven ConvModules for generic object recognition tasks.

ACKNOWLEDGMENT

The authors are grateful to Tobi Delbrück for valuable dis-
cussions, providing an initial AER temporal contrast retina [7]
and the jAER open software [46], Anton Civit’s group for the
AER interfacing and data record/playback boards [44], Philipp
Häfliger for the CAVIAR PCB for holding the ConvChip and
the lens mount holder for the retina, and Eugenio Cullurciello
and Clement Farabert for valuable discussions. The authors are
also grateful to Simon Thorpe for valuable discussions on event
based processing and suggesting the idea of implementing the
multi-kernel capability.

REFERENCES
[1] E. Culurciello, R. Etienne-Cummings, and K. A. Boahen, “A biomor-

phic digital image sensor,” IEEE J. Solid-State Circuits, vol. 38, pp.
281–294, 2003.

[2] P. F. Ruedi et al., “A 128 128 pixel 120-dB dynamic-range vision
sensor chip for image contrast and orientation extraction,” IEEE J.
Solid-State Circuits, vol. 38, pp. 2325–2333, 2003.

[3] M. Barbaro, P. Y. Burgi, A. Mortara, P. Nussbaum, and F. Heitger, “A
100 100 pixel silicon retina for gradient extraction with steering filter
capabilities and temporal output coding,” IEEE J. Solid-State Circuits,
vol. 37, pp. 160–172, 2002.

[4] C. Shunshun and A. Bermak, “Arbitrated time-to-first spike CMOS
image sensor with on-chip histogram equalization,” IEEE Trans. VLSI
Syst., vol. 15, no. 3, pp. 346–357, Mar. 2007.

[5] M. Azadmehr, H. Abrahamsen, and P. Hafliger, “A foveated AER im-
ager chip,” presented at the IEEE Int. Symp. Circuits and Syst., Kobe,
Japan, 2005.

[6] R. J. Vogelstien, U. Mallik, E. Culurciello, R. Etienne-Cummings, and
G. Cauwenberghs, “Spatial acuity modulation of an address-event im-
ager,” in Proc. IEEE Int. Conf. Electronics, Circuits and Systems, 2004,
pp. 207–210.

[7] P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128 128 120 dB 15 s
latency asynchronous temporal contrast vision sensor,” IEEE J. Solid-
State Circuits, vol. 43, no. 2, pp. 566–576, Feb. 2008.

[8] J. A. Leñero-Bardallo, T. Serrano-Gotarredona, and B. Linares-Bar-
ranco, “A 3.6 m latency asynchronous frame-free event-based dy-
namic vision sensor,” IEEE J. Solid-State Circuits, vol. 46, no. 6, pp.
1443–1455, Jun. 2011.

[9] K. A. Zaghloul and K. Boahen, “Optic nerve signals in a neuromorphic
chip I: Outer and inner retina models,” IEEE Trans. Biomed. Eng., vol.
51, no. 4, pp. 657–666, Apr. 2004.

[10] K. A. Zaghloul and K. Boahen, “Optic nerve signals in a neuromorphic
chip II: Testing and results,” IEEE Trans. Biomed. Eng., vol. 51, no. 4,
pp. 667–675, Apr. 2004.

[11] C. Posch, D.Matolin, and R.Wohlgenannt, “AQVGA 143 dB dynamic
range frame-free PWM image sensor with lossless pixel-level video
compression and time-domain CDS,” IEEE J. Solid-State Circuits, vol.
46, no. 1, pp. 259–275, Jan. 2011.



[12] C.M.Higgins and S. A. Shams, “A biologically inspiredmodular VLSI
system for visual measurement of self-motion,” IEEE Sensors J., vol.
2, no. 6, pp. 508–528, Dec. 2002.

[13] E. Ozalevli and C. M. Higgins, “Reconfigurable biologically inspired
visual motion system using modular neuromorphic VLSI chips,” IEEE
Trans. Circuits Syst. I, vol. 52, no. 1, pp. 79–92, 2005.

[14] K. Boahen and A. Andreou, “A contrast-sensitive retina with recip-
rocal synapses,” Advances in Neural Information Processing Systems
(NIPS), vol. 4, pp. 764–772, 1992.

[15] J. Costas-Santos, T. Serrano-Gotarredona, R. Serrano-Gotarredona,
and B. Linares-Barranco, “A spatial contrast retina with on-chip
calibration for neuromorphic spike-based AER vision systems,” IEEE
Trans. Circuits Syst. I, vol. 54, no. 7, pp. 1444–58, 2007.

[16] J. A. Leñero-Bardallo, T. Serrano-Gotarredona, and B. Linares-Bar-
ranco, “A five-decade dynamic range ambient-light-independent cali-
brated signed-spatial-contrast AER retina with 0.1 ms latency and op-
tional time-to-first-spike mode,” IEEE Trans. Circuits Syst. I, vol. 57,
no. 10, pp. 2632–2643, Oct. 2010.

[17] D. H. Hubel and T. N. Wiesel, “Receptive fields of single neurones in
the cat’s striate cortex,” J. Physiol., no. 148, pp. 574–591, 1959.

[18] E. T. Rolls and G. Deco, Computational Neuroscience of Vision. Ox-
ford, U.K.: Oxford University Press, 2002.

[19] T. Serre, L. Wolf, S. Bileschi, M. Riesenhuber, and T. Poggio, “Robust
object recognition with cortex-like mechanisms,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 29, no. 3, pp. 411–426, Mar. 2007.

[20] T.Masquelier and S. Thorpe, “Unsupervised learning of visual features
through spike timing dependent plasticity,” PLoS Comp. Biol., vol. 3,
no. 2, p. e31, 2007, doi 10.1371/journal.pcbi.0030031.

[21] K. Fukushima, “Visual feature extraction by a multilayered network
of analog threshold elements,” IEEE Trans. Syst. Sci. Cybern., vol.
SSC-5, no. 4, pp. 322–333, Oct. 1969.

[22] B. E. Boser, E. Säckinger, J. Bromley, Y. LeCun, and L. D. Jackel, “An
analog neural network processor with programmable topology,” IEEE
J. Solid-State Circuits, vol. 26, no. 12, pp. 2017–2025, Dec. 1991.

[23] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W.
Hubbard, and L. D. Jackel, “Backpropagation applied to handwritten
zip code recognition,” Neural Comput., vol. 1, no. 4, pp. 541–551,
1989.

[24] K. Chellapilla, M. Shilman, and P. Simard, “Optimally combining a
cascade of classifiers,” in Proc. Document Recognition and Retrieval,
Jan. 2006, vol. 13, Electronic Imaging, 6067.

[25] R. Vaillant, C. Monrocq, and Y. LeCun, “Original approach for the
localisation of objects in images,” IEE Proc. Vision, Image, and Signal
Processing, vol. 141, no. 4, pp. 245–250, Aug. 1994.

[26] M. Osadchy, Y. LeCun, and M. Miller, “Synergistic face detection and
pose estimation with energy-based models,” J. Mach. Learn. Res., vol.
8, pp. 1197–1215, May 2007.

[27] C. Garcia and M. Delakis, “Convolutional face finder: A neural archi-
tecture for fast and robust face detection,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 26, no. 11, pp. 1408–1423, 2004.

[28] F. Nasse, C. Thurau, and G. A. Fink, “Face detection using gpu based
convolutional neural networks,”Computer Analysis of Images and Pat-
terns, vol. 5702/2009, Lecture Notes in Computer Science, pp. 83–90,
2009.

[29] A. Frome, G. Cheung, A. Abdulkader,M. Zennaro, B.Wu, A. Bissacco,
H. Adam, H. Neven, and L. Vincent, “Large-scale privacy protection in
Google Street View,” in Int. Conf. Comput. Vision (ICCV’09), Kyoto,
Japan, 2009, pp. 2373–2380.

[30] C. Farabet, C. Poulet, J. Y. Han, and Y. LeCun, “CNP: An FPGA-
based processor for convolutional networks,” in Proc. Int. Conf. Field
Programmable Logic and Applications, Prague, Czech Republic, 2009,
pp. 32–37.

[31] C. Farabet, B. Martini, P. Akserod, S. Talay, Y. LeCun, and E. culur-
ciello, “Hardware accelerated convolutional neural networks for syn-
thetic vision systems,” in Proc. IEEE Int. Symp. Circuits and Systems
(ISCAS), Paris, France, 2010, pp. 257–260.

[32] M. Sankaradas, V. Jakkul, S. Cadambi, S. Chakradhar, I. Durdanovic,
E. Cosatto, and H. P. Graf, “A massively parallel coprocessor
for convolutional neural networks,” in Proc. 20th IEEE Int. Conf.
Application-Specific Systems, Architecture, and Processing., 2009,
pp. 53–58.

[33] F. Nasse, C. Thurau, and G. A. Fink, “Face detection using GPU-based
convolutional neural networks,” Computer Analysis of Images and
Patterns, vol. 5702, Lecture Notes in Computer Science, pp. 83–90,
2009.

[34] C. Farabet, Y. LeCun, K. Kavukcuoglu, E. Culurciello, B. Martini, P.
Akselrod, and S. Talay, “Large-scale FPGA-based convolutional net-
works,” inMachine Learning on Very Large Data Sets, R. Bekkerman,
M. Bilenko, and J. Langford, Eds. Cambridge, U.K.: Cambridge Uni-
versity Press, 2011.

[35] C. Farabet, B. Martini, B. Corda, P. Akselrod, E. Culurciello, and Y.
LeCun, “NeuFlow: A runtime-reconfigurable dataflow processor for
vision,” in Proc. Embedded Computer Vision Workshop (ECVW’11),
2011 [Online]. Available: https://engineering.purdue.edu/elab/re-
search/svision/svision.html

[36] M. A. Mahowald, “VLSI analogs of neuronal visual processing: A
synthesis of form and function,” Ph.D. dissertation, Computation and
Neural Systems, Caltech, Pasadena, CA, 1992.

[37] T. Serrano-Gotarredona, A. G. Andreou, and B. Linares-Barranco,
“AER image filtering architecture for vision processing systems,”
IEEE Trans. Circuits Syst. I, vol. 46, no. 9, pp. 1064–1071, Sep. 1999.

[38] P. Venier, A. Mortara, X. Arreguit, and E. A. Vittoz, “An integrated
cortical layer for orientation enhancement,” IEEE J. Solid-State Cir-
cuits, vol. 32, no. 2, pp. 177–186, Feb. 1997.

[39] T. Y. W. Choi, P. Merolla, J. Arthur, K. Boahen, and B. E. Shi, “Neu-
romorphic implementation of orientation hypercolumns,” IEEE Trans.
Circuits Syst. I, vol. 52, no. 6, pp. 1049–1060, Jun. 2005.

[40] R. Serrano-Gotarredona, T. Serrano-Gotarredona, A. Acosta-Jiménez,
and B. Linares-Barranco, “A neuromorphic cortical-layer microchip
for spike-based event processing vision systems,” IEEE Trans. Circuits
Syst. I: Reg. Papers, vol. 53, no. 12, pp. 2548–2566, Dec. 2006.

[41] L. Camuñas-Mesa, A. Acosta-Jiménez, T. Serrano-Gotarredona, and
B. Linares-Barranco, “A 32 32 pixel convolution processor chip for
address event vision sensors with 155 ns event latency and 20 Meps
throughput,” IEEE Trans. Circuits Syst. I, vol. 58, no. 4, pp. 777–790,
Apr. 2011.

[42] K. Boahen, “Point-to-point connectivity between neuromorphic chips
using address events,” IEEE Trans. Circuits Syst. II, vol. 47, no. 5, pp.
416–434, May 2000.

[43] S. Thorpe, D. Fize, and C. Marlot, “Speed of processing in the human
visual system,” Nature, vol. 381, pp. 520–522, Jun. 6, 1996.

[44] R. Serrano-Gotarredona, M. Oster, P. Lichtsteiner, A. Linares-Bar-
ranco, R. Paz-Vicente, F. Gómez-Rodríguez, L. Camuñas-Mesa,
R. Berner, M. Rivas, T. Delbrück, S. C. Liu, R. Douglas, P.
Häfliger, G. Jiménez-Moreno, A. Civit, T. Serrano-Gotarredona,
A. Acosta-Jiménez, and B. Linares-Barranco, “CAVIAR: A 45
k-neuron, 5 M-synapse, 12 G-connects/sec AER hardware sen-
sory-processing-learning-actuating system for high speed visual
object recognition and tracking,” IEEE Trans. Neural Netw., vol. 20,
no. 9, pp. 1417–1438, Sep. 2009.

[45] Microscopic Particle Tracking Using a DVS Retina. Inst. Neuroinfor-
matics, Zurich, Switzerland. [Online]. Available: http://siliconretina.
ini.uzh.ch

[46] jAER Open Source Project. Inst. Neuroinformatics, Zurich, Switzer-
land. [Online]. Available: http://jaer.wiki.sourceforge.net

[47] D. G. Chen, A. Bermak, and C. Y. Tsui, “A low-complexity image
compression algorithm for Address-Event Representation (AER)
PWM image sensors,” in Proc. IEEE Int. Symp. Circuits and Systems
(ISCAS 2010), Rio de Janeiro, Brazil, 2010, pp. 2825–2828.

[48] C. Zamarreño-Ramos, T. Serrano-Gotarredona, and B. Linares-Bar-
ranco, “An instant-startup jitter-tolerant Manchester-encoding serial-
izer/deserializar scheme for event-driven bit-serial LVDS inter-chip
AER links,” IEEE Trans. Circuits Syst. I, in press, doi: 10.1109/TCSI.
2011.2151070.

[49] C. Zamarreño-Ramos, T. Serrano-Gotarredona, B. Linares-Barranco,
R. Kulkarni, and J. Silva-Martinez, “Voltagemode driver for low power
transmission of high speed serial AER links,” in Proc. IEEE Int. Symp.
Circuits and Systems (ISCAS 2011), Rio de Janeiro, Brazil, May 15–18,
2011, pp. 2433–2436.

[50] M. Khan, D. Lester, L. Plana, A. Rast, X. Jin, E. Painkras, and S.
Furber, “Spinnaker: Mapping neural networks onto a massively-par-
allel chip multiprocessor,” in Proc. IEEE Int. Joint Conf. Neural Net-
works (IJCNN), Jun. 2008, pp. 2849–2856.




