
 AER Neuro-Inspired interface to Anthropomorphic Robotic Hand

A. Linares-Barranco, R. Paz-Vicente, G. Jimenez.
J.L. Pedreño-Molina, J. Molina-Vilaplana

J. López-Coronado

Dept. of Architecture and Technology of Computers Lab. Of Neurotechnology, Control and
Robotics(NEUROCOR)

University of Seville Technical University of Cartagena.

ETSI Informática. Av. Reina Mercedes s/n. Sevilla SPAIN Campus Muralla del Mar.C/Doctor Flemming s/n.
Cartagena. SPAIN

alinares@atc.us.es jl.coronado@upct.es

Abstract – Address-Event-Representation (AER) is a
communication protocol for transferring asynchronous events
between VLSI chips, originally developed for neuro-inspired
processing systems (for example, image processing). Such
systems may consist of a complicated hierarchical structure
with many chips that transmit data among them in real time,
while performing some processing (for example, convolutions).
The information transmitted is a sequence of spikes coded using
high speed digital buses. These multi-layer and multi-chip AER
systems perform actually not only image processing, but also
audio processing, filtering, learning, locomotion, etc. This paper
present an AER interface for controlling an anthropomorphic
robotic hand with a neuro-inspired system.

Index Terms – AER, Neuro-inspired, robotic hand, FPGA,
Anthropomorphic.

I. INTRODUCTION

Address-Event-Representation (AER) was proposed in 1991
by Sivilotti [1] for transferring the state of an array of analog
time dependent values from one chip to another. It uses
mixed analog and digital principles and exploits spikes for
coding information. Figure 1. explains the principle behind
the AER basics. The emitter chip contains an array of cells
(like, for example, the pixels of a camera or an artificial
retina chip) where each cell implements a continuously
varying time dependent state that change with a slow time
constant (in the order of ms). Each cell or pixel includes a
local oscillator (VCO) that generates digital pulses of
minimum width (a few nano-seconds). The rate of pulses is
proportional to the state of the cell (or pixel intensity for a
retina) assuming spike rate coding is used. Each time a pixel
generates a pulse (which is called “event”), it communicates
with the array periphery and a digital word representing a
code or address for that pixel is placed on the external inter-
chip digital bus (the AER bus). Additional handshaking lines
(Acknowledge and Request) are used for completing the
asynchronous communication. The inter-chip AER bus
operates at the maximum possible speed. In the receiver chip
the pulses are directed to the pixels whose code or address
was on the bus. In this way, cells with the same address in
the emitter and receiver chips are virtually connected with a
stream of pulses. The receiver cell integrates the pulses and
reconstructs the original low frequency continuous-time

waveform. Cells that are more active access the bus more
frequently than those less active.

Figure 1. Rate-Coded AER inter-chip communication scheme.

 Transmitting the cell addresses allows performing extra
operations on the events while they travel from one chip to
another. For example in a retina, the activity of the pixels in
the array represents the input image. By translating the
address of the events during transmission, the image can be
shifted or rotated. This translation of the address can be
achieved by inserting properly coded EEPROMs.
Furthermore, the image transmitted by one chip can be
received by many receiver chips in parallel, by properly
handling the asynchronous communication protocol. The
event-based nature of the AER protocol also allows for very
efficient convolution operations within a receiver chip [2].
 There is a growing community of AER protocol users for
bio-inspired applications in vision, audition and locomotion
systems, as demonstrated by the success in the last years of
the AER group at the Neuromorphic Engineering Workshop
series [3]. The goal of this community is to build large multi-
chip and multi-layer hierarchically structured systems
capable of performing complex massively-parallel
processing in real time. The success of such systems will
strongly depend on the availability of robust and efficient
development, debugging and interfacing AER-tools [6].
 One such tool is a computer interface that allows not only
reading a sequence of events with their timestamps, but also
reproduces a sequence of events stored in the computer’s
memory. Another interesting tool is the interface to actuators
and commercial sensors (position, contact, pressure,
temperature, …) to allow movements and feedback allowing
a more complex and bio-inspired control of a robot.
 Factorization of Length and Tension (FLETE) is a bio-
inspired control mechanism for robots that computes not

only the position of the robot, but also the rigidity of it. In
this case the visual information is insufficient, and another
kind of mechanical sensor is needed.
 With these interfaces you can control a robotic platform
using an AER system to give it orders and obtain other kind
of sensory information (pressure, contact, position, etc) into
AER format. Furthermore, the AER interface allows
debugging the robotic platform if you connect it to the
computer using the PCI-AER interface [5].

In his paper we present a new AER Interface to connect
the AER system to a set of actuators (motors) and sensors.
The interface has been used to connect a computer to the
UPCT anthropomorphic robotic hand in order to enable an
AER system to control a complex and bio-inspired robot.
The hand is driven by an agonist-antagonist opponent
system. In order to measure joint position, velocity, and
direction of rotation, hall-effect position sensors were
integrated at each joint of the fingers. Force sensors are
mounted on the curved surface of the fingertips, and on the
palm.
 In the following sections we describe the anthropomorphic
hand, the AER interface for a robot, the PCI-AER interface
to the computer for debugging purpose, and some results.

II. ANTHROPOMORPHIC HAND

The UPCT anthropomorphic robot design hand is based
on the biomechanics modelling of the human hand, as
well as on designs by manufacturers of robot hands. The
hand has three fingers and an opposing thumb, and four
degrees of freedom for each finger. The fingers are
mounted on a rigid palm. Figure 2 shows one
photography of the UPCT Hand, placed over a industrial
robot for grasping, reaching and handling tasks.

Figure 2. UPCT Robot Hand.

 The design of the multi-jointed finger presents three
joints (metacarpophalangeal (MCP), proximal
interphalangeal (PIP), and distal interphalangeal (DIP)
joints, respectively), where DIP and PIP are coupled. Both
the PIP and DIP joints have flexion and extension, and the
MCP joint consist of two joints that allow flexion-
extension and adduction-abduction motions. In the finger

design, the muscle-like actuators are DC motors. Each
joint of the finger is actuated through 2 polystyrene
tendons, routed through pulleys and driven by DC motors.
The joints are moved by an agonist-antagonist opponent
system. In order to measure joint position, velocity, and
direction of rotation, hall-effect position sensors were
integrated at each joint of the fingers. Tactile sensors
based on FSR (Force Resistive sensing) technology are
mounted on all the joints and on the palm emulating
artificial tactile surfaces. The flexibility of these sensors is
very suitable for the implementation on the curved surface
of the fingertips for precision grasping and manipulations
tasks. One two-axis sensor placed on the palm is
employed to correct the stability of the gross grasping. It
permits the tactile guided for the movement of the wrist of
the robot hand-arm [7]. Each one of the fingers that
conforms the biomechanical hand is driven by a
mechanism constituted by an assembly of pulleys that
control the movements of the different phalanges. Each
finger is comprised of three articulations with possibility
of turn and an additional articulation that permits to
reproduce the movement of abduction, besides serving of
element of union of the digit with the palm of the hand.
The pulleys (on articulations) are driven for a system of
cables to way of human tendons. Each articulation
possesses two tendons, one flexor and another extensor.
The tendon flexor causes the movement of contraction of
the articulations while the tendon extensor causes the
contrary effect. The mechanical system of actuation
arranges of a motor to extend and another to contract the
tendon. For control the turn of each articulation, in a
synchronized way, the wires remains traction in every
instant, and is possible to measure the effort done by the
tendons.

III. FACTORIZATION OF LENGTH AND TENSION

In this way, a FLETE (Factorization of Length and
Tension) [8] is implemented at the hand interface in order
to simultaneously achieve the position and rigidity control
of each robot joint of the fingers. This biologically
inspired neural model is the main tool to establish one
upper hierarchy for control of the artificial opponent
muscles, by measuring the status of the finger
potentiometers and the tensions sensors for the tendons.

Two are the main inputs for the FLETE algorithm: the
spatial target (in radians) and the strength parameters (in
Nw.) for both agonist and antagonist artificial muscle, for
each joint of the robot finger. These last parameters are
supplied by the PCI-AER interface while the spatial target
is generated by means of a VITE (Vector Integration to
EndPoint) model. Due to the target evolution, VITE must
be modulated by a temporal Go(t) signal, in order to solve
the simultaneous differential equations implemented by
the FLETE. The implementation of the VITE-FLETE
algorithm has been carried out using the Matlab S-

function tool and the engine application for Visual C++
and Matlab integration, as Figure 3 shows.

Figure 3. VITE-FLETE and Integration Interfaz.

In order to solve the differential equations for the VITE-
FLETE model by means of the S-function blocks, several
parameter have been defined, such as sigmoid function for
Go(t) in VITE, or force gain, mass moment, extern force,
stretch feedback gain, etc. for FLETE. By other side, the
inputs to VITE-FLETE neural model are: simulation time (t)
and step signal (U) for VITE, and initial position for the
joints (A, from the interface), the neurons activity (n, from a
cerebellar equation) and the target position for both tendons
at each joint, modulated for Go(t) (VG(t) from VITE).

Figure 4. VITE-FLETE scheme

The output for VITE-FLETE model, -see Figure 4-, is
given by a matrix containing the temporal evolution for each
18 variables obtained for the two artificial muscles in one
joint: agonist and antagonist. The main output parameters are
related to the incremental spatial position and the force

exerted for each tendon, while other parameters measure
aspects such as static gamma motoneurons activity, intrafusal
dynamic gamma muscle contraction, Renshaw population
output signal or Dynamic gamma muscle contraction.

Especially important for the satisfactory implementation
of this neural model is the fast interaction between the
robotic platform and the control software due to the AER
protocol advantages.

IV. AER-ROBOT INTERFACE

This section describes in detail an AER interface to
manage actuators and to read analog commercial sensors and
convert it to AER format. These actuators are based on DC
motors.

The AER-Robot interface can control up to 16 up/down
DC motors, each one doted with a two channel encoder. The
DC motors are controlled digitally using Pulse Width
Modulation (PWM). AER-Robot can read up to the
following sensors: (a) 12 potentiometers for the finger
articulations position, (b) 16 contact resistors for the
fingertip and the palm object detection, (c) 16 tension sensor
for the tendons of the fingers, and (d) 16 current sensor for
the power consumption of the motors of the fingers. These
sensors information are fundamental for the control
algorithms in the hand platform.

The AER-Robot interface has been developed to
communicate AER systems with an anthropomorphic robotic
hand using two AER buses: one for incoming commands and
another for outgoing information of the motors and the
sensors. It is based around a Spartan 3 400 FPGA that allows
co-processing. This FPGA receives commands through the
input AER bus and sends motor and sensor information back.
These commands allows to:
• Configure the PWM period that manages all the motors.
• Move a motor attending to PWM intensity and an

estimated position through the encoder’s information.
• Ask for a motor state.
• Ask for a sensor state.

Figure 5. shows the block diagram of the circuit of the
FPGA, described into VHDL. This circuit is composed by
several processes. CMDin receives commands and sends
them to the corresponding process. There are 16 independent
processes (Motor i) to control de PWM signal to be sent to
each motor. There are four processes to attend the 64
possible sensors of the hand (16 potentiometers, 16 contact,
16 hall effect current and 16 tension tendon sensors). These
last four processes attend to four Cygnal microcontrollers.
Each of them is continuously converting an analog signal to
digital from 16 possible analog inputs.

FLETE

Matlab

Visual C++

VITE

Vg(t)

S-function PCI-AER
Interface

Robotic
Platform

engine

θ(t)
F(t)

Force

θ Target

Figure 5. Circuit block diagram of the FPGA.

These processes work in parallel to allow real-time control
of the hand; therefore the interface can receive new
commands while it is executing another one. There is one
last process for the AER output bus traffic control (DATout).

For each input command received by the AERin process,
the order is sent to the corresponding motor process or sensor
process, and then this AERin process is free to attend a new
command.

Each motor process is in charge of one motor. If this
process receives an order, its motor will go up or down, for a
number of encoder pulses and with a programmed intensity.

There are four sensor processes. Each of them is asked for
a value of one the sensors. Each process keep updated a 16-
address internal RAM memory with the digital value of their
sensors, and the digital value is sent to the AERout process
immediately.

Figure 6. AER-Robot block diagram interface.

To keep this RAM-table updated, each sensor process
communicates with a microcontroller, outside the FPGA,
that scan the 16 analog output of the sensors, convert it into
8-bit and send it to the FPGA. The RAM-table is updated
every 184µs. Thus, when a command is asking for the value
of one sensor, the sensor process doesn’t ask it to the
microcontroller, but it just has to read it from the internal
RAM memory of the FPGA (1 clock cycle).

The AER-Hand interface count with 4 microcontrollers.
Each of them is in charge of 16 sensors of 4 different sets:
articles potentiometers, fingertip and palm contacts, tendon
tension and power consumption of the motors.

Figure 6. shows the block diagram of the interface. The
real-time is warranted by the independent process
architecture.

Figure 7. shows a photograph of the prototype of the
AER-Robot Interface PCB. The digital part of the PCB is in
the middle. The board has 16 power steps for the 16 motors,
16 10K x amplifiers for the tendon sensors, 16 hall effect
sensors for the power consumption measurement of the
motors, 4 Cygnal 80C51F320 microcontrollers for the analog
to digital conversion (200Ksamples/second and 10-bits) of
the sensor measurements, and all the connectors to the Hand.

This AER input bus and AER output bus is connected to a
PC using the PCI-AER interface, explained in the next
section.

Figure 7. AER-Robot board photograph.

IV. PCI-AER INTERFACE

 Before the development of this interface the only available
PCI-AER interface board was developed by Dante at ISS-
Rome [3]. This board is very interesting as it embeds all the
requirements mentioned above: AER generation, remapping
and monitoring. Anyhow its performance is limited to
1Mevent/s approximately. In realistic experiments software
overheads reduce this value even further. In many cases

these values are acceptable but, currently many address event
chips can produce (or accept) much higher spike rates.
 As the computer interfacing elements are mainly a
monitoring and testing feature in many address event
systems, the instruments used for these proposes should not
delay the neuromorphic chips in the system. Thus, speed
requirements are at least 10 times higher than those of the
original PCI-AER board. Several alternatives are possible to
meet these goals: (a) extended PCI buses, (b) bus mastering
and (c) hardware based Frame to AER and AER to Frame
conversion.
 When the development of the CAVIAR PCI-AER board
was started, using 64bit/66MHz PCI seemed an interesting
alternative as computers with this type of buses were popular
in the server market. When we had to make implementation
decisions the situation had altered significantly. Machines
with extended PCI buses had almost disappearing and, on the
other hand, serial LVDS based PCI express was emerging
clearly as the future standard but almost no commercial
implementations were in the market. Therefore, the most
feasible solution was to stay with the common PCI
implementation (32 bit bus at 33MHz).
 The previously available PCI-AER board uses polled I/O
to transfer data to and from the board. This is possibly the
main limiting factor on its performance. To increase PCI bus
mastering is the only alternative. The hardware and driver
architecture of a bus mastering capable board is significantly
different, and more complex, than a polling or interrupt
based implementation.
 Hardware based frame to AER conversion doesn’t
increase PCI throughput but, instead, it reduces PCI traffic.
First some important facts have to be explained. It is well
known that some AER chips, especially grey level imagers
where pulse density is proportional to the received light
intensity, require a very large bandwidth. This is also the
case of many other chips when they are not correctly tuned.
For example let’s consider a Grey level 128*128 imager with
256 grey levels. In a digital frame based uncompressed 25fps
format, it would require a bandwidth of 128*128*25=
0.39MBytes/s. The maximum requirements for an
“equivalent” system that would output AER supposing the
number of events in a frame period is equal to the gray level
and considering the worst case where all pixels spike with
maximum rate is:

2bytes/event*256events/pixel*number of pixels/ frame
period= 200MBytes/s

 The meaning of this figure should be carefully considered.
A well designed AER system, which produces events only
when meaningful information is available, can be very
efficient but, an AER monitoring system should be prepared
to support the bandwidth levels that can be found in some
real systems. These include systems that have not been
designed carefully or that are under adjustment. Currently the
available spike rates, even in these cases, are far from the

value shown above but, some current AER chips may exceed
the 40Mevents/s in extreme conditions.
 The theoretical maximum PCI32/33 bandwidth is around
133Mbytes/s. This would allow for approximately
33Mevent/s considering 2 bytes per address and two bytes
for timing information. Realistic figures in practice are closer
to 15Mevents/s. Thus, in those cases where the required
throughput is higher a possible solution is to transmit the
received information by hardware based conversion to/from
a frame based representation. Although this solution is
adequate in many cases, there are circumstances where the
developers want to know precisely the timing of each event,
thus both alternatives should be preserved.
 Implementing AER to Frame conversion is a relatively
simple task as it basically requires counting the events over
the frame period. Producing AER from a frame
representation is not trivial and several conversion methods
have been proposed [4].
 The theoretical event distribution would be that where the
number of events for a specific pixel is equal to its associated
grey level and those events are equally distributed in time.
The normalized mean distance from the theoretical pixel
position in time to the resulting pixel timing with the
different methods is an important comparison criterion. In [4]
it is shown that, in most circumstances, the behavior of the
methods is similar and, thus, hardware implementation
complexity is an important selection criterion. From the
hardware implementation viewpoint random, exhaustive and
uniform methods are especially attractive.
 As a result of these considerations the design and
implementation of the CAVIAR PCI-AER board was
developed including the bus mastering. The hardware based
frame to AER conversion has been developed for another
board under the project: the CAVIAR USB-AER board [6].
 The physical layer has been implemented into VHDL for a
FPGA. It was established that most of the functionality,
demanded by the users, could be supported by the larger
devices in the less expensive SPARTAN-II family. Figure 8.
shows the CAVIAR PCI-AER board.

Figure 8. CAVIAR PCI-AER board

 A Windows driver and an API that implements bus
mastering and a Matlab interface are currently available. The
Linux version with bus mastering is still under development.

 The final goal is to transmit an AER sequence to an AER
based system (for example a convolution chip) to perform
video processing. An adequate sequence of events can be
generated by software for testing an AER based system. This
sequence of events needs to be sent to the AER based
system. For this purpose it is necessary an interface between
the computer and the AER bus. Figure 10 shows the VHDL
architecture of the present hardware interface. This is a PCI
interface developed under the European project CAVIAR.
The interface, called CAVIAR PIC-AER, has two operation
modes that can work in parallel:

A) From PCI to AER.

The AER-stream is stored in the computer memory and
then it is sent to the AER system through the PCI bus and the
OFIFO. This stream is saved in memory using 32 bits for
each address event. The sixteen less significant bits
represents the address of the pixel that is emitting the event.
The sixteen more significant bits represent a time difference
from the previous event in clock cycles. The clock cycle is
30 ns, but can be scaled up 16 times. Special words can be
used in the OFIFO to make the state machine to wait the
maximum time, coded with 16 bits, and then it reads a new
word of the OFIFO without any event transmission. The
OUT-AER state machine keeps continuously reading 32-bit
words from OFIFO if it is enabled. For each word the state
machine will wait for the configured number of clock cycles
before transmitting the address through the AER output bus.
If the acknowledge is delayed, the timer of the OUT-AER
state machine will discount this time to the wait state of the
next event. If the result of the discount is negative no wait
will be done for the next event and this value will be used as
initial wait for the following event. With this treatment the
delay between events is not relative to the previous one, and
a delay in the ACK reception will not cause a distortion in
the time distribution of all the events along the time period.

B) From AER to PCI.

 The AER sequence arrives to the CAVIAR PCI-AER
interface through the input AER port. The AER-IN state
machine stores the incoming event (16 bits LSbits) into the
IFIFO with temporal information. This temporal information
(16 bits MSbits) is the number of clock cycles since the last
event.

 The connection to the PCI bus is done by a VHDL bridge
[12] that attends to the Plug & Play protocol of the PCI bus,
decodes the access to the base address by the operating
system, allows the bus mastering and the interruptions.

V. RESULTS

 Both the hand and the AER interfaces have been
connected to debug the FLETE algorithm developed under
matlab.
 The Antrophomorphic robotic hand was developed by
NEUROCOR group from Cartagena (Spain). Under the
Spanish grant project SAMANTA the hand has been
connected to an AER system. One of the objectives of the
project was to control the hand using AER vision systems
together with other sensor information. Therefore the hand
needs to be controlled under the AER protocol. In that
project the visual information comes from an AER retina.
Thanks to the PCI-AER interface the visual information is
sent to a personal computer. A boundary-contour-system
feature-control-system (BCS-FCS) algorithm for image
processing was implemented under Matlab. With the visual
processing results and the hand sensors information, the
FLETE algorithm gives orders to the hand, for example to
catch an object, by computing not only the visual
information, but also the rigidity and fatigue of the muscles.
 The results shown in table 1 are the ranges of the
parameters that can be programmed in the AER-Robot board.
These results have been measured under the following
scenario: the AER-Robot interface has been connected to a
PC through the PCI-AER interface. Therefore, commands
where sent from matlab to the PCI-AER interface into AER
format, and then they are sent to the AER-Robot interface.

Freq
min

Freq
max

High
res.

PWM 763 Hz 25 MHz 8-bits
Dig.
Res.

Range
(volts)

Kind Sensor
range

Potentiometers 8-bit 0-3,3v R
Contact 8-bit 0-3,3v R
Tension 8-bit 2-2,5v R 0,1mv/V
Hall-Effect
current

8-bit 2-3,3v L

PCI-AER Max
Th.

Pulse
width

6 Mev/s 120 ns
AER-Robot 3 Mev/s 240 ns

Table 1: Measured ranges for DC motor and Sensors.

Finally, several spatial and force consigns have been applied
to the VITE-FLETE neural model from the interface, in
order to measure the temporal evolution from the current
value toward the indicated targets, which is generated in real
time for FLETE. One result is shown in Figure 9. for only
two joints (distal and medium) of one robot finger, where the
targets were θd = 0,12 rad., θm = 0,17 rad., Fd=3,2 Nw. and
Fd=5,3 Nw.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

an
gl

e(
ra

d)

Ángle for joints 1 and 2 (rad)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

2

4

6

Jo
in

t
1

F
or

ce
(N

w
) Force of agonist and antagonist muscle for Joint 1 (Nw)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

2

4

Jo
in

t
2

F
or

ce
(N

w
)

tiempo (sec)

 Force of agonist and antagonist muscle for Joint 2 (Nw)

Figure 9. Force and espatial position ouputs form FLETE

V. CONCLUSIONS AND FUTURE WORK

 An AER to anthropomorphic robotic hand interface has
been presented. This AER-Robot interface can be connected
to a computer through a PCI-AER interface. The AER-Robot
interface is based around a Spartan 3 FPGA that allows it to
be configurable and easily modified for other robots based on

DC motors, potentiometers sensors and tension sensors.
 The AER neuro-inspired communication channel is
connected with the robot. This implies a neuro-inspired
control of the robot. This control is based on visual
processing using AER retinas and convolution chips, and
neuro-inspired FLETE algorithm in software.
 The present state of the interface is able to receive and
send 16-bit AER data. Coded under these 16-bit is placed the
command or the sensor information. Therefore one event is
enough to send a command to a motor or ask for a sensor
information, then one or two events are sent back with the
information required. The future work is focused on the
spike based information. In such way, the motor PWM
frequency will be sent translating the frequency of one
address in the AER bus. Each address corresponds with one
motor, and with one sensor in the other way. These VHDL
improvements are under development. A more compact (6
motors and 16 analog sensors) and simple PCB is under
design. This new board will allow connecting several AER-
Robot interfaces in chain using the same AER bus.
Therefore, in that case where more than 6 motors are needed
to be controlled, a second board with a different address
space can be connected to the first one and controlled from
the PC or the AER system in the same way.

ACKNOWLEDGMENT

This work was in part supported by EU grant IST-2001-

Figure 10. Hardware Interface Architecture.

34124 (CAVIAR), Spanish Science Fundation grants: TIC-
2003-08164-C03-02 (SAMANTA) & TIC2000-0406-P4-
05(VICTOR) and Plan de Ciencia y Tecnología Región
Murcia 2I04SU043 (ROBOTEP)

REFERENCES
[1] M. Sivilotti, “Wiring Considerations in analog VLSI Systems with

Application to Field-Programmable Networks”, Ph.D. Thesis,
California Institute of Technology, Pasadena CA, 1991.

[2] Teresa Serrano-Gotarredona, Andreas G. Andreou, Bernabé Linares-
Barranco. “AER Image Filtering Architecture for Vision-Processing
Systems”. IEEE Transactions on Circuits and Systems. Fundamental
Theory and Applications, Vol. 46, N0. 9, September 1999.

[3] A. Cohen, R. Douglas, C. Koch, T. Sejnowski, S. Shamma, T.
Horiuchi, and G. Indiveri, “Report to the National Science Foundation:
Workshop on Neuromorphic Engineering”, Telluride, Colorado, USA,
June-July 2001. [www.ini.unizh.ch/telluride]

[4] A. Linares-Barranco, G. Jimenez-Moreno, A. Civit-Ballcels, and B.
Linares-Barranco. “On Algorithmic Rate-Coded AER
Generation”. Accepted for publication on IEEE Transaction on Neural
Networks.

[5] R. Paz. “Análisis del bus PCI. Desarrollo de puentes basados en FPGA
para placas PCI”. Trabajo de investigación para obtención de
suficiencia investigadora. Sevilla, Junio 2003.

[6] R. Paz, F. Gomez-Rodriguez, M. A. Rodriguez, A. Linares-Barranco,
G. Jimenez, A. Civit. Test Infrastructure for Address-Event-
Representation Communications. International Work-Conference on
Artificial Neural Networks. Vilanova I la Gertru. SPAIN. June-2005.

[7] J. López-Coronado, J.L. Pedreño-Molina, A. Guerrero-González, P.
Gorce. A neural model for visual-tactile-motor integration in robotic
reaching and grasping tasks. Robotica, Volume 20, Issue 01, pp. 23-
21. Cambridge Press. (January 2002).

[8] D. Bullock, J. Contreras-Vidal, S. Grossberg. “Equilibria and
dynamics of a neural network model for opponent muscle control”. In
G. Bekey, K. Goldberg (eds.): Neural Networks in Robotics Kluwer
Academic.

