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Abstract. In this paper we study a new way to model noisy input flows in
the chemostat model, based on the Ornstein-Uhlenbeck process. We introduce
a parameter β as drift in the Langevin equation, that allows to bridge a gap
between a pure Wiener process, which is a common way to model random
disturbances, and no noise at all. The value of the parameter β is related to
the amplitude of the deviations observed on the realizations. We show that
this modeling approach is well suited to represent noise on an input variable
that has to take non-negative values for almost any time.

1 Introduction. Chemostat refers to a laboratory device used for growing mi-3

croorganisms in a cultured environment and has been regarded as an idealization4

of nature to study microbial ecosystems at steady state, which is a really impor-5

tant and interesting problem since they can be used to study genetically altered6

microorganisms, waste water treatment (see e.g. [16, 25]) and play an important7

role in theoretical ecology (see e.g. [3, 15, 23, 24, 26]). The simplest chemostat8

device consists of three interconnected tanks called feed bottle, culture vessel and9

collection vessel. The nutrient is pumped from the first tank to the culture vessel,10

where the interactions between the species and the nutrients take place, and there11

is also another flow being pumped from the culture vessel to the third one such12

that the volume of the culture vessel remains constant. Derivation and analysis of13

chemostat models are well documented in [19, 21] and references therein.14

Some standard assumptions for simple chemostat models are usually imposed,15

for instance, it is common to suppose that the availability of the nutrient and its16

supply rate are fixed. However, they are very strong restrictions since the real world17
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is non-autonomous and stochastic. This is one of the reasons which encourage us to1

go further away from deterministic systems and study stochastic chemostat models.2

Let us consider the classical chemostat model3

ds

dt
= (sin − s)

Q

V
− µ(s)x, (1.1)

dx

dt
= −

Q

V
x+ µ(s)x, (1.2)

where s(t) and x(t) denote concentrations of the nutrient and the microbial biomass,4

respectively; sin denotes the input concentration, Q is the input flow, V is the5

volume of liquid media inside the culture vessel and the ratio Q/V , which is also6

denoted by D, is called dilution rate. We notice that all parameters are supposed to7

be positive and a function Holling type-II, µ(s) = ms/(a+ s), is used as functional8

response of the microorganisms describing how the nutrient is consumed by the9

species, where a is the half-saturation constant and m denotes the maximal specific10

growth rate of microorganisms. Sometimes we will refer to this function as the11

consumption function or growth function as well.12

There exist many different ways of modeling stochasticity and/or randomness in13

some deterministic model, see e.g. [4, 5, 6, 18, 22, 28, 29, 30, 32, 33]. Considerations14

of stochastic processes in the chemostat model have already been tackled in the15

literature, but mainly on the growth function (see, for instance, [7]). This appears16

particularly relevant when the number of individual bacteria could be small, with17

a risk of extinction of the biomass population in finite time. Nevertheless, sudden18

extinctions in continuous cultures that are well supervised about a nominal regime19

are quite rare in practice. On another hand, fluctuations on the input flow that20

brings permanently resources to the bacterial population in continuous cultures are21

much likely to be observed. In the present work, we focus on the way to model22

these random fluctuations, taking into consideration that the effective flow rate has23

to stay non-negative. From the biological point of view, the fact of introducing a24

noisy term in the input flow of our chemostat model is a really interesting problem25

found in the laboratory since, for instance, it reflects the presence of particles of dirt26

inside the pumps or temporary clogs at the input or output of the chemostat. Then,27

it is well known that continuous flow is often subjected to random fluctuations with28

time.29

In this paper we shall follow two different approaches to perturb the input flow30

in the chemostat model. As the volume V is constant, it is equivalent to have31

disturbances on the dilution rate D = Q/V instead of considering them on the input32

flow. On the one hand, we will consider a perturbation by making use of the well-33

known standard Wiener process such that we replace D by the stochastic term D+34

αω̇(t) in the deterministic system (1.1)-(1.2), where ω denotes the standard Wiener35

process and α > 0 represents the intensity of the noise. Thus, the corresponding36

stochastic system is given by37

ds =

[
(sin − s)D −

msx

a+ s

]
dt+ α(sin − s)dω(t),

dx =

[
−Dx+

msx

a+ s

]
dt− αxdω(t).

As will be discussed in Section 3, this common approach will lead into some38

drawbacks, for instance, the persistence of the microorganisms can never be ensured39
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and some state variables can take negative values. Therefore, this stochastic process1

does not seem to be the best way to represent disturbances on the input flow in2

the chemostat model, due to the fact that it provides unrealistic situations from3

the biological point of view since it would mean that the pumps are revering flow,4

which is not reasonable at all.5

On the other hand, we will consider a suitable Ornstein-Uhlenbeck (O-U) process6

to perturb the dilution rate. Particularly, we are interested in replace D by the7

random term D + αz∗β,ν(θtω), where z∗β,ν(θtω) denotes some suitable O-U process8

which will be carefully introduced later and α > 0 represents again the intensity of9

noise. In such a way, the resulting random model is given by the following system10

of random differential equations11

ds

dt
= (sin − s)

[
D + αz∗β,ν(θtω)

]
− µ(s)x, (1.3)

dx

dt
= −

[
D + αz∗β,ν(θtω)

]
x+ µ(s)x. (1.4)

Concerning the O-U process, some essential properties will be provided which12

will allow us to set up a new framework and, moreover, to make calculations in13

the next section. To sum up some of the main ingredients to be used, for every14

fixed event ω, it will be possible to choose βω ∈ R such that the corresponding15

realizations of the perturbed input flow, D+αz∗βω,ν(θtω), will remain for every t ∈ R16

inside some strictly positive band which should be previously fixed, for instance, by17

practitioners. In such a way, for every fixed event ω, the resulting random chemostat18

model will be given by19

ds

dt
= (sin − s)

[
D + αz∗βω,ν(θtω)

]
− µ(s)x, (1.5)

dx

dt
= −

[
D + αz∗βω,ν(θtω)

]
x+ µ(s)x. (1.6)

As a consequence, since βω ∈ R depends on the event ω previously fixed, the20

solutions of system (1.5)-(1.6) may not generate a random dynamical system. Nev-21

ertheless, this does not represent any inconvenient for the analysis of the long time22

behavior of the random differential system (1.5)-(1.6), since it can be investigated23

for every fixed event ω. In fact, we will be able to obtain some results on forwards24

convergence (in time) of solutions, instead of the pullback convergence obtained25

within the framework of random dynamical systems.26

This new approach, which arises from the nature of the particular noise (the27

suitable O-U process), leads into another unusual technique which seems to be really28

interesting since, for instance, it allows us to guarantee the existence of compact29

and attracting sets (forwards in time) which are strictly inside the positive cone,30

whence we will ensure the persistence of the species in the sense that there exists31

a number η > 0 such that for any non null initial biomass x(0) each realization32

satisfies 1
33

lim inf
t→+∞

x(t) ≥ η > 0. (1.7)

Needless to say that this is the principal goal pursued by biologists for modeling34

bounded disturbances in a biological framework, differently to other several previ-35

ous works as [22] where the authors consider disturbances in the chemostat model36

1We will refer to this sense throughout the whole paper when using the term “persistence”.
In case of referring to another sense, we will specify the new definition.
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by means of the standard Wiener process and prove some results concerning the1

persistence of the biomass in the sense lim inft→+∞ x(t) > 0, which is weaker than2

(1.7).3

We also achieve some improvements comparing our results throughout this paper4

with the ones by Xu et al in [31] since, even though they consider stochastic noise on5

the dilution rate in the chemostat model, they need a condition on the parameter of6

the amplitude of the noise to ensure the persistence (see, for instance, Theorem 1.27

and Section 4 in [31] where the authors ensure the necessity of a smallness condition8

on the amount of noise α > 0) whereas, in our case, modeling the disturbances with9

the Ornstein-Uhlenbeck process, there is no discussion needed on the amplitude10

of the noise to ensure the persistence (which is, in addition, in the stronger sense11

(1.7)). Moreover, the authors in [31] prove the results in probability while we will12

prove all the results almost surely, i.e., for every realization in a set of events of full13

measure.14

The previous reasons constitute a few representative examples which support that15

this way of perturbing the dilution rate by using the Ornstein-Uhlenbeck process16

fits much better the real situations we wish to model. Apart from the advantages17

described above, we will also obtain some improvements with respect to the results18

obtained when analyzing the deterministic chemostat model (1.1)-(1.2), as we will19

explain in more detail in Section 2. To be more precise, in the deterministic setting20

the washout equilibrium (sin, 0) is attractive if D = µ(sin) (see [19]) whereas, in our21

case by using the O-U process, it is possible to prove that there exists an attracting22

(forwards in time) set for the solutions of our system which has several points (in23

fact, all of them except the washout) inside the positive cone.24

The paper is organized as follows. In Sections 2 and 3 we will analyze the25

chemostat models perturbed by the Ornstein-Uhlenbeck process and the white noise,26

respectively. We will prove the existence and uniqueness of a global solution and27

we will also state some results regarding the existence of a compact absorbing set28

as well as an attracting one. Finally, in Section 4 some numerical simulations which29

will support the results previously proved will be also presented. In addition, we30

present briefly some basic concepts and results concerning the theory of random31

dynamical systems (RDSs) in Appendix.32

2 The chemostat model with random input flow. In this section, we are33

interested in investigating system (1.3)-(1.4), where a random perturbation on the34

dilution rate has been introduced by means of a suitable O-U process, as explained35

in the introductory section. To this end, we will present a new framework which will36

be a bit different from the ones used in previous papers by Caraballo and several37

coauthors (see e.g. [7, 8, 9, 11]), where the theory of random dynamical systems is38

used.39

2.1 The Ornstein-Uhlenbeck process. Let W be a two sided Wiener process.
Kolmogorov’s theorem ensures that W has a continuous version, that we will denote
by ω, whose canonical interpretation is as follows: let Ω be defined by

Ω = {ω ∈ C(R,R) : ω(0) = 0},

F the Borel σ−algebra on Ω generated by the compact open topology (see [2] for
details) and P the corresponding Wiener measure on F . We consider the Wiener
shift flow given by

θtω(·) = ω(·+ t)− ω(t), t ∈ R.
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Then, (Ω,F ,P, {θt}t∈R) is a metric dynamical system (see Appendix for details).1

Now, let us introduce the following Ornstein-Uhlenbeck (O-U) process defined2

on (Ω,F ,P, {θt}t∈R) as the random variable given by3

z∗β,ν(θtω) = −βν

0∫

−∞

eβsθtω(s)ds, t ∈ R, ω ∈ Ω, β, ν > 0, (2.1)

which solves the following Langevin equation (see [2, 12, 13])4

dz + βzdt = νdω(t), t ∈ R. (2.2)

The O-U process given by (2.1) is a stationary mean-reverting Gaussian stochastic5

process where β > 0 is a mean reversion constant that represents the strength with6

which the process is attracted by the mean or, in other words, how strongly our7

system reacts under some perturbation, and ν > 0 is a volatility constant which8

represents the variation or the size of the noise independently of the amount of the9

noise α > 0. In fact, the O-U process can describe the position of some particle10

by taking into account the friction, which is the main difference with the standard11

Wiener process and makes our model to be a better approach to the real ones,12

specially when modeling processes in microbiology as in our case. In addition, the13

O-U process can be understood as a kind of generalization of the standard Wiener14

process, which would correspond to take β = 0 and ν = 1 in (2.1).15

By taking into account the definition of both parameters β and ν involved in the16

Langevin equation (2.2), we highlight the following relevant observations concerning17

the effect caused by each of them on the evolution of the process.18

2.1.1 Fixed β > 0. Then, the volatility of the process is larger if we consider a19

larger ν. However, the evolution of the process is smoother when we take a smaller20

value of ν. This is reasonable since ν decides the amount of noise introduced to dz,21

which measures the variation of the process, hence the process will be subjected to22

suffer many more changes when choosing a larger value of ν. We can observe this23

behavior in Figure 1 where we simulate two realizations of the perturbed dilution24

rate D+αz∗β,ν(θtω) with D = 2, α = 0.8, β = 2 and we consider ν = 0.1 (blue) and25

ν = 0.5 (orange).26

Figure 1. Realizations of the perturbed dilution rate with D = 2,
α = 0.8 and β = 2
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2.1.2 Fixed ν > 0. Then, the process tends to go further away from the mean1

value if we consider a smaller value of β. However, the attraction of the mean2

increases when taking a larger β, which is quite logical since β has a huge influence3

on the drift of the Langevin equation (2.2). For instance, we can observe this4

behavior in Figure 2, where we simulate two realizations of the perturbed dilution5

rate D + αz∗β,ν(θtω) with D = 2, α = 0.8, ν = 0.5 and we take β = 2 (blue) and6

β = 10 (orange).7

Figure 2. Realizations of the perturbed dilution rate with D = 2,
α = 0.8 and ν = 0.5

Now, we establish the following result involving important ergodic properties8

held by the O-U process which will be used at several places in the sequel.9

Proposition 2.1. There exists a θt-invariant set Ω̃ ∈ F of Ω of full P−measure10

such that for ω ∈ Ω̃ and β, ν > 0, we have11

(i) the random variable |z∗β,ν(ω)| is tempered (see Definition 4.3).12

(ii) the mapping13

(t, ω) → z∗β,ν(θtω) = −βν

0∫

−∞

eβsω(t+ s)ds+ ω(t)

is a stationary solution of (2.2) with continuous trajectories;14

15

(iii) for any ω ∈ Ω̃ one has:16

lim
t→±∞

|z∗β,ν(θtω)|

t
= 0;

lim
t→±∞

1

t

∫ t

0

z∗β,ν(θsω)ds = 0;

lim
t→±∞

1

t

∫ t

0

|z∗β,ν(θsω)|ds = E[z∗β,ν ] < ∞;

(iv) finally, for any ω ∈ Ω̃,

lim
β→∞

z∗β,ν(θtω) = 0, for all t ∈ R.

Remark 2.1. We note that the proof of (iv) can be found in [1] (see Lemma 4.1)17

and we refer the readers to [2, 12] for the proof of (i)-(iii).18
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Then, if we restrict the metric dynamical system to Ω̃, we obtain a new metric1

dynamical system, see [10]. For simplicity, we will denote this new metric dynamical2

system by the old symbols, namely (Ω,F ,P, {θt}t∈R).3

Our aim in this section is to analyze the long-time behavior of system (1.3)-4

(1.4). To this end, let us first fix a strictly positive interval, namely (b, b̄) ⊂ R,5

where b̄ > b > 0. Thanks to the last item in Proposition 2.1, for each ω ∈ Ω, it is6

possible to choose β ∈ R large enough such that the corresponding realization of7

the perturbed input flow, D+αz∗β,ν(θtω), remains inside the interval (b, b̄) for every8

t ∈ R. Nevertheless, it is not possible to ensure, from a theoretical point of view,9

that there exists some β ∈ R such that almost all realizations of the perturbed input10

flow remains in (b, b̄). Because of this reason, we will analyze our system (1.3)-(1.4)11

for every fixed ω ∈ Ω. As stated above, we know that it is possible to find βω ∈ R12

such that D + αz∗βω
(θtω) ∈ (b, b̄) for every t ∈ R, then we need to analyze the13

following random system14

ds

dt
= (sin − s)

[
D + αz∗βω,ν(θtω)

]
− µ(s)x,

dx

dt
= −

[
D + αz∗βω,ν(θtω)

]
x+ µ(s)x.

We would like to remark that the choice of β depends on ω ∈ Ω, this is the reason to15

write βω in the previous system. Then, βω acts in practice as a control parameter.16

However, once an event ω ∈ Ω is fixed, we have that βω is also a fixed real number,17

thus we will rewrite βω = β and we will focus on analyzing the system (1.3)-(1.4) for18

every fixed ω ∈ Ω. The interesting fact is that the attracting sets for the solutions19

will not depend on ω even though β depends on ω, so we will obtain a non random20

set where all solutions for all realizations will approach to.21

In the rest of the section, we will prove the existence and uniqueness of a global22

solution of system (1.3)-(1.4) as well as the existence of a strictly positive forward23

attracting set for its solutions, whence we will ensure that the microorganism con-24

centration will converge asymptotically to a strictly positive interval or, in other25

words, we will be able to guarantee the persistence of the species.26

Before starting with the analysis previously motivated, let us recall the classical
Monod expression

µ(s) =
ms

a+ s
, for all s ≥ 0,

denoting the consumption for the specific growth rate function of the species. Then,27

we define the following constants28

s := µ−1(b) and s̄ := µ−1(b̄) (2.3)

which will be essential henceforth. In Figure 3 where we plot the mapping s 7→ µ(s)29

and overlap a realization of the perturbed input flow as well without taking into30

account the dependency of time.31
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D

b̄

b

s s̄

m

s

Figure 3. Realizations of the perturbed dilution rate, s and s̄

2.2 The random chemostat model. We are interested in analyzing the fol-1

lowing random chemostat model2

ds

dt
= −

[
D + αz∗β,ν(θtω)

]
s− µ(s)x + sin

[
D + αz∗β,ν(θtω)

]
, (2.4)

dx

dt
= −

[
D + αz∗β,ν(θtω)

]
x+ µ(s)x, (2.5)

where µ(s) = ms/(a+ s) denotes the Holling type-II consumption function as the3

functional response of the microorganisms. Henceforth, ω ∈ Ω is fixed and β ∈ R4

is also a parameter which has been fixed such that D + αz∗β,ν(θtω) ∈ (b, b̄) for all5

t ∈ R.6

In this section, X = {(x, y) ∈ R
2 : x ≥ 0, y ≥ 0} denotes the positive cone.7

Theorem 2.1. For any initial pair v0 := (s0, x0) ∈ X , system (2.4)-(2.5) possesses
a unique global solution

v(·; 0, ω, v0) := (s(·; 0, ω, v0), x(·; 0, ω, v0)) ∈ C1([0,+∞),X )

with v(0; 0, ω, v0) = v0, where s0 := s(0; 0, ω, v0) and x0 := x(0; 0, ω, v0).8

Proof. We set v(·; 0, ω, v0) := (s(·; 0, ω, v0), x(·; 0, ω, v0)) such that system (2.4)-(2.5)
can be rewritten as

dv

dt
= L(θtω) · v + F (v, θtω),

where9

L(θtω) =

(
−(D + αz∗β,ν(θtω)) −m

0 −(D + αz∗β,ν(θtω)) +m

)

and F : X × [0,+∞) −→ R
2 is given by10

F (ξ, θtω) =




ma

a+ ξ1
ξ2 + sinD + αsinz

∗
β,ν(θtω)

−ma

a+ ξ1
ξ2


 ,

where ξ = (ξ1, ξ2) ∈ X .11

Since z∗(θtω) is continuous, L generates an evolution system on R
2. Moreover,12

we notice that F (·, θtω) ∈ C1(X × [0,+∞);R2) which implies that it is locally13
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Lipschitz with respect to (ξ1, ξ2) ∈ X . Therefore, system (2.4)-(2.5) possesses a1

unique local solution. Now, we prove that the unique local solution of system (2.4)-2

(2.5) is defined for any forward time and is, in fact, a unique global one. To this3

end, we define the new state variable q(t) := s(t) + x(t)− sin. Then, q satisfies the4

following differential equation5

dq

dt
= −

[
D + αz∗β,ν(θtω)

]
q, (2.6)

whose solution is given by6

q(t; 0, ω, q(0)) = q(0)e−Dt−α
∫

t

0
z∗

β,ν(θsω)ds. (2.7)

It is straightforward to check that q does not blow up at any finite time, thanks
to the positiveness of the dilution rate and the ergodic properties of the O-U process
(see Proposition 2.1, (iii)), moreover q is bounded. In addition, after solving (2.5)
we have the following upper bound for the x-equation

x(t; 0, ω, x(0)) ≤ x(0)e−(D−m)t−α
∫

t

0
z∗

β,ν(θsω)ds,

since µ(s) ≤ m for any s ≥ 0.7

In conclusion, x is also bounded by an expression which does not blow up at8

any finite time. Therefore, s does not blow up either and we can conclude that our9

chemostat model (2.4)-(2.5) possesses a unique global solution.10

Moreover, since x ≡ 0 solves (2.5) and every realization of our noise remains in
some strictly positive interval, we conclude that

ds

dt

∣∣∣∣
s=0

=
[
D + αz∗β,ν(θtω)

]
sin > 0.

Thus, we can ensure the unique solution of system (2.4)-(2.5) to be in the positive11

cone X for every initial value v0 ∈ X .12

Now, we are interested in proving the existence of an attracting set. From now13

on, F ⊂ X denotes a bounded set in the positive cone.14

Theorem 2.2. For any ε > 0, there exists a deterministic compact absorbing set15

Bε ⊂ X for the solution of our system (2.4)-(2.5), i.e., there exists TF (ω, ε) > 0 such16

that for every given initial pair v0 ∈ F , the solution corresponding to v0 remains17

inside Bε for all t ≥ TF (ω, ε).18

Proof. Consider again q(t) = s(t) + x(t)− sin. Then, thanks to (2.7), we obtain19

lim
t→+∞

q(t; 0, ω, q(0)) = 0. (2.8)

Thus, given v0 ∈ F and any ε > 0, there exists TF (ω, ε) > 0 such that

−ε ≤ q(t; 0, ω, q(0)) ≤ ε

for every t ≥ TF (ω, ε).20

Then,21

Bε := {(s, x) ∈ X : sin − ε ≤ s+ x ≤ sin + ε}. (2.9)

is a compact absorbing set in X .22

Therefore, thanks to Theorem 2.2, we have that

B0 := {(s, x) ∈ X : s+ x = sin}
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is a deterministic attracting set for the solution of our system (2.4)-(2.5) in forward
sense, i.e.,

lim
t→+∞

sup
v0∈F

inf
b0∈B0

|v(t; 0, ω, v0)− b0|X = 0.

In the sequel, we will analyze the internal structure of the previous attracting set1

of our chemostat model (2.4)-(2.5) by developing a deeper analysis of both equations2

of the nutrient and microorganism concentrations separately, and taking also into3

account the asymptotic behavior of the total mass s+ x.4

Proposition 2.2. Assume that the following condition5

D > µ(sin) (2.10)

holds. Then, the corresponding attracting set of the chemostat model (2.4)-(2.5) is6

reduced to a singleton component which is given by {(sin, 0)}.7

Proof. We know that Bε, which is given by (2.9), provides us a compact absorbing
set for the solutions of our system for every ε > 0. Then, for any ε > 0, there
exists TF (ω, ε) > 0 such that for every given initial pair v0 ∈ F , s(t) ≤ sin + ε for
all t ≥ TF (ω, ε), whence we can deduce that µ(s(t)) ≤ µ(sin + ε) since µ(·) is an
increasing function. Therefore, from (2.5) we obtain

dx

dt
≤ −

[
D + αz∗β,ν(θtω)

]
x+ µ(sin + ε)x,

whose solution satisfies

x(t; 0, ω, x0) ≤ x0e
−(D−µ(sin+ε))t−α

∫

t

0
z∗

β,ν(θsω)ds.

In addition, by assuming that condition (2.10) holds true, we know that there8

exists ε0 > 0 such that D > µ(sin + ε) for every ε ∈ (0, ε0). Thus, we can easily9

deduce that x tends to zero when t goes to infinity as long as (2.10) is satisfied.10

Therefore, the attracting set for the solution of the chemostat model (2.4)-(2.5)11

consists of a singleton component which is given by {(sin, 0)}.12

Remark 2.2. We would like to highlight that Proposition 2.2 can be easily proved13

by assuming D > m. Nevertheless, assumption (2.10) is sharper than D > m even14

though it requires a bit more of technicalities.15

The next result proves that it is possible to ensure the persistence of the microor-16

ganisms under some condition involving the parameters of the model.17

Theorem 2.3. Assume that18

s̄ < sin (2.11)

holds true, where s̄ is defined as in (2.3). Then, for any ε > 0, there exists a19

compact absorbing set B̂ε ⊂ X , which is strictly contained in the positive cone X ,20

for the solutions of our chemostat model (2.4)-(2.5).21

Proof. We recall that q(t) = s(t)+x(t)−sin satisfies the differential equation (2.6).22

Hence, from (2.8) we have that, for any ε > 0, there exists TF (ω, ε) > 0 such that23

for every given initial pair v0 ∈ F , we obtain24

−ε ≤ q(t; 0, ω, q(0)) ≤ ε (2.12)

for every t ≥ TF (ω, ε).25

Now, we analyze the differential equation for the substrate independently of the26

dynamics of system (2.4)-(2.5) since it will help us to guarantee the existence of a27

compact absorbing set for the substrate equation, which will be totally contained28
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in the positive cone X . Then, from (2.4), as q(t) = s(t) + x(t) − sin, we have the1

following differential equation satisfied by the substrate2

ds(t; 0, ω, s0)

dt
= (sin − s(t; 0, ω, s0))(D + αz∗β,ν(θtω))− µ(s(t; 0, ω, s0))x(t; 0, ω, x0)

= (sin − s(t; 0, ω, s0))(D + αz∗β,ν(θtω))− µ(s(t; 0, ω, s0))q(t; 0, ω, q0)

−µ(s(t; 0, ω, s0))(sin − s(t; 0, ω, s0)).
(2.13)

Hence, from (2.12) we can obtain the following bounds for the s−equation3

ds(t; 0, ω, s0)

dt
≤ (sin − s(t; 0, ω, s0))(D + αz∗β,ν(θtω))

−µ(s(t; 0, ω, s0))(sin − s(t; 0, ω, s0)) + εm

and

ds(t; 0, ω, s0)

dt
≥ (sin − s(t; 0, ω, s0))(D + αz∗β,ν(θtω)))

−µ(s(t; 0, ω, s0))(sin − s(t; 0, ω, s0))− εm,

for every v0 ∈ F , ε > 0 and for all t ≥ TF (ω, ε) (where we recall that µ satisfies4

µ(s) < m for any s > 0).5

We study now both differential inequalities when s = s and s = s̄, respectively,6

where s and s̄ are defined as in (2.3). On the one hand, thanks to (2.11), we have7

ds(t; 0, ω, s0)

dt

∣∣∣∣
s=s̄

≤ (sin − s̄)(D + αz∗β,ν(θtω))− µ(s̄)(sin − s̄) + εm

≤ (sin − s̄)π− + εm,

for every v0 ∈ F , ε > 0 and for all t ≥ TF (ω, ε), where π− := supt≥0 π−(t) and8

π−(t) = (D + αz∗β,ν(θtω))− µ(s̄).9

In this case, as long as we take ε ∈ (0,−(sin − s̄)π−/m), we have (sin − s̄)π− +10

εm < 0, and11

ds(t; 0, ω, s0)

dt

∣∣∣∣
s=s̄

< 0. (2.14)

On the other hand, from (2.11) we deduce that sin > s. Then, we similarly have12

ds(t; 0, ω, s0)

dt

∣∣∣∣
s=s

≥ (sin − s)(D + αz∗β,ν(θtω))− µ(s)(sin − s)− εm

≥ (sin − s)π+ − εm,

for every v0 ∈ F , ε > 0 and for all t ≥ TE(ω, ε), where π+ := inft≥0 π
+(t) and13

π+(t) = (D + αz∗β,ν(θtω))− µ(s).14

Now, it is enough to consider ε ∈ (0, (sin − s)π+/m) in order to have (sin −15

s)π+ − εm > 0. Thus,16

ds(t; 0, ω, s0)

dt

∣∣∣∣
s=s

> 0. (2.15)

From (2.14) and (2.15) we obtain a frame for the s variable:

s < s(t; 0, ω, s0) < s̄
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for every given ε ∈ (0,min{(sin−s̄)π+/m,−(sin−s̄)π−/m}) and for all t ≥ TF (ω, ε),1

which means that the interval (s, s̄) is an absorbing set for equation (2.4) in forward2

sense.3

In the sequel, we will be able to guarantee the persistence of the microorga-4

nisms by proving that there also exists another absorbing set, associated to the5

equation describing the dynamics of the microbial biomass, which will be also totally6

contained in the positive cone X .7

As a consequence of the previous reasoning, we obtain the following inequalities

−s̄+ sin − ε < x(t; 0, ω, x0) < −s+ sin + ε,

for every given ε ∈ (0,min{(sin−s̄)π+/m,−(sin−s̄)π−/m}) and for all t ≥ TE(ω, ε).8

Thanks to the previous study, we deduce that the strictly positive interval (sin−9

s̄, sin − s) is an absorbing set for (2.5), the equation which describes the dynamics10

of the microorganisms.11

As a result,12

B̂ε = {(s, x) ∈ X : s+x = sin+ε, s ≤ s ≤ s̄, sin− s̄−ε ≤ x ≤ sin−s+ε} (2.16)

defines a compact absorbing set for our chemostat model (2.4)-(2.5) in forward13

sense.14

Thanks to the previous result, we obtain that15

B̂0 = {(s, x) ∈ X : sin ≤ s+ x ≤ sin, s ≤ s ≤ s̄, sin − s̄ ≤ x ≤ sin − s} (2.17)

is a strictly positive attracting set for the solution of our system (2.4)-(2.5) in16

forward sense (see Figure 4).17

sin − s

sin − s̄

s s̄ sin

sin

s

x

B̂0

B0

Figure 4. Attracting set B̂0

We notice that, as long as condition (2.11) holds true, we obtain a new attracting18

set B̂0 which is clearly smaller than the initial one B0. Thus, we can ensure the19

persistence of the microbial biomass.20

From Proposition 2.2, Theorem 2.3 and taking into account the arguments used21

in the corresponding proofs, it is possible to analyze all the cases involving both22

conditions (2.10) and (2.11) which are presented in Table 1 as a summary concerning23

the internal structure of the attracting set B̂0 and explained in more details below.24
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sin > s̄ sin = s̄ sin < s̄

Extinction

D > µ(sin) impossible impossible Proposition 2.2

{(sin, 0)}

(2.14) not fulfilled

D = µ(sin) impossible impossible s ≤ s ≤ sin

0 ≤ x ≤ sin − s

Persistence

Theorem 2.3 (2.14) not fulfilled (2.14) not fulfilled

D < µ(sin) s ≤ s ≤ s̄ s ≤ s ≤ sin s ≤ s ≤ sin

sin − s̄ ≤ x ≤ sin − s 0 ≤ x ≤ sin − s 0 ≤ x ≤ sin − s

s+ x = sin

Table 1. Internal structure of the attracting set B̂0

In order to provide a complete description of the asymptotic behavior of the1

chemostat model with random input flow, we explain Table 1 in more detail. Firstly,2

it is easy to check that some cases are not compatible. In addition, thanks to3

Proposition 2.2 and Theorem 2.3, we know that the biomass becomes extinct as4

long as (2.10) holds true and we deduce persistence if (2.11) is fulfilled. However,5

there are more cases which can be analyzed. On the one hand, if D = µ(sin) and6

sin = s̄ hold true, we can check that it is possible to redo the proof of Theorem 2.37

but, in this case, (2.14) becomes an equality implying that the attracting set, B̂0,8

is given by9

B̂0 = {(s, x) ∈ X : s+ x = sin, s ≤ s ≤ sin, 0 ≤ x ≤ sin − s}. (2.18)

On the other hand, as long as sin < s̄ and D ≤ µ(sin) are fulfilled, we can also10

redo the proof of Theorem 2.3 but, in this case, we cannot obtain (2.14). Thus, the11

attracting set, B̂0, also verifies (2.18).12

From the previous analysis, it is worth mentioning that, in a different form to the13

deterministic case, where the washout equilibrium (sin, 0) is attractive if D = µ(sin)14

holds true (whence we obtain the extinction of the microbial biomass), see e.g.15

[19, 27], it is possible to deduce a relevant improvement when considering random16

disturbances on the input flow as in this section since, although it is not possible17

to guarantee the persistence of the microorganisms in the strong sense (1.7), we are18

able to ensure that the corresponding attracting set has several points (in fact, all19

of them except the washout) inside the positive cone.20

3 The chemostat model with stochastic input flow. In this section, we21

will follow previous works (see e.g. [7, 9]) and analyze the chemostat model (1.1)-22

(1.2) where the dilution rate is perturbed by the standard Wiener process or white23

noise. We will perform a change of variables involving an O-U process such that24

the transformed random ordinary differential system generates a random dynamical25

system. Thanks to this fact, we will obtain a non-autonomous deterministic system26

for every fixed ω ∈ Ω (random system) which is much more tractable from the27

mathematical point of view than the original stochastic one. After that, we will28
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prove that there exists a unique global solution of the resulting random system and1

we will also provide some results concerning the existence, uniqueness and analysis of2

the internal structure of the pullback random attractor. Finally, we will recover the3

pullback random attractor associated to the original stochastic chemostat model.4

We firstly replace the dilution rate D by the perturbed one D+αω̇(t), such that5

we obtain the following stochastic chemostat model understood in Itô’s sense6

ds =

[
(sin − s)D −

msx

a+ s

]
dt+ α(sin − s)dω(t), (3.1)

dx =

[
−Dx+

msx

a+ s

]
dt− αxdω(t), (3.2)

where ω ∈ Ω denotes the canonical version of the standard Brownian motion and7

α ≥ 0 represents the intensity of noise.8

Now, we can rewrite (3.1)-(3.2) as the following stochastic differential system9

ds =

[
(sin − s)D̄ −

msx

a+ s

]
dt+ α(sin − s) ◦ dω(t),

dx =

[
−D̄x+

msx

a+ s

]
dt− αx ◦ dω(t),

understood in Stratonovich’s sense, where

D̄ := D +
α2

2
.

First of all, let us define two new variables σ = σ(·) and κ = κ(·) as follows

σ(t) = (s(t)− sin)e
αz∗(θtω) and κ(t) = x(t)eαz

∗(θtω),

where z∗ denotes now the O-U process z∗β,1 defined as in (2.1). We also recall that10

(Ω,F ,P, {θt}t∈R) denotes the metric dynamical system given after Proposition 2.1.11

Now, by differentiation, we obtain the following random differential system12

dσ

dt
= −(D̄ + αz∗)σ −

m(sin + σe−αz∗(θtω))

a+ sin + σe−αz∗(θtω)
κ, (3.3)

dκ

dt
= −(D̄ + αz∗)κ+

m(sin + σe−αz∗(θtω))

a+ sin + σe−αz∗(θtω)
κ. (3.4)

Throughout this section, we will denote X̃ := {(x, y) ∈ R
2 : x ∈ R, y ≥ 0}, the13

upper-half plane.14

Theorem 3.1. For any ω ∈ Ω and any initial value u0 := (σ0, κ0) ∈ X̃ , system
(3.3)-(3.4) possesses a unique global solution

u(·; 0, ω, u0) := (σ(·; 0, ω, u0), κ(·; 0, ω, u0)) ∈ C1([0,+∞), X̃ )

with u(0; 0, ω, u0) = u0, where σ0 := σ(0; 0, ω, σ0) and κ0 := κ(0; 0, ω, κ0). More-

over, the solution mapping generates an RDS ϕu : R+ × Ω× X̃ → X̃ defined as

ϕu(t, ω)u0 := u(t; 0, ω, u0), for all t ∈ R
+, u0 ∈ X̃ , ω ∈ Ω,

in other words, the value at time t of the solution of system (3.3)-(3.4) with initial15

state u0 at time zero.16
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Proof. System (3.3)-(3.4) can be rewritten as1

du

dt
= L(θtω) · u+ F (u, θtω),

where2

L(θtω) =

(
−(D̄ + αz∗) −m

0 −(D̄ + αz∗) +m

)

and F : X̃ × [0,+∞) −→ R
2 is given by3

F (ξ, θtω) =




ma

a+ sin + ξ1e−αz∗(θtω)
ξ2

−ma

a+ sin + ξ1e−αz∗(θtω)
ξ2


 ,

where ξ = (ξ1, ξ2) ∈ X̃ .4

Then, there exists a unique local solution of system (3.3)-(3.4) thanks to classical5

results from the theory of ordinary differential equations.6

Now, we will prove that the unique local solution is in fact a unique global one7

(i.e., that is defined for any t ≥ 0). By defining q̃(t) := σ(t)+κ(t) it is easy to check8

that q̃ satisfies the differential equation9

dq̃

dt
= −(D̄ + αz∗)q̃,

whose solution is given by the following expression10

q̃(t; 0, ω, q̃(0)) = q̃(0)e−D̄t−α
∫

t

0
z∗(θsω)ds. (3.5)

The right side of (3.5) always tends to zero when t goes to infinity since D̄ is
positive, thus q̃ is clearly bounded. Moreover, since

dσ

dt

∣∣∣∣
σ=0

= −
msin
a+ sin

κ < 0

we deduce that, if there exists some t∗ > 0 such that σ(t∗) = 0, we will have σ(t) < 011

for all t > t∗. Owing to the previous reasoning, we will split our analysis into two12

different cases.13

14

Case 1: σ(t) > 0 for all t ≥ 0. In this case, from (3.3) we obtain15

dσ

dt
≤ −(D̄ + αz∗)σ

whose solutions should satisfy16

σ(t; 0, ω, σ(0)) ≤ σ(0)e−D̄t−α
∫

t

0
z∗(θsω)ds.

Since D̄ is positive, we deduce that σ tends to zero when t goes to infinity, hence17

σ is bounded.18

19

Case 2: there exists t∗ > 0 such that σ(t∗) = 0. In this case, we already know20

that σ(t) < 0 for all t > t∗ and we claim that the following bound for σ holds true21

σ(t; 0, ω, σ(0)) > −(a+ sin)e
αz∗(θtω). (3.6)

To prove (3.6), we suppose that there exists t̄ > t∗ > 0 such that

a+ sin + σ(t̄)e−αz∗(θt̄ω) = 0,
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then we can find some ε(ω) > 0 small enough such that σ(t) is strictly decreasing1

and2

−(D̄ + αz∗(θtω))−
m(sin + σ(t)e−αz∗(θtω))

a+ sin + σ(t)e−αz∗(θtω)
κ(t) > 0 (3.7)

holds for all t ∈ [t̄− ε(ω), t̄). Hence, from (3.7) we have

dσ

dt
(t̄− ε(ω)) > 0.

Consequently, there exists some δ(ω) > 0, small enough, such that σ(t) is strictly3

increasing for all t ∈ [t̄−ε(ω), t̄−ε(ω)+δ(ω)), which clearly contradicts the unique-4

ness of solution. Hence, (3.6) holds true for all t ∈ R and we can also ensure that5

σ is bounded.6

7

Since σ + κ and σ are bounded in both cases, κ is also bounded. Hence, the8

unique local solution of system (3.3)-(3.4) is a unique global one. Moreover, the9

unique global solution of system (3.3)-(3.4) remains in X̃ for every initial value in10

X̃ since κ ≡ 0 solves the same system.11

Finally, the mapping ϕu : R+ × Ω× X̃ → X̃ given by12

ϕu(t, ω)u0 := u(t; 0, ω, u0), for all t ≥ 0, u0 ∈ X̃ , ω ∈ Ω,

defines an RDS generated by the solution of (3.3)-(3.4). The proof of this statement13

follows similarly to the one of Theorem 2.1, hence we omit it.14

Theorem 3.2. There exists a tempered compact random absorbing set B0(ω) ∈15

E(X̃ ) for the RDS {ϕu(t, ω)}t≥0, ω∈Ω.16

Proof. Thanks to (3.5), we have17

q̃(t; 0, θ−tω, q̃(0)) = q̃(0)e−D̄t−α
∫

0

−t
z∗(θsω)ds t→+∞

−→ 0.

Then, for all ε > 0 and u0 ∈ E(θ−tω), there exists TE(ω) > 0 such that, for all
t ≥ TE(ω),

−ε ≤ q̃(t; 0, θ−tω, q̃(0)) ≤ ε.

If we assume that σ(t) ≥ 0 for all t ≥ 0, which corresponds to Case 1 in the
proof of Theorem 3.1, since κ(t) ≥ 0 for all t ≥ 0, we have that

B1
ε (ω) := {(σ, κ) ∈ X : σ ≥ 0, σ + κ ≤ ε}

is a tempered compact random absorbing set in X̃ .18

In the other case, i.e., if there exists some t∗ > 0 such that σ(t∗) = 0, which
corresponds to Case 2 in the proof of Theorem 3.1, we proved that

σ(t; 0, θ−tω, σ(0)) > −(a+ sin)e
αz∗(ω).

Hence, we obtain that

B2
ε (ω) :=

{
(σ, κ) ∈ X̃ : −ε− (a+ sin)e

αz∗(ω) ≤ σ ≤ 0, −ε ≤ σ + κ ≤ ε
}

is a tempered compact random absorbing set in X̃ .19

In conclusion, defining20

Bε(ω) = B1
ε (ω) ∪B2

ε (ω)

=
{
(σ, κ) ∈ X : −ε ≤ σ + κ ≤ ε, σ ≥ −(a+ sin)e

αz∗(ω) − ε
}
,
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(see Figure 5) we obtain that Bε(ω) is a tempered compact random absorbing set1

in X̃ for every ε > 0.2

σ

κ

−(a+ sin)e
αz∗(ω) − ε

ε−ε

B2
ε (ω)

B1
ε (ω)

Figure 5. Absorbing set Bε(ω)

σ

κ

−(a+ sin)e
αz∗(ω)

B0(ω)

Figure 6. Absorbing set B0(ω)

Then, we have that

B0(ω) :=
{
(σ, κ) ∈ X̃ : σ + κ = 0, σ ≥ −(a+ sin)e

αz∗(ω)
}

is a tempered compact random absorbing set as we wanted to prove (see Figure3

6).4

Therefore, thanks to Proposition 4.1, it follows directly that system (3.3)-(3.4)5

possesses a unique pullback random attractor such that A(ω) ⊂ B0(ω).6

Proposition 3.1. The pullback random attractor of system (3.3)-(3.4) consists of7

a singleton component given by A(ω) = {(0, 0)} as long as8

D̄ > µ(sin) (3.8)

holds true.9

Proof. We would like to note that the result in this proposition follows trivially if10

σ remains always positive (Case 1 in the proof of Theorem 3.1) since in that case11

both σ and κ are positive and σ + κ tends to zero when t goes to infinity, thus the12

pullback random attractor is directly given by A(ω) = {(0, 0)}.13

Due to the previous reason, we will only present the proof when there exists some14

t∗ > 0 such that σ(t∗) = 0, which implies that σ(t) < 0 for all t > t∗. Hence, since15

µ(s) = ms/(a+ s), from (3.4) we have16

dκ

dt
≤ −(D̄ + αz∗)κ+

msin
a+ sin

κ,

which allows us to state the following inequality17

κ(t; t∗, θ−tω, κ(t
∗)) ≤ κ(t∗)e

−
(

D̄−
msin
a+sin

)

(t−t∗)−α
∫

t∗

−t
z∗(θsω)ds

, (3.9)

where the right side of (3.9) tends to zero when t goes to infinity, as long as (3.8)18

is fulfilled. Therefore A(ω) = {(0, 0)}.19

Finally, defining the mapping T : Ω× X̃ −→ X̃ by

T (ω, ζ) =
(
(ζ1 − sin)e

αz∗(ω), ζ2e
αz∗(ω)

)
,
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it is a homeomorphism whose inverse is given by the following expression

T−1(ω, ζ) =
(
sin + ζ1e

−αz∗(ω), ζ2e
−αz∗(ω)

)
.

If we now define1

ϕv(t, ω)v0 := T−1(θtω, ϕu(t, ω)T (ω, v0))

= T−1(θtω, u(t; 0, ω, u0))

= v(t; 0, ω, v0)

by Proposition 4.2 it turns out that ϕv is the RDS associated to the stochastic2

chemostat model (3.1)-(3.2) with pullback random attractor Â(ω) ⊂ B̂0(ω), where3

B̂0(ω) :=
{
(s, x) ∈ X̃ : s+ x = sin, s ≥ −a

}
. (3.10)

In addition, under (3.8), the pullback random attractor for (3.1)-(3.2) reduces4

to a singleton set Â(ω) = {(sin, 0)}, which means that the microorganisms become5

extinct.6

We remark that it is not possible to provide conditions which ensure the persis-7

tence of the microbial biomass even though our numerical simulations show that we8

obtain it for many different values of the parameters involved in the system, as we9

will present in Section 4. Moreover, we will also compare the numerical simulations10

concerning this section with those corresponding to the previous one.11

4 Numerical simulations and final comments. In this section we would like12

to highlight some comments about both ways of modeling stochasticity and ran-13

domness in a chemostat model and show some numerical simulations which will14

support the results proved throughout Sections 2 and 3.15

We remark that we use the Euler-Maruyama method which is a simple general-16

ization of the Euler method for ODEs to stochastic differential equations. The main17

difference is the discretization of the term dW (t) = W (τj)−W (τj−1) for some par-18

tition {τj} of the time interval, where we make use of the fact that such a difference19

is a Gaussian variable with mean zero and variance τj − τj−1. For more detailed20

information about the definition of the numerical scheme necessary to obtain the21

numerical simulations we refer the readers to [7, 8, 9, 20].22

In every simulation, the dashed lines represent the solution of the deterministic23

systems, i.e., the behavior of the stochastic/random system after taking α = 0,24

whereas the continuous lines correspond to different realizations of the solution of25

the corresponding stochastic/random system.26

Now, we will show some simulations concerning the random chemostat model27

studied in Section 2. In each of the following figures three panels are displayed: the28

left one shows the phase plane and the general dynamics of the chemostat model;29

the two panels on the right side help us to see two important zones in the phase30

plane.31

In Figure 7 we set D = 2, sin = 4, a = 0.6, m = 5, α = 0.5, β = 1, ν = 0.732

and initial values s(0) = 2, x(0) = 5 for the nutrient and the microorganism,33

respectively. In this case (2.11) holds true and this is the reason why we can observe34

the persistence of the species. We can also see how the realizations are approaching35

the line s+ x = sin, as proved in (2.8).36
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Figure 7. Persistence of the species in the random chemostat model

In contrast to the last case, in Figure 8 we take D = 3.5, sin = 2, a = 0.8, m =1

0.5, α = 0.5, β = 1, ν = 0.7 and initial values s(0) = 2.5, x(0) = 5 for the nutrient2

and the microorganisms, respectively. Then we can see that the microorganisms3

extinguish what is not surprising due to the fact that condition (2.10) is fulfilled.4

We can also see here how the realizations are approaching the line s + x = sin, as5

proved in (2.8).6

Figure 8. Extinction of the species in the random chemostat model

The following simulations represent the stochastic chemostat analyzed in Section7

3, where the dilution rate is perturbed by a white noise. On the one hand, in the8

left picture we take D = 3.5, sin = 1, a = 0.8, m = 1.5 and α = 0.5. In this9

case, condition (3.8) is fulfilled so we can observe that the microorganisms become10

extinct. On the other hand, in the right picture we choose D = 2, sin = 1, a = 0.6,11

m = 5 and α = 0.5. In this second case D̄ < µ(sin) holds, then we can see12

that the species persist even though it is not possible to prove mathematically the13

persistence. In addition, we can also see that some realizations in the right picture14

take negative values which is another significant drawback.15
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Figure 9. Stochastic chemostat model. Extinction (left) and per-
sistence (right)

Next we present two figures where we overlap a typical realization of the solution1

of system (3.1)-(3.2) and another one of the solution of system (2.4)-(2.5) such that2

we can notice much more easily the differences between the simulations concerning3

Sections 2 and 3. In each figure we plot a big panel where the general dynamics4

can be seen and four smaller panels which correspond to two different zooms of5

two interesting places of the realizations, the dynamics around (s, x) = (2, 2) and6

(s, x) = (2, 0) in Figure 10 and the dynamics about (s, x) = (0.2, 5.5) and (s, x) =7

(0.4, 3.75) in Figure 11.8

In Figure 10 we plot a typical realization when perturbing the dilution rate with9

the Wiener process (orange) and two different ones when perturbing with the O-U10

process for β = 2 (red) and β = 0.5 (green). In this case, we take sin = 2, D = 3.5,11

a = 0.8, m = 0.5, α = 0.8, σ = 0.8, x(0) = 5 and s(0) = 2.5. We can observe that12

(2.10) and (3.8) are both fulfilled then the microorganisms become extinct, as we13

already proved in previous sections.14

Figure 10. Comparison in case of extinction

Eventually, in Figure 11 we plot again a typical realization when perturbing15

the dilution rate with the Wiener process (orange) and two different ones when16
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perturbing with the O-U process for β = 2 (red) and β = 0.5 (green) but now1

we take sin = 4, D = 2, a = 0.6, m = 5, α = 0.15, σ = 0.8, x(0) = 5 and2

s(0) = 2. In this case (3.8) does not hold true, thus it is not possible to ensure the3

persistence of the species (in the chemostat model perturbed by using the standard4

Wiener process) although numerically it can be obtained for the previous values5

of the parameters. In addition, if D < µ(sin) and s̄ < sin hold true, then we6

can ensure the persistence of the microbial biomass when perturbing the chemostat7

model by means of the O-U process. Moreover, we can observe that every realization8

is approaching the line s+ x = sin, as proved in Sections 2 (see (2.16)) and 3 (see9

(3.10)).10

Figure 11. Comparison in case of persistence

In conclusion, we can observe that the Ornstein-Uhlenbeck process provides us a11

really useful tool when modeling stochasticity and randomness since it allows us to12

set up mathematical models which guarantee the positiveness of the variable and13

therefore it better suits to represent reality. This new framework could also allow us14

to revisit the persistence of species under input disturbances, in case of competition15

between several species, which will be the topic of a future work.16

Appendix. Although very good references (see e.g. [2]) providing very detailed17

information about random dynamical systems (RDSs) can be found in the literature,18

we recall briefly some useful definitions and results to make our presentation as much19

self-contained as possible.20

Let (X , ‖ · ‖X ) be a separable Banach space.21

Definition 4.1. An RDS on X consists of two ingredients: (a) a metric dynami-22

cal system (Ω,F ,P, {θt}t∈R) where (Ω,F ,P) is a probability space and a family of23

mappings θt : Ω → Ω satisfying24

(1) θ0 = IdΩ,25

(2) θs ◦ θt = θs+t for all s, t ∈ R,26

(3) the mapping (t, ω) 7→ θtω is measurable,27

(4) the probability measure P is preserved by θt, i.e., θtP = P28
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and (b) a mapping ϕ : [0,∞)× Ω× X → X which is (B[0,∞)×F × B(X ),B(X ))-1

measurable, such that for each ω ∈ Ω,2

(i) the mapping ϕ(t, ω) : X → X , x 7→ ϕ(t, ω)x is continuous for every t ≥ 0,3

(ii) ϕ(0, ω) is the identity operator on X ,4

(iii) (cocycle property) ϕ(t+ s, ω) = ϕ(t, θsω)ϕ(s, ω) for all s, t ≥ 0.5

Definition 4.2. Let (Ω,F ,P) be a probability space. A random set K is a measu-6

rable subset of X ×Ω with respect to the product σ−algebra B(X )×F . Moreover K7

will be said a closed or a compact random set if K(ω) = {x : (x, ω) ∈ K}, ω ∈ Ω,8

is closed or compact for P−almost all ω ∈ Ω, respectively.9

Definition 4.3. A bounded random set K(ω) ⊂ X is said to be tempered with
respect to {θt}t∈R if for a.e. ω ∈ Ω,

lim
t→∞

e−βt sup
x∈K(θ−tω)

‖x‖X = 0, for all β > 0;

a random variable ω 7→ r(ω) ∈ R is said to be tempered with respect to {θt}t∈R if
for a.e. ω ∈ Ω,

lim
t→∞

e−βt sup
t∈R

|r(θ−tω)| = 0, for all β > 0.

In what follows we use E(X ) to denote the set of all tempered random sets of X .10

Definition 4.4. A random set B(ω) ⊂ X is called a random absorbing set in E(X )
if for any E ∈ E(X ) and a.e. ω ∈ Ω, there exists TE(ω) > 0 such that

ϕ(t, θ−tω)E(θ−tω) ⊂ B(ω), for all t ≥ TE(ω).

Definition 4.5. Let {ϕ(t, ω)}t≥0,ω∈Ω be an RDS over (Ω,F ,P, {θt}t∈R) with state11

space X and let A(ω)(⊂ X ) be a random set. Then A = {A(ω)}ω∈Ω is called a12

global random E−attractor (or pullback E−attractor) for {ϕ(t, ω)}t≥0,ω∈Ω if13

(i) (compactness) A(ω) is a compact set of X for any ω ∈ Ω;14

(ii) (invariance) for any ω ∈ Ω and all t ≥ 0, it holds

ϕ(t, ω)A(ω) = A(θtω);

(iii) (attracting property) for any E ∈ E(X ) and a.e. ω ∈ Ω,

lim
t→∞

distX (ϕ(t, θ−tω)E(θ−tω), A(ω)) = 0,

where distX (G,H) = supg∈G infh∈H ‖g − h‖X is the Hausdorff semi-metric15

for G,H ⊆ X .16

Proposition 4.1. [See [14, 17]] Let B ∈ E(X ) be a closed absorbing set for the con-
tinuous RDS {ϕ(t, ω)}t≥0,ω∈Ω that satisfies the asymptotic compactness condition
for a.e. ω ∈ Ω, i.e., each sequence xn in ϕ(tn, θ−tnω)B(θ−tnω) has a convergent
subsequence in X when tn → ∞. Then ϕ has a unique global random attractor
A = {A(ω)}ω∈Ω with component subsets

A(ω) =
⋂

τ≥TB(ω)

⋃

t≥τ

ϕ(t, θ−tω)B(θ−tω).

Remark 4.1. When the state space X = R
d as in this paper, the asymptotic com-17

pactness follows trivially.18

The next result ensures when two RDSs are conjugated (see [10, 11, 12]).19
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Proposition 4.2. Let ϕu be an RDS on X . Suppose that the mapping T : Ω×X →1

X possesses the following properties: for fixed ω ∈ Ω, T (ω, ·) is a homeomorphism2

on X , and for x ∈ X , the mappings T (·, x), T −1(·, x) are measurable. Then the3

mapping4

(t, ω, x) → ϕv(t, ω)x := T −1(θtω, ϕu(t, ω)T (ω, x))

is a (conjugated) RDS.5
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