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Abstract The study and monitoring of wildlife has always been a subject of great
interest. Studying the behavior of wildlife animals is a very complex task due to
the difficulties to track them and classify their behaviors through the collected
sensory information. Novel technology allows designing low cost systems that
facilitate these tasks. There are currently some commercial solutions to this prob-
lem; however, it is not possible to obtain a highly accurate classification due to the
lack of gathered information. In this work, we propose an animal behavior recogni-
tion, classification and monitoring system based on a smart collar device provided
with inertial sensors and a feed-forward neural network or Multi-Layer Perceptron
(MLP) to classify the possible animal behavior based on the collected sensory
information. Experimental results over horse gaits case study show that the recogni-
tion system achieves an accuracy of up to 95.6%.

Keywords Multi-Layer Perceptron - Feed-forward neural network - Pattern recog-
nition - Inertial sensors - Sensor fusion

1 Introduction

Behavior monitoring of wildlife animals is a hard technological task [1] due to
several factors that need to be solved. (1) The development a lightweight and long
batteries life (thus, low power consumption) devices to attach to the animal; (2)
The design and implementation of a wireless network to collect the information
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from those devices; and finally, (3) download from the animals devices all cap-
tured information. Some commercial devices can track animals using global posi-
tion systems (GPS) and obtain some of their vital signs through sensors. The
information given consists only of raw and unprocessed data that require high
bandwidth communications or high capacity memory cards and long life batteries,
which usually are very heavy. Furthermore, these solutions are not able to recog-
nize animal patterns from the obtained data.

Algorithms that look for particular behavioral patterns based on the input data
usually conduct this kind of recognition or classification. Some of these algo-
rithms are Neural Networks (NN), Support Vector Machines (SVM) or even com-
plex statistical methods, which can detect specific behaviors such as sleeping,
running, copulating, etc. Generally, the computational costs of these algorithms
are highly enough to require specific platforms capable of parallelizing computa-
tions for this classification.

In this paper, a particular NN architecture is implemented for a behavioral classi-
fication of wildlife animals restricted to horse gaits, which are the ways a horse can
move. The NN is designed and trained using a software tool and then all of its pa-
rameters are obtained and used on an embedded NN version implemented to run on
a low-power microcontroller. There are some hardware platforms like SpiNNaker
[2] that allows the easy development of spiking neural networks; however, the size
and power consumption of this board are extremely high for this kind of task and
targets.

MINERVA is a research project whose main aim is to study and classify wild-
life behavior inside Dofiana National Park [3]. To achieve this goal, a hierarchical
wireless sensor network capable of transmitting and storing this information has to
be set and tested inside this park. Moreover, in order to increment the value of the
final product, an embedded system with energy harvesting techniques that will be
able to digest sensor fusion data from inertial sensors [4], combined with other
sensors (temperature, heart rhythm, GPS) has been developed in order to classify
animal behavior in real time. This project has the additional aim of developing an
infrastructure for collecting this information and make it accessible through the
internet. The pattern recognition of the sensed data is performed in real time by
the microcontroller using a low-power implementation of a NN that classifies
three different horse gaits [12] (motionless, walking and trotting). This infor-
mation is transmitted using a wireless multisensory network distributed on collars
placed on some animals. This multisensory network reads data from the sensors
and send them to a network of motes, which acts as a router and retransmits these
packets to a base station. This base station receives the information through the
network and uploads it to a remote server database. Researchers can access this
data using a web-based user interface and track the animal activity at any time
without the necessity of being in Dofiana National Park.

The NN implementations presented can classify three different horse gaits.
MATLAB (a mathematical software), with a toolbox for NN, has been used in
order to design the architecture. The NN has been trained with data collected in
Dofiana with a prototype of the collar configured to capture and store raw data
with a parameterized period of time. The NN training has been performed in the



same software using 70% of the collected data. The remaining 30% has been used
for the NN testing.

The paper is structured as follows: section 2 presents the collar device. Then,
section 3 describes different fusion filters applied to the sensor data. Section 4
presents the NN architecture to classify three different behaviors. Section 5 de-
scribes the testing scenario and the results obtained. Finally, section 6 presents the
conclusions.

2 Collars: Information Collection by Multiple Sensors

The aim of this collar is to gather information from the animal on which it is
placed by using several sensors. Then, it will classify its animal behavior using
this data as an input for a feed-forward NN implemented on the collar microcon-
troller. All detected patterns are locally stored in the collar memory. Finally, the
collar will send the recognized gaits to a base station through XBee communica-
tions that will upload it to a database stored in a data server on the internet. The
collar is provided with an inertial measurement unit (IMU), which consists of a
3-axis accelerometer, a 3-axis gyroscope and a 3-axis magnetometer. This unit is
used in addition to a GPS, which gives the position and time with respect to satel-
lites. The IMU used in this work is MinIMU-9V2 [5], whose sensors have a reso-
lution of 12 bits. The feed-forward NN architecture and training process is
described in section I'V.

The collar prototype, see Fig. 1, has an XBee module (XBee PRO S2B [6]) that
can transmit data through a wireless network. XBee is the brand name for Digi
International for a family of form factor compatible radio modules. XBee modules
are integrated solutions based on ZigBee, which is an open global standard of the
IEEE 802.15.4 MAC/PHY [7]. This device family allows to implement a mesh
network of motes (or routers) where collars (or device) send information, and
other elements (coordinators) of the network redirect these packets to a web serv-
er. The main objective is to transmit sensed information to the nearest router of the
network, so that it can reach the coordinator and upload this information to
the database. In such a case the signal cannot reach a valid point to transmit, i.e.
the animal is out of the network coverage, the collar carries an SD card where the
information is stored; so the animal behavioral information can be accessed later
or offline, so it avoids data losing.

The periodical measurements of each sensor are carried out using a low power
microcontroller (STM32L152 [8]) with a real-time operating system (RTOS)
which is powered using a four AAA battery pack (1.5V, 1155 mAh each). Due to
the fact that capturing an animal is very expensive, the process of obtaining data
from each collar when it runs out of battery is organized as a task, allowing the
microcontroller to switch to sleep mode if there are no router in the network cov-
erage capable of receiving this collar’s information. This increases batteries life.
Moreover, the collar does not spend the whole time transmitting the information in
a continuous manner. A periodic time is established for reducing radio transmis-
sions and thus, reducing power consumption.



Fig. 1 Collar device prototype

3 Sensors Data Processing

Information from the sensors is enough to develop a NN able to recognize patterns
from animals. Additionally, it is possible to increase the accuracy if more data are
used during training. Sensor fusion obtains new combined information from sen-
sors that can simplify and increase the accuracy of the NN architecture. This new
information consists of three variables called pitch, roll and yaw, which are the
angles of rotation of each axis of a three-dimensional space (pitch represents y-
axis rotation, roll represents x-axis rotation and yaw the variation from z-axis).
The purpose of this fusion is to generate new data for the NN and then compare
results using data from sensors and from fusion algorithms.

An accelerometer is a sensor that measures the gravity acceleration at 3D each
axis (x,y,z). It is possible to obtain pitch and roll calculation by applying mathe-
matical formulas based on the combination of data collected by the accelerometer;
however, if the accelerometer is not precise enough, then, small variations produce
high signal-to-noise ratio (SNR) values. On the other hand, it is difficult to calcu-
late the yaw value without combining the magnetometer tilt compensation and the
gyroscope variation.

This paper uses two fusion algorithms: (1) FreeIMU [9] and (2) Kalman Filter
[10]. FreeIMU, Fig. 2, is based on a quaternion representation. A quaternion is a
complex number that represents the object orientation by four fields. The three
first fields represent the orientation in each axis, while the last field represents the
rotation of the object. The algorithm fuses the accelerometer and the magnetome-
ter using the gradient descent algorithm when the fusion is finished. The gyro-
scope data are added to compensate the possible drift. Finally, in order to get
pitch, roll and yaw, the values of the quaternion are combined. The second algo-
rithm is the Kalman Filter, Fig. 2, which is a complex sensor fusion algorithm
commonly used in control systems [10]. The principal advantage of this algorithm
is that, by using initials estimators and dynamic parameters, the algorithm auto
adjusts the output in time.
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Fig. 2 FreeIMU filter (left) and Kalman filter (right)

The prediction process generates an estimation of the next value and calculates
the estimated error covariance. The second step updates the current value from the
sensors and the error covariance using the different parameters mentioned before
and the estimations calculated in the previous step. When each value is updated, it
is sent to the prediction step. This feedback continues updating the error estima-
tion and value predictions, so the algorithm converges over iterations. By using
this algorithm it is possible to filter noise from each sensor generating pitch, roll
and yaw. The main difference between these algorithms is the computational cost:
Kalman filter is more accurate but requires a higher computational effort; on the
other hand, FreeIMU does not have any feedback so it does not change filter pa-
rameters over time, adjusting the output to the data from the sensors. The idea of
implementing both algorithms is to compare the results of the classification ob-
tained in the NN and, with this output, decide which one is more adequate for an
animal behavior classification.

4 Neural Network

4.1 Neural Network Architecture

This section presents the architecture of the used Multi-Layer Perceptron (MLP)
NN. MLP is the most commonly used with the backpropagation algorithm: the
multilayer feed-forward network. An elementary neuron with R inputs is shown in
Fig. 3. Each input p is weighted with an appropriate w. The sum of the weighted
inputs and the bias forms the input to the transfer function f[11]. Neurons can use
any differentiable transfer function f'to generate their output.

N= X(p:w i« + bias) a=f(n)

3 N

bias

Fig. 3 Multi-layer Perceptron neuron

The topological structure of the MLP NN used consists of a two-layer feed-
forward network, with a sigmoid transfer function in the hidden layer and softmax
transfer function in the output layer. During this research, the optimal number of



hidden units was found by running different performance tests, where a new MLP
was created, trained and tested using a varying number of neurons in the hidden
layer. The best performance was obtained using 10 neurons in the hidden layer.
The number of neurons in the output layer is equal to the number of behaviors to
be classified. In this manuscript, three different patterns are presented: motionless,
walking and trotting. The results are presented for different input data: the raw
data acquired from the IMU sensors (x, y and z for each sensor) and the output
from the fusion algorithms presented before (roll, pitch and yaw). Therefore, the
number of inputs in the NN directly depends on which data are used at the per-
formance test. The network was trained using a scaled conjugate gradient
backpropagation algorithm [13].

4.2 Neural Network Input and Target Data

The NN input data was the IMU sensors data collected from the collar while a
horse performed three kinds of behaviors: motionless, walking and trotting. The
sensors described in section 2 gathered data every 0.03 seconds, during a specific
time period of 1 second (this is configurable), obtaining 2000 samples for each
behavior (sampling frequency of 33 Hz).

The first performance test used the instantaneous raw sensor data and, conse-
quently, the NN had nine inputs (x, y and z for each 3-axis sensor of the IMU). To
evaluate the utility of each sensor on the recognition phase, the NN was tested
with different combinations of sensors and using different numbers of neurons in
the hidden layer.

On the other hand, for the second and third performance tests, Kalman and
FreeIMU algorithms were used. In these two cases, the number of inputs in the
NN were three (pitch, roll and yaw).

Finally, as forth performance test, to evaluate the utility of the frequency spec-
trum information for animal pattern recognition, the Discrete Fourier Transform of
nine sensor data was calculated using a Fast Fourier Transform (FFT). The data
used for training and testing the NN were the single-sided spectrum. Thus, the
number of NN inputs were also nine and corresponds, for each frequency step, to
the nine signals (3-axis of 3 sensors of the IMU).

5 Experimental Results and Analysis

This section presents the experimental results of the classification system with the
MLP neural network varying the number of neurons in the hidden layer and the
input data between raw and different filtered sensor data.

5.1 C(lassification System Results Using Sensor Raw Data
(Unprocessed)
The classifier system was trained and evaluated using 30,000 samples (10,000

samples of each kind of behavior) obtained from the accelerometer, gyroscope
and magnetometer. The samples were randomly divided into three sets: 70% for



training, 15% for validation and 15% for testing. Table 1 shows the classification
results for the raw sensor data testing set, using different numbers of neurons in
the hidden layer.

Table 1 Proportions of true class accuracies using MLP and unprocessed sensor data

Neurons Sensors used
mlil ;gen Classes Accelerom. | Gyroscope Magnet. Aclf/ia(;’r' Acc. Gyr.
Trotting 82.4% 78.2% 74.2% 84.0% 82.9%
10 Motionless 82.8% 66.0% 43.6% 85.3% 80.7%
Walking 67.6% 21.0% 53.7% 73.6% 71.4%
Average 77.6% 55.1% 57.2% 81.0% 78.3%
Trotting 82.9% 80.4% 72.5% 86.0% 83.1%
20 Motionless 83.0% 71.0% 46.9% 88.3% 86.8%
Walking 69.8% 17.5% 57.7% 75.1% 70.9%
Average 78.6% 56.3% 59.0% 83.1% 80.3%
Trotting 82.0% 77.2% 73.2% 88.4% 85.7%
30 Motionless 84.9% 76.3% 49.3% 90.7 85.8%
Walking 68.6% 22.2% 59.4% 78.0% 74.1%
Average 78.5% 58.6% 60.6% 85.7% 81.9%

These results show that the accelerometer is the sensor with better information
about the horse movement, while the gyroscope and magnetometer improve the
pattern definition. The classifier system has an accuracy of 85.7% with 30 neurons
in the hidden layer.

5.2 C(lassification System Results Using Kalman and FreeIMU
Filters

The classifier system was trained and evaluated using 30,000 samples of pitch, roll
and yaw. These samples were obtained when applying Kalman and FreeIMU fil-
ters to accelerometer, gyroscope and magnetometer raw data in real-time when the
microcontroller collar captured this data. The samples were randomly divided into
three sets: 70% for training, 15% for validation and 15% for testing. Table 2
shows the classification results for the testing set, using different numbers of neu-
rons in the hidden layer and the applied filter.

Table 2 Proportions of true class accuracies using MLP with filtered sensor data

Neurons in Hidden Classes Applied filter
Layer Kalman FreeIMU
Trotting 100% 70.5%
10 Motionless 93% 51.0%
Walking 93.9% 57.0%
Average 95.6% 59.5%
Trotting 99.9% 71.4%
20 Motionless 93.6% 57.9%
Walking 93.7% 66.2%
Average 95.7% 65.2%




From Table 2, the recognition performance of our classification system using
Kalman filter is 95.6% regardless of the number of neurons in the hidden layer.
Therefore, the best performance was obtained with at least 10 neurons in the hid-
den layer.

5.3 Classification System Results Using FFT Filtered Sensor
Data

In order to calculate the FFT of the IMU sensor data, we divided the samples in
sets of 256 and 512 samples. The classification system was trained and evaluated
using the FFT data calculated for both cases. The samples were randomly divided
into the same groups as in 5.2. Table 3 shows the classification results for the
testing set, using different numbers of neurons in the hidden layer.

Table 3 Proportions of true class accuracies using MLP and FFT

Neurons in Hidden Classes Number of samples for FFT
Layer 256 512
Trotting 77.8% 79.9%
20 Motionless 59.7% 60.5%
Walking 47.9% 45.3%
Average 61.8% 61.9%
Trotting 80.5 80.2%
30 Motionless 62.7 61.4%
Walking 51.4 48.9%
Average 64.8% 63.5%

These experimental results show that the best accuracy of the recognition sys-
tem using accelerometer, gyroscope and magnetometer sensors and a MLP neural
network was obtained by processing the sensor data with the Kalman fusion algo-
rithm. Two approaches can be considered: to use a Cortex-M4 family microcon-
troller with a FPU using Kalman filter data as input, sacrificing battery life; or to
use a low-power microcontroller without a FPU to save on battery consumption
(using raw data as input).

6 Conclusion

In this work, we propose a system to recognize animal behaviors based on artifi-
cial-intelligent devices with inertial sensors, based on a NN implementation to
classify the possible horse gaits from the collected sensors information. To evalu-
ate the classification system accuracy, four performance tests with different sensor
data processing have been performed. The sensors fusion algorithms used were
Kalman and FreeIMU. In each test, a MLP NN was created, trained and tested
using a varying number of neurons in the hidden layer. The best average accuracy
value is 95.6% and it is obtained using 10 neurons in the hidden layer and the
Kalman Filter. FreeIMU fusion algorithm and FFT do not bring any improvement



to the accuracy of the recognition system. In the case of raw sensor data, the MLP
NN needs 30 neurons in the hidden layer to attain 85.7% success. Future work will
increase the number of behaviors and animals, and study historic aggrupation of
data over time for the classification. The use of FANN open-source library for NN
implementation on microcontrollers is under evaluation.
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