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Abstract

Semantic labelling refers to the problem of assigning known labels to the elements of structured information
from a source such as an HTML table or an RDF dump with unknown semantics. In the recent years it
has become progressively more relevant due to the growth of available structured information in the Web
of data that need to be labelled in order to integrate it in data systems. The existing approaches for
semantic labelling have several drawbacks that make them unappealing if not impossible to use in certain
scenarios: not accepting nested structures as input, being unable to label structural elements, not being
customisable, requiring groups of instances when labelling, requiring matching instances to named entities
in a knowledge base, not detecting numeric data, or not supporting complex features. In this article, we
propose TAPON-MT, a framework for machine learning semantic labelling. Our framework does not have
the former limitations, which makes it domain-independent and customisable. We have implemented it with
a graphical interface that eases the creation and analysis of models, and we o�er a web service API for their
application. We have also validated it with a subset of the National Science Foundation awards dataset,
and our conclusion is that TAPON-MT creates models to label information that are e�ective and e�cient
in practice.
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1. Introduction

Semantic labelling refers to the problem of
analysing structured information and endowing it
with labels that denote known classes from an
ontology[22]. A dataset of structured information,
usually extracted from the web in a crawling pro-
cess [8] is taken as input, and each element in the
dataset is assigned one or several labels, which cor-
respond to the classes that best describe the ele-
ment according to its features. Semantic labelling
is a cornerstone for the integration of information
from heterogeneous data sources, which is common
in several contexts[3, 12, 19], and can be used in
tasks related to information extraction[2, 20] (by
using the labels to determine whether or not a piece
of information should be extracted), information
veri�cation[11, 13, 15] (by using the labels to con-
�rm the assumed class of an element), or ontology
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matching[6] (by using the labels to study the sim-
ilarities between pairs of classes). The format of
the input information can range from simple HTML
tables to complex structures in RDF datasets. Re-
gardless of their source format, we can represent
information with generic structures as exempli�ed
in Figure 1, which depicts information about an
award from the NSF awards dataset[7]: namely an
award record, which is a structural element with
no associated text, containing other records and a
number of attributes, which are textual elements
(elements with an associated string, which includes
numbers, dates, etc.). Both records and attributes
are instances of a number of classes such as "title"
or "awardee", though the class of instances can be
unknown, which motivates their labelling.
Semantic labelling can be seen as a supervised

classi�cation process in which the input is one
record or attribute, and the output is one or more
labels that correspond to the semantic classes that
best describe them. Note that the need for super-
vision is not a problem, thanks to the large amount
of available labelled, structured information in the
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nsf:award

nsf:title - "Partial Support for Student Attendance..."

nsf:agency - “NSF”

nsf:estimatedTotalAmt - “15000”

nsf:startDate - “06/15/2017”

nsf:expDate - “11/30/2017”

nsf:pi

nsf:name - “Walter Hu”

nsf:awardee

nsf:name - “University of Texas at Dallas”

nsf:city - “Richardson”

nsf:zipCode - “750803021”

nsf:performance

nsf:location - “Pittsburgh Marriott City Center”

nsf:city - “Pittsburgh”

nsf:zipCode - “152302999”

Figure 1: Structured information example

Web of Data[4] that can be used to train the mod-
els. The selection of labels is based on features that
measure the similarity between the input and the
known classes, such as the number of digits in a
textual value[11, 13], or the score of a knowledge
base query results[17, 23, 25, 22]. What speci�c
features are used by each approach greatly a�ects
its accuracy. For example, one that only measures
the number of uppercase and lowercase letters will
not be able to properly classify attributes that are
not characterised by those features, such as prices,
telephone numbers, or emails.
The area of automated classi�cation has been ex-

tensively researched in the past[9], and many tech-
niques have been proposed that deal with this prob-
lem. Obviously, when used as a part of a seman-
tic labelling process, the performance of these tech-
niques has a signi�cant e�ect on the accuracy of the
labelling. However, we consider the study of these
techniques to be beyond the scope of the paper,
since they are completely independent of semantic
labelling approaches that apply them. Instead, we
focus on aspects that are speci�c to semantic la-
belling.
Regarding proposals in the related work, they

have been devised with speci�c application scenar-
ios in mind, and thus lack in versatility. They
can usually be only applied suitably under certain
conditions, and while focusing on certain scenarios
helps them achieve better results under their condi-
tions, they lack in applicability under di�erent ones.
The following limitations are common among them:
they can not be applied to structures with nested
records, only to �at ones; they can only be used to

label attributes; they rely on a particular classi�-
cation technique and a speci�c set of features; they
can not label individual instances, but only groups;
they rely on matching instances to named entities in
a knowledge base; they do not detect numeric data;
and they do not support complex features that are
necessary to model some classes.
Figure 1 exempli�es these problematic cases.

There are records inside other records, so ap-
proaches that only label �at records would obtain
poor labels, if any, without computationally expen-
sive �attening preprocessing that may not be vi-
able. There are both records and attributes, so
approaches that only label attributes would not
provide a complete labelling. Several approaches
that label groups of instances use the distribution
of a group of numeric attributes to infer their class,
but they would be unable to label the "estimat-
edTotalAmt" attribute, since there is a single in-
stance being classi�ed. Several attributes, such as
"estimatedTotalAmt", or "startDate" do not cor-
respond to named entities and can not be found
in a knowledge base. There are several attributes
with numeric data: "estimatedTotalAmt" and "zip-
Code", which can only be properly processed if the
approach detects that they are numeric and uses
their value during the labelling process. Finally,
there are some pairs of instances that are nearly in-
distinguishable and require complex features: the
"startDate" and "expDate" attributes, which have
an identical format, and the "awardee" and "perfor-
mance" records, which have an identical structure.
In order to solve these problems, we have created

TAPON-MT, a new semantic labelling framework
whose architecture has been devised with applica-
bility and customisation in mind, and is based on
a two-phase classi�cation technique of our own[1].
Applicability implies that our framework is domain-
independent and does not rely on speci�c condi-
tions. Customisation implies that the architecture
and work�ow of our framework give the possibil-
ity to integrate a wide variety of features and clas-
si�cation techniques. The main strengths of our
framework are that it supports nested records as
input; it supports the labelling of both records and
attributes; its features and classi�cation techniques
can be customised; it labels structures individually;
it does not rely on entity matching; it detects nu-
meric data; and its architecture supports several
kinds of complex features, including dynamically
generated features, and hint-based features (a kind
of feature that requires a two-phase process). Re-
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garding the example in Figure 1, TAPON-MT is
able to label all the records and attributes in the
nested structure, to label the "estimatedTotalAmt"
attribute without other instances of the same class,
to label the attributes that do not correspond to
named entities, to detect what attributes are nu-
meric and leverage the use of features based on their
values, and to label the nearly indistinguishable in-
stances thanks to one of the supported complex
features: hint-based features, which allow TAPON-
MT to learn that "startDate" attributes are near
something that resembles a date but have a lower
value than it, while "expDate" attributes have a
higher value than it. Similarly, they would allow
it to learn that "awardee" records contain an at-
tribute that seems to be a name, while "perfor-
mance" records contain an attribute that seems to
be a location.
Our framework provides two di�erent interfaces

that make it usable both as a web service API
and as a desktop application with a graphical in-
terface. The web service takes a dataset in JSON
format, and the response contains the labels. The
graphical interface allows the user not only to cre-
ate models, but also to visualise and validate them.
It can be used to create models by choosing fea-
tures, classi�cation settings and data sources; used
to visualise the created models and check for sus-
picious classi�ers; and used to test the models by
selecting the data it is applied to, obtaining several
measurements of performance, as well as a matrix
that can be used to study the similarity between
classes. In addition to these implementations, we
have performed ten-fold cross validation to con�rm
that models created with our framework are able to
achieve good results by comparing it to the results
obtained by implementations of the proposals by
Kushmerick [11], Ramnandan et al. [22], and Pham
et al. [21] The experiments consisted in labelling
information from the National Science Foundation
RDF dataset.
The rest of the article is organised as follows:

Section 2 describes the analysis of the relevant ap-
proaches we have identi�ed in the literature; Sec-
tion 3 reports on some preliminaries that are neces-
sary to understand our framework; Section 4 con-
tains a detailed description of TAPON-MT, in-
cluding the underlying data model and architec-
ture; Section 5 describes how we have validated our
framework by implementing it and performing ex-
periments; �nally, Section 6 recaps on our main
conclusions.

2. Related work

In this section, we present existing proposals that
are related to TAPON-MT. We present both ap-
proaches for semantic labelling and approaches for
wrapper veri�cation, which check the information
extracted by a web wrapper to ensure that it is still
working properly. The latter share the same prin-
ciples as semantic labelling ones, since they need
to create a model for valid information classes and
con�rm that the extracted information is classi�ed
as valid according to that model. This makes them
relevant to semantic labelling and our study of the
literature. In several cases, they can easily be used
for semantic labelling with slight modi�cations.

2.1. Semantic labelling

Semantic labelling proposals aim to label struc-
tured information with labels that denote its se-
mantics in reference to a known schema, which can
range from the columns of a local table to the el-
ements of an OWL ontology. Many of these tech-
niques focus on semantic labelling of tables, where
rows can be seen as records, and columns as at-
tributes.
Limaye et al. [14]'s technique learns a model

from a catalog: a hierarchy of types, entities that
instance them, and binary relationships between
types. The model is used to label web tables by
means of a maximisation algorithm, including the
labelling of columns, cells, and relationships be-
tween columns. Limaye et al. de�ne an objective
function, which measures how consistent a set of
labels is according to the catalog. For example, a
set of labels is more consistent if the text of a col-
umn header is similar to the label of the column.
The variables of the objective function are the la-
bels. Approximation algorithms are used to reduce
the large search space.
Venetis et al. [24]'s technique labels columns

and relationships between columns in a table, out-
putting several labels for each element. It requires
two knowledge bases: a collection of entities (rep-
resented by a piece of text) and the class to which
they belong, and a collection of relationships be-
tween the entities. These are obtained through web
crawling, using textual patterns. In order to la-
bel columns, Venetis et al. use a bayesian classi�er
which computes the probability of each label being
correct, by checking that the cell values have the
same type in the knowledge base (there must be an
exact match of the entities and the cell values).
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Mulwad et al. [17]'s technique labels cells,
columns, and relationships between columns in a ta-
ble by means of a message propagation algorithm.
Columns and cells are represented by nodes in a
graph. The nodes are then connected to additional
nodes called factor nodes, which represent a group
of related labels that should be consistent, such as
the label of a column and the labels of the cells it
contains. For example, if a column is labelled as
"cities", the cells it contains should be labelled as
entities of class "city". Starting with a set of candi-
date labels for each node, obtained from queries to
Wikitology, each factor node computes the consis-
tency of the labels that are passed to it and, if nec-
essary, requests nodes to change their label. This
process is repeated until there is convergence and
no further changes are requested.
Ritze et al. [23]'s tool, T2K Match, labels rows

and columns in HTML tables. First, it selects, for
each row in the table, a group of candidate entities
obtained by searching in DBpedia for the entity la-
bel, that is, the content of the subject column (the
column that denotes the overall entity represented
by a row), which is considered to be the column
with the highest number of unique values (taking
the leftmost column in the case of a tie). The most
frequent classes among the retrieved entities are se-
lected. Candidate entities that do not belong to
these classes are discarded and new searches are
performed with the selected classes as an additional
constraint. Rows are then labelled with the most
similar candidate entity. Then, columns are given
a label by comparing the similarity of their values
to the properties of row candidates. Finally, an it-
erative process is used to re�ne the labels of rows
and columns.
Zhang [25]'s tool, TableMiner+, labels columns,

cells and relationships between columns in HTML
tables. First, the subject column is detected. Then,
columns that contain named entities are given pre-
liminary labels in an iterative process based on can-
didate entities retrieved from a knowledge base us-
ing queries, which do not only include the text of
cells in the column, but also the text from nearby
cells and text outside the table in the HTML docu-
ment. In the next step, their cells are labelled with
entities using the column label as a constraint. An-
other iterative process is used to update column
and cell labels and ensure they are consistent. Fi-
nally, relationships between columns are detected,
and columns that do not contain named entities are
labelled.

Ramnandan et al. [22]'s technique labels bags of
attributes (that is, groups of attributes that are
known to share the same class, without the struc-
ture in which they are contained being considered)
by using a set of already labelled examples (which
consists of value-class pairs) stored in a Lucene in-
dex. Using textual patterns, if a class in the la-
belled examples is considered to be textual, all the
examples are concatenated and stored as a single
document in the index, associated to the class. If
the class is numeric, the examples are stored indi-
vidually. When an unlabelled set of attributes has
to be labelled, if they are textual, they are con-
catenated and used to query the index, so that the
document with the highest score (based on TF-IDF
similarity) among the results represents the chosen
label. If they are numeric, distribution equivalence
tests are used to determine the most similar class.
Pham et al. [21]'s technique builds on that of

Ramnandan et al. The TF-IDF and distribution
similarity are expanded with other similarity met-
rics: the textual and numeric Jaccard similarity, the
attribute class name similarity, and the histogram
similarity (for numeric attributes). These metrics
are used to create feature vectors associated to a
pair of sets of attributes. Each features vector can
be classi�ed as "True" or "False", the former mean-
ing that the two sets of attributes belong to the
same class. The �nal output is the top-k attribute
classes whose corresponding vectors were classi�ed
as "True", sorted by the probability of the classi�-
cation, used as a con�dence score.
Neumaier et al. [18]'s approach, like the former,

labels bags of attributes, but focuses exclusively
on numeric attributes and multi-level semantic la-
belling (endowing information with several classes,
corresponding to progressively more detailed lev-
els in the ontology). It is trained by building a
graph. This graph contains several trees, each of
them corresponding to an attribute class. The root
of each of these trees encompasses all attribute ex-
amples of the class (e.g. "height"), and nodes in
deeper layers further re�ne the context of the at-
tribute (e.g. "height of a person", and "height of a
player"), having less attributes associated to them.
Nearest neighbour classi�cation is used to label a
new set of unlabelled attributes, measuring their
distance to the nodes of the graph using two dis-
tance measures: the inverse distribution similarity
and the euclidean distance between vectors contain-
ing descriptive measures such as the maximum and
minimum of the values.
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2.2. Wrapper veri�cation

The following proposals were not devised to be
able to endow structured information with seman-
tics. However, they model this information in a
similar way by computing features related to for-
mat and structure. They aim to check that a web
wrapper that extracts information from a website
has not stopped working properly because of un-
detected changes in said website. As an example,
a wrapper that is based on the rule "extract the
content of the third <span> tag as the article's
price" is vulnerable to changes in the HTML code
of the website pages, and a change in style that rear-
ranges the HTML elements could lead the wrapper
to start extracting wrong information, such as the
text "BUY" as the articles' price. In order to ver-
ify whether or not this has happened, they could
check that the piece of text that has been extracted
as a price truly seems to be a price according to
a model. The di�erence with semantic labelling is
that the input already has a label, which is con-
�rmed.
Kushmerick [10, 11]'s tool, RAPTURE, compares

newly extracted datasets form a web wrapper that
is applied to a website to a collection of pre-veri�ed
datasets from the same website. RAPTURE checks
that the value of the features of the instances of a
class are not anomalous considering the distribu-
tion of feature values observed in the pre-veri�ed
dataset, such as the number of characters in prod-
uct prices. In order to do this, the value of each
feature for each class is modelled using a normal
distribution. When a new dataset has to be veri-
�ed, the feature values are computed for each in-
stance of each of its classes. If, with regards to a
certain class, the combined probabilities of its in-
stances are below a given threshold, the dataset
is considered to be anomalous and potentially er-
roneous. Although this veri�cation only involves
attributes, RAPTURE also includes basic record
veri�cation based on probabilities propagation.
Lerman et al. [13]'s tool, DataProG, is based on

features such as the number of occurrences of cer-
tain tokens types in the attribute values. These fea-
tures also include patterns that describe common
beginnings and endings of attribute values. From a
pre-veri�ed datasets, the average value of these fea-
tures is computed and stored in a vector for each
attribute class. When a new dataset has to be veri-
�ed, a feature vector is computed for each class and
compared to the pre-veri�ed one. If the vectors are

Approaches F1 F2 F3 F4 F5 F6 F7

Wrapper veri�cation

Kushmerick [10] 3 ∼ 3 3 3 5 5

Lerman et al. [13] 5 5 3 3 3 5 3

McCann et al. [15] 5 5 3 3 3 ∼ 5

Semantic labelling

Limaye et al. [14] 5 3 5 5 5 5 5

Venetis et al. [24] 5 3 5 5 5 5 5

Mulwad et al. [17] 5 3 5 5 5 5 5

Ritze et al. [23] 5 3 5 5 5 3 5

Zhang [25] 5 3 5 5 5 5 3

Ramnandan et al. [22] 3 5 5 5 3 3 5

Pham et al. [21] 3 5 3 5 3 3 3

Neumaier et al. [18] 3 5 3 5 3 5 5

TAPON-MT 3 3 3 3 3 3 3
F1 = Nested records; F2 = Labels records and attributes;
F3 = Customizable features and techniques; F4 = Individual
instance labelling; F5 = Does not require entity matching;
F6 = Numeric data detection; F7 = Complex features;

Table 1: Comparison of related work.

considered to be too distant using the χ2 goodness-
of-�t test, the dataset is considered anomalous.
McCann et al. [15]'s tool, Maveric, models a set of

features as normal distributions in a similar way to
Kushmerick, but introduces several improvements:
probabilities are normalised to avoid disproportion-
ally low probabilities in �at distributions, and per-
turbations are used to introduce examples of invalid
data. These perturbations are crafted manually,
and are used to infer a second set of normal distri-
butions that represent invalid data. High probabil-
ities in these contribute towards the dataset being
considered anomalous.

2.3. Discussion

Table 1 summarises the comparison of the related
work according to a number of features related to
applicability and customisation. In this table, the
3 symbol denotes that the approach supports a fea-
ture, symbol 5 denotes that the approach does not
support a feature, and ∼ symbol entails that the
feature is partially supported by the approach. The
features we have analysed are the following:

F1: This feature determines if it is able to process
structures with nested records, as opposed to
only being able to process �at ones.

5



F2: This feature determines if it models and labels
both records and attributes, not being limited
to only attributes or records.

F3: This feature determines if it can be customised
with di�erent features or techniques.

F4: This feature determines if it assigns each label
to an individual instance as opposed to a group
of instances.

F5: This feature determines if it does not require
matching instances to named entities in a
knowledge base.

F6: This feature determines if it is able to distin-
guish numeric attributes from textual ones and
treat them separately.

F7: This feature determines if it supports the appli-
cation of complex features. That is, it supports
features that require a speci�c architecture.

Regarding F1 (nested records), approaches that
focus exclusively on �at structures are much more
limited than those that can deal with more com-
plex structures. This is specially relevant given
the increase in popularity of formats such as RDF
or JSON[16], which have deep, arbitrary struc-
tures. Most approaches are limited to tuples that
do not contain nested records with deep structures.
Among wrapper veri�cation proposals, Kushmer-
ick [11] is the only one to consider the possibility
of nested records that need to be veri�ed, and of-
fers a simple way to propagate probabilities from
instances to the records that contain them. Seman-
tic labelling proposals that label tables are limited
to �at records in the form of rows. TAPON-MT
supports nested records.
Regarding F2 (labels records and attributes), not

being able to label records or attributes greatly hin-
ders the applicability of a solution, which would
only be able to partially label datasets. Many ap-
proaches focus exclusively on attributes, and are
therefore unable to label records. Wrapper veri�ca-
tion proposals only model attributes. The seman-
tic labelling proposals by Ramnandan et al. [22],
Pham et al. [21] and Neumaier et al. [18] label bags
of attributes, and even though they accept as input
complex structures that may include both records
and attributes, they can not label the records. Neu-
maier et al. tries to partially circumvent this limi-
tation by means of multi-level labelling, including

the record class in the attribute label. For exam-
ple, instead of labelling an attribute as a zipCode, it
would label it as an awardee-zipCode. TAPON-MT
labels both attributes and records.
Regarding F3 (customisable features and tech-

niques), being able to accept new features and clas-
si�cation techniques makes a solution able to inte-
grate new ways to label information and enrich the
models when the used features are not enough. For
example, the technique by Ramnandan et al. [22]
relies on a process that involves querying a lucene
index and keeping the result with the highest score.
In this process there is no freedom to include addi-
tional features or di�erent classi�cation techniques
that may be useful in complex scenarios. TAPON-
MT applies features and classi�cation techniques in
a modular, easy to customise way.
Regarding F4 (individual instance labelling), ap-

proaches that label groups of instances assuming
they belong to the same class do not work prop-
erly when the input has individual instances that
are not known to share the same class. This is
the case when datasets are labelled individually,
instead of labelling several datasets with aligned
instances that follow a known schema. Datasets
with unknown schemas, optional �elds and �elds of
variable length are common in web environments[5]
The techniques by Ramnandan et al. [22], Pham
et al. [21] and Neumaier et al. [18] expect as input
a group of several attributes that share the same
class. All proposals that focus on tables also make
this assumption, since all rows of the same table
(which would be records) are known to share the
same class. Similarly, all the cells of the same col-
umn (which would be attributes) share the same
class as well. TAPON-MT labels both records and
attributes individually (that is, every instance gets
an individual label).
Regarding F5 (does not require entity matching),

approaches that either only label attributes that
correspond to named entities (such as the name of
a city) or records that correspond to named entities
(such as the author of a publication) are unable to
label many instances from real-world contexts that
do not have entries that represent them in a knowl-
edge base. For example, attributes may correspond
to information such as prices, heights, or enumer-
ates. Records may, too, correspond to dates, time
intervals, or addresses. Most of the existing seman-
tic labelling proposals are tied in one way or another
to entity matching, since their labelling process in-
volves in one way or another mapping instances to
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entities in a knowledge base. TAPON-MT does not
rely on any kind of named entity matching.
Regarding F6 (numeric data detection), numeric

attributes o�er information (their numeric value)
that can be taken into account to improve the model
with additional features. Being able to detect such
attributes and handle them accordingly is crucial
when there are several numeric classes whose only
di�erence is the distribution of their values or other
similar aspects. Therefore, it is mandatory to anal-
yse the numeric values of the instances of these
classes in order to correctly classify them. Even
though identifying a piece of text as numeric is
trivial, only three proposals integrate this distinc-
tion into their work�ow. Note that Neumaier et al.
[18] only labels numeric attributes, so they do not
support this feature, which would require the dis-
tinction of numeric attributes from texual ones and
treating each group accordingly, supporting both
cases. TAPON-MT detects what attributes are nu-
meric, as well as what classes in the training set
are (those that contain a fraction of numeric at-
tributes above a user-given threshold). The numer-
ical value of attributes and the information about
what classes are numeric are stored so that features
or classi�cation techniques can use them in any way.
Regarding F7 (complex features), supporting

complex features that require a speci�c architec-
ture or process helps model complex cases where
typical features are not enough to tell some classes
apart, and additional information is needed. Ler-
man et al. [13] support features based on starting
and ending patterns, Zhang [25] supports features
from the context of a table, and Pham et al. [21]
support similarity features. TAPON-MT supports
similarity features, dynamically generated paramet-
rical features, incremental features, and hint-based
features.

3. Preliminaries

In this Section, we introduce de�nitions of key
concepts that are necessary to understand our
framework, including a short description of impor-
tant aspects. Said concepts are depicted in Fig-
ure 2.

Dataset: a collection of instances of semantic
classes (or "classes", for short).

Class: a piece of text that denotes the actual
semantics of information, such as "book",
"price" or "author".

Label: the predicted class of an instance. Ideally,
the label is the same as the actual class. Note
that both classes and labels are not related to
datatypes such as Integer, String or Boolean.

Hint: a temporary label used in iterative tech-
niques.

Record: a structural instance with no text associ-
ated to it. It may contain other instances.

Attribute: an instance with a piece of text associ-
ated to it (its textual value). It does not con-
tain other instances.

Feature: a property that can be computed from
some element. The domain of a feature is the
kind of element it can be computed from. For
example, the feature "number of uppercase let-
ters" can only be computed from attributes.
The feature "number of contained attributes"
can be computed from records. The feature
"distance to the nearest price" can be com-
puted from both.

Featurable : an element from which features can
be computed. Instances are featurables, since
we can compute a variety of features such as
the occurrence of textual patterns, the number
of attributes of a record, etc. Datasets are feat-
urables too, since we can also compute features
associated to the entire dataset, such as the
number of instances it contains, or the aver-
age value of a feature among its instances (the
usefulness of these features will be discussed
later). Each featurable may have a numeric
value for each of the features.

HB-Feature (hint-based feature): a feature
that, in order to be computed, requires the
instances in the dataset to have hints.

FH-Feature (hint-free feature): any feature
that is not a HB-Feature.

Model : a representation of classes that is trained
from a set of featurables used as examples, and
is able to output labels for an instance. A
model is tied to the features from its training
set.
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Figure 2: Conceptual model.

4. TAPON-MT

4.1. Work�ow

Our framework takes as input a dataset, and it
outputs labels for each record and attribute indi-
vidually, providing them with either one single la-
bel or several labels ranked by probability. This can
be done through a desktop interface or a deployed
web service, as described in Section 5.1. Com-
mon web information formats, such as JSON �les,
HTML tables, CSV �les or RDF data can be parsed
and transformed into our generic input structures,
which is trivial in most cases. For example, to parse
a CSV �le, each row would be a record, and commas
would separate the di�erent values of the attributes.
To illustrate the labelling of datasets using

TAPON-MT, we use the dataset in Figure 1 as a
running example.
TAPON-MT is based on a two-phase machine

learning approach that trains a pair of classi�ca-
tion models from a number of training datasets,
and then is able to apply them consecutively to la-
bel data as described in our previous work [1]. An
overview of the training process is depicted in Fig-
ure 3. It comprises six steps, mainly: (1) "Features
Calculator setup" involves iterating through every
instance in the training datasets, storing the tex-
tual values of each attribute class in an index, and
determining what features will be computed (as we
later describe in detail). (2) "Compute HF feature
vectors" computes the HF features, and stores the
feature vectors of attributes and records in CSV
�les. (3) "Train HF model" uses these vectors to
train the classi�ers of a model that only uses HF
features. (4) "Label TD with HF model" applies
the HF model to the training datasets, obtaining a
set of hints (we use these to compute HB features,

Featu res

Calcu la tor

setup

Compute HF 

fea ture vectors

Train HF model

Compute HB 

fea ture vectors

Train HB model

Label TD with 

HF model

Featu res 

(HF)

HF model

Training

Datasets

(TD)

1

2

3

Featu res 

(HF+HB)

HB model

(1.0, 0 .5, 2 .0)

(0.0, 0 .1, 4 .0)

(0.0, 1 .3, 0 .0)

(1.0, 0 .5, 2 .0, 1.0)

(0.0, 0 .1, 4 .0, 1.0)

(0.0, 1 .3, 0 .0, 0.0)

1 : school

2

3

: name

: te lnum

Hints

Figure 3: Overview of training TAPON-MT.

not the actual classes, which are only known in the
training set). (5) "Compute HB feature vectors"
expands the former feature vectors with new fea-
tures that are based on hints (HB features), and
stores them in additional CSV �les. (6) "Train HB
model" uses said vectors to train a second model
that uses both HF and HB features.
TAPON-MT can also be applied without hint-

based features, in which case steps 4, 5, and 6 would
not be needed.
The application of the trained models to an in-

put dataset is very similar to the former training
process: �rst, HF features are computed, the HF
model is used to obtain a set of hints, HB features
are computed using the hints, and �nally, the HB
model is used to obtain the output labels.

4.2. Architecture

Figure 4 presents the architecture of our frame-
work. It comprises two components: �rst, the main
TAPON-MT component, that includes the models
handler that trains and applies models, the graph-
ical interface and the Web service provider, as well
as a DAO layer used to access external sources
of data and deal with persistence. The second
component, the features framework, takes care of
computing features from datasets, as well as, if
needed, storing the resulting vectors in persistent
�les, which can be seen as tables where each row
corresponds to an instance, and each column to
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+ run() : void
+ setDataset(d : Dataset) : void
+ updateRequiredIterations() : void
+ initializeFeatures() : void
+ initializeClasses(d : Set<Dataset>) : void

FeaturesCalculator

+ initialize() : void

+ iterationType : int

<<abstract>>
FeaturesGroup

T>Featurable

+ addVector(f : Featurable) : void
+ initialize(f : Set<Feature>) : void

FeaturesTablesBuilder

+ apply(featurable : S) : FeatureValue

<<abstract>>
Feature

S>Featurable

+ updateObservers(info : R) : void

<<abstract>>
Observable

R

+ update(info : Q) : void

<<interface>>
Observer

Q

*

S > T

1..*

*

Q = R

uses

R = FeatureValue

+ classesMapping : Map<String, Integer>
+ recordClasses : Set<String>
+ attributeClasses : Set<String>

ClassesConfiguration

1

1

Figure 5: Class diagram of the features framework.

a feature. We used the Spark framework to sup-
port the creation of models using a large number
of datasets in a scalable way, since models can be
trained using arbitrarily large �les.
Next, we �rst describe the features framework in

Section 4.2.1; then, we describe the models handler
in Section 4.2.2.

4.2.1. Features framework

The architecture of the features framework is pre-
sented in Figure 5. The features calculator is able
to compute features from records, attributes, and
entire datasets. Features can be easily added or
removed.
Class �FeaturesCalculator� provides the methods

that are used to perform set-up and compute fea-
tures from a dataset.
Method �initializeClasses� takes a set of training

datasets, iterates over them, identi�es the set of se-
mantic classes that are present in them, and passes

it to class �ClassesCon�guration�, which stores what
semantic classes are known to exist and maps them
to integers that represent them from the point of
view of classi�ers. Additionally, each example of
each attribute semantic class is stored in a Lucene
index. These examples are used to compute some
features that require them. One example of such a
feature could be "the average edit distance to stored
examples of semantic class title".
Method �initializeFeatures� creates the objects

that represent features, that is, that instantiate
classes that extend the abstract class �Feature� and
have an �apply� method that computes a feature
value associated to a featurable. One example of
such class could be �NumberOfCharacters� , an at-
tribute feature that computes the number of occur-
rences of a character type, represented by a pattern
such as �\pLu� (unicode uppercase letters) or � \pS�
(unicode symbols). The pattern is a parameter that
can take a di�erent value in each �NumberOfChar-
acters� object. The creation of several objects that
correspond to the same feature with di�erent pa-
rameter values is done by features groups: classes
that extend �FeaturesGroup� and dynamically create
several instances of features during setup, having
access to the �ClassesCon�guration� object in case it
is needed to create the objects. For example, fea-
tures group �AverageSimilarityGroup� would create
objects that instantiate feature �AverageSimilarity� ,
that measures to the average similarity to a set of
examples of an attribute semantic class (the vari-
able parameter). When method �initialize� is used,
it would create an object for each attribute class in
the training set, as stored in the classes con�gura-
tion object.
Method �updateRequiredIterations� determines

how datasets need to be iterated to compute exist-
ing features. Each feature has a required iteration
type indicated by the �iterationType� property of the
features group that contains it. In some cases, the
computation of a feature requires iterating the in-
stances of the input dataset in a top-down manner,
while in other cases, the dataset has to be iterated
bottom-up. Some features require a double itera-
tion, from top to bottom and back, or viceversa.
For example, feature "Depth in the dataset" re-
quires a top-down iteration to be computed, since
the value of an instance is computed from that
of the upper instance plus one; however, the fea-
ture "Distance to the nearest attribute" requires
a bottom-up iteration followed by a top-down one
to be computed e�ciently (the exact way in which
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it is computed is not relevant, and there could be
other implementations). Function �updateRequired-
Iterations� decides what are the optimal iterations
required to compute all features and stores this in-
formation in class properties (ommited for brevity).
For example, if a feature requires a bottom-up iter-
ation and another feature require a top-down itera-
tion followed by a bottom-up one, �updateRequired-
Iterations� will determine that the best course of
action is to perform a top-down iteration followed
by a bottom-up one, which covers both features.
Our framework implements the observer pat-

tern to support incremental features, whose values
are gradually updated. For example, dataset fea-
ture "number of instances" requires going over the
dataset to count how many instances it contains.
Instead of iterating the dataset only to compute
this value, it can be updated while instances are
iterated to compute other features. The main use
of this pattern, however, is to compute statistical
dataset features. These features consist in several
statistical measures (such as the average, standard
deviation, minimum, etc.) of each feature, for each
semantic class. These would include, for example,
the average number of digits among attributes that
were labelled as a zipCode in the dataset, or the
maximum number of letters among attributes that
were labelled as an agency (note that these are hint-
based features, since they require the presence of
hints among instances. The framework, however, is
oblivious to whether a feature is hint-based or hint-
free). These and other dataset features are not use-
ful for semantic labelling unless the user wants to
label entire datasets. However, they can be useful
for other purposes such as information veri�cation,
where entire datasets are veri�ed using such fea-
tures. For this reason, we decided to support the
inclusion of such features in our framework.
Class �FeaturesTablesBuilder� takes care of stor-

ing the computed feature vectors in CSV �les, sep-
arating attribute vectors from record vectors. This
functionality, however, is optional, and when dis-
abled, feature values will only be stored in memory.
Finally, method �run� computes the features

of the current dataset (selected using method
�setDataset�). Before computing features, TAPON-
MT iterates over the attributes in the dataset
to identify which ones are numeric and which
ones are textual, so that features may take this
information into account. Numerical attributes
are detected using user-made patterns. If an at-
tribute is detected to be numeric, its value is stored.

Example
We included the dataset in Figure 1 in a training

set, and gave it as input the the features framework.
The features of the attributes were computed as
shown in Table 2. The ID column contains an id
given to each instance. The class column contains
the actual semantic class of the instance, which is
known for training datasets. We only display some
of the total 135 features, many of which correspond
to large features groups that create a feature per
semantic class. There were 39 semantic classes in
the training set that included the example.

4.2.2. Models handler

The architecture of the models handler is pre-
sented in Figure 6. The models handler o�ers a
high level interface to create models and use them
to label datasets.
Class �ModelHandler� provides the methods used

to label datasets. As we described, datasets are la-
belled in two stages: in the �rst one, only hint-free
features are computed. In the second one, hint-
based features are added. Because of this, there
are two properties that correspond to both features
calculators, which use di�erent sets of features. The
�rst one computes hint-free features, and the sec-
ond one, hint-based ones. If no hint-based features
are needed, the second features calculator will not
compute any feature. Additionally, properties �ta-
blesFolder� and �classi�ersFolder� denote the fold-
ers where the tables with feature vectors and the
trained classi�ers will be stored respectively.
Method �trainModel� trains a model from a set of

labelled datasets. The creation of the model takes
place as explained in Figure 3. The features calcu-
lators are used to compute features. The model is
a one-vs-all classi�er where the aggregation of bi-
nary outputs is achieved by means of an additional
multiclass classi�er. Consequently, the classi�ers
stored by the model handler include: a binary clas-
si�er for each attribute semantic class, using only
hint-free features; a multiclass classi�er that takes
the output of each of the former classi�ers as fea-
tures and outputs a �nal label as depicted in Fig-
ure 7; the same binary and multiclass classi�ers,
but using, additionally, hint-based features; and �-
nally, the same hint-free and hint-based classi�ers,
but for records instead of attributes. For example,
if there are 20 attribute semantic classes, and 10
record semantic classes, the model will be composed
of (20+1+20+1)+(10+1+10+1) = 64 classi�ers.
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ID

Avg title 

similarity

Avg zipCode 

similarity

Node 

depth

Occurrences 

\b\p{Lu}+\b

Occurrences 

\d+[\.\,]?\d*

Occurrences 

\p{N}

Occurrences 

\p{P}

Numeric value Class

1 0.04 0.52 2.00 0.00 1.00 7.00 0.00 1750497.00 id

2 0.58 0.00 2.00 0.00 0.00 0.00 2.00 -1.00 title

3 0.25 0.00 2.00 1.00 0.00 0.00 0.00 -1.00 agency

4 0.05 0.53 2.00 0.00 3.00 8.00 2.00 -1.00 startDate

5 0.05 0.51 2.00 0.00 3.00 8.00 2.00 -1.00 expDate

6 0.04 0.51 2.00 0.00 1.00 5.00 0.00 50052.00 estimatedTotalAmt

7 0.47 0.00 3.00 0.00 0.00 0.00 0.00 -1.00 city

8 0.06 0.53 3.00 0.00 1.00 9.00 0.00 926173213.00 zipCode

9 0.50 0.00 3.00 0.00 0.00 0.00 1.00 -1.00 name

Table 2: Computed features.

Clases Model Handler 2018/04/27 powered by Astah 
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+ classify(d : Dataset, hasHints : boolean) : void
+ trainModel(ts : Set<Dataset>) : void

+ classifiersFolder : String
+ tablesFolder : String
+ hintBasedFeaturesCalculator : FeaturesCalculator
+ hintFreeFeaturesCalculator : FeaturesCalculator

ModelHandler

- trainBinaryClassifier(trainingPath : String, class : String) : Classifier
+ classify(i : Instance, hasHints : boolean) : void
+ trainMulticlassClassifier(hasHints : boolean) : void
+ trainBinaryClassifiers() : void

- recordMulticlassClassifierHB : Classifier
- recordMulticlassClassifierHF : Classifier
- recordClassifiersHB : Set<Classifier>
- recordClassifiersHF : Set<Classifier>
- attributeMulticlassClassifierHB : Classifier
- attributeMulticlassClassifierHF : Classifier
- attributeClassifiersHB : Set<Classifier>
- attributeClassifiersHF : Set<Classifier>
+ classesConfiguration : ClassesConfiguration
+ tablesFolder : String
+ classifiersFolder : String

ClassifiersHandler

1

Figure 6: Class diagram of the models handler.
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Figure 7: Instance classi�cation.

The creation of a binary classi�er per class may be
a cause for concern when there is a large number of
semantic classes (several hundreds), since the time
required to train all of them could be large. How-
ever, data integration and similar tasks do not usu-
ally involve so many semantic classes, but only a
few dozens. Pham et al. [21]'s approach, for ex-
ample, also uses a one-vs-all classi�er. However, if
there is indeed a large number of classes, the fol-
lowing strategies can be used to decrease training
time: tuning hyperparameters to increase training
speed at the cost of classi�cation accuracy; using
a smaller set of features at the risk of losing useful
ones; or using a single multiclass classi�er instead
of many binary ones, which may be problematic if
the classi�er does not handle well the large number
of classes, and would require slight modi�cations to
the architecture of TAPON-MT.
Note that we use a multiclass classi�er to aggre-

gate the binary scores instead of merely taking the
class with the highest probability, which is the tra-
ditional approach in one-vs-all classi�ers. We do
this to properly deal with complex cases in which
the correct class is not the one with the highest
score. For example, let us suppose there are two
classes, A and B. When an instance belongs to
class A, the probabilities are <A=0.9, B=0.2>, and
when it belongs to B, they are <A=0.9, B=0.8>
(probabilities are independent, so they do not nec-
essarily amount to one). In the second case, the
probability of A is the highest one, which would
lead a traditional one-vs-all classi�er to choose it
as the label. Our method, however, is more �ex-
ible, and would learn that an instance belongs to
class B when the probability of B is high enough,
independently of other, potentially higher probabil-
ities. If our approach is not needed, TAPON-MT
o�ers the possibility of just taking the class with
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the highest probability.
Method �classify� applies a model (speci�ed by

the �classi�ersFolder� property) to a dataset. If
the dataset does not have hints, as indicated by
the �hasHints� parameter, TAPON-MT applies the
hint-free model, with its corresponding set of classi-
�ers; if it does have them, it applies the hint-based
model. For each instance, it �rst applies each bi-
nary classi�er. This results in a set of classi�er
outputs (be it a purely binary result or a proba-
bility) that are used as the input of the multiclass
classi�er. The multiclass classi�er outputs the �nal
label of the instance, which may be used as a hint.
If hint-based features are not needed, only the �rst
iteration needs to be performed.
Class �Classi�ersHandler� provides low-level func-

tionality related to the creation and use of clas-
si�ers. Its many properties correspond, mainly,
to the classi�ers of a model, separated into the 8
groups we described: for attributes and records,
hint-free or hint-based, and binary or multiclass.
Additionally, it stores a classes con�guration, since
creating multiclass classi�ers require knowing what
classes there are in the input datasets. Any classi�-
cation technique can be used to implement both
the binary and multiclass classi�ers. For exam-
ple, in our implementation of TAPON-MT, we train
random-forest binary classi�ers and neural network
multiclass classi�ers.
Method �trainBinaryClassi�ers� trains a binary

classi�er for each semantic class by using method
�trainBinaryClassi�er� , which trains each individual
classi�er and stores it in a given path.
Method �trainMulticlassClassi�er� trains the mul-

ticlass classi�er for both attributes and records, us-
ing the hint-free or hint-based classi�ers depending
on the value of the �hasHints� parameter.
Finally, method �classify� classi�es a single

instance, using hint-free or hint-based classi�ers
depending on the value of the �hasHints� parame-
ter. The resulting label is stored in the instance.
Information about the probability of the label is
also included.

Example
An already trained model was applied to the

dataset in Figure 1 by using it as input of the mod-
els handler. First, the framework classi�es it speci-
fying that there are no hints yet. Hint-free features
are computed and the classi�ers are applied. Most
labels are correct, but some of them are wrong,
as depicted in Figure 8. There are two wrong la-

nsf:award?

...

nsf:startDate? - “06/15/2017”

nsf:startDate? - “11/30/2017”

nsf:awardee?

nsf:name? - “University of Texas at Dallas”

...

nsf:awardee?

nsf:location? - “Pittsburgh Marriott City Center”

...

Figure 8: Hints after �rst iteration using the model handler.

bels: the expDate attribute has been labelled as
a startDate, and the performance record has been
labelled as an awardee. The �classify� method is ap-
plied a second time, but now specifying that there
are hints. After computing hint-based features, the
hint-based classi�ers are applied. The additional
features help distinguish between similar cases: the
expDate is near an attribute labelled as startDate,
but has a higher value, while the startDate is near
another attribute labelled as startDate, but has a
lower value. The performance contains an attribute
labelled as a location, while the awardee contains
an attibute labelled as a name. After the second
iteration, all labels are correct.

5. Validation

This section describes our validation of TAPON-
MT by means of an implementation with a web
service and a graphical interface, as well as exper-
imental results. The source code of TAPON-MT
has been made available online1.

5.1. Implementation

Our framework is supported by both a web ser-
vice and a graphical interface.
The web service was deployed using the Java

Restlet library. It o�ers a "classify" POST method
that takes a dataset in JSON format, and returns
the same dataset with added �elds that correspond
to the �nal label of each instance according to the
multiclass classi�er, as well as the top 4 most likely
labels according to the binary classi�ers' con�dence
scores. Figure 9 depicts the example in Figure 9 in
JSON format, without labels.
The service requires the existence of already

trained models, which can be obtained with cre-
ation scripts or our graphical interface.

1https://github.com/dayala1/TAPON-MT
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{"children": [
{"textualValue": "Partial Support for..."},
{"textualValue": "NSF"},
{"textualValue": "15000"},
{"textualValue": "06/15/2017"},
{"textualValue": "11/30/2017"},
{"children": [

{"textualValue": "Walter Hu"}
]},
{"children": [

{"textualValue": "University of Texas..."},
{"textualValue": "Richardson"},
{"textualValue": "750803021"}

]},
{"children": [

{"textualValue": "Pittsburgh Marriott..."},
{"textualValue": "Pittsburgh"},
{"textualValue": "152302999"}

]}
]}

Figure 9: Dataset in JSON format.

The graphical interface has been implemented us-
ing Java 1.8.0_151. We have used re2j 1.1 to im-
plement regular expressions, Lucene 5.4.1 to create
indexes, and Spark 2.2.0 to implement classi�cation
techniques which are the basis of our models.
It has three modules, namely: Model creation,

Model visualisation, and Model testing.
In the Model creation module (cf. Figure 10(a))

the user can create models from a training set. The
training �les (in JSON format) can be split into
folders that correspond to di�erent domains to sep-
arate those from di�erent sources. Each domain
folder must in turn be split into ten fold folders.
The user can then select what domains and folds
will be used to train the model. The �les of a do-
main folder can be analysed to obtain some meta-
data, such as the number of classes, average dataset
depth or the number of attributes. These details are
stored in a JSON �le and can be visualised. Other
applications can create or modify this �le to add
further information about a domain. The user can
also select what features groups will be used by the
model, as well as the classi�er settings (which, in
our implementation, are related to random forest
classi�ers).
The Model visualisation module (cf. Fig-

ure 10(b)) allows the user to visualise the random
forest classi�ers that shape a model. Since a model
consists of a classi�er per class, the user can se-
lect a model (the training domains and folds), and
visualise every decision tree in the random forest as-
sociated to every class (this visualisation is speci�c
to decision trees, so other classi�cation techniques
would require di�erent visualisations). This allows
the user to check that the classi�ers make sense,

(a) Model creation.

(b) Model visualisation.

(c) Model testing.

Figure 10: TAPON-MT graphical interface.

and that certain features are taken into account.
For example, if a model yields bad results, it could
be because the classi�er is not using all the avail-
able features for some reason (e.g. the maximum

13



decision tree depth is set to a low value). This can
be done for both the hint-free and the hint-based
classi�ers. We used this visualisation to check that
hint-based features are actually useful when intro-
duced, mainly in record classi�ers.
Finally, the Model testing module (cf. Fig-

ure 10(c)) allows the user to choose a previously cre-
ated model and then apply it to a subset of the la-
belled information. The user must select the model
to test (the domains and folds used for training), as
well as the domains and folds used for testing. Note
that the user can test a model with datasets from
domains that contain classes that are unknown to
the model. This can be used to test how the model
behaves when facing information that does not be-
long to any known class. The results of the test in-
clude information related to each individual class,
as well as global results. The class results include
the precision, recall, and F1 score. The global re-
sults include the accuracy, macro precision, macro
recall, and macro F1 score, as well as a classes sim-
ilarity matrix.
The classes similarity matrix is a technique to

asses how similar pair of classes are from the point
of view of the classi�er. Figure 11 depicts a similar-
ity matrix corresponding to 39 classes using a color
scale ranging from 0.0 (dark purple) to 1.0 (yellow)
and hidden class names (visible by hovering over
each square, since some class names are long). The
similarity of two classes is computed as the cosine
similarity between their corresponding rows in the
confusion matrix. The similarity matrix is, ideally,
the identity matrix: every class is perfectly similar
to itself (which is always the case), and completely
made apart from the others. High values for di�er-
ent classes mean that the classes have been classi-
�ed in a similar way, and therefore the model has
not been able to separate them. Note that the simi-
larity is not an objective measurement of how simi-
lar two classes are, since it depends on the classi�er,
and therefore classes that are highly similar using
some classi�cation techniques and features can be
perfectly separated using other classi�cation tech-
niques and features. The similarity matrix is useful
to identify the cases in which a particular model
fails. For instance, in the matrix example we pro-
vided, we observed that the pairs of classes with
high similarity were almost undistinguishable, even
for a human, so the accuracy of the classi�er, even
if not perfect, was hard to surpass.

Figure 11: Similarity matrix example.

5.2. Experimental results

Apart from the main contributions of our frame-
work, as described in Section 2, we have performed
some tests to check that the models it creates work
in practice and is able to model information suc-
cessfully. Our experiments consists of 10-fold cross-
validation applied to a subset of the National Sci-
ence Foundation Awards dataset. The subset con-
sists of the �rst 500 most recent ended awards, from
those that ended in 2017. These have a total of
2223 record instances distributed among 5 record
classes and 17723 attribute instances (29.48% of
them numerical) distributed among 35 attribute
classes. Datasets have an average depth of 3 (1
being a �at record), and records contain, on aver-
age, 38.89 instances. These datasets were chosen
for their non-�at structures, the high number of
classes, and the variety of attributes, which include
numerical values. We performed our experiments
on a computer with an Intel Xeon E7-4807 that
ran at 1.87 GHz, had 16 GB of RAM, Windows 7
Pro 64-bit, Java 1.7, and Spark 2.10 for Java. No
changes were made to their default con�gurations.
We compare the results obtained by models cre-

ated with our framework, TAPON-MT without
hints (denoted by "TAPON-MT") and with hints
(denoted by "TAPON-MT(H)"), to those of an im-
plementation of RAPTURE [11] that uses random
forest classi�ers with the proposed features, an im-
plementation of Ramnandan et al. [22]'s proposal
(denoted by "RAM"), and an implementation of
Pham et al. [21]'s proposal. We have selected these
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Tool Precision Recall F1

Accuracy

TAPON-MT(H) [0.85, 0.87] [0.83, 0.85] [0.84, 0.86] [0.84, 0.85]

TAPON-MT [0.90, 0.91] [0.73, 0.75] [0.80, 0.82] [0.71, 0.74]

RAPTURE [0.76, 0.78] [0.62, 0.64] [0.69, 0.70] [0.62, 0.64]

RAM [0.76, 0.77] [0.60, 0.63] [0.67, 0.70] [0.61, 0.63]

PHAM [0.81, 0.83] [0.54, 0.57] [0.65, 0.67] [0.54, 0.57]

Table 3: Results summary displaying the 95% con�dence
interval.

since, as we described in Section 2, most propos-
als have limitations that make them completely in-
applicable in our set-up (such as only being able
to label tables or named entities). Since both are
only able to label attributes, their quality measures
are computed considering only the attributes in the
datasets (though their labelling is only partial, they
are not inapplicable). All classi�ers were created
using their Spark 2.20 Java implementation. Ran-
dom forest classi�ers were created with 50 trees and
a maximum depth of 15 (other settings were set to
their defaults). The neural networks of our multi-
class classi�ers had a single dense layer (other set-
tings were set to their defaults).
Results are shown in Figure 12. The measure

that better describes the quality of the results is the
accuracy, since it represents the fraction of correct
labels. Note that our main contribution is the �ex-
ibility of our framework as described in Section 2,
independently of the results obtained a speci�c set
of features or datasets. TAPON-MT achieves a
good accuracy, even when labelling both records
and attributes in an individual way. While hint-
based features improve accuracy in a signi�cant
way, the model without them also achieves good
results thanks to the large features catalogue. Ta-
ble 3 contains a summary of the results. TAPON-
MT(H) labels correctly 85% of instances, while the
results by other proposals range from 55% to 65%.
Note that there are 40 classes, so a random classi�er
would label instances correctly 2.5% of times.
Across the 10 experiments, the average training

time of TAPON-MT(H) was 36.59 minutes, with
a standard deviation of 1.49 minutes. This time
seems to be reasonable, since the model only has
to be trained once. The average application time
per instance was 0.11 seconds, which is enough for
labelling datasets in real time.
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Figure 12: Experimental results.

6. Conclusions

Semantic labelling is an area of research that
has become more relevant than ever in the recent
years due to the ever-increasing presence of avail-
able structured data sources in the Web. Unfor-
tunately, most of the existing approaches to label
structured information have been devised with spe-
ci�c situations in mind, and thus do not o�er a
more complete solution due to their restrictions,
namely: they only accept some structures as in-
put, which greatly limits their applicability to only
some sources of data; they are unable to label both
records and attributes, which prevents them from
fully labelling datasets; they are tied to certain
features or techniques, without o�ering customis-
able models that can be expanded with new tech-
niques or features that are suitable to speci�c cases;
they assume that instances are labelled in groups
that share the same class, having their performance
hindered when such groups are not available and
datasets are labelled individually; they are tied to
entity matching, thus being unable to label records
or attributes that do not correspond to named en-
tities; they do not detect numeric data, which pro-
vides additional information that can be crucial to
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the model; �nally, they do not support complex fea-
tures.
In this article, we present TAPON-MT, a frame-

work to perform semantic labelling based on ma-
chine learning techniques, with a features calcu-
lation and modelling architecture that does not
present any of the aforementioned problems. It
deals with both records and attributes from generic
structures; it is highly customisable, being able to
dynamically generate complex features using fea-
tures groups; it labels instances in an individual ba-
sis without assuming there are groups; it does not
require the presence of named entities or perform-
ing any kind of entity matching; it detects numeric
data so that additional information can be used to
compute features; and it supports complex features:
similarity features (by storing examples from the
training set), dynamically generated features (by
using features groups), incremental features (by us-
ing the listener pattern), and hint-based features
(by means of a two-phase work�ow).
We have implemented our framework to show its

usability when creating models and testing them.
We have also validated it using real-world data from
the National Science Foundation RDF dataset,
which includes a large number of varied classes in
deep structures. Our validation results show that
TAPON-MT is e�ective and e�cient in practice,
achieving accuracy results that are, at least, on
par with other proposals even when having to la-
bel records in addition to attributes. These results
suggest that our framework is promising enough for
real-world semantic labelling scenarios.
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