New efficient constructive heuristics for the two stage
multi-machine assembly scheduling problem

Carla Talens Fayos'* Victor Fernandez-Viagas!, Paz Perez-Gonzalez!,
Jose M. Framinan'

! Industrial Management, School of Engineering, University of Seville,

Camino de los Descubrimientos s/n, 41092 Seville, Spain,

April 9, 2019

Abstract

In this paper, we adress the two-stage multi-machine assembly scheduling prob-
lem where there are several dedicated parallel machines in the first stage and more
than one identical parallel machines in the second stage. The objective considered is
the minimisation of the total completion time. This problem is NP-hard and the lit-
erature surveys indicate that the problem considering several assembly machines has
not received much attention. In our paper, we first review the existing solution pro-
cedures for the problem under consideration and for related problems, adapt them
to our problem and develop two efficient heuristics. The first heuristic constructs a
solution taking into account some specific knowledge of the problem domain. This
algorithm is embedded into a beam search-based constructive heuristic and its be-
haviour when the beam width takes different values is analysed. The computational
experience carried out shows that the proposals are more efficient than the existing
heuristics.

Keywords: Scheduling, Assembly, Total completion time, Constructive Heuris-
tics

*Corresponding author. Email:

1 Introduction

The two-stage multi-machine assembly scheduling problem has many applications in industry
since many products are made up of different components that need to be manufactured in
the first stage and then assembled into final products in the second stage, which may consists
of several parallel machines. These decision problems are receiving an increasing attention of
researchers due to its applications in industry, such as personal computer manufacturing (Potts
et al) [1995), fire engine assembly plant (Lee et all |1993), or distributed database systems
(Allahverdi and Al-Anzi, 2006 Al-Anzi and Allahverdi, 2006b, [2007)).

In this paper we focus on a two-stage multi-machine assembly scheduling problem where there
are several dedicated machines in the first stage (e.g. to manufacture the different components
of the final product) and more than one identical (parallel) machines in the second stage (e.g.
to assembly the components into the final product). Clearly, processing a job in a second stage
—which can be done by any of the parallel machines in the second stage— can start only after
all operations for this job in the first stage have been completed. The objective is to minimize
the total completion time so, according to the classification and notation in [Framinan et al.
(2018), it can be denoted as the DPy, — Pp[|>2; Cj problem. This problem is connected to
other scheduling problems, i.e. as mentioned in [Sung and Kim| (2008) and Framinan and Perez-
Gonzalez| (2017D)), it can be seen as a generalisation of the two-machine flowshop problem. For
the case with only one machine at the first stage and one assembly machine at the second stage,
it is equivalent to scheduling in a flowshop with two machines. Since Gonzalez and Sahni (1978])
proved that the F,[|37; C; is NP-hard in the strong sense, it is clear that the problem under
study is strongly NP-hard.

While the two-stage assembly problem with only one machine in the second stage has been
widely discussed in the literature (see e.g. the recent review on the topic by |Framinan et al., 2018]),
to the best of our knowledge, the problem considering several (identical) assembly machines has
received much less attention. Most works addressing this problem consider at maximum two
assembly machines in the second stage. Some properties of this problem have been stated in

Al-Anzi and Allahverdi (2007) and |[Lee| (2018), while heuristics have been proposed by |Al-Anzi

and Allahverdi (2006a)), Sung and Kim| (2008) and |Al-Anzi and Allahverdi (2012), and different
metaheuristics have been designed and compared in |Al-Anzi and Allahverdi (2007)), Allahverdi
and Al-Anzi (2009)) and |Al-Anzi and Allahverdi (2012]).

The main contribution of this paper is to improve the performance of the approximate solution
procedures for the problem under consideration by proposing two new constructive heuristics that
explicitly use knowledge of the problem domain to construct the solutions. More specifically, we
propose a fast constructive heuristic which applies to our problem some dominance properties
by [Framinan and Perez-Gonzalez| (2017b) derived for the case where there is only one assembly
machine. In light of the excellent results of this heuristic in negligible computation times, it
is embedded into a beam search-based constructive heuristic. This type of heuristic has been
developed originally by [Fernandez-Viagas and Framinan (2017)) for the permutation flowshop
scheduling problem, but for our problem we use the idea of keeping only the most promising
nodes in each iteration to boost its performance, an idea successfully employed for different
scheduling problems (see e.g. Della Croce and T’kindt} 2003| Valente and Alves, [2008, and
Valente, 2010)). An extensive computational evaluation is performed to show that the proposals
are found to be more efficient than existing solution procedures for the problem.

The remainder of the paper is organised as follows: the problem is formally described and
the state of the art is presented in Section In Section [3] we explain in detail the proposed
heuristics: The constructive heuristic is presented in Section while in Section [3.2] the beam
search heuristic is explained. The computational experiments are conducted in Section [4] and,

finally, conclusions are discussed in Section

2 Problem statement and background

The problem studied in this paper can be stated as follows: There are n jobs to be scheduled
in a layout composed of two stages. Each job has mj + 1 operations. In the first stage, there
are m; dedicated parallel machines, in which the first m; operations are conducted, while in
the assembly stage there are mo identical parallel machines. Only after all m; operations are

completed, the assembly operation may start in the first available machine. A job j has a

processing time p;; on machine ¢ in the first stage and an assembly processing time at; in the
second stage. The decision problem consists on scheduling the jobs in the two machines so the
sum of the completion times of the jobs is minimised.

A solution for this problem is determined by giving a sequence of jobs indicating the order in

which the jobs are processed (see e..g. |Al-Anzi and Allahverdi, 20062/ and |Al-Anzi and Allahverdi,

2012). Therefore, given a sequence, let [j] denote the job processed in position j in the sequence.
C1; the maximum completion time of job in position j in the first stage can be computed as

follows:
J
Clj = max > Pin (1)
k=1

In order to know the first available assembly machine, the completion time of job [j]
in each assembly machine is computed as: Cj-; = max{Cjj_1,C1;} + at};), where i* =
argming_; .. ., {Cij-1}. Otherwise, Cj; = C;; 1. Then, C; the completion time of the job

processed in position j can be computed as:

Cij = Ci=; (2)

As mentioned in Section [T} literature surveys indicate that two-stage assembly scheduling

problems have been tackled with respect to different objectives. Lee et al.| (1993)) and

(1995) addressed this problem regarding the minimisation of the makespan. Other objectives

are the minimisation of the maximum lateness (Al-Anzi and Allahverdi, |2006b| and |Allahverdi|

and Al-Anzi, 2006)), additional constraints such as setup times (Al-Anzi and Allahverdi, [2007))

or additional stages for the transportation of components (Koulamas and Kyparisis, 2001 and

'Shoaardebili and Fattahi, [2015). Regarding the aim of our paper, there are few references

addressing the case with several machines in the second stage, namely the work by

Kim| (2008) and |Al-Anzi and Allahverdi (2012). |Sung and Kim| (2008) develop an heuristic,

denoted SAK from now on, applying a processing-time-based pairwise exchange mechanism,

while in |Al-Anzi and Allahverdi (2012)), a mathematical model of the problem with two assembly

machines is proposed, together with three new metaheuristics.

In view of the relationship of the problem under consideration with other scheduling problems,
it is worth also to analyse the existing solution procedures for related problems, namely for the
assembly scheduling problem with one machine in the last stage (DP,;, — 1[|>2; Cj problem)
and the customer order scheduling problem (D P, — 0| 3°; C;j problem).

Regarding the DPp, — 1]| 32, C; problem, the first reference addressing it is Tozkapan et al.
(2003), where the authors prove that permutation schedules are optimal for the DP,, — 1
problem and propose two heuristics, labelled TC' K1 and T'C' K2 in the following, to find an upper
bound for their branch and bound algorithm. |Al-Anzi and Allahverdi| (2006a) also address this
problem and derive a number of theoretical properties.They propose three simple constructive
heuristics (S1, S2 and S3) based on the idea of ordering the jobs according to the Shortest
Processing Time (SPT) rule, and two additional constructive heuristics, labelled A1 and A2 in
the following. Recently, [Framinan and Perez-Gonzalez| (2017b) also address this problem and
review the problem properties studied by |Al-Anzi and Allahverdi| (2006a)). The authors develop a
constructive heuristic, denoted FAP in the following, which outperforms the existing constructive
heuristics. The last reference where this problem is considered is |Lee (2018). Six lower bounds
are proposed and tested in a branch and bound algorithm. They also propose four greedy-type
constructive heuristics, labelled G1, G2, G3 and G4.

Regarding the DP,, — 0] >_; Cj problem, note that this problem is tantamount to the one
under consideration if the processing times of the jobs in the assembly stage are zero. Even if
this is not the usual case, both problems would be similar e.g. if the processing times in the first
stage largely influence the value of the objective function. Therefore, solution methods for the
customer order scheduling problem could be applied to the problem under consideration, hence
the interest in reviewing the related literature. For this problem, Sung and Yoon (1998)) propose
two constructive heuristics based on the SPT rule. The first one schedules the order with the
smallest total processing time across all m machines, labelled ST PT in the following, and the
second one selects the order with the smallest maximum amount of processing time on any of
the m machines, denoted as SM PT. |Leung et al. (2005) propose a constructive heuristic that
selects as the next order to be sequenced the one that would be completed the earliest, that

is, the order with the Earliest Completion Time (ECT). Based on this idea and including some

look-ahead concepts, Framinan and Perez-Gonzalez (2017a)) propose a constructive heuristic and
two specific local search mechanisms for the problem, labelled SHIFT), and SHIFT},, .
After this review, it can be seen that, despite some solution procedures exist for the problem,
the performance of the adaptation of procedures from related problems has not been tested so
far. Furthermore, there is some opportunity to improve existing methods for the problem by
incorporating some knowledge of the problem domain. These methods are presented in the next

section.

3 Proposed Constructive heuristics

In this section, we propose two heuristics for this problem. First, a constructive heuristic is

detailed (Section [3.1)) and then we propose a beam search based constructive heuristic (Section

3-2).

3.1 Constructive Heuristic 1

The idea of the proposed heuristic consists of iteratively constructing a sequence by selecting
one job among the unscheduled jobs and adding it at the end of the partial sequence, an idea
that has been addressed for different scheduling problems by [Framinan and Perez-Gonzalez
(2017bya) and |[Fernandez-Viagas and Framinan (2017) with excellent results. A key issue for the
performance of this type of heuristics is the development of a problem-specific indicator) which
adequately represents the suitability of an unscheduled job to be appended since, once a job is
added to the sequence, its position cannot be modified in the subsequent iterations.

Thence, the algorithm starts with a set U containing all (unscheduled) jobs and an empty
schedule S. For each iteration j € (1,---,n), each unscheduled job w; € U is analysed as a
candidate to be added to position j in S, and its suitability is measured by computing the
indicator 1;, and the job in & with the lowest value of v is selected.

In our problem, two main aspects are considered to assess the suitability of appending a

candidate job w; at the end of the partial sequence, i.e.:

1. If its inclusion implies that the first available machine in the second stage has to wait for

processing the candidate job at the second stage. Therefore, the idle time induced by the
insertion of job w; is computed. Let us I7; denote the idle time induced by scheduling job

J at the end of the sequence. Clearly, IT} is computed as follows:

[T] = max {Clj - (C] - atj),()} (3)

Note that C; — at; computes the workload of the first available machine in the second
stage before scheduling job j (i.e. the machine in the second stage where the candidate
job will be processed). If the idle time induced by scheduling a job is greater than 0, then
the completion times in first stage dominate the completion time of this job when it is
evaluated as candidate to be scheduled. Otherwise, the completion time of the candidate
job is largely influenced by the second stage. As we are minimising the total completion
time, it is clear that the lower the idle time caused by a job, the more suitable it is to be

scheduled.

2. The contribution of the candidate job to the total completion time. As it can be seen,
the idle time takes into account the suitability of the job until its processing in the second
stage starts. In addition, its contribution to the total completion time would depend on
the processing time in the second stage, i.e. at,,, which roughly measures the influence of
the second stage. We weight this influence according to the number of assembly machines
(mg) since, with a higher number of machines in the second stage, the next jobs have a
lower probability of not being affected by the second stage. Furthermore, to take into
account the fact that, the higher the number of components in the first stage, the less
likely is for the processing time in the second stage to dominate the completion time, CT;

the expected contribution of job w; to the total completion time is measured as follows:

Aty

T} = (4)

mi - Mmy

By taking into account the two aspects, we will ensure that the jobs to be first sequences

are those with lower values of idle time and assembly time. Therefore, the indicator v;, which

estimates the suitability of appending a candidate job w; at the end of S, is computed as follows:

Y =a-IT; + CT) (5)

where a is a parameter to weight the influence of the two terms and that would be determined
via callibration of the algorithm.

Note that the complexity of this heuristic is O(n - (n — k) - m1 -logmy) ~ O(n?

-myq -logmy),
since the main loop in the algorithm performs n iterations. In each iteration, n — k jobs are
evaluated, each evaluation consisting on obtaining the maximum processing time in the first

stage, i.e. sorting m; elements. The pseudo-code of the proposed heuristic is shown in Figure [I}

3.2 Beam Search Constructive Heuristic

The heuristic proposed in Section [3.1] provides excellent results with negligible processing
times (see Section , proving that the indicator ¥ properly captured the suitability of a job to
be appended. Therefore, we embed the components of this indicator into a new beam search
-based constructive heuristic for the problem, labelled BSCHpsara. This type of heuristic has
been considered to solve different scheduling problems, such as in [Sotskov et al. (1996) (where
some constructive heuristics based on insertion techniques are combined with beam search for
the permutation flowshop scheduling problem), Erenay et al. (2010)) (for the single machine bicri-
teria scheduling problem), and |Fernandez-Viagas and Framinan| (2017) (also for the permutation
flowshop scheduling problem). In this type of heuristics, a number of candidate nodes, denoted
by a parameter x, are maintained in each iteration. In iteration k, each node ! (I € {1,--- ,z})
is formed by a partial sequence, i.e. a set of k scheduled jobs, S,i, and a set of unscheduled jobs,
L(,i. Then, all unscheduled jobs in M,i are inserted in position k+1 of S,lc, thus obtaining - (n—k)
candidate nodes. Out of these nodes, the x most suitable ones are selected as candidates for
the next iteration. Therefore, the ideas behind the use of the indicator ¥ could be used in this
heuristic. However, an additional complication arises because candidates from different nodes
may have to be compared. More specifically, the heuristic may have to deal with one of the

following situations:

Procedure Proposed Constructive Heuristic NEW

// All jobs are initially unscheduled

IT:= o,

// Completion times on stages 1 and 2 of sequence S:

Cl; =0 +=1,....,my

C2r:=0 i=1,...,my

§ = argming ;.. C27;

Obtain a sequence U := (wq,...,w,) by applying algorithm S2;

for j =1 tondo

for each w; € U do

// Compute the completion times in the first stage after selecting w; as candi-
date:

Ci(wr) = maxi<i<m; {C1] + Piw, }

// Compute the idle time induced if job wj is inserted at the end of the partial
sequence:

IT) = max {C(w;) — C2%,0}

// Compute the additional completion time induced when job wj is inserted at
the end of the partial sequence:

OT} = 50w

// Compute the indicator considering the idle time:

Yri=a-IT,+ CT,

end

o= argming ey, i Yk

Append w, at the end of II, i.e. IT := (mq, ..., 7j_1,w;);

Extract w, from U, i.e. U 1= (w1, ..., W1, Wity -« Wnojt1);

// Update values of the constructive sequence:

C1lf = C1f + piw,

02: = Imax {02;‘(, maxi<i;<m, Cl:} -+ atwl

end
return C2;
end

Figure 1: Pseudo-code of the proposed heuristic NEW.

e If the candidate jobs have been obtained by inserting different jobs in L{,l€ to a same node [,

their partial sequences «S,lC will be exactly alike with the exception of the last job appended.

So, the comparison can be done in reference to the completion time or the idle time caused

by the added job.

e If the candidate jobs have been obtained from different nodes, the unscheduled jobs and the

scheduled jobs are different for each candidate node. In this case, the comparison should

take into account that the previous scheduled jobs at each candidate node are different, so

this fact has to be considered when developing the indicator for suitability.

To explain the design of the heuristic in detail, we first denote by sjlk the jth scheduled job

of node [in iteration k£ and by ujl-k the jth unscheduled job of selected node [in iteration k. As

shown in Figure |2 the heuristic consists of the following steps:

Step 1:

Step 2:

Step 3:

Generate the initial nodes: All jobs are initially sorted according to Algorithm S2 by
Al-Anzi and Allahverdi (2006a), as it is done in NEW. The first = nodes are obtained
by assigning the job in position [of the sorted list to the first position of the partial
sequence si; of the selected node I. The list of unscheduled jobs of this selected node I

is formed by the rest of the jobs.

Generate candidate nodes: At iteration k, n—k candidate jobs are obtained by appending

each job in M,i at the end of the partial sequence of each selected node [€ {1,--- ,x}.

Evaluate candidate nodes: In this step, two aspects are considered: first, the influence
from the selected node and, second, the influence from the inserted job. The former is
computed as the forecast index, Fj;, which is explained in Step bl and the latter is due
to the insertion of the new job,u]l- &> at the end of the partial sequence, which is measured
by CTjk, see Eq. and by IT};, which denotes the idle time incurred when inserting
job ujl.k in the selected node and is computed according to Eq. . Note that these two
last components are taken from the heuristic in Section while Fj; is a component

specifically designed to allow the comparison of candidates from different nodes.

10

Step 4:

Step 5:

Therefore, at each iteration k, the following indicator us used to compute the suitability

of inserting an unscheduled job ujl< ;. in a selected node I:

Bjg := Fyy +d' - ITjp + CTj (6)

In Equation @ the parameter a’ has been considered in order to balance the idle time
and the completion time of the new inserted job and its calibration is adressed in Section

45|

Select the best x candidate nodes: The = candidate nodes with the lowest values of B
are selected and these nodes will formed the nodes of the next iteration, i.e. in iteration
k all the combinations of j and [are tested and those achieving the lowest values of Bjy,,
as defined in Eq. @, are selected. The rest of candidate nodes are discarded and the
best candidate nodes are defined as the selected nodes for the next iteration. At each
iteration k, the combination of [and j of the I'th best Bjj are denoted by branch[l’]

and job[l'], respectively.

Update forecast index: The forecast index F' is defined in order to compare candidate
nodes obtained from different nodes and, therefore, composed by different un- and sched-
uled jobs. F represents the completion time of the last scheduled job at each candidate

node and it is computed as in Eq.

Frey = Fi—1pranchi] + 0 Vo) k,branch'] (7)

where parameter b is designed to balance the influence of the last scheduled job to the
completion time and ¥;op(11] k,branchf] i the indicator already employed in NEW —see
Eq.f computed when job u]l-k is appended. The calibration of b is discussed in Section
3] The pseudocode of the algorithm is shown in FigURE 2]

Clearly, the BSCH has only one parameter (z, the beam width). It can be seen that,

for x =1, BSCH is tantamount to NEW . Note that the complexity of this heuristic is

2

O(maz{minx, man?z,n?x}).

11

Procedure BSCH_MMA (x)

Obtain a sequence €2 := (wy, ...,w,) by applying algorithm S2;
Update Uf(u} ; = w;) and S{(s}, = @).

for /=1 to x do

F11 = Yaphali,0,

end

ork=1ton—1do

// Candidates Nodes Creation

Determination of T}y, CTjk;

// Candidates Nodes Evaluation

Bjkl ::Fkl+a’~11}kl+07}kl Vi= 1, , L ande: 1, , N — I,

// Candidates Nodes Selection

for ' =1 to z do

Determination of the I’-th best candidate node according to non-decreasing Bj
in iteration k. Denote by branch[l'] and job[l'] the value of [and j respectively

of that candidate.
nd

/Forecasting Phase. for I’ =1 to x do

—

@

~

Update Si,, and U}, by removing job u]ngTlL,Ch[l] from 24"} and including

S]l;ranch[l] '

Fk+1,l’ = Fk,branch[l’] +0b- 2pjob[l’],k,b'ranch[l’];

in

end

end
// Final evaluation
Evaluate the flowtime of the scheduled jobs of each selected node and return the least

one
end

Figure 2: Pseudo-code of the proposed beam-search-based constructive heuristic.

3.2.1 Variable Beam Width

To the best of our knowledge, beam search-based heuristics employed in the literature always
use a constant beam width . However, it is expected that the number of nodes analysed in
each iteracion has a large influence on the performance of this heuristic. So, we carry out this
study and analyse the behaviour of the BSCHpspr4 when & may take different values. More

specifically, we will test the following variants:

e Constant Beam Width: BSCH 4 is tested with different values of x. So, the influence

of the beam width over the heuristic performance can be analysed.

12

e Ascending Beam Width: In this version, the heuristic, denoted as BSCH s5¢, starts
selecting = nodes and the beam width increases in one unit as the beam search advances.

The search is stronger on each iteration since the number of selected nodes is higher.

e Descending Beam Width: This version, labelled as BSCHpgsc, starts by selecting a
number of nodes equal to z +n — 1, and the beam width decreases one by one as the

number of iterations increases. Therefore, in the last iteration, = nodes are considered.

e V-shaped Beam Width: In this version, the beam width is modified taking a V-shape.
Initially, x nodes are considered and, for each iteration k, the number of nodes is decreased
n

one by one while k¥ < & and then it increases until & = n. We denote this version as

BSCHy.

e Peak-shaped Beam Width: The pattern of this version, labelled as BSCHp, is completely
opposed to the previous one. The initial beam width is z, and then it increases one by one

whereas k < n - % and then it decreases also one by one until the last iteration.

We design and implement different versions, which are evaluated considering the next values
of x, » € {2,5,10,15, {5, n,n+5,2n}. Note that the BSCH 4 has also been run consideringa

beam width equal to 1, which corresponds to the heuristic NEW.

4 Computational evaluation

In this section, we analyse the efficiency of the constructive heuristics proposed in Section
The testbed employed for the comparison is designed in Section while in Section we
perform a design of experiments to set up proper values for parameters a and bin BSCHara.
In Section [£.4] the different versions of the beam-search heuristics presented in Section
are compared to obtain the best variants. Finally, in Section the proposed heuristics are
compared with existing heuristics for the problem and for related problems. All methods have
been coded in C+# using Visual Studio and carried out in an Intel Core i7-3770 PC with 3.4GHz

and 16 GB RAM, using the same common functions and libraries. In order to obtain a better

13

estimation of the performance of all algorithms, a total of 10 replicates for each instance are

carried out and the results are averaged.

4.1 Performance indicators

In this section, the indicators employed to compare the different results obtained from the
computational evaluation are presented. First, a comparison among the different versions of the
BSCH 4, presented in Section [3:2.7] is carried out in terms of quality of the solutions and
computational effort. The former is computed by means of the Average Relative Percentage

Deviation (ARPD) as follows:

ZVS RPDhS

ARPD;, = S

7VS:17"'>S (8)

where S is the total number of instances and RPD computed as

Chs — CF
RPDy, = 25— =5 . 100 (9)
Cs
with Cjs the total completion time obtained by heuristic A (h = 1,---, H) in instance s
(s=1,...,5) and C} the minimum completion time known for instance s. The computational

effort is measured by means of the Average CPU (ACPU) time:

EVS Ths

ACPU, = =%

(10)

where T} is the time (in seconds) required by heuristic A to obtain a solution for instance
s. Furthermore, since the ACPU indicator presents some problems when it is used to compare
heuristics with different stopping criteria (Fernandez-Viagas and Framinan, 2015)), the Relative
Percentage Indicator (labelled RPT") is computed, as indicated in Eq. , in order to evaluate

heuristics with different number of steps in their procedure.

Ths — ming—1,. p{Ths}
RPT}, = T 11
hs ming—1,._p{Ths} ()

Additionally, a slightly different indicator, denoted RPT, is also used to graphically repre-

14

sent the results in logarithmic scale. This indicator is also employed in |[Fernandez-Viagas and

Framinan (2015), |[Fernandez-Viagas and Framinan| (2017)) and Fernandez-Viagas et al.| (2017)):

T)s — ACPU?*

RPThs = = cpos

+1 (12)

Finally, the ARPT, the Average RPT can be defined as follows:

S
ARPT}, =Y R];Ths (13)
Vs

4.2 Testbed design

In the related literature there are different testbeds for the problem proposed by [Al-Anzi and
Allahverdi| (2006a), Al-Anzi and Allahverdi (2007)), Allahverdi and Al-Anzi (2009) and |Al-Anzi
and Allahverdi (2012)). In these tests the processing times are generated in the same way, but
each testbed has a different number of jobs and machines in the first stage. In the computational
experience carried out in Sections and a new testbed is obtained following the
procedure by |Al-Anzi and Allahverdi (2012)). We adapt this testbed in order to consider the
parameter ms. Thus, this testbed consists of 30 instances generated for each combination of
n, m; and my. More specifically, the problem data are generated for n € {30, 40,50, 60,70},
my € {2,4,6,8} and mg € {2,4,6,8}. The processing times of the jobs in the machines in the
first stage are drawn from a U[1, 100] distribution, while in the second stage the processing times
are drawn from a mg - U[1, 100] distribution in order to balance both stages and have different
scenarios regarding the relative processing times on each stage. In total, 2400 instances have

been generated.

4.3 Experimental parameter tuning

In this section, a factorial design of experiments is performed to find the best values of the
parameters of the two heuristics presented in Section [3] More specifically, the following values

are tested:

e Parameter a for the NEW heuristic described in Section The following levels for a

15

are tested: a € {1,2,5,10, 15,20, 50,200}.

e Parameters o' and b for the BSC H s 4 heuristic described in Section The following

levels for each parameter are tested (in total, there are 56 combinations):

— d €{0.25,0.5, 1, 2, 5, 10, 15, 20}

~b€{0,1,2,3,4,5,6}

To determine the best combination of parameters, ten instances have been generated for the
different values of n, m; and msy, as explained in section The processing times of each job in
each stage are generated as described in Section [£.2] With this testbed, it has been found that
the best results correspond to a = 5. Regarding the BSC Hpspr 4 heuristic, it has been assumed
that = n and the so-obtained results compared. The first two levels of @’ are discarded due to
their poor performance. After proving that the normality and homoscedasticity assumptions are
not fulfilled, a non parametric Kruskal-Wallis test is performed. The results indicate that there
are significant differences between parameters a’ and b since the significance of both parameters
is equal to 0.000. The best combination is obtained for a’=2 and b=2. These values are used for

the different versions of BSCH in Section [£.4] and Section [4.5| regardless the value of z.

4.4 Comparison of the different versions of BSCH

Prior to conducting a full comparison with existing heuristics, the best variant of the beam-search
based heuristics is selected. To do so, the versions of BSCH presented in Section have
been run on the 2,400 instances generated in Section [£.2] The results are summarised in Table [2]
using the indicators defined in Section The ARPD values range from 1.3196 (BSCH a4
(x = 2)) to 0.5227 (BSCHppra (x = n+ n/2)) whereas ACPU values range from 0.9969 to
0.004. Results are graphically shown in Figure [3] where the y-axis represents the ARPD for each
heuristic and the z-axis represents the ACPU.

In view of these results, the following conclusions can be derived:

e BSCHp (z =2) with ARPD = 0.6174 improves the variants BSCHppa (x =2, 2 =5, x

=n/10) with ARPD equal to 1.3196, 0.8064 and 0.7708 respectively, using approximately

16

L — — — Pareto’s frontier
1.3 ([BSCH\1ua T
| B BSCH,
1.2 g v BSCHpesc N
I « BscH,
1.1 H ¢ BscH, i
I
o 1f .
& I
< 09H i
I
08 ® 7
'
07d i
l®
0.6 (" |
Q&*-_vsi_‘__v_-_‘g___Z_:_______T

0.5 | | | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Average Computational Time

Figure 3: ARPD versus average CPU times of the different versions of BSCH with the
Pareto frontier.

a similar computational effort.

e BSCHy (x = 2) with ARPD = 0.5458 outperforms variants BSCHppra (z = 10),
BSCHsc (x =2) and BSCHp (z =5), with ARPD equal to 0.6437, 0.6145 and 0.5777

respectively.

e BSCHppsc (x = 2) with ARPD = 0.5499 improves variant BSCHppra (x = 15) using
the same ACPU.

e BSCHy (x = 5) with ARPD = 0.5324 outperforms variants BSCHp (x = 10) and
BSCHysc (x = 5), with ARPD equal to 0.5626 and 0.5760, respectively using the same

computational effort.

e BSCHy (x =n/10) with ARPD = 0.5295 outperforms variants BSCHpgsc (x = 5) and
BSCH ss¢c (x = n/10), with ARPD equal to 0.5467 and 0.5815, respectively using the

same computational effort.

o For z = n, variants BSCHyp4 (x = n) and BSCHp (x = n) yield a similar performance,

17

being its ARPD equal to 0.5382 and 0.5348, respectively. Moreover, version BSCHy

(x = 10) obtains a similar ARPD = 0.5349 with less computational effort.

e The minimum ARPD is achieved by BSCHprpra (x = n+ n/2), being the rest of the

variants worse with respect to the quality of the solutions.

e The Pareto frontier (i.e. the efficient variants with respect to the quality of solutions and
the computational effort) is formed by BSCHyrpra (x=2), BSCHprpa (x=5), BSCHp
(x=2), BSCHy (z=2), BSCHy (2z=5), BSCHy (x=n/10) and BSCHppa (z=n +
n/2).

e The performance of BSCHprpra get worse for x = 2n. For this value of x, this heuristic
selects 2n candidates in each iteration, so there are more candidates since the first iteration.

Due to this poor results, it has not been considered.

To establish the statistical significance of the results, a Holm’s procedure (Holml 1979) is
performed where each hypothesis is evaluated using a non-parametric Wilcoxon signed-rank test
assuming a 0.95 confidence level, i.e. a = 0.05. In Holm’s test, the hypotheses are sorted in
non-descending order of the p-values obtained in the Wilcoxon test. Each hypothesis is rejected
if p < a/(k—i+1) where k is the total number of hypotheses. The results can be seen in Table
where R means that the hypothesis is rejected by Wilcoxon and/or Holm’s procedure. As
can be seen, hypothesis BSCHypra (x=10) = BSCHs¢ (v=2) is the only one that cannot
be rejected by Holm’s procedure, but it has to be noted that the ARPD achieved by the latter
version, equal to 0.6145, is considerably lower than the one obtained by BSCH a4 (x=10). In
summary, it can be concluded that the variants in the Pareto frontier in Figure [3] are efficient
for the problem. However, as no variant obtains the best performance for all values of x, it can
be also concluded that, if < n the best variant is BSCHy, and if x > n, then BSCH pp4 is

the most efficient one.

4.5 Comparison of heuristics

In order to determine the performance of the proposed heuristics (NEW and the best vari-

ants of the beam-search based heuristic), these have been compared with existing heuristics for

18

i H; p-value Wilcoxon «a/(k—i—1) Holm’s Procedure
1 BSCHypa (x=10) = BSCH ¢ (2=2) 0015 R 0.0083 A
2 BSCHpyma (z=5) = BSCHy (z=2) 0.001 R 0.0100 R
3 BSCHpya (z=5) = BSCHp (2=2) 0.000 R 0.0125 R
4 BSCHya (2=10) = BSCHp (z=5) 0.000 R 0.0167 R
5 BSCHya (x=10) = BSCHy (z=2) 0025 R 0.0125 R
6 BSCHya (2=15) = BSCHppsc (x=2) 0.000 R 0.0500 R

Table 1: Holm’s procedure for comparison of the different versions of BSCH.

z 5 n/10 10 15 n n+n/2 2n
ARPD ACPU ARPD ACPU ARPD ACPU ARPD ACPU ARPD ACPU ARPD ACPU ARPD ACPU ARPD ACPU

BSCHma 1.3196 0.0040 0.7708 0.0104 0.8064 0.0173 0.6437 0.0279 0.5874 0.0430 0.5382 0.1220 0.5227 0.2685 0.5408 0.5026

BSCHasc 0.5499 0.0268 0.5467 0.0568 0.5360 0.0874 0.5423 0.1229 0.5524 0.1648 0.5282 0.2803 0.5452 0.4638 0.5568 0.7294

BSCHpgsc 0.5499 0.0439 0.5467 0.0916 0.5360 0.1406 0.5423 0.1962 0.5436 0.2602 0.5543 0.4189 0.5736 0.6593 0.5790 0.9969

BSCHy 0.5458 0.0251 0.5324 0.0522 0.5295 0.0796 0.5349 0.1100 0.5359 0.1442 0.5425 0.2199 0.5576 0.3305 0.5646 0.4821

BSCHp 0.6174 0.6482 0.5777 0.6084 0.5825 0.6133 0.5626 0.5934 0.5540 0.5848 0.5348 0.5656 0.5498 0.5806 0.5617 0.5924

Table 2: Summary of results of the different versions of BSCH.

the problem, as well as with heuristics adapted from similar problems. More specifically, the

heuristics used for the comparison are the following:

e Heuristics from the DP,, — Pn|[3, C;j problem:

— New heuristics proposed in Section [3] i.e. heuristic NEW in Section [3.1] and the

variants of the BSC H proposed in Section[3.2]that are in the Pareto frontier found in
BSCHYy (z=2), BSCHy (z=n/10), BSCHy (z=5), BSCHy (z=10), BSCHy

(z=15), BSCHppa (x=n) and BSCH 4 (x=n 4+ n/2).

— SAK (Sung and Kim,| 2008): This heuristic sorts the jobs in non decreasing order

of psumj =32,y ., Pij +atj. Set k=1 and m=k+1, it exchanges the kth job and

the mth job. If the total completion time is improved, it keeps the exchange. If not,

m = m-+1.

— NSDE (Al-Anzi and Allahverdi, 2012)): This algorithm has been coded and run, but

it has been discarded due to its computational effort is far from the rest of heuristics

and the quality of its solution is poor.

e Heuristics adapted from the DFP, — 1[|3Z;C; problem. Since this problem is closely

related to the one addressed in this paper, it is interesting to test whether heuristics

19

specifically designed for the problem with one assembly machine can be adapted to the

problem under consideration. These adaptations are:

— TCK1 and TCK?2 (Tozkapan et al., 2003): The original TC'K1 constructs mj+1
indices for each job, according to PT'F;; = t;; and PT'S; = at;. So, mi+1 sequences
are obtained by sorting the jobs in non decreasing order of these indicators, and
the sequence with the lowest TCT is selected. The index PT'S; has been adapted
to our problem so that PT'S; = atj/mg. Similarly, TCK2 computes three indices
for each job, so three sequences are obtained by sorting the jobs in non decreasing
order of these indices, and the sequence yielding the lowest TCT is selected. The
indices have been adapted to our problem taking into account mg, i.e.: MPT; =
min{pij, p2j, -+ s Pmyj, atj/mat; APT; = m S pij + atj/me; and MXPT; =
maz{pij,p2j,- - s Pmyj, ot;}-

— Al and A2 (Al-Anzi and Allahverdi, 2006a): These algorithms construct a sequence
by iteratively appending a job at the end of a partial sequence. For algorithm Al,

the job is chosen so that the following indicator is minimised:

yeees L

j—1
Alj = max { > pip + pij } (14)
o r=1

Note that this indicator does not require any adaptation to our problem. However, for
algorithm A2 the indicator is adapted by dividing the assembly time by the number

of assembly machines ms, so the modified index is:

i=1,....,m1)

j—1
at;
A2; = max {Zpi[r] +pij} + mfj (15)
r=1

— S1, 52 and S3 (Al-Anzi and Allahverdi, 2006a)): S1 sorts the jobs in non decreasing
order of at;. Heuristic S2 is obtained by sorting the jobs in non decresing order of
max;—1,..m,{Pij} and, finally, heuristic S3 orders the jobs in non decreasing order
of max;—1,..m,{pij} + aty. As with the previous heuristics, S1 and S3 have been

adapted by dividing at; by ms.

20

— G1, G2, G3 and G4 (Lee, 2018): Each of these heuristics constructs a sequence by
inserting the job with the smallest value of one of the following indicators: G1; =
Cy — 035 G2 = C1; = C1]_4; G35 = C1; — C5 and G4; = CJ; — C1]. These
indicators can be used for our problem in an straightforward manner.

— FAP (Framinan and Perez-Gonzalez, 2017b|): This heuristic appends one by one
the unscheduled jobs at the end of a partial sequence by computing an estimate of

the completion times of the unscheduled jobs which takes into account which stage is

more important. This estimate has been adapted considering the number of assembly

machines so, if the first stage is dominant, then FAP, = C17 + %‘H(Cl. + L),

mi1+ma

Otherwise, FAP, = -2 4 "_ffl (Cre + —L=—). Where Cj, is the completion

mi+ma mi+ma

time of and artificial job, composed of the unscheduled jobs, in the first stage, and

De is the processing times of the artificial job in the second stage.

e Heuristics adapted from DP,, — OHZj C; problem. As mentioned before, the order
scheduling problem is identical to the problem under consideration if the processing times
of the second stage are zero. Therefore, it is also of interest to test how the adaptation
of their best methods perform in our case. The most relevant methods for the order

scheduling problem are:

— STPT (Sung and Yoon, [1998): A sequence is constructed sorting the jobs in ascend-
ing order of their sum of their processing times on the m; machines. In our case,

m1 + ms machines are considered.

— SMPT (Sung and Yoon, 1998): A sequence is constructed sorting the jobs in as-
cending order of their maximum processing time on the mj; machines. As with the

previous heuristic, mj + mo machines are considered.

— ECT (Ahmadi et al., |2005; Leung et al., 2005): In this heuristic, the order with the
earliest completion time is selected as the next to be sequenced. This heuristic does
not require adaptation, as for each order, the completion time is computed according

to Eq. (77?).

21

— SHIFT), and SHIFT},,,, (Framinan and Perez-Gonzalez, 2017a): SHIFT} ob-
tains iteratively a partial sequence using the ECT heuristic. Then, the jobs are
iteratively removed from their position and re-inserted. The procedure is repeated
until the so-obtained partial sequence does not returns a lower total completion time.
SHIFT},,, restarts the reinsertion phase whenever a better sequence is found and

repeats the process until no improvement is found.

These heuristics have been employed to solve the instances from the testbed in Section
The ARPD and ACPU are computed according to Egs. and , while indicator
ARPT is computed using Eq. . The detailed results of ARPD in terms of n X my X mo are
shown in Table [f]and [6] The average results in terms of ARPD, ACPU, and ARPT are shown
in Table [3] and graphically in Figure [dl Note that, in this figure, the dispatching rules are not
displayed in order to have a clearer interpretation of the results. In view of the results, a number

of conclusions can be noted:

o NEW (ARPD=1.8742) clearly outperforms heuristics A1, A2, G1, G2, G3 and G4 using a
similar computational effort. It can be seen that N EW obtains very good results evaluating
only one job at each iteration and, consequently, consuming less computational time.

Furthermore, N EW obtains a similar ARPD than F'AP, but our proposal requires much

less CPU time.

e S2 and TCK2 with ARPD equal to 15.2527 and 7.5253 respectively are the best dispatch-
ing rules. Although the quality of the solution is low, these rules obtain a solution very

fast.

e BSCHy (x = 2) with ARPD=0.5458 outperforms NEW, with ARPD equal to 1.8742,

using the same computational effort, as it can be checked in Figure [4

e BSCHpypa (x=n) with ARPD =0.5382 outperforms SHIFTy, SHIFTy,,, and SAK
with ARPD equal to 14.1752, 9.3225 and 12.6792, respectively. Moreover, it can be

pointed that this version of the BSC Hjspr4 obtains the best result in terms of quality of

the solution, ARPD.

22

Heuristic ARPD ACPU ARPT Heuristic ARPD ACPU ARPT
NEW 1.8742 0.001901 625.07 SAK 12.6792 0.359579 102534.03
FAP 1.6644 0.011425 3358.46 STPT 15.8731 0.000005 1.64
G1 17.4028 0.001870 615.74 SMPT 21.6706 0.000007 2.36
G2 6.1421 0.001845 605.78 ECT 17.4028 0.036756 10559.23
G3 6.8172 0.001799 590.66 SHIFT} 14.1752 0.122583 34958.62
G4 17.4652 0.001778 583.61 SHIFTy, ., 9.3225 0.158947 45640.85
Al 6.0290 0.001816 595.67 BSCHy (z=2) 0.5458 0.025120 7482.71
A2 9.2572 0.001812 593.95 BSCHy (z=5) 0.5324 0.052197 15574.12
S1 19.2741 0.000003 1 BSCHy (x=n/10) 0.5295 0.079588 23690.42
S2 15.2527 0.000006 2.13 BSCHy (z=10) 0.5349 0.110005 32796.73
S3 16.6488 0.000007 2.3 BSCHy (z=15) 0.5359 0.144172 43052.43
TCK1 15.3131 0.000764 242.55 BSCHpp4 (z=n) 0.5382 0.121981 36705.90
TCK?2 7.5253 0.000344 109.24 BSCHpna (x=n+n/2) 0.5227 0.268500 78987.16

Table 3: Summary of results of the different heuristics.

i H; p-value Mann-Whitney «/(k—i—1) Holm’s Procedure
1 NEW = Al 0.000 R 0.0100 R
2 52=S53 0.000 R 0.0125 R
3 TCK2=TCK1 0.000 R 0.0167 R
4 BSCHy (z=2) = NEW 0.000 R 0.0250 R
5 BSCHpyma (x=n) = SHIFTy, 0.000 R 0.0500 R

Table 4: Mann-Whitney’s procedure.

e Taking into account these results and those obtained in the previous section, the group of

most efficient heuristics is formed by the dispatching rule 52, the existing heuristic TC K2

and the proposed versions of the beam search constructive heuristic: BSCHy (z=2),

BSCHy (x=n/10), BSCHy (x=5), BSCHy (x=10), BSCHy (x=15), BSCHna

(x=n) and (z=15), BSCH 4 (x=n+n/2).

In order to check the statistical significance of these results, Holm’s procedure is used as

in the previous computational experience. However, each hypothesis is now analysed using a

non-parametric Mann-Whitney test assuming a 95% confidence level (i.e. @=0.05) to establish

de p-value of each hypothesis. The results are shown in Table @] Each p-value is 0.000, so all

hypotheses can be rejected. In summary, it can be concluded that the proposed heuristics out-

perform the existing algorithms for the problem under consideration, as well as the adaptations

of efficient algorithms for related problems.

23

18 a T ote 0 R R NEW
| | B FAP
16 \ A Gt
< G2
L A ,
14 515253 G3
| TCK1 TCK2 | x G4
12 SMPT STPT ¢ A1
10 SAK o A
8 . v ® ECT
x A SHIFT,
< 8r | SHIFT,
' kOPT
6 4 T Pareto’s Frontier
4 - .
2 u N
O 1 1
1073 107 107t 10°

Average Computational Time

Figure 4: ARPD versus ACPU. ACPU (z-axis) is shown in logarithmic scale. Poner
Efficient BSCH versions en vez de border

24

170 €50 670 €90 19°0 19°0 96T Y6 61CI GLET £4°€C 86'TT 0991 0L9T LL'8 TI'L 0991 €76 619 990 9161 8¢L T 9 0¢
670 9o 9’0 1¢°0 040 0¢°0 L2Vl L9L [4'hds £V°0T €VLT TO'8T GO8T 61 8CF cO8T 989 g yL 0TLT LLGT oy 8 4 0%
270 1670 9¢°0 6€°0 8€°0 8€°0 6471 006 11761 °9'1e 98°LT CE€'8T 8EVT 929 T&Y GEBT CTL V6¥T 9T8T FPLI 667 9 4 0%
o 9’0 €g'0 160 €5°0 €50 98¢l ¢80T LTGT 8€'€C 9691 6981 G98T G€'8 L0L 6981 GTL 891 8S°0C 9661 w69 v ¥ 0¢
o 070 170 Lv0 70 70 9601 16CI VLVT €e'6e 90°€T 9VLT LSLT GL6 9L8 OFLL TC6 Ge61 1c°ce 680 (A T ¥ 0¢
00 9’0 9’0 o 870 870 €9LT 996G GG'LT Leve ¢9'1c o®1c 981 LS9 989 @8I LI'9 Ly 9t [N ARNR AR 9 8 4 0¢
L¥0 6¢0 6¢0 €50 650 640 0781 9L'L 0L°8T 9L'9¢ lgcc <0'€c 1T°€c 6€'8 FI'® C0'€C 909 V€81 6811 0.6 8LL 9 4 0¢
] 67°0 €70 Lv0 o o €981 8’8 LT6T 04°6¢ ¥4cc GL'ec 98'€C 696 €V6 GLEC €99 9¢°0c G¥¥T 0801 06 7 4 0¢
6€°0 8C'0 17°0 o 60 6€°0 67T 16T 0L9T L€'8¢ L08T LT'Tc €V'1c L6'C€T €9€T LTTIC 698 €8'€c 99T 99Vl G9¢T ¢ 4 0¢
0L°0 9¢°0 09°0 960 160 Ts0 996 879 €80T 8T'GT L8CT 9€€T 8EET 0L’ L6C 9EET L99 01T 1661 €971 9aTe 8 8 ov
€9°0 90 8G°0 L8°0 70 [4<50] €e6 €7 €80T 0€°9T LETT EEET PEET STV €EC €EET LTL Wil 6671 €8€T 8¢t 9 8 [tig
1¢°0 89°0 [4<50] 99°0 €9°0 €9°0 1001 €06 GLTT 6481 10°€T 197 9%l ¥8V ¥e¥V 197D VL. coTr TYLT 0991 €&r v 8 0ov
8L°0 590 9L°0 09°0 8¢°0 89°0 g 9801 98°11L 0202 9¢'IL eb vl 19vL ¢r9 STG PPl SP6 €EEL 0981 L9°LL s ¢ 8 oy
8¢°0 650 9¢°0 Gg0 16°0 870 PUITL CeL 8LTL evLl vevr vrer 9rst v eee ¥Irer ov9 9¢°1TL et 1ol 68c 8 9 oy
€80 0L°0 vLO 69°0 650 G590 €LTT 182 over 98'81 8V'GT 96T 69GT 98°F T6T 99CT 0€L G8°TI €8°LT €9¢T 9/C 9 9 ov
8¢°0 6¢'0 160 09°0 160 8¢°0 LE0T ¢T'6 9T°ct 9061 ¥9€1 TUeT €T6T LUy I8¢ IU°CT 012 STET G¢LT 6991 PR 9 ov
cLo TLo €L0 GL0 09°0 L9°0 806 ¢66 cretl 610C G0'gl 00°¢T 60°ST TF9 €69 00°ST €76 19761 6661 GL'8T ws C 9 ov
670 €9°0 L6°0 G960 040 160 Ge'TT L0L [4'RNS Ve LT I8P €0°9T 90°6T 8¢ €9 €0CT €99 cLer 0e v 9gst €¢ 8 ¥ ov
670 69°0 760 650 19°0 09°0 crer 694 197¢T L9°81 00°6T L®'GT 06T ¥TF L8€ L8GT 19°¢ cOeT 6V'9T TEdl 8¢'¢ 9 ¥ ov
640 8G°0 L9°0 L8°0 09°0 740 €TET 898 90°ST 0L°€2 LL9T I8'8T 68'8T €79 L0¢ I88T 1948 0S°6T 0961 67'8T wr v 4 [tig
[4<50] €9°0 L9°0 99°0 84°0 8G°0 9101 PFIT 8G€T 88°€T CCET 90LT TTLT 106 TS® 90°LT 86'8 Ge¢'LT 06CC LETT awe T 4 [tig
9¢°0 1970 9¢°0 050 760 050 €6V LST G671 ¥6'1¢ 0T'61 PI'61 g6l ¥9'S TI'S PI6L 98¢ 0991 Te0r ¢l9 87 8 4 oy
G990 90 ¥¢0 8G°0 650 (] 8091 ¢¥'¥ €e91 €9ve 0€'0c ¢60c G6'0c 6£9 8¢9 C60C G6'C vt 9€° 1L 1LL €r9 9 4 oy
6¢0 640 9¢°0 9¢°0 080 8¢°0 L0°GT €92 VLT €ree G¢'61 6V°0c ©90C 966 996 6V0c 9TL VL61 LLel 2801 w6 v 4 ov
Teo 870 9¢°0 870 260 il VO'ET 9€°0T c0°atT [AR4 €L9T 9261 0961 66T €FIT 9261 906 ¥8Cc ve'Sl T8Tl ’ 4 4 ov
09°0 90 90 69°0 840 160 98 ¥9'¢G 19'8 Grer €ETT LGTT 8YIT G¢c Lo L9TT 9C9 188 19T ¥6°11 8 8 0¢
490 160 67°0 050 170 0g°0 1c8 89°¢ 626 @7 66'TT 69CI LTl 91'¢ €Lc 69Tl €19 166 8¢VT 89€CT 9 8 0¢
89°0 ¥LO GLo 1L°0 ¥9°0 8¢°0 166 989 19°01 8V'LT 8Cl G®ET 8YCT L8E 0TE G®ET 668 06°0T GE'9T L87I e 7 8 0¢
660 780 080 ¥6°0 9L°0 680 969 €94 [450] G761 99°6 LG9CT 99T vev 8TV L9l V6L 08°TT PO'LT STLT €07 T 8 0€
[4<50] i) 8€°0 9€°0 €70 6g0 L6, 09°¢ 098 8G°€T ¢r'Tt ¥OIT G9TT 8T'E 68C VIIT 6E°¢ 986 8€TT 89TI ’ 8 9 0€
89°0 €¢'0 190 90 970 €50 96 979 VL6 8G'GT G69°¢l LT€T 0€€l 98C 66C L€l 1€9 0T'Tr 16'€1 8I'FL 9 9 o€
€80 €80 06°0 98°0 180 680 1001 0T'L 9Tl 0481 GOl ¥EPL 00GT 9€F 98F F6VL €F'8 811 6991 €291 ¥ 9 0€
LL0 €L0 080 89°0 6L°0 18°0 ¥I'8 698 €€°01 TG61 €T'TT LT€T OVEl 8L'G ¥9¢ LTET L9® 08°€T Lg81 C0'8T 4 9 0€
170 00 17°0 90] Teo Tg0 0€6 ¥9¢ LT0T Gretr 90°€T 8V'ET TYEl 1gc 01T €86 €eTL Over vLel 8 ¥ 0€
¥9°0 L9°0 L9°0 ¥9°0 840 19°0 670 e IT 199 PeIT 1781 PG4T pEGT LEGT €8¢ 99°€ 9 15°el 8€'GT L9V 9 ¥ 0€
890 ¥¢0 ¥LO G960 ¥40 €50 Teo 8C0T €99 16°TT 86'0¢ OT'¥T 86'¢T 9091 19F% G€'¢ 669 OL€T Q9.1 6€°LT ¥ee v ¥ 0¢
0L°0 §L0 8L°0 9L°0 £8°0 1L°0 TLo €66 ¥E0T L6721 80°€T 69°€T LT'9T 6€9T 8T'L 09L ¥8'8 1091 T0'Te GL'8T ¥eL T ¥ 0¢
080 9€°0 670 6€°0 o 6€°0 70 CSET 0€7 [d/ngs L6702 69'8T 9881 68'8T 69€ 7€€¢ 62°9 LEET €L0T Te¢e 1€¢ 8 4 0€
640 €90 ¥40 940 19°0 640 67°0 0L€r €Ty TLET 86'1¢ L8'8T 9881 L68T 8LF 86°€¢ LLS €eeT LOTTT SP9 @e 9 4 0€
650 0L°0 90 L0 990 89°0 ¥9°0 LEE€T 00L 4 Praaed Y81 LT'6T F¥E€6L 929 0OF'G 86°G GTGr 662l €67L s v 4 0€
6e0 Tgo ¥¢0 V0 790 €50 99°0 99T 8L6 109 18°01 16728 GGET 0€°9T 0L°9T T90L 996 0€90 9¢€L 961 8Tl STl 8VPc €€6 9€6 T 4 0€
VIWWgDSg VIWIWHDSG AHOSd AHOSI AHOSd “HOSd AHOSd dvd MvSs TUUAIHS LAIHS IdIWNS LIdLS IO ¥H €0 (49 19 ¢MOL 1MOL €S s s [44 v fw Twou
g/u+u=zx U=T cI= 01=2 oT/u=r ¢=x =T

(1) somysumoy jo qdY <G

9lq¥L

25

00 810 67°0 670 807 6LT 6LEI €92 L9L 789 9T8T I8L TU9T 8L @291 €L61 TO0T €L9 RELaCA
€70 8€°0 820 7o 9T 6T 9zEl <431 667 TEeT LO9T G0Tl L8'ST 0€FT 9LGT 006 g 8 0L
60 G0 07’0 6€°0 06T SVl 6921 00702 0r'9 €67 9991 8LET POLT 8G9T GE8T 9L 9 8 0L
7e0 870 €50 16°0 0 LT S6'TL LE7TT LE79 G0G 9¥9T €6'¢l ST6L 9TLT V6LT TL6 o8 0L
070 0 €50 S0 18T T8 €66 VI'€T €8 699 81T G661 90°TC 8€8T GL'GT T6IT [()
29°0 6570 99°0 120 8LT S8 IFFI 6708 96 €8¢ 06LT el 0€'8T 8Tl €691 €96 8 9 0L
29°0 99°0 09°0 2901 0T 98T CEVI £9°1T 829 GT'8T 09FL €F8T 9F9T L6'LT L8OT 9 9 0L
€ro aro €ro L¥'0 LT 19T €671 T8°TC SrL 90°8I PSSl 8E6L €9°LT TH'ST ¥60L o9 oL
0v'0 0 860 810 LT 06T GLOT 6522 €9 06°¢1 1C9T PRGI €981 8S0Z LS'II 9 oL
810 ¥e0 150 91 16T 0T Sl 7612 Sev PE6I PRGL P6LT €991 OL8T 926 8 ¥ 0L
16°0 a0 14401 7o cre €61 8LGT LLTE 959 LT61 0S'LT TEST 8C8T 8F0Z €86 9 ¥ 0L
6e0 16°0 €ro 7o e LT 08°GT e8VC LTL 1008 89'LT 8€0¢ FV6T ¥9TE 1¢TL voor oL
070 8€°0 7o 070 €7 1€T 6ETI 67°92 PPOT 99'8T 1¢6T 6¢°€e 00Ce 0078 09Tl [AN()
19°0 860 €50 650 V6T 00T 2961 7'9¢ PLL 8EET PE6T T6TT 606 0TI I¥6 & ¢ 0L
£9°0 99°0 19°0 79°0 86T 60C 691C 87°6¢ 00T 62°¢T 89°0¢ 96°€T SFIT L€TC 8€6 9 ¢ 0L
2¢0 8¢°0 L¥°0 19°0 €T 98T €V0T 96°0¢ el 0872 2Ter STPL CEVL 80°9% 60T vz 0L
170 0v'0 97’0 170 8LT SFE SEVI 10°8% LECT 8108 9L 0TSl €891 006 LgTL [A1)
670 0 150 00 80T L¢T TYII 81°L1 L9¢ LTl 81l F9ST 60°CT €8FI 908 8 8 09
Sro aro LE°0 970 &1 L8T 62Tl 8T°61 9r'e 0zl 8CZl S9LT 1091 9291 T6 9 8 09
8¢0 670 8¢°0 90 02z FLT 9TEl 6812 01’9 T¥Ll e®El 80T 9L9T TO'ST 86°0T o8 09
67°0 16°0 970 €50 9T 08T V06 0L1e 6e9 TGl €UGl 66T 9¥'8T 9L°0% 0TTT 8 09
870 870 810 S0 69T TPl ETel LE6T e L1891 LUET PFOT 68°¢T 1691 LIS & 9 09
7e0 L¥'0 €50 16°0 LT 18T 69€T €208 68 00°LT 0gVT GFST 1991 0TLT T%6 9 9 09
8770 970 170 67°0 e vLT o P9ED [9N«d QLS €6°LT 6671 T88T 6LLT FLG6T LEOT o9 09
970 280 ¥5°0 16°0 9% €0¢ 1901 80°€T ¢0'8 GE9r 8E'LT T90T G661 T1'1E SVIT z 9 09
€¢0 L¥°0 160 950 LT 99T oSl [tlatd 9Ly F9'8I PPGL 19D STLT SO61 8T8 8 ¥ 09
L¥°0 810 LV'0 810 6LT TLT 996l £6°6T 199 1861 6LG1 TT8L €691 6161 GL6 9 v 09
Ge0 L¥°0 150 00 612 08T SOGI 0172 29 1961 0£'LT 9L6T 68T 1€0% TOTL voor 09
7e0 G0 ceo0 €60 LT €T S8Rl 09°92 16T €061 LL6T 686 SPEC 19°€T Chel v 09
£9°0 250 £9°0 69°0 0T V6T 06T JAN(4 62L 0T€T Ge8T T6Tl LG8 TL0T TL6 & ¢ 09
440] L9°0 €670 860 60T F0T €LST 2892 L8 T8'TL €L6T G9TT €96 10€T 206 9 ¢ 09
190 160 L8670 L6°0 e 6T 6VST 17°8¢ 0L0T 9622 <118 EARNNA 4 SR A R AL A O] vz 09
87°0 £€°0 L€°0 120 we 8LT 99Tl WLE 6T°CT €V°6L ¢6°Tc STFL 99FT ¥6'ST L6 T 09
970 2¢0 40l 401 Wi L&T LOTD VLT 29t 86T TLOL LEGT €8°€T LPPT L08 8 8 09
o Tro 170 170 &1 8FT 9Tl L0°L1 €9'¢ I9VI GLTL 9LST O'ST 66'GT 698 9 8 0¢
Ge0 ze0 050 00 861 T 8Pl ve61 €861 PLG e’Gl TEEl PELL 9991 96°LT BEOL voo8 ¢
16°0 16°0 67°0 670 e eel 68 180T [9N2]1 €6'¢ GLYI GV 0T6T 9L8T LE'8T S8I'TL z 8 0¢
0 970 07’0 070 LET 0 SET VT ¥6°91 [9N2 0z'e eLVl LT L0GT LRET €961 L9 8 9 0¢
iZ40] 150 090 090 T 99T 19Tl £€°61 9791 0Ly 9r9l 99'¢T G8'LT 8691 6VLT 088 9 9 0¢
070 670 4401 40 0LT 6FT G0TI G602 2991 0rg 2991 9R'€T TT6L V6L SS'ST 90°0T Vo9 0¢
VINgosg VINNHDST AHOSE AHOSd AHOSA “HOSd “*HOSd MAN dvd MVS “SLAIHS “LAIHS IdINS Iod ¥ €D €3] 193] IMOL €S cs 15 4% v fw Twu

utu=r u=x cr=x 01=° o1/u=zr g¢=x =

(I1) soustmay jo (IdY :9 S[qRL

26

5 Conclusions

In this paper we have addressed the 2-stage multi-machine assembly scheduling problem with the
objective of minimising the total completion time. We have presented two constructive heuristics:
The first algorithm, NEW, constructs a sequence by iteratively appending a job at the end of
a partial sequence. The job is selected according to a problem-specific indicator that takes
into account the idle time of the assembly machines at the second stage and the contribution
of the job to the total completion time. Due to the good performance of this heuristic, the
indicator has been embedded into a beam search based constructive heuristic, labelled BSCH,
which constructs several sequences at the same time, compares them and selects the best z
ones. Thereby, this heuristic combines the diversification of population-based algorithms and
the speed of the constructive heuristic. Furthermore, we have implemented different variants of
the BSCH, whose main difference is the way in which the beam width (z) is modified in each
iteration.

Using a testbed similar to [Allahverdi and Al-Anzi (2012), the extensive computational
experience carried out shows that the best ARPD are found by variants BSCHy (V z= €
{2,1/10,5,10,15,n}) and BSCHppra (¥ € {n,n 4+ n/2}). These variants have been com-
pared with the N EW heuristic, and with existing heuristics for the problem under consideration
and their adaptations for related scheduling problems. The results show that the proposed

heuristics yield a much better performance than the existing ones.

Acknowledgement

This research has been funded by the Spanish Ministry of Science and Innovation, under the

project “PROMISE” with reference DPI12016-80750-P.

References

Ahmadi, R., Bagchi, U., and Roemer, T. A. (2005). Coordinated scheduling of customer orders for quick
response. Naval Research Logistics, 52(6):493-512.

27

Al-Anzi, F. S. and Allahverdi, A. (2006a). A Hybrid Tabu Search Heuristic for the Two-Stage Assembly
Scheduling Problem. International Journal of Operations Research, 3(2):109-119.

Al-Anzi, F. S. and Allahverdi, A. (2006b). Empirically discovering dominance relations for scheduling
problems using an evolutionary algorithm. International Journal of Production Research, 44(22):4701—
4712.

Al-Anzi, F. S. and Allahverdi, A. (2007). A self-adaptive differential evolution heuristic for two-stage
assembly scheduling problem to minimize maximum lateness with setup times. FEuropean Journal of
Operational Research, 182(1):80-94.

Al-Anzi, F. S. and Allahverdi, A. (2012). Better Heuristics for a Two-Stage Multi- Machine Assembly
Scheduling Problem to Minimize Total Completion Time Better Heuristics for a Two-Stage Multi-
Machine Assembly Scheduling Problem to Minimize Total Completion Time. International Journal of
Operations Research, pages 66-75.

Allahverdi, A. and Al-Anzi, F. (2012). A new heuristic for the queries scheduling problem on distributed
database systems to minimize mean completion time. In Proceedings of the 21st International Confer-
ence on Software Engineering and Data Engineering, SEDE 2012.

Allahverdi, A. and Al-Anzi, F. S. (2006). A PSO and a Tabu search heuristics for the assembly schedul-
ing problem of the two-stage distributed database application. Computers and Operations Research,
33(4):1056-1080.

Allahverdi, A. and Al-Anzi, F. S. (2009). The two-stage assembly scheduling problem to minimize total
completion time with setup times. Computers and Operations Research, 36(10):2740-2747.

Della Croce, F. and T’kindt, V. (2003). Improving the preemptive bound for the one-machine dynamic
total completion time scheduling problem. Operations Research Letters, 31(2):142-148.

Erenay, F., Sabuncuoglu, I., Toptal, A., and Tiwari, M. (2010). New solution methods for single machine
bicriteria scheduling problem: Minimization of average flowtime and number of tardy jobs. Furopean
Journal of Operational Research, 201(1):89-98. cited By 18.

Fernandez-Viagas, V. and Framinan, J. M. (2015). A new set of high-performing heuristics to minimise
flowtime in permutation flowshops. Computers and Operations Research, 53:68-80.

Fernandez-Viagas, V. and Framinan, J. M. (2017). A beam-search-based constructive heuristic for the
PFSP to minimise total flowtime. Computers and Operations Research, 81:167-177.

Fernandez-Viagas, V., Ruiz, R., and Framinan, J. M. (2017). A new vision of approximate methods for the
permutation flowshop to minimise makespan: State-of-the-art and computational evaluation. Furopean
Journal of Operational Research, 257(3):707-721.

Framinan, J. M. and Perez-Gonzalez, P. (2017a). New approximate algorithms for the customer order
scheduling problem with total completion time objective. Computers and Operations Research, 78:181—
192.

Framinan, J. M. and Perez-Gonzalez, P. (2017b). The 2-stage assembly flowshop scheduling problem with
total completion time: Efficient constructive heuristic and metaheuristic. Computers and Operations
Research, 88:237-246.

Framinan, J. M., Perez-Gonzalez, P., and Fernandez-Viagas, V. (2018). Deterministic assembly scheduling
problems: A review and classification of concurrent-type scheduling models and solution procedures.
European Journal of Operational Research, 0:1-17.

Gonzalez, T. and Sahni, S. (1978). Flowshop and jobshop schedules: Complexity and approximation.
Oper. Res., 26(1):36-52.

Holm, S. (1979). Board of the Foundation of the Scandinavian Journal of Statistics. 6(2):65-70.

Koulamas, C. and Kyparisis, G. (2001). The three-stage assembly flowshop scheduling problem. Computers
and Operations Research, 28(7):689-704.

Lee, C.-Y., Cheng, T. C. E.; and Lin, B. M. T. (1993). Minimizing the makespan in the 3-machine

28

assembly-type flowshop scheduling problem. Management Science, 39(5):616-625.

Lee, I. S. (2018). Minimizing total completion time in the assembly scheduling problem. Computers and
Industrial Engineering, 122(June):211-218.

Leung, J. Y. T., Li, H., and Pinedo, M. (2005). Order scheduling in an environment with dedicated
resources in parallel. Journal of Scheduling, 8(5):355-386.

Potts, C. N., Sevast’janov, S. V., Strusevich, V. A., Van Wassenhove, L. N., and Zwaneveld, C. M. (1995).
The Two-Stage Assembly Scheduling Problem: Complexity and Approximation. Operations Research,
43(2):346-355.

Shoaardebili, N. and Fattahi, P. (2015). Multi-objective meta-heuristics to solve three-stage assembly flow

shop scheduling problem with machine availability constraints. International Journal of Production
Research, 53(3):944-968.

Sotskov, Y., Tautenhahn, T., and Werner, F. (1996). Heuristics for permutation flow shop scheduling
with batch setup times. OR Spectrum, 18(2):67-80. cited By 13.

Sung, C. S. and Kim, H. A. (2008). A two-stage multiple-machine assembly scheduling problem for
minimizing sum of completion times. International Journal of Production Economics, 113(2):1038—
1048.

Sung, C. S. and Yoon, S. H. (1998). Minimizing total weighted completion time at a pre-assembly stage
composed of two feeding machines. 54:247-255.

Tozkapan, A., Kirca, O., and Chung, C. S. (2003). A branch and bound algorithm to minimize the total
weighted flowtime for the two-stage assembly scheduling problem. Computers and Operations Research,
30(2):309-320.

Valente, J. M. (2010). Beam search heuristics for quadratic earliness and tardiness scheduling. Journal
of the Operational Research Society, 61(4):620-631.

Valente, J. M. and Alves, R. A. (2008). Beam search algorithms for the single machine total weighted
tardiness scheduling problem with sequence-dependent setups. Computers and Operations Research,
35(7):2388-2405.

29

	Introduction
	Problem statement and background
	Proposed Constructive heuristics
	Constructive Heuristic 1
	Beam Search Constructive Heuristic
	Variable Beam Width

	Computational evaluation
	Performance indicators
	Testbed design
	Experimental parameter tuning
	Comparison of the different versions of BSCH
	Comparison of heuristics

	Conclusions

