
Dynamic Vision Sensor integration on FPGA-based CNN
accelerators for high-speed visual classification

Alejandro Linares-Barranco*, Antonio
Rios-Navarro, Ricardo Tapiador-Morales**

Robotic and Tech of Computers Lab. University
of Seville. SPAIN
alinares@us.es

Tobi Delbruck
Institute of NeuroInformatics. University of

Zurich. Switzerland
tobi@ini.uzh.ch

Abstract—Deep-learning is a cutting edge theory that is being
applied to many fields. For vision applications the Convolutional
Neural Networks (CNN) are demanding significant accuracy
for classification tasks. Numerous hardware accelerators have
populated during the last years to improve CPU or GPU based
solutions. This technology is commonly prototyped and tested
over FPGAs before being considered for ASIC fabrication for
mass production. The use of commercial typical cameras (30fps)
limits the capabilities of these systems for high speed applica-
tions. The use of dynamic vision sensors (DVS) that emulate
the behaviour of a biological retina is taking an incremental
importance to improve this applications due to its nature, where
the information is represented by a continuous stream of spikes
and the frames to be processed by the CNN are constructed
collecting a fixed number of these spikes (called events). The
faster an object is, the more events are produced by DVS, so
the higher is the equivalent frame rate. Therefore, these DVS
utilization allows to compute a frame at the maximum speed a
CNN accelerator can offer. In this paper we present a VHDL/HLS
description of a pipelined design for FPGA able to collect events
from an Address-Event-Representation (AER) DVS retina to
obtain a normalized histogram to be used by a particular CNN
accelerator, called NullHop. VHDL is used to describe the circuit,
and HLS for computation blocks, which are used to perform the
normalization of a frame needed for the CNN. Results outperform
previous implementations of frames collection and normalization
using ARM processors running at 800MHz on a Zynq7100 in
both latency and power consumption. A measured 67% speed-
up factor is presented for a Roshambo CNN real-time experiment
running at 160fps peak rate.

I. INTRODUCTION

Field-Programmable-Gate-Arrays (FPGA) have demon-
strated superior impact not only in prototyping for deep-
learning architectures, but also for commercial products in
this field. For visual applications, the convolutional neural net-
works (CNNs) represent one of the most utilised approaches
for a number of continuously increasing large-scale machine
vision tasks [1]–[3]. A CNN has an architecture composed of
several layers of features extraction. First layer is composed
of a number of convolutional filters that extracts several basic
features from the input image. Consecutive deeper layers are
also composed of a number of convolutional filters, but in this

*This work is supported by Samsung funded project NPP-phase2, coordi-
nated by Institute of Neuroinformatics, and by the excellence project from
the Spanish government grant (with support from the European Regional
Development Fund) COFNET (TEC2016-77785-P)

**R. Tapiador has been supported by a ”Formación de Personal Investi-
gador” Scholarship from the University of Seville.

case they take as input a set of extracted features from the
previous layer (that could be all of them) for more complex
feature extractions. The weights used for these convolution
operations are obtained through a training method. The core
operation of a CNN layer is the convolution expressed in
(1), where F out(a,b) is an output pixel of a convolution applied
to a feature in F in with a kernel C. To obtain the final
feature output, the selected input features, computed with their
corresponding kernels, are accumulated in the output feature.
It is normal to find non-linear operation to connect two layers,
like ReLU (Rectification Unit), and pooling operations to
reduce the domain problem in a closer set of complex features
that can be classified by a fully-connected-layer at the end of
the architecture.

F out(a,b) =

Nin/2∑
i=−Nin/2

Ci,j ∗ F in(a−i/2,b−i/2) (1)

Their computational simple core concept merged with effi-
cient supervised training techniques have made them the main
selected method for image features extraction at high-level
semantic for classification, localization, and detection visual
processing tasks [4].

CNN are typically trained using back-propagation tech-
nique, with a relatively well sized set of labeled examples,
to allow it to inference the correct class for an input image
not used during the training. The network is usually trained on
hardware platforms such as graphical processing units (GPUs)
or specialized architectures, as in [5] previously to the use of
the CNN for a particular application. The training process is
computationally heavy and it requires several iterations and
fine tuned datasets to extract the best accuracy from a fixed
CNN architecture.

After training, the CNN is used for runtime inference.
Depending on the CNN architecture, this inference could be-
come computationally expensive. State of the art (SOA) CNNs
typically require several billion multiply-accumulate (MAC)
operations per image. Therefore, the use of mobile processors
or mobile GPUs to run a CNN can become expensive in a
power-constrained mobile platform and / or not feasible for
particular high-speed applications.

For instance, in [6] the model Inception V3 for object
recognition tasks has an accuracy of around 78% with 27M

parameters and 12GOP, requiring 50ms to compute a frame
on a Kirin 980 smartphone processor1. The Inception ResNet
V1 for face recognition has an accuracy of around 98% and
needs around 113ms in the same mobile chip. And the ICNET
architecture for semantic segmentation, used for autonomous
driving, has an accuracy of around 70% being able to obtain
real-time computation (30fps) with powerful GPUs installed
on a commercial car, but it requires 275ms on the Kirin 980
chip. This last algorithm needs 64ms when being executed on
a Free-TPU for FPGA. These examples highlight that FPGA
solutions for solving real problems are getting closer and
closer.

However, the limit of 30fps of commercial cameras will
be an expensive problem to solve if high-speed cameras start
to be installed in vehicles. The Neuromorphic Engineering
community has being working for more that 20 years on
bio-inspired sensors (called Dynamic Vision Sensors - DVS)
[7], [8] that offer equivalents ≈ 20kfps compared to CCD
cameras. The principle behind is the fact of allowing each pixel
to work independently respect to its neighbors for sending
its current status if a feature has been detected and need
to be highlighted. Most of these sensors are tracking local
luminosity changes, at pixel level, in such a way that they
behave as a neuron, sending a spike or event when the detected
change has surpassed a threshold. Typically these events are
sent with a polarity that tells whether the change has been from
darker to lighter or reverse. In Fig 6 (monitor box of laptop
screen) it is shown a 2D histogram of 2k captured events for
6ms in this particular case. It can be seen how positive events
(white) represent the front part of the hand in motion, while
negative events (black) represent the back part of the same
hand. The faster the hand, the smaller is the required time to
obtain 2k events. If these histograms could be used for CNNs
it means that fps can be adjusted to the particular speed of the
scenario where the object has to be detected and / or classified.

In this paper we compare the performance for histogram
collection and normalization in a pipelined High-Level-
Synthesis(HLS) hardware implementation for FPGA, respect
to a previously used embedded software approach for a CNN
accelerator scenario.

The paper is structured as follows: Section II introduces the
NullHop accelerator and its FPGA deployment considerations.
Section III describe in details the circuit designed to collect
and normalize a histogram of events to be inference by Null-
Hop. Section IV show performance results and comparison
respect to sofware implementations over a RoShamBo CNN
example for the NullHop.

II. NULLHOP ACCELERATOR

The CNN accelerator scenario selected takes advantage
of the sparsity of networks (feature maps and kernels) for
saving computation and memory accesses during inference.
It is called NullHop [9], which exploits activation sparsity by

1Taken from http://ai-benchmark.com/ranking on 25th March 2019

two main features: (1) its ability to skip over zeros (zero-
skipping) in the input CNN layers without any wasted clock
cycles and redundant MACs. (2) The compression scheme
that is optimized for sparsely activated CNN layers. This
compression reduces external memory accesses and is more
efficient than other run-length encoding schemes [10]. Similar
to the current SOA accelerators [10]–[18], NullHop uses a
configurable processing pipeline that maintains high efficiency
across a range of CNN kernel sizes and numbers of feature
maps.

A. Architecture

Figure 1 shows the block diagram of the NullHop acceler-
ator. The interface allows to feed data through a 32-bit input
data bus; read data from an output 32-bit bus; configure the
accelerator parameters with an input configuration bus; and
several control lines for clock, reset and bus handshake signals.
The accelerator implements one convolutional stage with 128
MAC units followed by a ReLU transformation and then a
max-pooling stage that can be optionally used. The CNN
is implemented in a forward pass. Therefore, the accelerator
evaluates convolutional stages sequentially. The input feature
maps and the kernel values for the current convolutional layer
are stored in two independent SRAM blocks through input and
configuration interfaces.

Fig. 1: NullHop CNN accelerator block diagram.

The output feature maps produced by the current layer are
streamed off-chip through the output interface to be stored
in the external memory. Then, they are streamed back to the
accelerator SRAM when the accelerator has finished process-
ing the current layer. The feature maps are always stored in
a compressed format that is never decompressed but rather
decoded during the computation.

NullHop uses a sparse matrix compression technique, which
produces an average compression level higher than other
methods, such as in [10]. And it is easier to decode than the
Huffman coding used in [14]. This coding uses a Sparsity Map
(SM), that is a 3D mask with the same number of entries as
number of pixels in the feature maps; and a Non-Zero Value
List (NZVL). The SM is used to reconstruct the positions of
the non-zero pixels that are present in the NZVL.

http://ai-benchmark.com/ranking

The Input Decoding Processor (IDP) reads a small portion
of the compressed input feature maps to pass non-zero pixels
to the Compute Core Module (CCM). Therefore, the IDP is
skipping zero pixels in the compressed input feature maps
without wasting any MAC operation. In addition to the pixel
values, the IDP also forwards the pixels’ positions (row,
column, and input feature map index) to the CCM. The
Pixel Allocator (at CCM) allocates incoming pixels through
available Controllers. Each Controller schedules operations for
a subset of the MAC blocks and it submits the needed read
requests to the corresponding Kernel SRAM. All MAC blocks
under the same Controller receive the same input pixel from
their Controller, but weights from different kernels, producing
pixels in different output feature maps. The convolution results
are sent through an optional ReLU transformation and a max-
pooling stage before going to the pixel stream compression
block (PRE module of the figure). The compressed output
feature maps are then sent off-chip. This NullHop accelerator
has been described using SystemVerilog and it has been
synthesized for both ASIC and FPGA, as described with
details in [9].

B. FPGA implementation

The NullHop accelerator has been deployed into a PSoC
Xilinx Zynq 7100 for the MMP module from AvNet manu-
facturer. This PSoC is composed of a dual-core ARM-based
processing system, and a Kintex-7 FPGA. Both systems are
connected using the AXI4-Stream with Direct Memory Access
(DMA) that is an open source protocol. It is used to connect
the FPGA with its ARM processor, which runs Petalinux
operating system (OS) to control the accelerator. It manages
the read and write operations between the DDR memory of
the AvNet MMP board (outside the PSoC) and the FPGA
block-RAM (BRAM) of the accelerator. The processor also
computes the last layer of the CNN, called fully-connected
layer (FL) after the convolutional layers. It has included in the
OS an embedded USB host controller module to interface it to
an iniLabs DAVIS240C neuromorphic event-based camera [8]
for the real- time demonstrations used to measure the results
of this work. For this use, the ARM processor also runs
iniLabs cAER2, an open source framework to interface to the
DAVIS camera. Fig 2 shows the block diagram of the whole
FPGA architecture, including the MM2S (Memory Mapped
To Stream) and S2MM (Stream to Memory Mapped)
modules used to interface the accelerator with the AXI Stream
bus. MM2S and S2MM include FIFOs for data transfer
and finite-state-machines for protocol adaptation between the
Xilinx AXI-DMA IP and the NullHop interface, including
burst transfer length parameters and burst interruption control.

The design minimizes host memory manipulation by using
DMA transfers from host memory (external DDR connected to
the PSoC) to the accelerator and vice versa without requiring
each layer output to be reformatted or processed. For each
layer, the ARM loads the layer configuration and the kernels.

2https://github.com/inivation/caer

It then initiates interrupt-driven DMA transfers of the input
and output. It is then free for other processing while the layer
is computed.

Fig. 3 shows the memory hierarchy from the user appli-
cation to the CNN accelerator. There are two ways to com-
municate with devices when working with embedded Linux
OS: (1) user-level: function mmap() for mapping a segment
of the device physical address space into our process virtual
address space. This function is called by user application
directly and the DMA transfers can be configured in a polling
scheme, where the user application is frequently blocked,
waiting for the transfer to be completed to process the data; or
(2) kernel-level: a routine running at a higher privilege level of
the OS, with interrupt support, maintain the user application
free of blocking states until data is ready. Furthermore, the
kernel-level ensures the integrity of the software avoiding the
possible wrong use of physical address spaces reserved to
other processes running in the OS.

Fig. 2: NullHop integration on PSoC block diagram.

Fig. 3: DDR Memory hierarchy in a PSoC with OS. User app works at virtual
space, while DMA controller at PL works with physical one. The API and/or
driver do the transfers to/from both spaces.

This cAER software integration for DVS histogram collec-
tion and normalization calculation is requiring a considerable
amount of computational resources from ARM processor and
power consumption. In this sense, we propose in this work to
remove the cAER from the system and the USB-host interface
to the DAVIS240c and implement on the FPGA a new block
able to take events from a parallel AER DVS retina, collect
the histograms and perform the normalization in the same way
as it was done in the cAER.

Next section presents the circuit and results section com-
pares the performances of a real demonstration with both
implementations (cAER and FPGA normalizations).

III. EVENTS HISTOGRAM NORMALIZATION

In order to improve performance when using DVS for CNN
accelerators beyond 30fps, it has been designed a circuit
for FPGA able to collect events from the DVS sensor in a
histogram (in BRAM), normalize this histogram using DSP
slices, converts it to the sparsity maps format and feed this
codded histogram to the NullHop accelerator in a real-time
continuous way. The normalization to be implemented must be
the same used in both the training dataset and in the software
version of the example. This normalization responds to the
algorithm expressed mathematically at eq. (2).

S =
∑N
a=0

∑N
b=0 Fin(a, b)

c =
∑N
a=0

∑N
b=0 f(Fin(a, b))

f(X) =

{
0 ,if X=0
1 ,otherwise

mean = S/c

σ =

√∑N
a=0

∑N
b=0[Fin(a,b)−mean]2

c

Fnorm(i, j) = Fin(i,j)+3σ
6σ ,∀i, j ∈ [0, N]

(2)

Where S is the accumulation of all non-zero pixel’s values,
c is the number of pixels with non-zero values, mean is the
averaged pixel value from those greater than zero, σ is the
square-root of the variance, which is used to normalise the
pixels of the histogram to be processed by the CNN.

Fig. 4 shows the block diagram. Parallel AER DVS events
arrive to a double buffered memory (implemented on BRAM)
called (DVSmem1, SMarray1) and (DVSmem2, SMarray2).
DVSmem stores the histogram of collected events, whilst
SMarray stores a mask of those non-zero pixels. A finite
state machine (FSM) is configured to collect a number of
events (ie. 2K events) in corresponding BRAM as an histogram
(HT). When finished, it start to work in the second memory.
While the second histogram is being collected, the system keep
working on the first histogram, normalizing it according to
eq. (2) for the CNN example. This normalization requires,
in principle, calculations in floating-point domain, and then
convert the histogram in a list of non-zero pixels as an
intermediate step to generate the sparsity map that NullHop
requires as an input.

According to original normalization procedure, several com-
putation units to perform needed operations have been im-
plemented using HLS from Vivado. More precisely, division,
variance, square root and the normalization operation itself.
Instead of using floating point operations, HLS computation
units have been described using the fixed point notations

Fig. 4: DVS parallel AER events to normalized frame circuit block diagram
(top) and pipeline execution scheme (bottom).

Q24.163 for internal operations and Q16.8 for final normalisa-
tion output. Once normalization is done in the corresponding
BRAM memory, a last state machine converts its content into
a sequence of properly codded sparsity maps readable by
NullHop CNN accelerator. It can be seen in Fig. 4 the needed
time for each HLS module and the last state machine, which
is longer than the required time for collecting 2k events when
the DVS is sending events at its maximum throughput.

In order to extract the maximum performance we have
implemented as many instances of the HLS blocks as needed
to reduce the final latency for a histogram normalization.
For example, as shown in Fig. 5, the NORM block has
been replicated 22 times. These 22 NORM blocks are feed
with data coming from BRAM in consecutive clock cycles
for consecutive pixels in BRAM in order to obtain also
a continuous stream of normalized pixels coming back to
BRAM. After the penalty for the first pixel, that corresponds
to the latency of a NORM block4, one result is obtained per
clock cycle. This figure also shows the algorithm of the HLS
block.

For 64x64 histogram resolutions, down-sampled from the
DVS resolution to be used in the Roshambo experiment,
half microsecond is needed for normalizing and converting
to sparsity map compression and feeding the HullHop. This
is around x4 faster than the cAER solution running at ARM
cores, as we demonstrate in the results section.

IV. EXPERIMENTS AND RESULTS

For measuring the performance of the proposed solution
we have tested the design in an scenario where the histogram

3Qn.m means n bits for the integer part of the number and m bits for the
decimal part

4470ns for a 100MHz clock and 783ns for a 60MHz clock

Fig. 5: HLS block for NORM stage. It is instantiated 22 times in pipeline.

normalization was previously done in C++ software (from
the caer library) running under Petalinux OS on the ARM
cores of a PSoC Xilinx device for classifying hand symbols
presented to a DVS retina to play Roshambo game. The used
CNN was developed to extract the maximum performance over
the NullHop CNN accelerator in terms of MAC utilisation, as
described in [9].

Fig. 6 shows the testing scenario. A DVS retina with parallel
AER output is connected to an AER-Node board [19], plus an
OKAERtool [20] running an event-based Background Activity
Filter (BAF) [21] and monitoring through USB the output of
the DVS, whose histogram can be seen on the right part of
the laptop screen. The output of the BAF is connected to a
USBAERmini2 board [22], which monitor the stream of events
through USB in the left part of the laptop screen, and at the
same time, keep sending monitored events to the MMP module
that is running Roshambo on the NullHop CNN accelerator.
The output of the NullHop is sent to the LED’s bar to highlight
the winner class. In this picture, the hand in motion presented
to the DVS is in ”paper” gesture, and the LED that is turned
ON is the ”scissors” gesture, thus the machine wins the game.

The CNN for playing Roshambo consists of 5 convolu-
tion layers and a fully-connected-layer executed in the ARM
cores. Each convolution layer can be executed at once in the
CNN accelerator after downloading the corresponding layer
parameters and the input feature maps. Therefore, the software
controller running on the ARM cores only needs to iterate
5 times with the accelerator to write and read each feature
maps and the layer parameters using the designed AXIDMA

Fig. 6: Roshambo game scenario with DVS and NullHop.

TABLE I: FPGA resource consumption for NullHop, DVS normalisation
(DVS2SM), AXIDMA and debugging logic.

Zynq7100
(#)

LUTs
(277K)

FlipFlops
(555K)

BlockRAM
(755)

DSP
(2020)

RTC DVS2SM 50 25 4 513
NullHop 210 107 385 144
AXIDMA 5 6 11 0
Debug 1 1 0 0
Total 266 139 401 657

interface to extract the maximum performance of ≈ 8ms per
frame as described in [23].

This software controller of the ARM cores has been modi-
fied to allow the system to receive the input feature maps for
the first layer from the circuit presented in the previous section,
instead of receiving it from the AXIDMA. Therefore, with this
solution, there is no need of cAER library utilisation, neither
USB-host interface running at ARM cores. This decreases the
power consumption.

Fig. 7 shows two oscilloscope captures of NullHop solving
the Roshambo CNN at 60MHz connected to ARM cores
running at 800MHz. Top capture shows the behavior when
using cAER and DVS retina connected through USB, where
normalisation is done in software. NH idle signals if the
accelerator is working (’0’) or idle (’1’). It is highlighted
the sequence along the five convolutional layers. Running at
real-time and playing Roshambo game, the normal latency
from frame to frame measured was ≈ 10ms. Bottom capture
shows the behavior when the events histogram collection and
normalisation is done on the FPGA for the same number
of events (2k) per histogram. It can be seen how the DVS
activity is stopped if the sensor is stimulated with a high speed
object. In this case, the minimum measured time per frame’s
classification has been ≈ 6ms. This implies a 67% speed up
factor. Furthermore, when using this faster solution, the system
has been improved by allowing pipelined behaviour between
the stages of (1) events collection, (2) histogram normalization
and (3) Roshambo computation on the NullHop accelerator;
as shown in the bottom of the Fig. 7, where it is highlighted
how normalised frames wait on BRAM ready to be sent for
computation while the previous frame is being computed by
Roshambo CNN.

In Table I can be seen in the first row the available
resources for a Zynq 7100 PSoC (from Xilinx) regarding to
LUTs, flip-flops slices, BRAM and DSP slices. Following rows

Fig. 7: Scope captures for cAER histogram capture / normalisation (top) vs
FPGA HLS normalisation (middle) running Roshambo CNN on NullHop.
Pipelining performance improvement (bottom).

present the consumed resources for each part of the system.
It can be seen how the use of HLS for implementing the
normalisation has considerably increased the number of DSP
slices compared to the previous version, where only 144 DSP
slices were needed to implement the 128 MACs and other side
operations in the accelerator. There is a reasonable increment
on the number of resources for LUT, FF and BRAM for this
normalisation circuit.

The power consumption for Zynq chip running the cAER
version was of 272mW for the logic and it was increased up to
1W when the ARM cores were executing the Roshmabo game.
For the hardware version presented in this paper, the total
power consumption running the same game was of 500mW,
including the ARM cores.

V. CONCLUSIONS

Neuromorphic vision sensors, such as DVS, on deep-
learning applications allow to surpass the limit imposed by
conventional commercial cameras of 30fps. There are nu-
merous applications where faster than 30fps video sources
are required to be processed. Autonomous driving would
need specialised hardware able to detect pedestrian, cars,
traffic signs, obstacles, ..., faster than these 30fps to guarantee
the efficiency of the system. Powerful deep-learning CNN
algorithms need to compute magnificent amount of operations,
what makes it still inviable to go beyond 30fps even with
GPU based solutions. More specialized and simpler CNNs are
appearing to mitigate this problem. Therefore, by replicating as
many times as needed the number of CNNs it will be possible
to obtain faster results and in a parallel way. We propose
to use DVS retinas as a vision source for CNN accelerators
to be able to increase the fps to the limit of the accelerator
itself. In this paper, we have demonstrated that using powerful
FPGA design technology (ie. HLS) running at 60MHz, a deep-
learning system can be speed up a 67% respect to its software
competitor running at 800MHz on embedded ARM cores, with
the penalty of an extra use of 18% LUTs, 4.5% FF, 0.5%
BRAM and 25% DSP of the PSoC Zynq 7100 chip.

ACKNOWLEDGMENT

This work is supported by the excellence project from the
Spanish government grant (with support from the European
Regional Development Fund) COFNET (TEC2016-77785-P);
and by SEC project NPP (P051-15/E03) coordinated by Prof.
Delbruck. Mr. Ricardo Tapiador-Morales work has been sup-
ported by a ”Formación de Personal Investigador” Scholarship
from the University of Seville.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” arXiv preprint arXiv:1512.03385, 2015.

[3] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[4] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. Le-
Cun, “Overfeat: Integrated recognition, localization and detection using
convolutional networks,” arXiv preprint arXiv:1312.6229, 2013.

[5] N. P. Jouppi et al., “In-Datacenter Performance Analysis of a Tensor
Processing Unit,” in Proceedings of the 44th Annual International
Symposium on Computer Architecture - ISCA2017.

[6] A. Ignatov, R. Timofte, W. Chou, K. Wang, M. Wu, T. Hartley, and
L. V. Gool, “AI benchmark: Running deep neural networks on android
smartphones,” CoRR, vol. abs/1810.01109, 2018. [Online]. Available:
http://arxiv.org/abs/1810.01109

[7] P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128x128 120 dB 15 µs
latency asynchronous temporal contrast vision sensor,” IEEE Journal of
Solid-State Circuits, vol. 43, no. 2, pp. 566–576, Feb 2008.

[8] C. Brandli, R. Berner, M. Yang, S.-C. Liu, and T. Delbruck, “A 240×180
130 dB 3 µs latency global shutter spatiotemporal vision sensor,” IEEE
Journal of Solid-State Circuits, vol. 49, no. 10, 2014.

[9] A. Aimar, H. Mostafa, E. Calabrese, A. Rios-Navarro, R. Tapiador-
Morales, I. Lungu, M. B. Milde, F. Corradi, A. Linares-Barranco, S. Liu,
and T. Delbruck, “Nullhop: A flexible convolutional neural network
accelerator based on sparse representations of feature maps,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 30, no. 3,
pp. 644–656, March 2019.

http://arxiv.org/abs/1810.01109

[10] Y.-H. Chen, T. Krishna, J. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,” in IEEE International Solid-State Circuits Conference, 2016.

[11] P.-H. Pham, D. Jelaca, C. Farabet, B. Martini, Y. LeCun, and E. Culur-
ciello, “Neuflow: Dataflow vision processing system-on-a-chip,” in 2012
IEEE 55th International Midwest Symposium on Circuits and Systems.

[12] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen,
and O. Temam, “ShiDianNao,” ISCA 2015.

[13] J. Sim, J.-S. Park, M. Kim, D. Bae, Y. Choi, and L.-S. Kim, “14.6 A 1.42
TOPS/W deep convolutional neural network recognition processor for
intelligent IoE systems,” in 2016 IEEE International Solid-State Circuits
Conference (ISSCC). IEEE, 2016, pp. 264–265.

[14] B. Moons and M. Verhelst, “A 0.3-2.6 TOPS/W precision-scalable
processor for real-time large-scale ConvNets,” IEEE Symposium on VLSI
Circuits, Digest of Technical Papers, vol. 2016-Sept, pp. 1–2.

[15] B. Moons, R. Uytterhoeven, W. Dehaene, and M. Verhelst, “14.5 Envi-
sion: A 0.26-to-10TOPS/W subword-parallel dynamic-voltage-accuracy-
frequency-scalable Convolutional Neural Network processor in 28nm
FDSOI,” in 2017 IEEE International Solid-State Circuits Conference
(ISSCC), 2017, pp. 246–247.

[16] J. Lee, C. Kim, S. Kang, D. Shin, S. Kim, and H.-J. Yoo, “UNPU: a
50.6 TTOPS/W unified deep neural network accelerator with 1b-to-16b
fully-variable weight bit-precision,” in 2018 IEEE International Solid-
State Circuits Conference (ISSCC). IEEE, feb 2018.

[17] S. Yin, P. Ouyang, S. Tang, F. Tu, X. Li, L. Liu, and S. Wei, “A 1.06-to-
5.09 TOPS/W reconfigurable hybrid-neural-network processor for deep
learning applications,” in 2017 IEEE Symposium on VLSI Circuits.

[18] D. Shin, J. Lee, J. Lee, and H.-J. Yoo, “14.2 DNPU: An 8.1TOPS/W
reconfigurable CNN-RNN processor for general-purpose deep neural
networks,” in 2017 IEEE International Solid-State Circuits Conference
(ISSCC). IEEE, feb 2017, pp. 240–241.

[19] A. Yousefzadeh, M. Jabłoński, T. Iakymchuk, A. Linares-Barranco,
A. Rosado, L. A. Plana, S. Temple, T. Serrano-Gotarredona, S. B.
Furber, and B. Linares-Barranco, “On multiple aer handshaking channels
over high-speed bit-serial bidirectional lvds links with flow-control and
clock-correction on commercial fpgas for scalable neuromorphic sys-

tems,” IEEE Transactions on Biomedical Circuits and Systems, vol. 11,
no. 5, pp. 1133–1147, Oct 2017.

[20] A. Rios-Navarro, J. P. Dominguez-Morales, R. Tapiador-Morales,
D. Gutierrez-Galan, A. Jimenez-Fernandez, and A. Linares-Barranco, “A
20mevps/32mev event-based usb framework for neuromorphic systems
debugging,” in 2016 Second International Conference on Event-based
Control, Communication, and Signal Processing (EBCCSP), June 2016,
pp. 1–6.

[21] A. Linares-Barranco, F. Gómez-Rodrı́guez, V. Villanueva, L. Longinotti,
and T. Delbrück, “A usb3.0 fpga event-based filtering and tracking
framework for dynamic vision sensors,” in 2015 IEEE International
Symposium on Circuits and Systems (ISCAS), May 2015, pp. 2417–2420.

[22] R. Berner, T. Delbruck, A. Civit-Balcells, and A. Linares-Barranco,
“A 5 meps $100 usb2.0 address-event monitor-sequencer interface,”
in International Symposium on Circuits and Systems, (ISCAS), 2007.
IEEE, 2007.

[23] A. Rios-Navarro, R. Tapiador-Morales, A. Jimenez-Fernandez,
C. Amaya, M. Dominguez-Morales, T. Delbruck, and A. Linares-
Barranco, “Performance evaluation over hw/sw co-design soc memory
transfers for a cnn accelerator,” in 2018 IEEE 18th International
Conference on Nanotechnology (IEEE-NANO), July 2018, pp. 1–4.

	I INTRODUCTION
	II NullHop Accelerator
	II-A Architecture
	II-B FPGA implementation

	III Events Histogram Normalization
	IV Experiments and results
	V CONCLUSIONS
	References

