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Abstract: Within the field of soft computing, intelligent optimization modelling techniques include
various major techniques in artificial intelligence. These techniques pretend to generate new business
knowledge transforming sets of "raw data" into business value. One of the principal applications of
these techniques is related to the design of predictive analytics for the improvement of advanced
CBM (condition-based maintenance) strategies and energy production forecasting. These advanced
techniques can be used to transform control system data, operational data and maintenance event data
to failure diagnostic and prognostic knowledge and, ultimately, to derive expected energy generation.
One of the systems where these techniques can be applied with massive potential impact are the
legacy monitoring systems existing in solar PV energy generation plants. These systems produce a
great amount of data over time, while at the same time they demand an important effort in order to
increase their performance through the use of more accurate predictive analytics to reduce production
losses having a direct impact on ROI. How to choose the most suitable techniques to apply is one of
the problems to address. This paper presents a review and a comparative analysis of six intelligent
optimization modelling techniques, which have been applied on a PV plant case study, using the
energy production forecast as the decision variable. The methodology proposed not only pretends
to elicit the most accurate solution but also validates the results, in comparison with the different
outputs for the different techniques.

Keywords: artificial intelligence techniques; energy forecasting; condition-based maintenance;
asset management

1. Introduction

Within the field of soft computing, intelligent optimization modelling techniques include various
major techniques in artificial intelligence [1] pretending to generate new business data knowledge
transforming sets of "raw data" into business value. In the Merriam-Webster dictionary data mining
is defined as “the practice of searching through large amounts of computerized data to find useful
patterns or trends”, so we can then say that intelligent optimization modelling techniques are data
mining techniques.

Nowadays, connections among industrial assets and integrating information systems, processes and
operative technicians [2] are the core of the next-generation of industrial management. Based on
the industrial Internet of Things (IoT), companies have to seek intelligent optimization modelling
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techniques (advanced analytics) [3] in order to optimize decision-making, business and social value.
These techniques are preferred to fall inside the soft computing category, with the idea of solving real
complex problems with inductive reasoning like humans, searching for probable patterns, being less
precise, but adaptable to reasonable changes and easily applicable and obtainable [4].

To be able to implement these advanced techniques requires a comprehensive process sometimes
named “intelligent data analysis” (IDA) [5], which is a more extensive and non-trivial process to
identify understandable patterns from data. Within this process, the main difficulty is to identify valid
and correct data for the analysis [3] from the different sources in the company. Second, efforts must be
developed to create analytic models that provide value by improving performance. Third, a cultural
change has to be embraced for companies to facilitate the implementation of the analytical results.
In addition to this, since accumulation of data is too large and complex to be processed by traditional
database management tools (the definition of “big data” in the Merriam-Webster dictionary), new tools
to manage big data must be taking into consideration [6].

Under these considerations IDA can be applied to renewable energy production, as one of the most
promising fields of application of these techniques [7]. The stochastic nature of these energy sources,
and the lack of a consolidated technical background in most of these technologies, make this sector
very susceptible for the application of intelligent optimization modelling techniques. The referred
stochastic nature is determined by circumstances in the generation sources, but also by the existing
operational conditions. That is, the natural resources have variations according to weather with a certain
stationarity but with difficulties in forecasting behaviours. In addition, depending on the operational
and environmental stresses in the activities, they will be more likely to fail. Consequently, the analysis of
renewable energy production must consider adaptability to dynamic changes that can yield results [8].

The identification and prediction of potential failures can be improved using advanced analytics
as a way to search proactively and reduce risk in order to improve efficiency in energy generation.
Algorithms, such as machine learning, are now quite extended in renewable energy control systems.
These kinds of facilities are characterized by the presence of a great number of sensors feeding the
SCADA systems (supervisory control and data acquisition systems), usually very sophisticated systems
including a control interface and a client interface (the plant’s owner, distribution electric network
administrator, etc.). Power and energy production measures are two of the most important variables
managed by the SCADA. As principal system performance outputs, they can be exploited through
data mining techniques to control system failures, since most of the systems failures directly affect the
output power and the energy production efficiency [7].

A sample process for a comprehensive IDA, applied to the improvement of assets management in
renewable energy, is presented in Figure 1.

In Figure 1 the green box describes the generic IDA process phases, phases which need to be
managed inside an asset management condition-based maintenance (CBM) framework, in order to
make sustainable and well-structured decisions, to obtain developments and to keep and improve
solutions over time. In order to take rapid and optimal decisions, the challenge is to structure the
information from different sources, synchronizing it properly in time, in a sustainable and easily
assimilable way, reducing the errors (avoiding dependencies among variables, noise, and interferences)
and valuing real risks. A clear conceptual framework allows the permanent development of current
and new algorithms, corresponding to distinct data behaviour-anomalies with physical degradation
patterns of assets according to their operation and operation environment conditions and their effects
on the whole plant [11].
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Each one of these IDA phases are interpreted, in the red boxes, for a PV energy production data
system [9,10] showing a flow-chart for practical implementation. In this paper we will focus on the
central phase in Figure 1, the analysis of different techniques of data mining (DM). Different techniques
can be applied. We will concentrate in the selection of advanced DM techniques, comparing their
results when applied to a similar case study. This issue is often not addressed when applying certain
complex intelligent optimization modelling techniques, and no discussion emerges concerning this
issue. This is because, often, the computational effort to apply a certain method is very important
in order to be able to benchmark the results of several methods [12]. In the future, assuming more
mature IDA application scenarios, the selection of DM techniques will likely be crucial to generating
well-informed decisions.

Accepting this challenge, a review of the literature, the selection of techniques and a benchmark
of their results are presented in this paper. According to the previous literature, most representative
techniques of data mining [13,14] are presented and applied to a case study in a photovoltaic plant (see
other examples where these techniques were applied in Table 1).

Artificial neural networks (ANN) have been largely developed in recent years. Some authors [15–20]
have focused on obtaining PV production predictions through a behavioural pattern that is modelled
by selected predictor variables. A very interesting topic is how these results can be applied in predictive
maintenance solutions. In [7] these models are used to predict PV system’s faults before they occur,
improving the efficiency of PV installations, allowing programming in advance of suitable maintenance
tasks. Following a similar approach, the rest of DM techniques are implemented to validate, or even
improve, the good results obtained with the ANN in terms of asset maintenance and management.

Table 1. References of DM techniques analysed.

Techniques References

Data mining [13,21–25]

Artificial neural networks [7,26–32]

Support vector machine [33–37]

Decision trees [14,21,38–43]
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In general terms, the results obtained using DM or machine learning to follow and predict
PV critical variables, like solar radiation [21], are good enough to use as inputs in decision-making
processes, like maintenance decisions [7]. However, not all of the techniques have the same maturity
level as ANNs. SVM, Random Forest and Boosting, as techniques to predict the yield of a PV plant,
should be studied in greater depth in the coming years [22].

2. Background

2.1. Data Mining Techniques

Data mining techniques are in constant development by combining the use of the diverse
techniques available over a wide range of application fields. The search of behavioural patterns or
predictions based on various predictive variables that allow us to know the future or expected outcome
to improve key decision-making is being extended by researching the most diverse application fields.
For example, in [23] the assessment of credit ratings from a risk perspective, using different data mining
techniques and hybrid models, are proposed, analysing the advantages and disadvantages of each. In a
completely different application field, [24,25] present models of distribution of solar spectral radiation
based on data mining techniques, using solar irradiance, temperature and humidity as input variables.

In [14] a classification of predictive techniques in the photovoltaic sector is presented (Figure 2).
These results show how data mining techniques are becoming increasingly relevant, since they represent
61% (ANN, SVM, RF) of the total of the studies. Another interesting classification study is included
in [25].
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For their part, the authors [21] make a review of the different techniques of machine learning
for predicting solar radiation, which depends on the accuracy of the data. Although these are recent
techniques that require more research, they are improving the conventional methods, concluding that
the ones that should be used in the future are those of SVM, decision trees and Random Forest.

Making a general and deep presentation of different predictive and DM techniques is a very
interesting task that goes well beyond the aims of this paper. Figure 3 presents a basic classification of
the data mining techniques, including those that are going to be compared in this paper by applying
them to the same case study. In the section below a brief literature review introducing these techniques
is included.
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square error to measure the quality of the results of alternative models and techniques [34,43].

2.1.1. Artificial Neural Networks (ANN)

In estimations about renewable energies, ANN techniques are widely utilized and, more
particularly, the field of photovoltaic systems has been continuously developing them in recent
years [26–28]. There are various ANN models, and a particular architecture widely extended is
multilayer perceptron (MLP) [44].

In [29] a study is presented to obtain with greater precision the production of electrical and thermal
energy from a photovoltaic and thermal concentration system, using a neural network (multilayer
perceptron) to predict solar radiation and irradiance. In a maintenance application, in [7] the authors
go further in their study using the predictive model obtained with the multilayer perceptron neuronal
network trained with the backpropagation algorithm to anticipate the occurrence of failures and,
thus, improve the efficiency of the final production.

Deep learning neural networks are multilayer and feedforward neural networks that consist
of multiple layers of interconnected neuron units with the aim of construing better level features,
from lower layers to a proper output space. The application of deep learning techniques provides
a fairly accurate prediction in renewable energies, and the authors [31] use a deep learning model
to try to mitigate the risks of uncertainty in the production of a wind farm, testing this model in
several wind farms in China. The result obtained with this technique improves those obtained with
others, and avoids the uncertainty of energy production due to climate change. As for hydrological
predictions, there are few studies using deep learning techniques, and the authors present their
results [32]; while they are a beginning, the results are promising.

2.1.2. Support Vector Machine (SVM)

Inside the supervised machine learning techniques, support vector machines (SVM) [45] are
properly related to classification and regression problems, representing in a space two classes,
maximally separated through a hyperplane with high dimensionality (defined as a vector between two
points of each class), that permit the classification of new data in one or both classes. Regarding the
application of SVM techniques, the authors [33] present a study on the prediction for cooling of an office
building in Guangzhou, China. For this purpose, they use the comparison of different neural network
techniques (NNBR, NRBR, NRBR, NRBR) and NSRV, based on the results obtained in each of them
from the mean square error and the relative mean (RMSE and MRE). This model of artificial intelligence
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(SVM) is, in this case, the one that provides the best result, obtaining a high precision in the hourly
prediction of the building’s cooling and significantly improving the results of the neural networks.

Likewise, there are numerous references for the application of this technique in the renewable
energy sector due to the good results obtained with them. The authors [34] use this technique to
predict the average daily solar radiation using air temperature and analysing the result obtained by
the highest correlation coefficient (0.969) and the lowest mean square error (0.833), which shows the
promise of this new technique compared to traditional methods. The authors [35] attempt to predict
the production of a wind farm in the short term, through wind speed, wind direction and humidity.
They compare SVR techniques (multi-scale support vector regression) with a multilayer perceptron
neural network, obtaining better results with SVR due to its speed and robustness. With regard to
hydrological forecasting, there are also references, such as the [39], that use the RSVMG (recurrent
support vector model) technique to predict the volume of rainfall during the typhoon season in Taiwan.
Shi, J. in [36], for their part, use this technique to predict the output of a photovoltaic installation in
China and verify the result through the RSME. Although it is a relatively recent technique, the results
obtained are very promising and encourage further research in this field.

2.1.3. Decision Trees (DT)

As previously included, RF (Random Forest) is one of the most recent techniques we will apply in
our case study and has obtained very good results. Some examples are presented below:

• Elyan, E. in [39] uses the RF technique to classify data, demonstrating that it is a very accurate
method of classifying and obtaining results that improve accuracy over other techniques.

• Lin, Y. in [40] uses RF to improve the prediction of wind production in the short term, which is
complicated by the stochastic nature of the wind and using the effects of seasonality. RF modelling
obtains accurate results in this case.

• Moutis, P. [41] presents two applications of decision tree techniques: the planning of organized
energy storage in microgrids and energy control within a PC through the optimal use of local
energy resources, demonstrating through a case study the feasibility of this technique.

• Ren, L. in [42] use the DT technique to predict surface currents in a marine renewable energy
environment in Galway Bay. The results obtained are very promising, obtaining a correlation
coefficient higher than 0.89.

2.2. IDA for Maintenance Purposes: CBM Based on PHM

As we have mentioned, failure control based on condition monitoring needs to follow a sustainable
and structured procedure in order to keep and improve solutions on time. Thus, failure detection,
diagnostics and prediction, in networks of assets which co-operate among them to produce a certain
purpose, demand an integrated approach, but that distinguish individual asset degradation behaviours.
The logic of failure control has to manage not only reliability data but also operation and real-time
internal and locational variables [11].

The use of CBM has increased significantly since the end of the 20th century, leading to
more effective maintenance concepts [46]. The evolution of ICTs (intelligent sensors, digital devices,
IoT, etc.), which have become more powerful and reliable technologies, while also becoming cheaper,
has contributed to improving the performance of CBM plans [47,48]. The recent consolidation of
PHM (prognostics and health management) as an engineering discipline, including the application
of analytical techniques, such as data mining techniques, has promoted a new CBM by providing
new capabilities and unprecedented potential to understand and obtain useful information on the
deterioration of systems and their behaviour patterns over their lifetime [49–51], moreover deepening
more effective and adaptable solutions according to changes [52]. In this evolution, new terms
such as CBM + [53], CBM/PHM [50], or PdM (predictive maintenance) appear, differentiating
predictive maintenance from CBM. In any case, this new vision of CBM, together with the concept



Energies 2019, 12, 4163 7 of 18

of E-maintenance—which marks how the use of ICTs introduces the principles of collaboration,
condition knowledge, intelligence, etc., constituting a vision focused on the new maintenance processes
to which technology can give rise [54]—are the pillars of the development of modern maintenance [55].
In the current situation, despite this capacity development, there is still a significant gap for the
implementation of this type of solution in an intensive manner in the industry, largely due to their
complexity throughout their entire life cycle [48]. On the other hand, holistic models and frameworks
are needed [51] that consider: the knowledge available on the degradation of systems and their
behaviour in the face of failures, their dependencies on other systems, their external influences and the
associated uncertainty.

Prognosis Approaches

An important aspect of describing PHM techniques is to analyse the types of approaches that can
address the problem of prognosis. Three main types of prognostic approaches are recognized: physical
model-based forecasting, data-based forecasting and hybrid forecasting [51]:

• Approaches based on physical models are focused on mathematical modelling of physical
interactions between system components and the business processes. They also incorporate
failure physics models (POF, physics of failure or PBM, physics-based model), searching the
remaining useful life forecast (RUL) based on the degradation due to the participation in a
determined processes.

• Data-based approaches (data-driven) use the recognition of statistical and learning patterns
to detect changes in the data of descriptive process parameters, thus enabling diagnosis and
prognosis. Behavioural patterns are recognized in the data monitoring to evaluate the health
status of the system and the time to failure. Data mining techniques as are treated in this paper
are the bases of this type of PHM method.

• Mergers or hybrids are forecasting methodologies that combine the strengths of the two previous
approaches in order to estimate RUL, detect abnormal behaviour, identify failure precursors,
etc. These methods have the greatest potential. Their application requires the definition of an
application framework that supports the integration of physical models with data-driven models,
simulating based on historical data to forecast in advance the remaining life according to each
failure mode’s circumstances.

All three models are useful. The current trend is very much towards the use of data-only models.
This has undeniable benefits, but also many risks (lack of reliable data, lack of physical contrast and
disconnection with the engineering interpretation of the problems raised, among others). In this sense a
method allowing the understanding of the model is required and, in particular, the employed technique
is valid or the results should, or can, be improved by the use of different techniques. The use of a single
DM technique cannot be enough. The use of different technologies over the same data and use case
could give us interesting results.

3. Election of DM Techniques: A Practical Methodology

PV plant maintenance management includes a large number of technical assets. If we think in
real industrial cases, the technician is responsible for a large number of different PV plants’ assets.
Thus, the final goal of PHM DM solution development is to apply extensively to all the plants.
Then, this paper’s methodology objective is the use of more than one DM technique in order to show
that can serve:

1. To know which technique produces better results depending on the application case.
The application use case is composed by the following principal components:

- Type of CBM output: Detection, diagnosis or prognosis;
- Type of asset;
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- Type of failure mode;
- Type of data available.

2. To co-validate the results of the different techniques. In other word, considering different
techniques it is possible to detect uncertainties derived from our own mathematical models.

3. To extend the final results over the plant level or fleet level

The following figure (Figure 4) shows the methodology that we will apply for the selection of
techniques whose behaviour pattern best suits the productive model of a given facility. To do this,
we relate the different phases of the IDA (Figure 1) with the techniques of data mining (Figure 2),
as well as the values for the best decision-making technique.
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4. Case Study

We will apply the methodology set out on a photovoltaic installation with 6.1 Mw of rated power
that is located in Córdoba and has been in operation since 2008. This facility is divided in 61,100 kW
solar orchards. Applying the study on three of these orchards it has been verified that the results in
all three are analogous, so we set out only one of them. Tables 2–4 show the information taken for
the study.

Table 2. Temporary period for data collection for study.

Start Date End Date Data Collection From Until Frequency

01/06/2011 30/09/2015 Hourly 8:00 17:00 10 daily data for each variable

Table 3. Selected variables/data for training and validation.

Inputs Variables Outputs Variables Selected Values Training Set
Percentage

Testing Set
Percentage

Outdoor temperature,
radiation, inside

inverter temperature,
operation hours

Time, production In the absence of
failures

75% 25%

Same criteria for all techniques in order
to establish the same comparison

environment
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Table 4. Collected data in the study (treated and validated).

Outdoor Temp Radiation Indoor Temp Operating Time Production

303.25 490.3 312.1 9900 52

313.25 756.0 311 9901 74

319.25 860.8 314.7 9902 80

323.25 901.8 313.9 9903 82

325.25 918.0 315.5 9904 83

327.98 990.3 316.8 25,716 81

320.77 520.0 315.6 25,717 53

311.43 454.5 317.1 25,718 39

305.98 777.3 317.8 25,719 66

5. Employed DM Techniques

The employed DM techniques, for failure prediction, are presented below, using for comparison
the mean square error to measure the quality of the results:

- ANN Models:

# Multilayer Perceptron
# Deep Learning

- Support Vector Machines:

# SVM non-linear
# SVM Lineal (Lib Linear)

- Random Forest
- Boosting

The practical implementation for each one of these techniques will now be introduced,
describing the employed libraries, functions and transformation variables.

It is important to mention that unless learning is applied we cannot say that any DM model is
intelligent. Therefore, for those situations when new data arrives after significant changes in an asset’s
location or operation, a learning period for the algorithms is required.

The error predicted by the model can also offer a good clue regarding potential scenario
modifications and can be used to trigger and lead to a new phase of model actualization, or learning
period. This will reduce reasonable worries about model validation and will give more confidence
to support asset managers’ decision-making regarding prediction and time estimation for the next
failures. These ideas can also be programmed and automatically put into operation in the SCADA.

5.1. ANN Models: Multilayer Perceptron

For the case study, first, a three-layer perceptron is employed with the following activation
functions: logistic and identity in the hidden layer (g(u) = eu/(eu + 1)) and in the output layer,
respectively. If we denote wh synaptic weights between the hidden layer and the output layer {wh, h =

0, 1, 2, ..., H}, H as the size of the hidden layer, and vih synaptic weights of connections between the
input layer (p size) and the hidden layer {vih, i = 0, 1, 2, . . . , p, h = 1, 2, . . . , H}, thus, with a vector of
inputs (x1, . . . , xp), the output of the neural network could be represented by the following function (1):

o = w0 +
H∑

h=1

whg(v0h +

p∑
i=1

vihxi) (1)
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We have used the R library nnet [56], where multilayer perceptrons with one hidden layer are
implemented. The nnet function needs, as parameters, the decay parameter (λ) to prevent overfitting
in the optimization problem, and the size of the hidden layer (H). Therefore, providing the vector of all
M coefficients of the neural net W = (W1, . . . , WM), and specified n targets y1, . . . , yn, the following
optimization problem (Equation (2)) is (L2 regularization):

Min
W

n∑
i=i

‖yi − ŷi‖
2 + λ

 M∑
i=i

W2
i

 (2)

A quasi-Newton method, namely the BFGS (Broyden-Fletcher-Goldfarb-Shanno) training
algorithm [44], is employed by nnet, in R with e1071 library using the tune function [57], determining the
decay parameter (λ) as {1, 2, . . . , 15} × {0, 0.05, 0.1} by a ten-fold cross-validation search.

The λ parameter obtained for the two transformations presented below has been zero in all the
models built, the logical value considering the sample size and the reduced number of predictor
variables, which carries little risk of overfitting.

Through prior normalization of the input variables, the performance could be enhanced in the
model. For that, we have considered two normalization procedures, a first transformation that subtracts
each variable predictor X from its mean, and the centred variable is divided by the standard deviation of
X. In this way we manage to normalize with a 0 mean and a standard deviation equal to 1. The second
lineal normalization transforms the range of X values into the range (0, 1). We design, respectively,
the values of the standards Z1 and Z2, which are calculated as follow:

Z1 =
X − x

sx
Z2 =

X −minx

maxx −minx
(3)

These transformations have used the mean, standard deviation, maximums and minimums
calculated in the network training dataset, and these same values have been used for the test set,
thus avoiding the intervention of the test set in the training of the neural network.

Since the range of values provided by the logistic function is in the range (0, 1) and the
dependent variable Y takes values in the range (0, 99). We transform this with the Y/100 calculation.
However, after obtaining the predictions, the output values obtained in the original range were
transformed back to the original range of values by multiplying by 100 to bring it back to the interval
(0, 99).

5.2. ANN Models: Deep Learning

We have used the R package h2o [58] to prevent overfitting with several regularization terms,
building a neural network with four layers, and with two hidden layers formed by 200 nodes each.

First, L1 and L2 regression terms are both included in the objective function to be minimized in
the parameter estimation process (Equation (4)):

Min
W

n∑
i=i

‖yi − ŷi‖
2 + λ1

 M∑
i=i

|Wi|

+ λ2

 M∑
i=i

W2
i

 (4)

Another regularization type to prevent overfitting is dropout, which averages a high number of
models as a set with the same global parameters. In this type, during the training, in the forward
propagation the activation of each neuron is supressed less than 0.2 in the input layer and up to 0.5 in
the hidden layers, and provoking that weights of the network will be scaled towards 0.

The two normalization procedures used with nnet have also been used with h2o.
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5.3. Alternative Models (SVM): Support Vector Machines (Non-Linear SVM)

Now, we have used the svm function of the R system library e1071 [57] for the development of
the SVM models and, concretely, the ε-classification with the radial basis Gaussian kernel function
(5); by n training compound vectors {xi, yi}, i = 1, 2, . . . , n as the dataset, where xi incorporates the
predictor features and yi ∈ {−1, 1} are the results of each vector:

K(u, v) = exp
(
−γ‖u− v‖2

)
(5)

Therefore, it is solved by quadratic programming optimization (Equation (6)):

Min
w,b,ξ,ξ∗

1
2 wtw + C

n∑
i=1

ξi + C
n∑

i=1
ξ∗i

wtϕ(xi) + b− yi ≤ ε+ ξi
yi −wtϕ(xi) + b ≤ ε+ ξ∗i

with ξi, ξ∗i ≥ 0, i = 1, 2, . . . , n

(6)

With the parameter C > 0 to delimit the tolerated deviations from the desired ε accuracy.
The additional slack variables ξi, ξ∗i allows the existence of points outside the ε-tube. The dual problem
is given by Equation (7):

Min
α,α∗

1
2 (α−α

∗)tQ(α−α∗) + ε
n∑

i=1

(
αi + α∗i

)
+ yi

n∑
i=1

(
αi − α

∗

i

)
0 ≤ αi,α∗i ≤ C, i = 1, 2, . . . , n

n∑
i=1

(
αi − α

∗

i

)
= 0

(7)

with K(xi, xj) = ϕ(xi)tϕ(xj) being the kernel function, a positive semi-definite matrix Q is employed by
Qij = K(xi, xj), i,j = 1, 2, . . . , n,. The prediction for a vector x (Equation (8)) is computed by:

n∑
i=1

(
−αi + α∗i

)
K(xi, x) + b (8)

depending on the margins mi =
∑n

i=1 yiαiK(xi, x) + b, i = 1, 2, . . . , n.
A cross-validation grid search for C and γ over the set {1, 5, 50, 100, 150, . . . , 1000} × {0.1, 0.2, 0.3,

0.4} was conducted by the R e1071 tune function, while the parameter ε was maintained at its default
value, 0.1.

We have built this SVM model with the original input variables, and with the two normalization
procedures previously described in the multilayer perceptron description.

5.4. Alternative Models (SVM): LibLineaR (Linear SVM)

A library for linear support vector machines is LIBLINEAR [59] for the case of large-scale linear
prediction. We have used the version used in [60], with fast searching estimation (in comparison
with other libraries) through the heuristicC function for C and based on the default values for ε,
and employing L2-regularized support vector regression (with L1- and L2-loss).

5.5. Alternative Models (DT): Random Forests

The Random Forests (RF) algorithm [61] combines different predictor trees, each one fitted on a
bootstrap sample of the training dataset. Each tree is grown by binary recursive partitioning, where each
split is determined by a search procedure aimed to find the variable of a partition rule which provides
the maximum reduction in the sum of the squared error. This process is repeated until the terminal
nodes are too small to be partitioned. In each terminal node, the average of response variable is the
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prediction. RF is similar to bagging [39], with an important difference: the search for each split is
limited to a random selection of variables, improving the computational cost. We have used the R
package Random Forest [62]. By default, p/3 variables (p being the predictor’s number) are randomly
selected in each split, and 500 trees are grown.

5.6. Alternative Models (DT): Boosting

From the different boosting models depending on the used loss functions, base models,
and optimization schemes, we have employed one based on Friedman´s gradient boosting machine
of the R gbm package [63] where the target is to boost the performance of a single tree with the
following parameters:

- The squared error as a loss function ψ (distribution),
- T (n.trees) as the number of iterations,
- The depth of each tree, K (interaction.depth),
- The learning rate parameter, λ (shrinkage), and
- The subsampling rate, p (bag.fraction).

The function f̂ (x) = arg minρ
∑n

i=1 ψ(yi,ρ) is initialized to be a constant. For t in 1, 2, . . . , T do
the following:

1. Compute the negative gradient as the working response:

zi = −
∂

∂ f (xi)
ψ(yi, f (xi))

∣∣∣∣∣∣
f (xi)= f̂ (xi)

(9)

2. Randomly select pxn cases from the dataset.
3. Fit a regression tree with K terminal nodes and using only those randomly selected observations.
4. Compute the optimal terminal node predictions ρ1, . . . , ρk, as:

ρk = arg minρ
∑
xiεSk

ψ
(
yi, f̂ (xi) + ρ

)
(10)

where Sk is the set of cases that define terminal node k, using again only the randomly
selected observations.

5. Update f̂ (x) as:
f̂ (x) = f̂ (x) + λρk(x) (11)

where k(x) indicates the index of the terminal node into which an observation with features x
would fall.

Following the suggestions of Ridgeway in his R package, our work considered the following values:
shrinkage = 0.001; bag.fraction = 0.5; interaction.depth = 4; n.trees = 5000, but cv.folds 10

performed a cross-validation search for the effective number of trees.

6. Results

The obtained results for each technique are shown below (Table 5), as well as the different
transformations made (different ways to normalize variables and to estimate parameters), shading in
each technique the one that gives us the best solution.
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Table 5. Results of the different techniques.

Models Analysis Results

Multilayer Perceptron

Transformation 1 Coefficient Correlation RMSE

Test 0.886 9.64

Training 0.897 9.15

Transformation 2 Coefficient Correlation RMSE

Test 0.883 9.76

Training 0.895 9.26

Deep Learning

Transformation 1 Coefficient Correlation RMSE

Test 0.839 11.5

Training 0.855 10.93

Transformation 2 Coefficient Correlation RMSE

Test 0.838 11.72

Training 0.853 11.19

SVM Nonlinear
Transformation 1, 2 and 3 Coefficient Correlation RMSE

Test 0.881 10.01

Training 0.894 9.46

SVM Linear (Lib
Linear)

Transformation 1 Coefficient Correlation RMSE

Test 0.836 11.57

Training 0.848 11.1

Transformation 2 Coefficient Correlation RMSE

Test 0.821 13.54

Training 0.834 13.07

Random Forest
Coefficient Correlation RMSE

Test 0.909 8.63

Training 0.916 8.3

Boosting
Coefficient Correlation RMSE

Test 0.856 10.87

Training 0.868 10.41

We graphically represent (Figure 5) the best result obtained for each of the techniques in order
to visualize the one that gives us the best solution for the behaviour pattern of the production of the
photovoltaic installation.

A point cloud chart (Figure 6) of the predicted (test) production is shown for the model that give
us the best solution (Random Forest).

This model tells us the importance of variables in the result, which shows that all of them are
valid and necessary. The higher the percentage, the higher the importance variable (see Table 6).
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Table 6. Importance of the variables.

VARIABLE % INC_MSE

TEMP_EXT 49.10

RADIACIÓN 155.63

TEMP_INT 41.60

H. FUNCIONAMIENTO 34.37

The prediction error based on %INC_MSE is estimated by out-of-bag (OOB) for each tree and
after permuting each predictor variable, until the difference between them has a standard deviation
equal to 0.

7. Conclusions

In this paper a methodology to introduce the use of different data mining techniques for energy
forecasting and condition-based maintenance was followed. These techniques compete for the best
possible replica of the production behaviour patterns.
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A relevant set of DM techniques have been applied (ANN, SVM, DT), and after their introduction
to the readers, they were compared when applied to a renewable energy (PV installation) case study.

In this paper a very large sample of data has been considered. This data spans from 1 June 2011 to
30 September 2015.

All of the models for the different techniques offered very encouraging results, with correlation
coefficients greater than 0.82. Coincident with other referenced authors’ results, Random Forest was
the technique providing the best fit, with a linear correlation coefficient of 0.9092 (followed by ANN
and SVM). In turn, this technique (RF) gave us as a differential value of the importance of the input
variables used in the model, which somehow validates the use of all these variables. In the case study,
and by far, the variable resulting with the most affection to production was radiation, followed by
the outside temperature, the inverter internal temperature and, finally, the operating hours (which
somehow reflects the asset degradation over time).

It is important to mention that these results were obtained using different methods (2) to normalize
the variables and to estimate parameters.

Future work could be devoted to the validation of these results by replicating the study at other
renewable energy facilities to determine how the improvement in ECM and R2 values affects early
detection of failures by quantifying their economic value.

The implementation of these techniques is feasible today thanks to existing computational capacity,
so the effort to use any of them is very similar.
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Acronyms

ANN Artificial neural networks
CBM Condition-based maintenance
DM Data mining
DP Deep learning
DT Decision trees
IDA Intelligent data analysis
IoT Internet of Things
MP Multilayer perceptron
MSE Mean square error
OOB Out-of-Bag
PBM Physics-based model
PdM Predictive maintenance
PHM Prognostics and health management
POF Physics of failure
PV Photovoltaic
RMSE Root mean square error
RF Random Forest
ROI Return on investment
RSVMG Recurrent support vector model
RUL Remaining useful life forecast
SCADA Supervisory control and data acquisition
SVM Support vector machine
SVR Support vector regression
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