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Abstract— Spike-based motor control is very important in the 

field of robotics and also for the neuromorphic engineering 

community to bridge the gap between sensing / processing 

devices and motor control without losing the spike philosophy 

that enhances speed response and reduces power consumption. 

This paper shows an accurate neuro-inspired spike-based system 

composed of a DVS retina, a visual processing system that detects 

and tracks objects, and a SVITE motor control, where everything 

follows the spike-based philosophy. The control system is a spike 

version of the neuroinspired open loop VITE control algorithm 

implemented in a couple of FPGA boards: the first one runs the 

algorithm and the second one drives the motors with spikes. The 

robotic platform is a low cost arm with four degrees of freedom.   

I. INTRODUCTION

Nowadays, it is possible to integrate several thousands of 
artificial neurons into the same electronic device – VLSI 
(Very-large-scale integration) chip [1-2] or FPGA (Field-
programmable gate array) [3] - with the intention of emulating 
brain like behavior into hardware and apply that to robotic 
systems. They are called neuromorphic devices. The 
information flow in these devices consists of spikes or 
graduated potentials like those used by neurons to carry 
information across the organism.  

On the one hand VLSI chips were first developed by Caver 
Mead [4] in the late eighties, to mimic the behavior of neuronal 
systems. This was a full analog technology. The main features 
of these full-custom chips are noise due to thermal fluctuations, 
high speed/bandwidth usage and computation with continuous 
values as information. Many works can be shown to proof the 
advances in this field. We will focus our attention on those 
applied in robotics.  

We have neuro-inspired vision sensors [5] where a matrix 
of analog pixels mimic part of the human retina and, recently, 
some applications by joining these devices with VLSI chips 
[6]. The field of VLSI neuron is largely studied; in [7] silicon 
neuron blocks such as synapse, low pass filters, spikes 
generators and integrate and fire neurons are shown.  However, 
there is an important field to investigate where large-scale 
neuromorphic circuits and systems designs will increasingly 
combine full-custom analog and synthesized digital designs [7] 
to improve the results.  

On the other hand, using digital components such as 
FPGAs to build up complete control architectures provides 
stability, fast development times, low noise and high precision 
properties. Although a clock is inherent to digital designs, the 
information is in the firing rate which can be an accurate 
analog approach. Regarding the field of robotics, once the first 
approaches to bio inspired image sensors appeared a few years 
ago (early 2000s), the race to make a complete system began. 
Until those days, there were some advances in describing 
neuro-inspired control algorithms: in [8] a couple of them were 
shown: one to generate non-planned trajectories (VITE – 
Vector Integration To-End Point); and the other one to follow 
them in muscles (FLETE – Factorization of LEngth and 
TEnsion). Then, many related works using them were 
published [9-10].  

We have designed, implemented and tested on a single 
motor of a robotic platform a neuro-inspired controller based 
on a translated version of VITE algorithm, the Spike VITE 
[11]. With this new algorithm, we can now generate the 
trajectory to be followed by the robot with spike processing 
blocks on a multi-motor robot. This algorithm will feed the 
actuation layer using Address-Event-Representation (AER). 

By using AER protocol, all neurons are continuously 
sending information about their excitation level to the central 
system and it could be processed in real time by a higher layer. 
AER is based on the concept which mimics the structure and 
information coding of the brain. Thus, AER let us process the 
information in real time, which is an important point in motor 
control. This is one of the reasons for using it: the provided 
speed. Another reason is the scalability that allows it by 
parallel connections. 

In the next section, the vision processing system is 
described. Then, the third section shows the algorithm. In 
section four we describe the layers of the control system. Then, 
the methodology and results accomplished are shown. Finally, 
to sum up, the conclusions about the results achieved are 
exposed. 

II. VISION PROCESSING SYSTEM

One of the most important advantages of DVS (Dynamic 
Vision Sensor) is the response time from a luminosity change 
in the photoreceptor to its signaling on the output of the sensor. 
This sensor has a latency of 3µs for each of the 128x128 pixels, 



a dynamic range of 120dB, a 1.5% contrast sensitivity, a power 
consumption bellow 4mW, and a FPN of 2 (Fixed Pattern 
Noise down to 0.9%) [12]. 

The vision processing system is completed with a visual 
processing system consisting of several cells interconnected, 
like neurons that process the AER sequences [13]; the goal of 
this system is to detect, track and recognize moving objects in 
the scene. In this approach every cell tries to track one object 
obtaining its position and estimating its velocity. A new 
architecture is used: instead of using a classical fully parallel 
cell architecture, we use cascade architecture. Therefore, cells 
of one layer are distributed sequentially: the first cell receives 
the complete AER sequence and extracts, retains and processes 
several events; which and how many events are extracted 
depend on the application; non-used events are resent to the 
second cell in the layer. This procedure is repeated in the rest 
of the cells in a layer and in the rest of the layers Fig 1.a shows 
this idea. 

a) 

b) 

c) 

Fig. 1. a) Cascade Architecture, b) CMCell+VCell and c) CMCell state 

machine diagram 

The most important advantage of this architecture is that 
each cell only processes the extracted events. Furthermore, this 
scheme presents an implicit inhibition mechanism, that is, the 

events processed by one cell are eliminated from the AER 
sequence and do not interfere with the computation. This 
scheme allows reducing the AER sequence complexity from 
one cell to the next. In this system all cells use AER for 
information transmission, so each cell has 3 AER ports: one 
AER input and two AER outputs: the first output gives the 
result of events computation and the second one resends the 
refused events (see Fig. 1.b). We propose an object tracking 
procedure using the cascade architecture presented above. We 
will only use one layer, where each cell, called TrackCell, 
consists of two sub-cells: one is devoted to object’s detection 
and position determination, called CMCell,  and the other, 
called VCell, is devoted to object’s velocity estimation. Fig. 1.a 
shows these cells. 

From now on, we suppose that the input is the visual 
information provided by the silicon retina, so events 
correspond to the movement in the scene. The first cell in the 
layer receives all the events. Just after the first event is 
received, the CMCell only extracts and computes events from a 
small area around this first event (area of interest), resending 
the rest of the events to the second cell. If during a period of 
time the CMCell does not receive enough events, typically 10 
events, it will reset. On the contrary, if during this period of 
time the CMCell receives enough events from the area of 
interest, it computes the object position as the mean value 
between the last positive event location and the last negative 
event location. After the object position computation, the 
CMCell moves the center of the area of interest to the object 
position. This procedure is repeated after each event is 
received. If the CMCell receives events near the area of interest 
(a few pixels around) it will change the area size allowing 
adapting it to the object size. Fig. 1.c shows the CMCell state 
machine diagram. 

The output of the CMCell consists of an AER sequence that 
encodes the object position. This information can be used by 
the VCell to estimate the object’s velocity. The VCell takes the 
object position periodically and computes the velocity as the 
mean value of the last two object positions. Initially, the period 
used is 100ms, but it changes dynamically depending on the 
velocity computed. If the velocity is high the period will be 
reduced. On the contrary, if the velocity is low the period will 
be increased. The velocity is also transmitted using AER.  

With this scheme it is possible to track as many objects as 
TrackCells can be synthesized in a FPGA in cascade. The key 
point of this procedure is that events are processed as soon as 
they are received, without frame integration. Therefore the 
response time of each cell is very short; in fact it is the delay 
time (ns).   

III. SVITE ALGORITHM

The original VITE algorithm [8] is used for calculating a 
non-planned trajectory. It computes the difference between the 
target and the present position. It models planned human arm 
movements. In contrast to approaches which require the 
stipulation of the desired individual joint positions, this 
trajectory generator operates with desired coordinates of the 
end vector and generates the individual joint driving functions 
in real-time employing geometric constraints which 
characterize the manipulator. 



In Fig. 2 the block diagram of the algorithm and the 
translation into spikes processing blocks are shown. 

The translation into spike-processing blocks is done by 
solving the equations using Laplace transform to build up a 
system under frequency domain. As we consider the firing rate 
as the information of our neural code, this method of using 
Laplace transform allow us to supposedly accept the match 
between both concepts: firing rate and Laplace frequency.  

Fig. 2.  Up. Block diagram of the VITE algorithm. Down. Block diagram of 

the SVITE generated from existing spikes processing blocks. 

The neuro-controller running in the FPGA is composed of 
four different types of spikes processing blocks:  

• Hold and Fire (H&F): this block performs the addition
or subtraction of spike flows to compute the error
signal. The task of this block can be matched with a
neuron synapse [14]. This block has two inputs: one
excitatory coming from the visual processing layer and
one inhibitory from the end-block of the algorithm.

• Spikes low pass filter (LPF): the behavior of the block
is the same as an analog classical low pass filter but it
operates with the spike’s input firing rate. The result of
this block is a uniform distribution of the spikes input
[14]. There are two filter blocks in the SVITE
algorithm: one at the H&F’s output and another one
included in the GO Block.

• GO Block: the main function of this block is to control
the speed of the movement and also to be the gate of it.
It is done by modifying the input firing rate. We inject
spikes according to a user parameter which define the
speed desired. The behavior of this block can be
matched with an excitatory neuron.

• Integrate and Generate: this block is the analogous of
the Integrate-and-Fire in VLSI designs but it is made
by digital components [14].

From a biological point of view, this algorithm conforms 
something similar to a forward model and evaluates the 
corollary discharge with the Integrate and Generate block. So, 
no sensory discrepancies are noticed within this algorithm as it 
was expected without feedback from the robot. The assumption 
is that the commanded position is reached.   

From a classic control theory, this algorithm cannot be 
exactly matched with any of the traditional controllers such as 
Proportional, Derivative or Integral. If we consider the GO 
block as a disturbance and the Integrate and Generate as the 
robot, the system could be matched with a pseudo-proportional 
control.     

IV. SPIKE-PROCESSING MOTOR SYSTEM 

The DVS AER retina delivered a continuous events flow to 
the system. Applying a cascade architecture processing layer to 
these events flow, the output of a CMCell meets the center of 
an object. Therefore, each output event of this cell plays the 
role of the target robot position. So, the vision processing 
system will deliver the reaching position to the control system.  

The first layer is the processing one centered on SVITE 
algorithm. It receives the target position from the visual 
processing layer. The algorithm can be replicated in many units 
as degrees of freedom the robot has. In this paper, we have four 
algorithms calibrated for each movement; having different 
algorithms for each joint allows an individual speed control to 
achieve synchronized movements. The interface with the next 
layer is managed by the AER protocol. There are four different 
addresses transmitted: one for each motor of the robot.    

The last layer is the actuation one where the commanded 
position is received and adapted to feed the motors of the robot. 
We propose to use PFM (Pulse Frequency Modulation) to drive 
the motors because it is intrinsically a spike-based solution 
almost identical to the solution that animals and humans use in 
their nervous systems for controlling the muscles. PFM 
modulation uses the firing rate to run the motors, so there is no 
transformation to do; the spikes are delivered in real time to the 
motors with a little expansion to avoid the spike filtering by the 
motor.  

V. METHODOLOGY 

The setup to check the neuromophic architecture (Fig. 3) 
includes the DVS retina, all the layers:  the AER_Node board 
to implement both the visual object detection and tracking and 
the neuro-inspired SVITE controller; 

Fig. 3.  Complete setup with the yellow robotic arm, AER_Robot board 

(left) AER_Node board (middle), and monitor board (right). 

the AER_Robot board to drive the motors with spikes, and the 
USBAERmini2 for monitoring spikes and visualize them in 
jAER on the computer screen.  

The Spartan 6 XC6S150LX FPGA located at the AER-
Node board will run the SVITE (Spike Vector Integration To-
End point) algorithm and the visual processing system. The 
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four replicated algorithms will generate the trajectories that 
should be followed by the robotic arm’s joints. The AER-Node 
board also includes a SPI (Serial Peripheral Interface Bus) 
plugin to communicate with the computer for configuration 
purpose; with this interface, the speed parameters can be fixed.  

The plane seen by the DVS retina is divided in a grid of 
128x128 elements. When the object is detected, the visual 
processing system delivers the proper area AER address. Then, 
an interface before the SVITE algorithm matches the address 
received with four different targets according to each joint 
angle to reach. In the whole process, the targets are computed 
as a fixed firing rate.     

VI. RESULTS

Fig 4 shows SVITE response for a real motor under a fixed 
reference. For these results the target position of the robot has 
been generated with a VHDL spikes generator. Fig 4 top shows 
the target position and the evolution of the motor in time. It can 
be seen how the motor reaches the target position by applying a 
PFM signal obtained from the SVITE with a fixed GO block 
slope of 500%. Fig 4 bottom shows that different PFM 
responses can be obtained depending on the slope programmed 
in the GO block. 

Fig. 4.  Top: SVITE motor response (commanded position) under a PFM 

output (speed profile) for a reference fixed position (target). Bottom: output 

PFM expanded signals driven to motors for different GO slopes. 

When applying this SVITE algorithm to each joint of the 
arm robot the result is a combination movement of all the joints 
reaching the target position in parallel. Robot trajectory 
represents the combination of the different joints speed 
profiles. 

VII. CONCLUSIONS

This paper presents a complete neuromorphic systems 
totally governed by spikes: from dynamic vision sensor, 
through spike-based cascade architecture of vision processing 

for object detection and tracking, to a neuro-inspired motor 
control algorithm implemented in the spike-domain (SVITE). 

A Live Demonstration of the complete system will allow 
other researchers to see and interact with the vision sensor to 
make the robot move accordingly. 
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