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Abstract—Deep learning has significantly advanced the state 

of the art in artificial intelligence, gaining wide popularity from 

both industry and academia. Special interest is around 

Convolutional Neural Networks (CNN), which take inspiration 

from the hierarchical structure of the visual cortex, to form deep 

layers of convolutional operations, along with fully connected 

classifiers. Hardware implementations of these deep CNN 

architectures are challenged with memory bottlenecks that 

require many convolution and fully-connected layers demanding 

large amount of communication for parallel computation. Multi-

core CPU based solutions have demonstrated their inadequacy 

for this problem due to the memory wall and low parallelism. 

Many-core GPU architectures show superior performance but 

they consume high power and also have memory constraints due 

to inconsistencies between cache and main memory. FPGA 

design solutions are also actively being explored, which allow 

implementing the memory hierarchy using embedded 

BlockRAM. This boosts the parallel use of shared memory 

elements between multiple processing units, avoiding data 

replicability and inconsistencies. This makes FPGAs potentially 

powerful solutions for real-time classification of CNNs. Both 

Altera and Xilinx have adopted OpenCL co-design framework 

from GPU for FPGA designs as a pseudo-automatic development 

solution. In this paper, a comprehensive evaluation and 

comparison of Altera and Xilinx OpenCL frameworks for a 5-

layer deep CNN is presented. Hardware resources, temporal 

performance and the OpenCL architecture for CNNs are 

discussed. Xilinx demonstrates faster synthesis, better FPGA 

resource utilization and more compact boards. Altera provides 

multi-platforms tools, mature design community and better 

execution times. 

Keywords—Deep Learning; Convolutional Neural Network; 
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I.  INTRODUCTION  

In recent years, throughout a series of breakthrough 
algorithms [1-5], convolutional neural networks significantly 
improved the state-of-the-art in large-scale image recognition 
tasks. Driven by such success, CNNs have become widespread 
across a broad range of applications including vision, object 
detection, speech recognition, autonomous driving, image 
captioning, etc. Typically CNNs consists of a large number of 
deep layers, and could involve hundreds of millions of 
parameters. Using high-end GPGPUs (General Purpose 

Graphic Processing Units), the networks are trained iteratively 
using back-propagation algorithm for days or weeks, and then 
the networks with trained weights can be deployed onto 
hardware for classification tasks. 

There has been a number of prior works [6-12] that built 
hardware on different platforms for efficient CNN 
implementation (as accelerators or complete architecture on 
hardware), such as FPGA [6-9] and ASIC (application-specific 
integrated circuits) [10-12]. ASIC or custom chip designs show 
better energy-efficiency, but may not flexibly map various 
CNN algorithms easily with the rigid circuits. On the other 
hand, FPGA platforms are much more flexible and could easily 
map any given CNN algorithm with hardware optimizations. 
For FPGAs, the designers could perform manual RTL designs 
[7], but using high-level synthesis tools could prove effective 
[8-9] in terms of design time and wide design space 
exploration. The authors in [8] employed HLS tools in Xilinx 
framework to optimize CNN implementation, while the authors 
in [9] explored Open Computing Language (OpenCL) based 
implementation in Altera framework for throughput 
optimization of CNNs. 

Since the high-level synthesis tools are developed 
differently within different frameworks of Xilinx and Altera, it 
is difficult to determine which option or FPGA chip would be 
the best candidate for certain objectives (area, speed, etc.) from 
the designer’s point of view. In this paper, we provide a 
comprehensive evaluation and comparison of the same CNN 
using both Xilinx and Altera’s OpenCL-based high-level 
synthesis tool flows. The remainder of the paper is organized 
as follows. In Section II, the OpenCL programming and 
models are described. In Section III, Altera’s OpenCL design 
flow and hardware system is discussed, while Xilinx’s 
SDAaccel design flow and hardware platform is presented in 
Section IV. LeNet-5 ConvNet [20] for MNIST database digits 
classification scenario is presented in Section V. In Section VI, 
the hardware results and implementation are compared 
between the two designs from different vendors in a 
comprehensive manner. The paper is concluded in Section VII. 

II. OPENCL FOR FPGA 

Parallel computing has considerably improved in the last 
years thanks to the technology scaling favors. From single core 
CPUs and DSP (Digital Signal Processors), well oriented to 



single-instruction-multiple-data (SIMD) vectored architectures, 
computing market changed to multicore chips in the early year 
2k when Intel and AMD started to manufacture them. 
Nevertheless, Rockwell International manufactured the first 
dual core chip with its version of the 6.502 with two cores in 
the eighties [14], sharing the chip’s pins on alternate clock 
phases. DSP architecture are oriented to speed up the signal 
processing using floating point units. Parallelism is obtained 
thanks to well oriented memory hierarchy and SIMD, very-
long-instruction-words (VLIW) and superscalar architectures 
to maximize the instructions-per-cycle ratio (IPC). In the past 
decade, parallelism improvement started to be oriented to 
multi-core architectures for general purpose computers, or 
many-core to more specific solutions, as GPGPUs. For 
example, the Tesla K80 accelerator has 4,992 cores with a 
dual-GPU design that allows up to 2.9 double precision 
TFLOPS or 8.73 single-precision TFLOPS [21]. Special 
interest has existed for the FPGAs and SoC framework that 
includes programmable logic cells oriented to embedded co-
design solutions. Recent FPGA technology is highly 
competitive allowing ASIC emulation with a considerably high 
resource necessity, such as Stratix 10 (14nm TriGate process, 
5.5M Logic Elements, up to 23 TMACS and 10 TFLOPS) [15] 
or Virtex UltraScale+ (16nm process, 3.7M Logic Cells and up 
to 21 TMACs) [16]. 

To implement a given CNN model onto FPGA hardware, 
we start from the publicly available codes in the Caffe 
framework [13]. The input image for the CNN model is 
converted to a text file from Python interface in Caffe and the 
text file is read from OpenCL host code. Using the Python 
interface in Caffe, both the input data and weights are extracted 
and fed to the OpenCL host code, on a batch of input images. 
The hardware implementation computes till the last inner 
product layer output and compares it to the expected output 
from Caffe, to ensure correct functionality. Typically, the CNN 
models in Caffe are realized using double-precision values for 
the nodes and the weights. Considering efficient hardware 
implementation, we first find out how much precision 
reduction could be achieved while having minimal degradation 
in the final classification accuracy, and this reduced precision 
will be used when the OpenCL codes are written.  

OpenCL is an open royalty-free standard for general-
purpose parallel programming across heterogeneous platforms 
[17]. Through a programming interface, OpenCL will form a 
foundation layer of a parallel computing ecosystem of 
platform-independent tools, middleware and applications. It is 
very well oriented to graphics rendering pipelines but it is 
increasing the interest of the FPGA community. OpenCL 

consists of an application-programming-interface (API) that 
coordinates parallel computation across heterogeneous parallel 
processors under the same platform. It has a programming 
language with a specified computation environment that 
supports both data and task-based parallel programming 
models. Therefore, OpenCL is a framework that includes a 
language, API, libraries and a runtime system to support 
software development. Four different models define the core 
ideas behind OpenCL: 

A. Platform Model  

The OpenCL platform consists of a host computer 
connected to several devices. Each OpenCL device is divided 
into compute units (CUs). Each CU is divided into processing 
elements (PE), where computations occur (Fig. 1). The 
OpenCL application is implemented as both host code and 
device kernel code. Each part will run in their specific 
hardware. The host code submits each kernel code as 
commands from the host to PEs through the memory hierarchy. 
When PEs of a CU execute the same sequence of instructions, 
the control flow is called to be converged. In this case, single 
instructions over multiple PEs occurs, which is in fact the same 
concept of SIMD. If one PE needs a different sequence of 
instructions, then the control flow is called to be diverged. In 
OpenCL, converged and diverged control flows may occur in 
the same kernel, providing great flexibility. 

B. Execution Model. 

OpenCL has two units of execution: kernels that execute in 
one or more platforms, and a host program that executes on a 
host computer. Kernels execute the computation through work-
items (with an associated ID), which are executed in groups 
(work-groups). The context of what the kernel executes is 
defined by the host. The host program uses the OpenCL API to 
create and manage the context. This API has a set of functions 
that enable the host interaction with devices through a 
command-queue. There are three main commands: kernel (to 
order the kernel execution), memory (data transfer between 
host and devices) and synchronization (synchronize points for 
order definition between commands). When a kernel-enqueue 
command submits a kernel for execution, an index space is 
defined. This index space is called NDRange in OpenCL, 
which corresponds to an N-dimensional index space. N is 1, 2 
or 3. The NDRange is decomposed into work-groups forming 
blocks. It is defined by three integer arrays: global size (the 
extent of the index space in each dimension), an offset index 
(initial value of indices in each dimension), and the local-size 
(size of the work-group in each dimension). 

C. Memory Model 

There are four different memory regions in OpenCL for 
work-item execution. Global memory is where all work-items 
of all work-groups have to read and write data. These accesses 
must be cached. Constant memory is a region that remains 
without changes during the kernel execution. The host 
initializes this memory. Local memory is the one used by work-
groups locally. It is shared by all work-items. It can be mapped 
into regions of the global memory. Private memory is a 
memory region that is only visible for a work-item, such that 
any other work-item cannot access this memory of a particular 
work-item. Data flow between memory regions is controlled 

 

Fig. 1: OpenCL platform model. 



through commands that the host enqueues. The memory 
consistency is guaranteed in a work-item and between a work-
group and all its work-items, but there is no guarantee of 
memory consistency between different work-groups executing 
a kernel. 

D. Parallel Computation Considerations 

In OpenCL, there are mainly two ways to parallelize a 
kernel: (1) using multiple compute-units (CUs) in parallel (see 
Fig. 3, left), and (2) vectorising data processing through SIMD 
kernels with a unique CU (see Fig. 3, right). When multiple 
CUs are used in parallel, a kernel is replicated and the 
replicated kernels work simultaneously, increasing throughput 
and, therefore, consuming global memory bandwidth and 
hardware resources. On the other hand, SIMD vectorization 
increases throughput by vectoring kernels, which allows 
processing multiple work items in a single instruction (SIMD). 
This alternative is more efficient than using several CUs 
because it only duplicates the data paths. In this paper, SIMD 
experiments are presented because the use of replicated CUs 
generates global memory bottlenecks due to many parallel 
accesses during the execution. 

 

Fig. 2: Multiple parallel CU (left) versus single CU with SIMD (right). 

E. Programming Model 

There are two supported programming models: data parallel 
and task parallel. The data parallel model defines a 
computation as a sequence of instructions applied to multiple 
elements of a memory. On the other hand, the task parallel 
model requires the kernel to be executed in a single work-item 
of a work-group. In this case, several kernels can be executed 
in parallel. Synchronization is possible between work-items of 
a work-group or through two types of enqueued commands: 
barrier (it ensures all previous commands have been executed) 

or wait-on-an-event (the command to be executed waits for a 
particular event in memory before executing itself).  

III. SCENARIO 1: ALTERA OPENCL 

Altera OpenCL (AOCL) is a framework for developing 
host applications that send kernels to be executed in parallel in 
FPGA resources. Work-groups, their work-items and memory 
models are implemented automatically in FPGA resources 
from an OpenCL description of the kernels and a C++ host 
application calling API libraries for different functionalities, 
such as: set buffers, call kernels, synchronize through events 
and read results. AOCL allows users to abstract the traditional 
hardware FPGA development flow and instead work with a 
much faster and higher-level software development flow. 
Using this design flow, it is possible to emulate OpenCL code 
in a FPGA, generating synthesis report files as timing or 
resources summaries. 

The design flow consists of two parts: host software 
application and kernel accelerator hardware on FPGA. The 
concept is that host sends data to the kernels, where complex 
calculations are accelerated. 

A. Design Flow 

The design flow for an Altera board using OpenCL consists 
of several steps. The first step is to describe the functionality of 
the kernels using C/C++ and then to optimize each kernel 
applying OpenCL directives to generate a *.cl file. In addition, 
a host application must be written in C/C++ using the 
recommended environment.  

B. Hardware Platform  

The implementation of the LeNet-5 CNN for MNIST 
handwritten digit recognition [20] has been developed on a 
Terasic DE5-Net (see Fig. 2). This board supports Altera 
OpenCL and its main characteristics include up to 8 GB DDR3 
RAM memory running at 800MHz, 72Mb SRAM running at 
550MHz, PCIe-x8 and Altera Stratix V GX-5SGXEA7N-
2F45C2 FPGA, which features are shown in Table 1. 

Table 1. Altera Stratix V-GXA7 Specs 

Logic Elements (K) 622 

M20K (Blocks / Mbits)  2560 / 50 

18-bit × 18-bit Multipliers  512 

27-bit × 27-bit Multipliers  256 

IV. SCENARIO 2: XILINX SDACCEL 

The SDAccel [18] development environment is a command 
line based tool suite for compiling OpenCL programs into a 
Xilinx FPGA device. The design flow is similar to AOCL in 
terms of host and kernel descriptions. Directives and API must 
be replaced when same project is developed for both vendor 
environments. SDAccel is only available for RedHat Linux OS 
and it works in a batch mode, where the user invokes the tool 
with a command file. These commands allow to define the 
solution name, adding the target device (only one per solution) 
and host files, creating the kernels and adding the files where 
they are implemented, creating the Xilinx OpenCL compute 
unit binary file, and building and packaging the systems. 
Several CUs per kernel can be implemented. Each CU can 
have several PEs, which emulates the SIMD architecture. One 

 

 

Fig. 2: Terasic DE5-Net board. 
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important advantage over the Altera tool is that SDAccel lets 
the programmer to test the application before compiling and 
generating the FPGA binary file. A disadvantage is that 
SDAccel is less mature than AOCL.   

A. CPU and Hardware Emulation 

SDAccel allows emulating in CPU the codesign program 
before building the system for FPGA. These methods are called 
CPU and Hardware emulation. The CPU emulation is typically 
used for functional verification. Each kernel of our solution is 
compiled into CUs that is executed as a thread on CPU. 
Hardware emulation is slower since it uses a hardware 
simulator, but this emulation reproduces the final design on 
FPGA. The main advantage of using hardware emulation is to 
avoid the long implementation times (8h on average for this 
work).   

Table 2: Virtex 7 XC7VX690T features. 

Physical Characteristics  

Logic Cells 693120 

Configurable logic blocks  

Slices 108300 

Max distributed RAM (Kb) 10888 

DSP Slices 3600 

Block RAM (blocks/Kb) 2940/52920 
 

B. Building the System 

This flow builds the system in the real hardware of the 
target device. When the compilation/implementation is 
completed, a number of files have been created to run the 
application, such as the executable, the Xilinx OpenCL binary 
container (*.xclbin) and the FPGA programming file. 

For these experiments, the Alpha Data ADM-PCIE-7V3 
[19] board (see Fig. 4) has been used under the CentOS 6.6 
operating system. This board is most powerful board that 
supports SDAccel. The main features include two 8GB ECC-
SODIMM memory up to 1333MT/s (faster than Altera DE5 
platform), one PCI Express Gen3 x8 and Xilinx Virtex 7 
XC7VX690T-2FFG1157C. The features of the FPGA are 
listed in Table 2. Besides the DSP slices, the specification of 
the FPGA is similar to that of Altera’s Stratix V-GXA7. 

V. LENET-5 AND MNIST SCENARIO 

LeNet-5 CNN [20] architecture (shown in Fig. 5) serves as 
the baseline for many recent CNN-based classification 
algorithms. It combines three architectural ideas to ensure a 

certain degree of shift, scale and distortion invariance: local 
receptive fields, shared weights and spatial sub-sampling. The 
input layer represents a size-normalized and centered image. In 
this case, the size corresponds to the size of MNIST database 
digits (28x28). The first layer is the result of a set of 
convolutions over the input image. Each pixel in C1 receives 
inputs from a set of units located in a small neighborhood of 
the previous layer. This represents the kernel of the 
convolution. In this exercise, size of the kernel is 5x5. This 
operation mimics the locally-sensitive, orientation-selective 
neurons in the cat’s visual system, discovered by Hube and 
Wiesel [21]. These receptive fields in neurons are able to learn 
and extract elementary visual features, such as edges, end-
points, and corners. The combination of these features by 
subsequent layers are able to detect higher-order features. C1 in 
this example extracts 20 features from the input image. S2 
performs a sub-sampling operation of local averaging, reducing 
the resolution of the feature maps where distinctive features are 
encoded. Typically, these convolution and sub-sampling layers 
are sequentially instantiated for feature map combinations. 
They are implemented in a bi-pyramid way: at each layer, the 
number of feature maps is increased as the spatial resolution is 
decreased. C3 is a convolution layer for 50 smaller feature 
maps and S4 is the corresponding sub-sampling layer that 
performs the same operation as that in S2. C3 combines all of 
the S2 features. The last layer of this CNN is a fully-connected 
classifier with 500 input neurons and 10 output neurons, which 
also includes a Rectification Linear Unit (ReLU). 

VI. COMPARISON STUDY 

The implementation of this Le-Net5 using the OpenCL 
framework impose some restrictions. Fig. 5 (bottom) shows the 
block diagram of the OpenCL solution. It can be seen that the 
host application, running on a computer, sends input images 
and kernel weights to the logic through PCIe interface. Data is 
then stored in the DDR memory in the platform, called “Global 
Memory”. This memory is continuously and iteratively 
accessed by the logic (FPGA) through all the parallel devices 
physically implemented in hardware. The CNN is structured in 
5 kernels (stages), where first kernel implements first layer 
convolutions and their subsampling operations (conv_pool1); 
second kernel performs the second layer convolutions (conv2), 
which is more complex since it has to take results from 20 
instances of previous layer, and perform convolutions for 50 
instances of this second layer. Then, the third kernel 
implements the second subsampling operations (pool2). The 
forth kernel has 500 instances for the classifier unit, whose 
inputs are the outputs of the previous 50 instances (ip1_relu). 
Each of these 500 devices send their output to a final layer with 
10 instances (one per digit) to categorize the winner digit in the 
classification (ip2). Each of these devices read the global 
memory, process the corresponding operation, and then write 
back the results to the global memory. Consecutive kernels 
(stages or layers of the CNN) execute in-order, which are 
controlled by special events included during OpenCL 
compilations. This architecture needs a high bandwidth DDR 
memory interface to support all required parallel instances. 
OpenCL can implement each kernel in a replicated manner as 
many times in parallel as possible, or it can execute one after 
the other sequentially if no parallelism can be implemented. As 

 

Fig. 4: Alpha-Data ADM-PCIE-7V3 board. 



more parallelism is employed, the global memory behavior 
worsens. The main difference between Altera and Xilinx 
platforms is the DDR3 on-board memory speed (800MHz for 
Altera and 1333MHz for Xilinx) as mentioned previously. 

OpenCL allows other memory implementations to avoid 
this shared memory bottleneck, like local pipes that connect 
two devices directly in the logic. Each of these pipes is 
implemented through small FIFOs as a point-to-point 
communication channel between two devices. For CNNs, these 
pipes do not represent a feasible solution because internal 
convolution layers, such as C3 in this case, have to read all the 
S2 outputs and combine them into each of the 50 C3 outputs. 
This represents 50 pipes at C3 per for each of the 20 S2 units, 
which is not viable, in terms of resource consumption, for the 
selected platforms. Therefore, we selected the global memory 
interface as the possible solution to work for both platforms, 
and we provide a comprehensive comparison. 

Three different tests have been developed for these 
platforms with the same CNN described in the previous 
section. The first test consists of comparing each FPGA 
executing each layer of the CNN without any kind of 
parallelism. The second test aims to do same measurements 
when loops are unrolled. For the last test, SIMD directives 
have been included to vectorise each layer.  

Table 3 shows the results of these three experiments for the 
two vendor platforms. Execution times, logic resources, the 
number of DSP units and block RAM that are used are shown 
per kernel. In general, execution time is improved upon 
employing more parallelism up to a limit. The limit occurs due 
to the bottleneck that the global memory accesses impose. As 
expected, the usage of logic gates and DSP units increases 
when parallelism is increased. Altera tools are able to extract 
much more parallelism than Xilinx, as it can be seen on logic 
elements /cells and DSP utilization. There are very small 

differences between unrolling and SIMD for both platforms for 
this experiment. Altera tool is able to extract more aggregation 
for SIMD than Xilinx. In fact, for Xilinx, both unrolling and 
SIMD have almost same results. 

 
Table 3: Test results: No parallelism / Unroll / SIMD 

Kernel 
Name 

Execution 
Time (ms) 

Logic Cells 
/Elem. (K) 

DSP 
slices 

BRAM 
(Kb) 

Xilinx Virtex 7 690T 
conv_ 
pool1 

3.63/1.96/1.96 4.9/6.2/5.1 11/11/11 180/216/ 
216 

conv2 7.62/4.92/4.92 4.8/4.8/4.9 11/11/11 108/144/ 
144 

pool2 0.03/0.06/0.06 3.0/4.0/3.0 4/4/4 72/144/144 

ip1_ 
relu 

0.55/0.55/0.55 4.2/4.2/4.2 11/11/11 72/72/72 

ip2 0.35/0.35/0.35 4.0/3.0/4.0 9/9/9 72/72/72 

Altera Stratix V GXA-7 
conv_ 
pool1 

1.01/1.01/0.98 145.7/42.3/73.7 8/31/57 5225/6205/ 
11200 

conv2 3.95/3.96/4.27 300.5/34.0/34.0 8/31/31 3207/4882/ 
4900 

pool2 0.08/0.07/0.13 6.9/6.9/6.8 2/2/2 279/273/ 
279 

ip1_ 
relu 

1.01/1.81/2.02 5.8/5.8/5.8 4/4/4 1471/1470/ 
1500 

ip2 0.15/0.14/0.13 5.7/5.7/5.7 4/4/4 1471/1470/ 
1500 

 

Table 4: Acceleration comparison 

Kernel 

name 

Xilinx vs 

Altera 

Acceleration 

% Acceleration  

Conv_pool1 3,59/1,94/2 259 / 94 / 100 

Conv2 1,92/1,24/1,15 92 / 24 / 15 

Pool2 -2,66/1,16/2,16 - 166 / -16 / -116 

Ip1_relu -1,83/3,29/3,67 -83 / -229 / -267 

Ip2 2,33/2,5/2,69 133 / 150 / 169 

In order to demonstrate the different DDR memory 
bandwidth limits of these two platforms, the same real-time 
experiment has been performed in both platforms. The 
experiment consists of connecting a webcam to the host 
application, which continuously reads in an image frame, 
normalizing it and resizing to 28x28 pixels using OpenCV 
libraries. The host sends kernels parameters in the beginning 
and then it iterates the process of acquiring an image frame, 
pre-processing it, sending it to the platform and checking the 
final classification results. The on-board DDR in the Altera 
platform could not support the memory bandwidth required by 
this demonstration and the time per frame is continuously 
increasing. In contrast, Xilinx platform supported this real-time 
experiment owing to the higher DDR bandwidth. Results show 
that time increase when parallelism is applied. This is due 
memory bandwidth when multiple access to global memory are 
done. Bottlenecks slow down kernel increasing execution time. 

 In general, logic elements, DSP and BRAM have 

increased when parallelized directives are applied. However, 

 

 

 

Fig. 5: LeNet-5 ConvNet architecture (top) for MNIST digit recognition 

(middle) and its OpenCL based hardware block diagram (bottom). 



the time does not get better due to bottleneck generated by 

DDR memory bandwidth. Table 4 represents the acceleration 

between vendors. Execution times for Xilinx are much better 

than Altera except for pool2 and ip1_relu stages. 

VII. REAL TIME  BEHAVIOUR 

The previous experiment does not test the behavior against 

a continuous dataflow of images. In this section a real time 

experiment has been developed with both platforms (see 

Fig.6). The experiment uses the OpenCV library in the host 

computer to capture frames and send them to the FPGA 

continuously. Altera platform for this particular MNIST 

experiment, showed a DDR bandwidth bottleneck (800 MHz), 

which implied a continuously increasing frame processing 

time, because of the stacked global memory accesses. On the 

other hand, Xilinx platform didn’t reached this DDR 

bandwidth bottleneck and needed time per frame was constant 

(DDR memory is 1,3GHz). Nevertheless, Xilinx global cycle 

time per frame was higher (table 3), but constant.  

 

 
Fig 6: OpenCV Application 

VIII. CONCLUSIONS 

This work presents a comparison between two OpenCL 
FPGA-based platforms (Altera and Xilinx) executing a 
convolutional neural network. Results show that the Altera 
platform has better execution time for each kernel than the 
Xilinx platform for all test scenarios. However, the Xilinx 
platform requires less FPGA resources than the Altera 
counterpart to execute the same CNN model. 

The real-time experiment developed for both platforms has 
demonstrated that the DDR memory bandwidth is crucial for 
the global memory communication architecture. Other memory 
architectures, such as pipes, are implemented internally to the 
FPGA without requiring any off-chip memory bandwidth, but 
it was insufficient for CNNs because of their point-to-point 
restriction. A new memory model that allows having double-
buffered memory spread on the FPGA blockRAM will avoid 
the bottlenecks identified in this work. This will allow having 
more CUs in parallel to further improve the performance. 
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