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Efficient spectral domain MoM for the design
of circularly polarized reflectarray antennas

made of split rings
Rafael Florencio, Rafael R. Boix, and José Encinar,

Abstract—The Method of Moments (MoM) in the spectral
domain is used for the analysis of the scattering of a plane
wave by a multilayered periodic structure containing conducting
concentric split rings in the unit cell. Basis functions accounting
for edge singularities are used in the approximation of the
current density on the split rings, which makes it possible
a fast convergence of MoM with respect to the number of
basis functions. Since the 2-D Fourier transforms of the basis
functions cannot be obtained in closed-form, judicious tricks
(controlled truncation of infinite summations, interpolations, etc.)
are used for the efficient numerical determination of these Fourier
transforms. The implemented spectral domain MoM software
has been used in the design of a circularly polarized reflectarray
antenna based on split rings under the local periodicity condition.
The antenna has been analyzed with our spectral domain MoM
software, with CST and with HFSS, and good agreement has
been found among all sets of results. Our software has proven
to be around 27 times faster than CST and HFSS.

Index Terms—Multilayered media, moment methods, periodic
structures, reflectarrays, circular polarization.

I. Introduction

REFLECTARRAY antennas are an interesting alternative
to reflector antennas and microstrip arrays owing to

their versatile radiation performance, low profile, light weight,
ease of fabrication, simplified feeding system, etc. [1]. In the
particular case of circular polarization (CP) reflectarrays, the
variable rotation technique (VRT) introduced by Huang and
Pogorzelski is a design approach that has proven to be very
successful [2]. In the frame of this technique, each element
of the reflectarray is rotated a different angle to achieve the
adequate phase shift in the impinging circularly polarized wave
that makes it possible to generate the prescribed radiation
pattern after reflection. The VRT requires that the reflection
coefficients of the two orthogonal linear components of the
impiging wave electric field are of equal magnitude and 180◦

out of phase in order to keep the sense of circular polarization
(LHCP to LHCP or RHCP to RHCP) after reflection [2], [3].
One reflectarray element that has turned out to be especially
suitable for CP applications is that based on split rings. Han
et al. used the VRT and single split rings to design a Ka-
band RHCP reflectarray at 31.75 GHz with measured cross-
polarization level below 40 dB at broadside [4]. Stacked split
rings of different size were used in [5] to design a dual

frequency RHCP reflectarray operating in the C and Ka bands.
Smith et al. [6] designed a single layer dual frequency CP
reflectarray by using an element with two concentric split
rings. The inner rings and the VRT were used to adjust the
elements phase at 29.75 GHz for RHCP radiation, while the
outer rings and the VRT were used at 19.95 GHz for LHCP
radiation. An extension of this work was presented in [7]
where the dual frequency CP reflectarray was combined with
an FSS made of non-split rings to combine the operation of
the reflectarray with that of a second CP microstrip array
antenna working at L band. Zhao et al. used the single layer
element based on two concentric rings and the VRT to design
a broadband CP reflectarray at a center frequency of 10 GHz
with a bandwidth larger than 30% for 1-dB gain variation, and
a bandwidth larger than 40% for an axial ratio smaller than
3-dB [8]. In all previous papers dealing with CP applications,
the elements of the reflectarrays consist of symmetric split
rings with two gaps and one axis of mirror symmetry. Zhang
et al. proposed in [9] the use of non-symmetric single gap split
rings which can be used as phasing elements for both linear
polarization (LP) and CP reflectarray operation. By using this
element, a LP reflectarray was designed at 20 GHz with a
bandwidth of 23% for a 1-dB gain variation and an aperture
efficiency of 60%.

In the design of a CP reflectarray antenna made of split
rings, the use of the VRT requires to adjust the size of the
gaps and their orientation for every single element in order to
achieve the required phase shift in the impinging circularly
polarized wave, and in order to ensure a phase difference
of 180◦ in the reflection coefficients of its two orthogonal
linear components. When estimating the gap size and their
orientation in each element, it is customary to assume that the
elements are located in a periodic environment, which is called
the local periodicity assumption [10], [11]. The validity of this
assumption is justified by the fact that leads to reflectarray
designs in which the simulated performance agrees very well
with the measured performance [5], [7], [8]. The design of a
midsize CP reflectarray antenna made of split rings under the
local periodicity assumption requires the analysis of a large
number of different multilayered periodic structures owing to
the wide variety of gap sizes and orientations that have to be
adjusted in the split rings of the different reflectarray elements
for phase adjustment [7]. Owing to this, a powerful numerical
tool is needed for the analysis of these multilayered periodic
structures.

In this paper we apply the Method of Moments (MoM) in
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the spectral domain to the analysis of the scattering of a plane
wave by a multilayered periodic structure including concentric
split rings in the unit cell. The implemented MoM software
is subsequently used in the design of a circularly polarized
reflectarray antenna made of split rings. When applying the
spectral domain MoM, the 2-D Fourier transforms of the
basis functions are expressed as infinite summations of Hankel
transforms. This Hankel transform approach was used in the
past in conjunction with the spectral domain MoM for the
determination of the resonant frequencies of microstrip ring
resonators [12], the input impedance and radiation patterns
of single and stacked annular-ring microstrip antennas [13],
[14], the resonant frequencies of shielded single and coupled
microstrip ring resonators [15], [16], and the radar cross-
section of concentric annular microstrip rings [17]. However,
to the authors’ knowledge, it has never been used for mi-
crostrip split rings and for multilayered structures in periodic
environments. We have only found one paper dealing with
the analysis of microstrip split ring resonators in which a
magnetic wall approximate model is used for the determination
of the resonant frequencies, and where effective dimensions
are introduced to account for edge effects [18]. Whereas
most papers dealing with the analysis of microstrip ring
structures use either magnetic wall cavity mode functions
[13], [19] or subsectional piecewise functions [15], [17] as
basis functions for the electric current density on the rings,
in this paper we have used basis functions that account for
edge singularities [16], [19] since these basis functions provide
a fast convergence of MoM with respect to the number of
basis functions, which implies that only small MoM matrices
have to be inverted. Since the Hankel transforms of the edge
singularity basis functions cannot be obtained in closed form,
we have used especially tailored quadrature rules for their
numerical computation, which provide very accurate results
with a small number of quadrature points. Also, we have
introduced judicious stop criteria for the summation of the
infinite series leading to the 2-D Fourier transforms of the
basis functions, and we have finally carried out Chebyshev
interpolations of these Fourier transforms as a function of the
spectral radial variable. As a result of all these strategies,
we have developed a very efficient spectral domain MoM
approach for the analysis of multilayered periodic structures
containing split rings. The spectral domain MoM software has
been used in the design of a circularly polarized reflectarray
antenna and the results obtained have been compared with
results provided by commercial softwares CSTr and HFSSr.
Good agreement has been found between the three sets of
results, our software being between one and two orders of
magnitude faster than CSTr and HFSSr.

II. Numerical procedure

Figs. 1(a) and (b) show a multilayered periodic structure
backed by a ground plane. Concentric conducting split rings
are located in each unit cell, and are printed on the upper layer.
The center of the rings has been chosen to be coincident with
the geometrical center of the unit cell in the z = 0 plane.
The conducting rings and the ground plane will be assumed

to be perfect electric conductors (PEC). In a generic case,
there would be R concentric rings in the unit cell (R = 2 in
Fig. 1(b)). Also, each ring would be split into S arcs (S = 2 in
Fig.1(b)) so that the total number of arcs in the unit cell would
be L = RS (L = 4 in Fig. 1(b)). Let ρ1l and ρ2l be the inner
and outer radius of the l-th arc respectively (l = 1, . . . , L), and
let wl =ρ2l − ρ1l be the width of the l-th arc. The two ends of
the l-th arc are characterized by the angles ϕ1l and ϕ2l, such
that ϕ1l<ϕ2l. The angle ϕkl (k = 1, 2; l = 1, . . . , L) is the angle
subtended between the k− th end of the l-th arc and the semi-
infinite line directed along the positive x axis with origin at
the center of the ring. The angle ϕkl is taken as positive if,
starting from the x-directed semi-infinite line, it is drawn in
the counterclockwise sense, and is taken as negative if it is
drawn in the clockwise sense (e.g., in Fig. 1(b), ϕ21, ϕ12, ϕ22,
ϕ13 and ϕ23 are positive, but ϕ11, ϕ14 and ϕ24 are negative).
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Fig. 1. Two-layered periodic structure. The unit cell contains two concentric
split rings with different axes of mirror symmetry. A plane wave impinges on
the multilayered periodic structure. (a) Side view. (b) Top view.

In the particular cases treated in this paper, we will assume
that each individual split ring of the periodic structure has an
axis of mirror symmetry going through the center of the ring
(in the case of Fig. 1(b), this means that ϕ21 − ϕ11=ϕ22 − ϕ12
and ϕ12 − ϕ21= 360◦+ ϕ11 − ϕ22, and that ϕ23 − ϕ13=ϕ24
− ϕ14 and 360◦+ ϕ14 − ϕ23=ϕ13 − ϕ24). For the r-th ring
(r = 1, . . . ,R), this mirror symmetry axis makes an angle
αr (−180◦ ≤αr< 180◦) with the semi-infinite line directed
along the positive y axis with origin at the center of the
ring (see Fig. 1(b)). The angle αr is taken as positive if,
starting from the y-directed semi-infinite line, it is drawn in the
counterclockwise sense, and is taken as negative if it is drawn
in the clockwise sense (e.g., in Fig. 1(b), α1 and α2 are both
positive). Please note that the restriction introduced by these
mirror symmetry axes is not necessary in the mathematical
derivations presented in the rest of this section.

The concentric split rings of the periodic structure are
printed on a multilayered substrate containing Nl layers (Nl =
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2 in Fig. 1(a)). The i-th layer has a thickness hi and a complex
permittivity εi = ε0εr,i(1 − j tan δi) (i = 1, . . . ,Nl). In the
following, a time dependence of the type ejωt will be assumed
and suppressed throughout.

As commented in the introduction, the unit cell of the
multilayered periodic structure of Figs. 1(a) and (b) has been
used as constituent element of several CP reflectarray antennas
[6]–[8]. In the design of a CP reflectarray antenna under the
local periodicity assumption, each cell is characterized by
means of a CP 2 × 2 complex reflection matrix, RCP, which
relates the RHCP and LHCP components of the reflected and
incident electric fields when a plane wave impinges on the
cell surrounded by a periodic environment. In this paper, this
impinging plane wave is assumed to propagate in an arbitrary
incidence direction given by the angular spherical coordinates
θinc and ϕinc (see Fig. 1(a)). If Eref

RHCP and Eref
LHCP are the RHCP

and LHCP complex components of the reflected electric field,
and Einc

RHCP and Einc
LHCP are the RHCP and LHCP complex

components of the incident electric field, then(
Eref

RHCP
Eref

LHCP

)
= RCP ·

(
Einc

RHCP
Einc

LHCP

)
(1)

where

RCP =

(
RRHCP,RHCP RRHCP,LHCP
RLHCP,RHCP RLHCP,LHCP

)
. (2)

When writing (1), we assume that the plane wave impinging
on the periodic structure does not generate grating lobes
after reflection, which requires that the condition max(a, b) <
λ0/(1 + sin θinc) (λ0 = 2π/ω

√
µ0ε0) is fulfilled, a and b being

the periods of the unit cell in the x and y directions respectively
(see Fig. 1(b)).

A. Spectral domain MoM formulation

In order to obtain the matrix RCP of (2) for the multilayered
periodic structure of Figs. 1(a) and (b), we need to obtain the
scattered electric field for impinging plane waves with both
RHCP and LHCP polarizations. These scattered electric fields
can be obtained in terms of current density excited at the
metallized interface z = 0, J(x, y), by the impinging waves.
Let Ems(x, y, z) be the electric field generated in all space
by a plane wave impinging on the multilayered substrate of
Figs. 1(a) and (b) in the absence of the conducting split rings.
The current density J(x, y) induced on the split rings will be
the solution of the following electric field integral equation
(EFIE) [20]

ẑ ×
[
Ems(x, y, z = 0) +

+∞∑
m=−∞

+∞∑
n=−∞

∫
S mn

G
E

(x − x′, y − y′, z = 0, z′ = 0) · J(x′, y′)dx′dy′
]

= 0 (3)

(x, y) ∈ S 00

where S mn (m, n = . . . ,−1, 0, 1, . . .) is the metallized portion of
the z = 0 plane within the mn-th periodic unit cell, and G

E
is

the non–periodic dyadic Green’s function of the multilayered
substrate [21]. Since J(x, y) is a Floquet-periodic function of
x and y, in order to solve the EFIE of (3), we only need

to determine J(x, y) within one unit cell, e. g., the cell C00
covering the rectangular domain {0 ≤ x ≤ a; 0 ≤ y ≤ b}. For
that purpose, we expand J(x, y) in C00 in terms of known
basis functions Jlq(x, y) (l = 1, . . . , L; q = 1, . . . ,Nb) as shown
below

J(x, y) =

L∑
l=1

Nb∑
q=1

clqJlq(x, y) (4)

where Jlq(x, y) (q = 1, . . . ,Nb) is the set of Nb basis functions
used to approximate the current density on the l-th arc of the
C00 unit cell. When (4) is introduced in (3) and Galerkin’s
version of MoM is applied, the following system of linear
equations is obtained for the unknown coefficients clq [20]

L∑
l=1

Nb∑
q=1

Γkl,pqclq = ekp (k = 1, . . . , L; p = 1, . . . ,Nb). (5)

If we invoke Parseval’s identity for 2-D Fourier transforms,
the MoM matrix entries Γkl,pq of (5) can be expressed in the
spectral domain as double infinite summations given by [22]

Γkl,pq =ab
+∞∑

m=−∞

+∞∑
n=−∞

[(̃
Jd

kp(kxm, kyn)
)∗]t

· G̃
E,c

(kx = kxm, ky = kyn, z = 0, z′ = 0)

· J̃d
lq(kxm, kyn) (6)

where G̃
E,c

(kx, ky, z = 0, z′ = 0) is the continuous 2-D
Fourier transform of G

E
(x, y, z = 0, z′ = 0) [21], kxm =

k0 sin θinc cos ϕinc +2πm/a, kyn = k0 sin θinc sin ϕinc +2πn/b,
k0 = 2π/λ0 and J̃d

lq(kxm, kyn) is the discrete 2-D Fourier
transform of Jlq(x, y), which is given by

J̃d
lq(kxm, kyn) =

1
ab

∫
S 00

Jlq(x, y) e−j(kxm x+kyny)dxdy (7)

Finally, the coefficients ekp of the system of equations (5)
can be obtained in the spectral domain as

ekp = − ab
[(̃

Jd
kp(kx0, ky0)

)∗]t
· Ems(x, y, z = 0)

× e−jk0(sin θinc cosϕinc x+sin θinc sinϕincy) (8)

where the factor e−jk0(sin θinc cosϕinc x+sin θinc sinϕincy) has been explic-
itly included in (8) to absorb the dependence of Ems(x, y, z = 0)
on x and y.

Equations (5) to (8) provide the spectral domain MoM
formulation for the determination of the vector function J(x, y)
of (3) and (4). The problem with this formulation is that the
discrete 2-D Fourier transforms J̃d

lq(kxm, kyn) of (6) (defined in
(7)) cannot be obtained in closed form, even for the simplest
choice of basis functions in (4) (i.e., a constant value for the
two components of Jlq(x, y) on the surface of the split rings
of Figs. 1(a) and (b)). In the following subsection, we will see
how to tackle this problem.

B. Basis functions and 2-D Fourier transforms

Fig. 2 shows the l-th arc (l = 1, . . . , L = 4) of the unit cell
C00 of Fig. 1(b). In Fig. 2 we have defined a shifted system
of coordinates {x′, y′, z′} with origin at the center of the unit
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Fig. 2. Top view of the l-th arc in the left unit cell of Fig. 1(b). Radial and
angular dimensions of the l-th arc are shown.

cell in the plane z = 0. We are going to introduce shifted
polar coordinates ρ′ and ϕ′, which are related with the original
coordinates x and y as

x =
a
2

+ ρ′ cos ϕ′ (9)

y =
b
2

+ ρ′ sin ϕ′ (10)

The unit vectors linked to the shifted polar coordinates are
given by

ρ̂′ = cos ϕ′ x̂ + sin ϕ′ ŷ (11)
ϕ̂′ = − sin ϕ′ x̂ + cos ϕ′ ŷ (12)

In the split rings used in CP reflectarray antennas, the
condition wl =ρ2l − ρ1l� (ρ1l + ρ2l)/2 (see Fig. 2) is usually
fulfilled (i.e., the width of the rings is usually much smaller
than their mean radius) [6]–[8]. Assuming this condition holds,
we are going to neglect the radial component of the basis
functions Jlq(x, y) of (4), Jlq(x, y) ·ρ̂′, by comparison with their
azimuthal component, Jlq(x, y) · ϕ̂′. Also, we will assume that
the azimuthal component of Jlq(x, y) can be factored in terms
of independent functions of ρ′ and ϕ′, i.e., we will assume
that the functions Jlq(x, y) can all be mathematically written
as

Jlq(x, y) = fl(ρ′)glq(ϕ′)ϕ̂′ (13)
(ρ1l<ρ

′<ρ2l; ϕ1l<ϕ
′<ϕ2l)

As we will see in Section III, the assumption shown in (13)
is justified by the fact that leads to values of the matrix RCP in
(2) that match the values provided by the commercial software
CSTr. Although the radial component, Jlq(x, y) ·ρ̂′, of Jlq(x, y)
has been neglected in (13), we would like to point out that this
component can be easily accommodated in the mathematical
formulation presented in the rest of this subsection.

Since the functions glq(ϕ′)ϕ̂′ of (13) are periodic functions
of ϕ′ with period 2π, these functions can be expanded as
Fourier series of ϕ′ as shown below

glq(ϕ′)ϕ̂′ =

+∞∑
i=−∞

g̃i
lq ejiϕ′ (ϕ1l<ϕ

′<ϕ2l) (14)

where

g̃i
lq =

1
2π

∫ ϕ2l

ϕ1l

glq(ϕ′)ϕ̂′ e−jiϕ′dϕ′ (15)

Now, let us introduce the polar discrete spectral coordinates
kρ,mn and kϕ,mn given by

kρ,mn =

√
(kxm)2 + (kyn)2 (16)

kϕ,mn = arctan
(

kyn

kxm

)
(17)

If (9) to (14), (16) and (17) are introduced in (7), after some
manipulations, it is possible to express J̃d

lq(kxm, kyn) as

J̃d
lq(kxm, kyn) =

2π e
−j

(
kxma+kynb

2

)
ab

×

{
g̃0

lq f̃ 0
l (kρ = kρ,mn) +

+∞∑
i=1

e−jiπ/2 f̃ i
l (kρ = kρ,mn)

[
ejikϕ,mn g̃i

lq + e−jikϕ,mn
(̃
gi

lq

)∗ ]}
(18)

where f̃ i
l (kρ) (i = 0, 1, . . .) are Hankel transforms of order i of

the functions fl(ρ′) of (13), which can be expressed as

f̃ i
l (kρ) =

∫ ρ2l

ρ1l

Ji(kρ ρ′) ρ′ fl(ρ′)dρ′, (19)

and where the function Ji(·) of (19) is a Bessel functions of
first kind and order i.

Although the expression (18) for the computation of
J̃d

lq(kxm, kyn) looks simpler than (7), it presents two drawbacks.
First, the functions f̃ i

l (kρ) cannot be obtained in closed form,
even for the simplest choice of fl(ρ′) (e.g., a constant value
in the interval ρ1l<ρ

′<ρ2l). Second, (18) involves the determi-
nation of an infinite series, which has a deleterious impact on
the computation of J̃d

lq(kxm, kyn) by means of (18).
In this paper, the functions chosen for Jlq(x, y) are entire

domain basis functions which account for the singularities of
J(x, y) at the edges of the arcs of Fig. 1(b). It is well known
that these functions ensure a fast convergence of the spectral
domain MoM with respect to the number of basis functions
(LNb in (4)) [16], [19], [20], as will be demonstrated in Section
III. The particular functions chosen for fl(ρ′) and glq(ϕ′) can
be written as

fl(ρ′) =
1√

1 −
(

2
ρ2l−ρ1l

[
ρ′ −

ρ2l+ρ1l
2

])2
(20)

(l = 1, . . . , L)

glq(ϕ′) =

√
1 −

(
2

ϕ2l − ϕ1l

[
ϕ′ −

ϕ2l + ϕ1l

2

])2

× Uq−1

(
2

ϕ2l − ϕ1l

[
ϕ′ −

ϕ2l + ϕ1l

2

])
(21)

(l = 1, . . . , L; q = 1, . . . ,Nb)

where Uq−1(·) is a Chebyshev polynomial of second kind and
degree q − 1.

The integrals of (15) can be obtained in closed form for
the functions glq(ϕ′) of (21), and their expression is given
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in the Appendix A. However, the integrals of (19) cannot
be obtained in closed form for the functions fl(ρ′) of (20).
Fortunately, we have checked these latter integrals can be
numerically obtained within very reasonable CPU times by
means of Gauss-Chebyshev quadrature rules. In particular,
when the functions fl(ρ′) of (20) are introduced in (19), the
integrals can be rewritten as

f̃ i
l (kρ) =

∫ +1

−1

hi
l(kρ, t)
√

1 − t2
dt (22)

where

hi
l(kρ, t) =

[ρ2l − ρ1l

2

]
Ji

(
kρ

{[ρ2l − ρ1l

2

]
t +

[ρ2l + ρ1l

2

]})
×

{[ρ2l − ρ1l

2

]
t +

[ρ2l + ρ1l

2

]}
(23)

The integrals of (22) are amenable to be computed by means
of Gauss-Chebyshev quadrature rules [23, Eqn. 25.4.38]. In
particular, the integrals should be approximately obtained by
means of the closed-form formula

f̃ i
l (kρ) ≈

Nqp∑
j=1

η jhi
l(kρ, t = t j) (24)

where η j = π/Nqp and t j = cos
(
(2 j − 1)π/2Nqp

)
( j =

1, . . . ,Nqp) ( j = 1, . . . ,Nqp). Since the functions hi
l(kρ, t) are

non-singular smooth functions of t in the interval −1 ≤ t ≤ +1,
a low number of quadrature points, Nqp, should suffice to
obtain f̃ i

l (kρ) with a large accuracy. This has been confirmed
by numerical simulations, as will be shown in Section III.

Concerning the infinite series of (18), its convergence is
strongly dependent on the value of kρ,mn. The larger the
value of kρ,mn, the larger the number of terms that has to be
retained in the series of (18) for an accurate determination of
J̃d

lq(kxm, kyn). Let us see how the convergence of this infinite
series depends on kρ,mn. If we assume that a ≈ b (which holds
in practical cases for most reflectarray antennas), by virtue of
the mean value theorem for definite integrals, we can write
that (see [23, Eqn. 9.3.1])

| f̃ i
l (kρ = kρ,mn)||i|� ∝

∣∣∣∣Ji

(
kρ,mn

(ρ2l + ρ1l

2

)) ∣∣∣∣
|i|�

≈

∣∣∣∣Ji

(
kρ,mna

2

) ∣∣∣∣
|i|�
∝

(
ekρ,mna

4i

)i

= ei ln( ekρ,mna/4i) (25)

which indicates that the series of (18) has an exponen-
tial convergence provided ekρ,mna/4i ≤ 1, i. e., provided
i ≥ ekρ,mna/4. Numerical simulations have shown that the
infinite series of (18) has to be added in the interval 1 ≤
i ≤ ekρ,mna/4 + 8 for an accurate estimation of J̃d

lq(kxm, kyn).
Therefore, the larger kρ,mn, the larger the number of terms to
be retained in the series.

In practice, the computation of Γkl,pq requires to truncate
the infinite summations of (6) within the intervals −Nmax 6
m, n 6 +Nmax. If we assume that a ≈ b, the maximum value
of kρ,mn we will have to use in (6) after the truncation will be
(see (16))

kmax
ρ,mn =

√
(kmax

xm )2 + (kmax
yn )2 ≈

√
2

2πNmax

a
(26)

which means the maximum number of terms that will be
necessary to retain in the infinite series of (18) will be

imax =
ekmax
ρ,mna

4
+ 8 ≈

π eNmax
√

2
+ 8 (27)

For the cases treated in the results section, we have used
Nmax = 50, which leads to imax ≈ 310 when using (27). For
our purposes, this is the worst case scenario in the evaluation
of (18), i.e., any evaluation of J̃d

lq(kxm, kyn) within −Nmax 6
m, n 6 +Nmax will require to retain at most 310 terms in the
computation of the infinite series of (18) when Nmax = 50.

Apart from the analytical stop criterium established above
for the summation of the series of (18) (1 ≤ i ≤ ekρ,mna/4+8),
one additional fact that helps to reduce the CPU time required
in the computation of this series is a well known property of
Bessel functions, according to which Ji(x) ≈ 0 if x < xth = Cthi
when i > Nth. Numerical simulations show this property holds
for Nth around 10 and Cth around 1. According to (19), this
property of Bessel functions implies that f̃ i

l (kρ = kρ,mn) ≈ 0
in (18) when i > Nth and (kρ,mna)/2 < Cthi, which makes it
unnecessary the evaluation of a large number of summation
terms in the numerical computation of the series leading to
J̃d

lq(kxm, kyn) by means of (18). In Section III we will present
a numerical method that makes it possible to easily estimate
two new quantities dth(l) and bth(l) (which are a function of
ρ1l and ρ2l) for which f̃ i

l (kρ) ≈ 0 if kρa < dth(l)(i − bth(l))
and i ≥ bth(l). According to this, it will only be necessary to
compute f̃ i

l (kρ = kρ,mn) in the interval

kmin
ρ,mn(i) =

dth(l)(i − bth(l))
a

≤ kρ ≤ kmax
ρ,mn (28)

when i ≥ bth(l). For i < bth(l), we will have to compute f̃ i
l (kρ =

kρ,mn) in the interval kmin
ρ,mn(i) = 0 ≤ kρ ≤ kmax

ρ,mn.
The integrals f̃ i

l (kρ) of (19) are a function of kρ, ρ1l and
ρ2l for each value of i. In most applications of reflectarray
antennas the distances ρ1l and ρ2l (l = 1, . . . , L) remain fixed
from element to element and the angles ϕkl (k = 1, . . . , S ; l =

1, . . . , L) and αr (r = 1, . . . ,R) are varied to obtain the required
phase shifts. So, a large amount of CPU time can be saved in
the design of a large reflectarray antenna if the functions f̃ i

l (kρ)
(l = 1, . . . , L; i = 0, . . . , imax) are interpolated as a function
of kρ for fixed values of ρ1l and ρ2l, and the interpolations
are subsequently used when adjusting the angles ϕkl and αr

in each element. The interpolations have to be performed
in the interval kmin

ρ,mn(i) ≤ kρ ≤ kmax
ρ,mn for each value of l

and i. In practice, we have divided the required interpolation
intervals into Nint subintervals, and we have used Chebyshev
polynomials up to seventh-degree in the interpolation in each
subinterval. In Section III we will see that a maximum number
of Nint = 80 subintervals suffices to obtain interpolated values
of f̃ i

l (kρ) within four significant figures, and that the number
of required subintervals Nint decreases as i increases, which is
a consequence of the increase of kmin

ρ,mn(i) (and therefore, of the
reduction of the width of the original interpolation interval) as
i increases.

III. Numerical results and validations
Figs. 3(a) and (b) show the relative errors made in the eval-

uation of f̃ 0
l (kρ) and f̃ 100

l (kρ) by means of (24) as a function
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(a)

(b)

Fig. 3. Magnitude of the relative errors in the computation of (a) f̃ 0
l (kρ) and

(b) f̃ 100
l (kρ) by means of (24). The relative errors are plotted as a function of

the number of quadrature points Nqp employed in (24). Parameters: a = b = 5
mm; ρ1l= 1.85 mm; ρ2l= 2.05 mm.

of kρ, and as a function of the number of Gauss-Chebyshev
quadrature points Nqp employed in (24). The reference values
used for f̃ 0

l (kρ) and f̃ 100
l (kρ) have been computed by means

of the double exponential quadrature rule with 203 integration
points (level of the quadrature rule M = 5), since this is a
numerical procedure which is particularly accurate when used
in the integration of functions with integrable singularities at
the end points of the integration interval [24]. Please note that a
value of Nqp equal to 10 suffices to provide 4 significant figures
in the values of f̃ 0

l (kρ) and f̃ 100
l (kρ) in nearly all cases, which

indicates that (24) provides values that are accurate enough
for f̃ i

l (kρ) within a very low CPU time consumption. In the
rest of the results of this Section, we will always use Nqp = 10
in (24).

In Figs. 4(a) and (b) we plot the threshold values kth
ρ (i) as

a function of i, where kth
ρ (i) are the values of kρ for which

| f̃ i
l (kρ)/ f̃ 0

l (kρ)| < 10−4 if kρ < kth
ρ (i) and | f̃ i

l (kρ)/ f̃ 0
l (kρ)| > 10−4

if kρ > kth
ρ (i). Therefore, for every value of i, the threshold

value kth
ρ (i) indicates the value of kρ below which f̃ i

l (kρ) can
be considered to be vanishing. Please note the plot of kth

ρ (i)
as a function of i fits very well to a straight line. So we have
carried out a linear least squares fitting of kth

ρ (i) as a function
of i given by

kth
ρ (i)a ≈ dth(l)(i − bth(l)) (29)

which should be valid for i ≥ bth(l). For the least squares
fitting, we have used Nsam samples of i in ascending order,
ik (k = 1, . . . ,Nsam) the first sample being i1 = 20. In

i
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k ρ
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100
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100

200

300

400

500

k
ρ

th(i)a

(b)

Fig. 4. The solid line kth
ρ (i)a stands for the threshold values of kρa for

which f̃ i
l (kρ) is negligible if kρa < kth

ρ (i)a, and f̃ i
l (kρ) is non-negligible if

kρa > kth
ρ (i)a. kth

ρ (i)a is plotted as a function of i. Parameters: a = b = 5 mm;
ρ1l= 1.85 mm and ρ2l= 2.05 mm in (a); ρ1l= 1.20 mm and ρ2l= 1.40 mm in
(b).

the case of Fig. 4(a), it turns out that dth(l) ≈ 2.343 and
bth(l) ≈ 9.484 with a coefficient of determination r2 = 0.9999.
In the case of Fig. 4(b), it turns out that dth(l) ≈ 3.388 and
bth(l) ≈ 8.371 with a coefficient of determination r2 = 0.9998.
These results indicate that the values of dth(l) and bth(l) are
slightly dependent on the values of the inner and outer radii of
the rings, ρ1l and ρ2l, which are the endpoints of the integration
interval of (19). Since the fitting of kth

ρ (i) to a straight line for
i ≥ bth(l) is very good, in practice a small value of the number
of samples of kth

ρ (i), Nsam, suffices for the determination of
dth(l) and bth(l). Once these values of dth(l) and bth(l) are
known, one can use (28) to estimate the interval of values of
kρ in which the functions f̃ i

l (kρ) present non-negligible values
with a view to computing J̃d

lq(kxm, kyn) via (18).
Figs. 5(a) and (b) show the errors made in the interpolation

of f̃ 0
l (kρ) and f̃ 100

l (kρ) in the interval kmin
ρ,mn(i) ≤ kρ ≤ kmax

ρ,mn
when this interval is divided into Nint subintervals of equal
width, and Chebyshev polynomials up to seventh-degree are
subsequently used to carry out the interpolation in each subin-
terval. Please note that whereas 80 subintervals are required for
the determination of f̃ 0

l (kρ) with an accuracy of 4 significant
figures in the whole interval kmin

ρ,mn(i) ≤ kρ ≤ kmax
ρ,mn, only 40

subintervals are required for the determination of f̃ 100
l (kρ)

with the same accuracy. The explanation for this is that
whereas the whole interpolation interval for f̃ 0

l (kρ) is roughly
0 ≤ kρa . 450, the interpolation interval for f̃ 100

l (kρ) is much
smaller, 200 . kρa . 450, which is a consequence of the fact
that f̃ 100

l (kρ) is negligible for kρa . 200 as shown in Fig.4(a).
Fig. 6(b) shows the phase curves required for the design
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(a)

(b)

Fig. 5. Magnitude of the relative errors in the interpolation of (a) f̃ 0
l (kρ)

and (b) f̃ 100
l (kρ) as a function of the number of subintervals Nint used in the

interpolation. Parameters: a = b = 5 mm; ρ1l= 1.85 mm; ρ2l= 2.05 mm.

of a CP reflectarray antenna (see (2)) made of single split
rings (see Fig. 6(a)) at a frequency of 19.95 GHz. By virtue of
the VRT of [2], a linear phase variation is obtained for both
∠RRHCP,RHCP and ∠RLHCP,LHCP as a function of α2, which is
the rotation angle of the mirror symmetry axis of the split
ring. In order to keep the sense of CP after reflection in
a reflectarray antenna, we need a phase difference of 180◦

between the reflection coefficient of the component of the
electric field along the mirror symmetry axis of the split ring
and the reflection coefficient of its orthogonal component [2],
[3]. To ensure this phase difference is maintained, the length of
the arcs in the reflectarray element has to be slightly adjusted
as α2 is varied [6]. This adjustment of the length of the arcs
as a function of α2 is shown in Fig. 6(c). In Fig. 6(b) we
show the convergence of ∠RRHCP,RHCP and ∠RLHCP,LHCP as a
function of the number of basis functions Nb used in the two
arcs of the split rings. It can be seen that just three basis
functions per arc suffice to achieve convergence (in fact, the
results obtained with the three basis functions corresponding
to q = 1, 2, 3 in (21) overlap those obtained when Nb = 7 and
1 ≤ q ≤ 7), which means that only 6×6 MoM matrices have to
be inverted when analyzing the multilayered periodic structure
containing single split rings in the unit cell. In order to validate
the results obtained with the spectral MoM software described
in Section II, these results are compared with results provided
by the commercial software CSTr. Excellent agreement is
found between both sets of results.

In Fig. 7(b) we plot the phase curves for a dual-frequency
CP reflectarray antenna made of concentric split rings (see

b
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Fig. 6. (a) Single split ring. (b) Phase of RRHCP,RHCP and RLHCP,LHCP for
the reflectarray element of (a) as a function of the rotation angle of the ring
α2. Convergence is studied with respect to the number of basis functions
(q = 1, . . . , 7) used in the two arcs of the split rings. Our results obtained with
the spectral domain MoM are compared with results obtained with CSTr. (c)
Variation of the length of the arcs of the split ring with the rotation angle
α2 to ensure a phase difference of 180◦ in the reflection coefficients of the
two orthogonal linear components of the CP impinging waves. Parameters:
a = b = 5 mm; ρ13= 1.85 mm; ρ23= 2.05 mm; h1 = 0.787 mm, εr,1 = 2.2,
tan δ1 = 0.0009; h2 = 0 mm; θinc = 30◦, ϕinc= 0◦; f = 19.95 GHz.

Fig. 7(a)). While the outer rings are intended to adjust the
phase at 19.95 GHz, the inner rings are intended to adjust the
phase at 29.75 GHz as in [6]. In Fig.7(b) we plot the curves for
phase adjustment at 29.75 GHz. Since this phase adjustment
is controlled by the inner rings, in the application of the VRT
∠RRHCP,RHCP and ∠RLHCP,LHCP are varied by rotating the mirror
symmetry angle of the inner split ring, α1, while keeping
fixed the mirror symmetry axis of the outer ring α2. Note
that whereas ∠RRHCP,RHCP and ∠RLHCP,LHCP are linear functions
of α2 in Fig. 6(b), ∠RRHCP,RHCP and ∠RLHCP,LHCP are not any
longer linear functions of α1 in Fig. 7(b). This is due to the
fact that whereas in Fig. 6(b) the whole reflectarray element is



8

b

a

y

z
x

�13

y’

x’�
13

�
21

�
11

�
21

�
11

�1

�2

�
23

�
23

(a)

α
1
 (deg)

20 40 60 80 100 120 140 160 180

R
R

H
C

P
,R

H
C

P
 a

n
d
 

R
L

H
C

P
,L

H
C

P
 (

d
e
g
) 

-300

-200

-100

0

100

200
R

LHCP,LHCP
 q=1,2

R
LHCP,LHCP

 q=1,2,3

R
LHCP,LHCP

 q=1,...,7

R
LHCP,LHCP

 CST

R
RHCP,RHCP

 q=1,2

R
RHCP,RHCP

 q=1,2,3

R
RHCP,RHCP

 q=1,...,7

R
RHCP,RHCP

 CST

(b)

α
1
 (deg)

20 40 60 80 100 120 140 160 180

ϕ
21
−

ϕ
11
(d
eg
)

145

150

155

160

165

(c)

Fig. 7. (a) Two concentric split rings. (b) Phase of RRHCP,RHCP and
RLHCP,LHCP for the reflectarray element of (a) as a function of the rotation
angle of the inner ring α1. Convergence is studied with respect to the number
of basis functions (q = 1, . . . , 7) used in the four arcs of the two split rings.
Our results obtained with the spectral domain MoM are compared with results
obtained with CSTr. (c) Variation of the length of the arcs of the inner
ring with the rotation angle α1 to ensure a phase difference of 180◦ in the
reflection coefficients of the two orthogonal linear components of the CP
impinging waves. Parameters: a = b = 5 mm; ρ13= 1.85 mm; ρ23= 2.05 mm;
ϕ13= −75.2◦ mm; ϕ23= 75.2◦ mm; α2= 0◦; ρ11= 1.20 mm; ρ21= 1.40 mm;
h1 = 0.787 mm, εr,1 = 2.2, tan δ1 = 0.0009; h2 = 0 mm; θinc = 30◦, ϕinc= 0◦;
f = 29.75 GHz.

rotated for phase adjustment, in Fig. 7(b) only the inner part
of the element is rotated for phase adjustment, and therefore
the proportionality between phase and rotation angle proven in
[2] is lost. Fortunately, the rotation of α1 in Fig. 7(b) provides
enough phase range for reflectarray design. In Fig.7(c) we plot
the adjustments in the length of the inner arcs that are needed
to keep a phase difference of 180◦ between the reflection
coefficients of the two orthogonal components of the electric
field of the impinging CP waves. These adjustments are larger
than in the case of Fig. 7(b), which is attributed to the fact

TABLE I
CPU times (seconds) required for the generation of 31 points in the curves
of Figs.6(b) and7(b). The CPU times are for ourMoM software and CSTr.

Figure TMoM
CPU TCST

CPU

Fig. 6(b) 89.8 2383

Fig. 7(b) 152.9 2486

TABLE II
CPU times (seconds) contributions (computation of Hankel transforms,

interpolation of Hankel transforms, calculation of 2-D Fourier transforms
of the basis functions and evaluation of matrix entries) to the total CPU
time required by ourMoM software for the generation of one point in

Figs.6(b) and7(b).

Figure THT TINT T2DFT TME TMoM
TOTAL

Fig. 6(b) 0.398 0.0005 2.868 0.007 3.290

Fig. 7(b) 0.570 0.0008 4.871 0.020 5.477

that the outer arcs of the element are not modified during
the process of phase adjustment. As in Fig. 6(b), in Fig. 7(b)
convergence of the spectral domain MoM software is achieved
with just three basis functions per arc (which requires the
inversion of 12×12 MoM matrices), and excellent agreement is
found between the spectral domain MoM software and CSTr.

We have computed the CPU time required by CSTr to
generate 31 points of the curves of Figs. 6(b) and 7(b), TCST

CPU,
and the CPU time required by the spectral domain MoM
software when 3 basis functions per arc are employed, TMoM

CPU .
When running the spectral MoM software, we have used the
interpolated versions of f̃ i

l (kρ), and we have included in TMoM
CPU

the CPU time required to compute kth
ρ (i) and interpolate the

functions f̃ i
l (kρ). The results obtained for TCST

CPU and TMoM
CPU

are shown in Table I. These CPU times have been obtained
in a laptop computer with processor Intel Core i7-6700HQ
at 2.6 GHz with four cores and 32 GB of RAM memory.
The MoM code has been written in FORTRAN language.
According to the results of Table I, the spectral MoM software
is typically 27 times faster than CSTr in the analysis of the
periodic structures studied in Fig. 6(b), and around 16 times
faster than CSTr in the analysis of the periodic structures
of Fig. 7(b). When the spectral domain MoM described in
Section II is applied to the analysis of one single periodic
structure containing split rings, there are different numerical
steps having different CPU time contributions to the total CPU
time required by MoM, TMoM

TOTAL. These CPU time contributions
include the CPU time required to compute the Hankel trans-
forms f̃ i

l (kρ) that are needed for the interpolations by means of
(24), THT, the CPU time required for the interpolations of the
Hankel transforms by means of Chebyshev polynomials, TINT,
the CPU time required for the evaluation of the 2-D Fourier
transforms of the basis functions by means of (18), T2DFT,
and the CPU time required for the determination of the MoM
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matrix entries by means of (6), TME. Table II shows these
different CPU time contributions to TMoM

TOTAL (the CPU times
have been obtained with the same computer used for Table
I). In particular, the CPU times presented in Table II are for
the periodic structure analyzed in Fig. 6(b) when α2= 92.9◦

(ϕ23 − ϕ13= 150.4◦ in Fig. 6(c)), and for the periodic structure
analyzed in Fig. 7(b) when α1= 92.9◦ (ϕ21 − ϕ11= 150.0◦

in Fig. 7(c)). Note that the most important contribution to
the total MoM CPU time is T2DFT, which is around 88% of
TMoM

TOTAL. This justifies the efforts carried out in Section II to
compute the Hankel transforms f̃ i

l (kρ) appearing in (18) in
an efficient way. If we had not optimized the computation of
f̃ i
l (kρ), the method presented in this paper would not have been

competitive by comparison with commercial software. Once
the functions J̃d

lq(kxm, kyn) of (18) have all been computed, the
CPU times required to compute the double summations of (6)
and to solve the system of equations of (5) are negligible (note
that the maximum size of the MoM matrices to be inverted is
12 × 12). The next important contribution to the total MoM
CPU time is THT, which represents around 11% of TMoM

TOTAL.
Table II shows the contribution of the time required for the
interpolation of the Hankel transforms to TMoM

TOTAL is negligible.
At this point, we should remember that the computation and
interpolation of the Hankel tranforms has to be carried out only
once in the design of a reflectarray antenna where the inner
and outer radii of the rings ρ1l and ρ2l (l = 1, . . . , L) remain
constant in all the elements of the antenna. Therefore, we can
neglect the contribution of THT to the CPU time required in
the design of a whole reflectarray antenna. In our study of
the computational performance of the spectral domain MoM
software as a function of the different input variables involved,
we have finally analyzed the computational complexity of
TMoM

TOTAL as a function of the number of quadrature points used
in (24), Nqp, as a function of the number of terms retained in
infinite series of (18), imax, and as a function of the number
of basis functions used in the application of MoM, Nb. We
have found that the effect of Nqp on TMoM

TOTAL is irrelevant for
3 ≤ Nqp ≤ 15, that the spectral MoM is roughly of complexity
O((imax)2) for 48 ≤ imax ≤ 200, and that the spectral MoM is
roughly of complexity O(Nb) for 1 ≤ Nb ≤ 7.

Based on the curves of Figs. 6(b), 6(c), 7(b), and 7(c), a
dual-frequency pencil beam CP reflectarray antenna has been
designed. The antenna radiates LHCP at 19.95 GHz and RHCP
at 29.75 GHz as in the case of the antenna designed in [6].
The designed antenna is circular and consists of 5024 elements
arranged in a 80 × 80 grid with cell size 5 mm × 5 mm (the
diameter of the antenna is 400 mm). The antenna is intended to
produce a focused beam in the direction θb = 30◦ and ϕb= 0◦

(see [25, Fig. 5.a]). It is illuminated by a corrugated circular
feed-horn with its phase center located at the coordinates
x = −150 mm, y = 0 mm, z = 259.8 mm with respect to a
coordinate system with origin at the center of the reflectarray
(see [25, Fig. 5.a]). The horn is assumed to radiate LHCP
waves at 19.95 GHz and RHCP waves at 29.75 GHz. The
radiation pattern of the horn is modelled as a function cos7(θ),
which provides an illumination level at the reflectarray edges
12 dB below the maximum. The antenna elements are dual
concentric split rings as those shown in Fig.7(a). In the design
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Fig. 8. Radiation patterns in (a) the azimuth plane and (b) the elevation plane
for a dual-frequency CP reflectarray based on an element with two concentric
split rings. Plots are presented for the analysis of the reflectarray under the
local periodicity assumption with both our spectral domain MoM software
(solid and dash-dotted lines), CSTr (dashed and dotted lines) and HFSSr (×
and +). The results plotted are for LHCP radiation at 19.95 GHz.

of the antenna at 19.95 GHz, the dimensions and orientations
of the outer rings have been adjusted in accordance with
Figs. 6(b) and 6(c), while assuming the inner rings were not
present. However, when the antenna has been designed at
29.75 GHz, both the outer and the inner rings have been taken
into account. The dimensions and orientations of the outer
rings have been fixed at the values obtained for the design
at 19.95 GHz, and the dimensions and orientations of the
inner rings have been adjusted in accordance with Figs. 7(b)
and 7(c). The design of the antenna has been carried out by
means of the spectral domain MoM software described in
Section II under the local periodicity condition, while using the
exact incidence angle in each reflectarray element. Once the
reflectarray antenna has been designed, it has been analyzed
with the spectral domain MoM software (using three basis
functions per arc with q = 1, 2, 3 in (21)), and with the
two commercial softwares CSTr and HFSSr, under the local
periodicity assumption. In the analysis, the exact incidence
angle has been considered in each reflectarray element. Figs.8
and 9 show the radiation patterns obtained in the azimuth and
elevation planes at 19.95 GHz and 29.75 GHz respectively.
The resulting gain is 35.88 dBi at 19.95 GHz and 39.42 dBi
at 29.75 GHz. And the antenna efficiency is of 56% at 19.95
GHz and 57% at 29.75 GHz. In Fig. 8 the agreement between
our MoM results, CSTr and HFSSr is excellent. In Fig. 9
the agreement is excellent for the copolar component of the
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Fig. 9. Radiation patterns in (a) the azimuth plane and (b) the elevation plane
for a dual-frequency CP reflectarray based on an element with two concentric
split rings. Plots are presented for the analysis of the reflectarray under the
local periodicity assumption with both our spectral domain MoM software
(solid and dash-dotted lines), CSTr (dashed and dotted lines) and HFSSr (×
and +). The results plotted are for RHCP radiation at 29.75 GHz.

radiation patterns, but it is not so good for the cross-polar
component. In fact, discrepancies exist not only between our
MoM results and those of both CSTr and HFSSr, but also
between CSTr and HFSSr. This is attributed to the difficulties
encountered to correctly reproduce cross-polarization levels
which are between 40 and 50 dB below the maximum of
the copolar radiation pattern. Probably, a better agreement for
the cross-polarization in Figs. 9(a) and 9(b) could have been
achieved if we had used denser meshes in CSTr and HFSSr

at the expense of a higher CPU time consumption. Note it
is a logical result that the cross-polarization at 19.95 GHz
(around 30 dB below the maximum) is larger than the cross-
polarization at 29.75 GHz (between 40 and 50 dB below the
maximum) since the antenna analyzed is made of elements
with two split rings, and whereas the inner split rings were
not considered in the design at 19.95 GHz, both split rings
were considered in the design at 29.75 GHz. Table III shows a
comparison of the total CPU times required for the analysis of
the antenna with our MoM software, CSTr and HFSSr at both
frequencies 19.95 GHz and 29.75 GHz. The CPU times are
measured in the laptop computer used to generate the results of
Tables I and II. Please note that our MoM software is around
28 times faster than CSTr, and 26 times faster than HFSSr.
These important CPU time gains shows the advantage of using
the in-house software proposed in this paper for the analysis
and design of CP reflectarray antennas made of split rings.

TABLE III
CPU times (hours) required for the analysis of the dual-frequency

reflectarray antenna of Figs.8 and9 at 19.95 GHz and 29.75 GHz. The CPU
times are for ourMoM software, CSTr and HFSSr.

TMoM
CPU TCST

CPU THFSS
CPU

14.08 392.6 363.0

IV. Conclusion

In this paper the authors describe an efficient implementa-
tion of the spectral domain MoM for the analysis of multi-
layered periodic structures containing split rings in the unit
cell. The spectral domain MoM software is subsequently
used in the analysis and design of CP reflectarray antennas
made of concentric split rings under the local periodicity
assumption. When applying MoM, basis functions with edge
singularities are used in the approximation of the current
density on the arcs of the rings, and it is found that three
basis functions per arc suffice to obtain convergence in the
application of MoM when the width of the arcs is much
smaller than their length, which is a condition usually fulfilled
in the elements of reflectarray antennas. Since the 2-D Fourier
transform of the basis functions with edge singularities cannot
be obtained in closed form, these Fourier transforms are
expressed as infinite series of Hankel transforms. The Hankel
transforms are numerically computed by means of low order
Gauss-Chebyshev quadrature rules. Also, analytical criteria
are obtained for the number of terms to be retained in the
infinite series as a function of the values of the spectral
variables. Finally, Gauss-Chebyshev interpolations are invoked
to accelerate the computation of the Hankel transforms. The
spectral domain MoM software implemented has been used to
analyze multilayered periodic structures containing split rings
in the unit cell, and to analyze reflectarray antennas made
of split rings under the local periodicity assumption. In both
cases, the spectral domain MoM results have been compared
with results provided by the commercial softwares CSTr and
HFSSr. Good agreement has been found between both sets
of results, the spectral domain MoM software being around
27 times faster than CSTr and HFSSr.

Appendix A

When the functions glq(ϕ′) of (21) are introduced in (15)
and q is odd, the resulting expressions obtained for g̃i

lq can be
written as

g̃i
lq = (−1)

q−1
2

[
− jbi

lq,xx̂ + bi
lq,yŷ

]
(30)
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where

bi
lq,x =

q
4

e
−ji

(ϕ2l+ϕ1l
2

)

×

[
e
−j

(ϕ2l+ϕ1l
2

)
i + 1

Jq

(
(i + 1)(ϕ2l − ϕ1l)

2

)

−
e

+j
(ϕ2l+ϕ1l

2

)
i − 1

Jq

(
(i − 1)(ϕ2l − ϕ1l)

2

) ]
(31)

bi
lq,y =

q
4

e
−ji

(ϕ2l+ϕ1l
2

)

×

[
e
−j

(ϕ2l+ϕ1l
2

)
i + 1

Jq

(
(i + 1)(ϕ2l − ϕ1l)

2

)

+
e

+j
(ϕ2l+ϕ1l

2

)
i − 1

Jq

(
(i − 1)(ϕ2l − ϕ1l)

2

) ]
(32)

In case q is even, the resulting expressions for g̃i
lq are given

by

g̃i
lq = (−1)

q
2

[
bi

lq,xx̂ + jbi
lq,yŷ

]
(33)
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