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Abstract

In this paper, we adress the two-stage multi-machine assembly scheduling prob-
lem where there are several dedicated parallel machines in the first stage and more
than one identical parallel machines in the second stage. The objective considered is
the minimisation of the total completion time. This problem is NP-hard and the lit-
erature surveys indicate that the problem considering several assembly machines has
not received much attention. In our paper, we first review the existing solution pro-
cedures for the problem under consideration and for related problems, adapt them
to our problem and develop two efficient heuristics. The first heuristic constructs a
solution taking into account some specific knowledge of the problem domain. This
algorithm is embedded into a beam search-based constructive heuristic and its be-
haviour when the beam width takes different values is analysed. The computational
experience carried out shows that the proposals are more efficient than the existing
heuristics.
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1 Introduction

The two-stage multi-machine assembly scheduling problem has many applications in industry

since many products are made up of different components that need to be manufactured in

the first stage and then assembled into final products in the second stage, which may consists

of several parallel machines. These decision problems are receiving an increasing attention of

researchers due to its applications in industry, such as personal computer manufacturing (Potts

et al., 1995), fire engine assembly plant (Lee et al., 1993), or distributed database systems

(Allahverdi and Al-Anzi, 2006; Al-Anzi and Allahverdi, 2006b, 2007).

In this paper we focus on a two-stage multi-machine assembly scheduling problem where there

are several dedicated machines in the first stage (e.g. to manufacture the different components

of the final product) and more than one identical (parallel) machines in the second stage (e.g.

to assembly the components into the final product). Clearly, processing a job in a second stage

–which can be done by any of the parallel machines in the second stage– can start only after

all operations for this job in the first stage have been completed. The objective is to minimize

the total completion time so, according to the classification and notation in Framinan et al.

(2018), it can be denoted as the DPm → Pm||
∑

j Cj problem. This problem is connected to

other scheduling problems, i.e. as mentioned in Sung and Kim (2008) and Framinan and Perez-

Gonzalez (2017b), it can be seen as a generalisation of the two-machine flowshop problem. For

the case with only one machine at the first stage and one assembly machine at the second stage,

it is equivalent to scheduling in a flowshop with two machines. Since Gonzalez and Sahni (1978)

proved that the Fm||
∑

j Cj is NP-hard in the strong sense, it is clear that the problem under

study is strongly NP-hard.

While the two-stage assembly problem with only one machine in the second stage has been

widely discussed in the literature (see e.g. the recent review on the topic by Framinan et al., 2018),

to the best of our knowledge, the problem considering several (identical) assembly machines has

received much less attention. Most works addressing this problem consider at maximum two

assembly machines in the second stage. Some properties of this problem have been stated in

Al-Anzi and Allahverdi (2007) and Lee (2018), while heuristics have been proposed by Al-Anzi
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and Allahverdi (2006a), Sung and Kim (2008) and Al-Anzi and Allahverdi (2012), and different

metaheuristics have been designed and compared in Al-Anzi and Allahverdi (2007), Allahverdi

and Al-Anzi (2009) and Al-Anzi and Allahverdi (2012).

The main contribution of this paper is to improve the performance of the approximate solution

procedures for the problem under consideration by proposing two new constructive heuristics that

explicitly use knowledge of the problem domain to construct the solutions. More specifically, we

propose a fast constructive heuristic which applies to our problem some dominance properties

by Framinan and Perez-Gonzalez (2017b) derived for the case where there is only one assembly

machine. In light of the excellent results of this heuristic in negligible computation times, it

is embedded into a beam search-based constructive heuristic. This type of heuristic has been

developed originally by Fernandez-Viagas and Framinan (2017) for the permutation flowshop

scheduling problem, but for our problem we use the idea of keeping only the most promising

nodes in each iteration to boost its performance, an idea successfully employed for different

scheduling problems (see e.g. Della Croce and T’kindt, 2003, Valente and Alves, 2008, and

Valente, 2010). An extensive computational evaluation is performed to show that the proposals

are found to be more efficient than existing solution procedures for the problem.

The remainder of the paper is organised as follows: the problem is formally described and

the state of the art is presented in Section 2. In Section 3, we explain in detail the proposed

heuristics: The constructive heuristic is presented in Section 3.1, while in Section 3.2 the beam

search heuristic is explained. The computational experiments are conducted in Section 4 and,

finally, conclusions are discussed in Section 5.

2 Problem statement and background

The problem studied in this paper can be stated as follows: There are n jobs to be scheduled

in a layout composed of two stages. Each job has m1 + 1 operations. In the first stage, there

are m1 dedicated parallel machines, in which the first m1 operations are conducted, while in

the assembly stage there are m2 identical parallel machines. Only after all m1 operations are

completed, the assembly operation may start in the first available machine. A job j has a
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processing time pij on machine i in the first stage and an assembly processing time atj in the

second stage. The decision problem consists on scheduling the jobs in the two machines so the

sum of the completion times of the jobs is minimised.

A solution for this problem is determined by giving a sequence of jobs indicating the order in

which the jobs are processed (see e..g. Al-Anzi and Allahverdi, 2006a and Al-Anzi and Allahverdi,

2012). Therefore, given a sequence, let [j] denote the job processed in position j in the sequence.

C1j the maximum completion time of job in position j in the first stage can be computed as

follows:

C1j = max
i=1,...,m1


j∑

k=1
pi[k]

 (1)

In order to know the first available assembly machine, the completion time of job [j]

in each assembly machine is computed as: Ci∗j = max {Ci∗j−1, C1j} + at[j], where i∗ =

arg mini=1,··· ,m2{Ci,j−1}. Otherwise, Cij = Ci,j−1. Then, Cj the completion time of the job

processed in position j can be computed as:

Cij = Ci∗j (2)

As mentioned in Section 1, literature surveys indicate that two-stage assembly scheduling

problems have been tackled with respect to different objectives. Lee et al. (1993) and Potts et al.

(1995) addressed this problem regarding the minimisation of the makespan. Other objectives

are the minimisation of the maximum lateness (Al-Anzi and Allahverdi, 2006b and Allahverdi

and Al-Anzi, 2006), additional constraints such as setup times (Al-Anzi and Allahverdi, 2007)

or additional stages for the transportation of components (Koulamas and Kyparisis, 2001 and

Shoaardebili and Fattahi, 2015). Regarding the aim of our paper, there are few references

addressing the case with several machines in the second stage, namely the work by Sung and

Kim (2008) and Al-Anzi and Allahverdi (2012). Sung and Kim (2008) develop an heuristic,

denoted SAK from now on, applying a processing-time-based pairwise exchange mechanism,

while in Al-Anzi and Allahverdi (2012), a mathematical model of the problem with two assembly

machines is proposed, together with three new metaheuristics.
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In view of the relationship of the problem under consideration with other scheduling problems,

it is worth also to analyse the existing solution procedures for related problems, namely for the

assembly scheduling problem with one machine in the last stage (DPm → 1||
∑

j Cj problem)

and the customer order scheduling problem (DPm → 0||
∑

j Cj problem).

Regarding the DPm → 1||
∑

j Cj problem, the first reference addressing it is Tozkapan et al.

(2003), where the authors prove that permutation schedules are optimal for the DPm → 1

problem and propose two heuristics, labelled TCK1 and TCK2 in the following, to find an upper

bound for their branch and bound algorithm. Al-Anzi and Allahverdi (2006a) also address this

problem and derive a number of theoretical properties.They propose three simple constructive

heuristics (S1, S2 and S3) based on the idea of ordering the jobs according to the Shortest

Processing Time (SPT) rule, and two additional constructive heuristics, labelled A1 and A2 in

the following. Recently, Framinan and Perez-Gonzalez (2017b) also address this problem and

review the problem properties studied by Al-Anzi and Allahverdi (2006a). The authors develop a

constructive heuristic, denoted FAP in the following, which outperforms the existing constructive

heuristics. The last reference where this problem is considered is Lee (2018). Six lower bounds

are proposed and tested in a branch and bound algorithm. They also propose four greedy-type

constructive heuristics, labelled G1, G2, G3 and G4.

Regarding the DPm → 0||
∑

j Cj problem, note that this problem is tantamount to the one

under consideration if the processing times of the jobs in the assembly stage are zero. Even if

this is not the usual case, both problems would be similar e.g. if the processing times in the first

stage largely influence the value of the objective function. Therefore, solution methods for the

customer order scheduling problem could be applied to the problem under consideration, hence

the interest in reviewing the related literature. For this problem, Sung and Yoon (1998) propose

two constructive heuristics based on the SPT rule. The first one schedules the order with the

smallest total processing time across all m machines, labelled STPT in the following, and the

second one selects the order with the smallest maximum amount of processing time on any of

the m machines, denoted as SMPT . Leung et al. (2005) propose a constructive heuristic that

selects as the next order to be sequenced the one that would be completed the earliest, that

is, the order with the Earliest Completion Time (ECT). Based on this idea and including some
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look-ahead concepts, Framinan and Perez-Gonzalez (2017a) propose a constructive heuristic and

two specific local search mechanisms for the problem, labelled SHIFTk and SHIFTkOP T
.

After this review, it can be seen that, despite some solution procedures exist for the problem,

the performance of the adaptation of procedures from related problems has not been tested so

far. Furthermore, there is some opportunity to improve existing methods for the problem by

incorporating some knowledge of the problem domain. These methods are presented in the next

section.

3 Proposed Constructive heuristics

In this section, we propose two heuristics for this problem. First, a constructive heuristic is

detailed (Section 3.1) and then we propose a beam search based constructive heuristic (Section

3.2).

3.1 Constructive Heuristic 1

The idea of the proposed heuristic consists of iteratively constructing a sequence by selecting

one job among the unscheduled jobs and adding it at the end of the partial sequence, an idea

that has been addressed for different scheduling problems by Framinan and Perez-Gonzalez

(2017b,a) and Fernandez-Viagas and Framinan (2017) with excellent results. A key issue for the

performance of this type of heuristics is the development of a problem-specific indicator ψ which

adequately represents the suitability of an unscheduled job to be appended since, once a job is

added to the sequence, its position cannot be modified in the subsequent iterations.

Thence, the algorithm starts with a set U containing all (unscheduled) jobs and an empty

schedule S. For each iteration j ∈ (1, · · · , n), each unscheduled job ωl ∈ U is analysed as a

candidate to be added to position j in S, and its suitability is measured by computing the

indicator ψl, and the job in U with the lowest value of ψ is selected.

In our problem, two main aspects are considered to assess the suitability of appending a

candidate job ωl at the end of the partial sequence, i.e.:

1. If its inclusion implies that the first available machine in the second stage has to wait for
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processing the candidate job at the second stage. Therefore, the idle time induced by the

insertion of job ωl is computed. Let us ITj denote the idle time induced by scheduling job

j at the end of the sequence. Clearly, ITj is computed as follows:

ITj = max {C1j − (Cj − atj), 0} (3)

Note that Cj − atj computes the workload of the first available machine in the second

stage before scheduling job j (i.e. the machine in the second stage where the candidate

job will be processed). If the idle time induced by scheduling a job is greater than 0, then

the completion times in first stage dominate the completion time of this job when it is

evaluated as candidate to be scheduled. Otherwise, the completion time of the candidate

job is largely influenced by the second stage. As we are minimising the total completion

time, it is clear that the lower the idle time caused by a job, the more suitable it is to be

scheduled.

2. The contribution of the candidate job to the total completion time. As it can be seen,

the idle time takes into account the suitability of the job until its processing in the second

stage starts. In addition, its contribution to the total completion time would depend on

the processing time in the second stage, i.e. atwl
, which roughly measures the influence of

the second stage. We weight this influence according to the number of assembly machines

(m2) since, with a higher number of machines in the second stage, the next jobs have a

lower probability of not being affected by the second stage. Furthermore, to take into

account the fact that, the higher the number of components in the first stage, the less

likely is for the processing time in the second stage to dominate the completion time, CTl

the expected contribution of job wl to the total completion time is measured as follows:

CTl = atwl

m1 ·m2
(4)

By taking into account the two aspects, we will ensure that the jobs to be first sequences

are those with lower values of idle time and assembly time. Therefore, the indicator ψl, which
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estimates the suitability of appending a candidate job ωl at the end of S, is computed as follows:

ψl = a · ITl + CTl (5)

where a is a parameter to weight the influence of the two terms and that would be determined

via callibration of the algorithm.

Note that the complexity of this heuristic is O(n · (n− k) ·m1 · logm1) ∼ O(n2 ·m1 · logm1),

since the main loop in the algorithm performs n iterations. In each iteration, n − k jobs are

evaluated, each evaluation consisting on obtaining the maximum processing time in the first

stage, i.e. sorting m1 elements. The pseudo-code of the proposed heuristic is shown in Figure 1.

3.2 Beam Search Constructive Heuristic

The heuristic proposed in Section 3.1 provides excellent results with negligible processing

times (see Section 4), proving that the indicator ψ properly captured the suitability of a job to

be appended. Therefore, we embed the components of this indicator into a new beam search

-based constructive heuristic for the problem, labelled BSCHMMA. This type of heuristic has

been considered to solve different scheduling problems, such as in Sotskov et al. (1996) (where

some constructive heuristics based on insertion techniques are combined with beam search for

the permutation flowshop scheduling problem), Erenay et al. (2010) (for the single machine bicri-

teria scheduling problem), and Fernandez-Viagas and Framinan (2017) (also for the permutation

flowshop scheduling problem). In this type of heuristics, a number of candidate nodes, denoted

by a parameter x, are maintained in each iteration. In iteration k, each node l (l ∈ {1, · · · , x})

is formed by a partial sequence, i.e. a set of k scheduled jobs, S l
k, and a set of unscheduled jobs,

U l
k. Then, all unscheduled jobs in U l

k are inserted in position k+1 of S l
k, thus obtaining x ·(n−k)

candidate nodes. Out of these nodes, the x most suitable ones are selected as candidates for

the next iteration. Therefore, the ideas behind the use of the indicator ψ could be used in this

heuristic. However, an additional complication arises because candidates from different nodes

may have to be compared. More specifically, the heuristic may have to deal with one of the

following situations:
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Procedure Proposed Constructive Heuristic NEW
// All jobs are initially unscheduled
Π := ∅;
// Completion times on stages 1 and 2 of sequence S:
C1∗i := 0 i = 1, . . . ,m1
C2∗i := 0 i = 1, . . . ,m2
s := arg min1≤i≤m2 C2∗i ;
Obtain a sequence U := (ω1, . . . , ωn) by applying algorithm S2;
for j = 1 to n do

for each ωl ∈ U do
// Compute the completion times in the first stage after selecting ωl as candi-
date:
C1(ωl) := max1≤i≤m1{C1∗i + piωl

}
// Compute the idle time induced if job ωl is inserted at the end of the partial
sequence:
ITl = max {C1(ωl)− C2∗s , 0}
// Compute the additional completion time induced when job ωl is inserted at
the end of the partial sequence:
CTl = atwl

m1·m2
// Compute the indicator considering the idle time:
ψl := a · ITl + CTl

end
r := arg min1≤k≤n−j+1 ψk;
Append ωr at the end of Π, i.e. Π := (π1, . . . , πj−1, ωr);
Extract ωr from U , i.e. U := (ω1, . . . , ωr−1, ωr+1, . . . , ωn−j+1);
// Update values of the constructive sequence:
C1∗i := C1∗i + piωr

C2∗i := max {C2∗s ,max1≤i≤m1 C1∗i }+ atwl

end
return C2∗i

end

Figure 1: Pseudo-code of the proposed heuristic NEW.
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• If the candidate jobs have been obtained by inserting different jobs in U l
k to a same node l,

their partial sequences S l
k will be exactly alike with the exception of the last job appended.

So, the comparison can be done in reference to the completion time or the idle time caused

by the added job.

• If the candidate jobs have been obtained from different nodes, the unscheduled jobs and the

scheduled jobs are different for each candidate node. In this case, the comparison should

take into account that the previous scheduled jobs at each candidate node are different, so

this fact has to be considered when developing the indicator for suitability.

To explain the design of the heuristic in detail, we first denote by s l
jk the jth scheduled job

of node l in iteration k and by u l
jk the jth unscheduled job of selected node l in iteration k. As

shown in Figure 2, the heuristic consists of the following steps:

Step 1: Generate the initial x nodes: All jobs are initially sorted according to Algorithm S2 by

Al-Anzi and Allahverdi (2006a), as it is done in NEW . The first x nodes are obtained

by assigning the job in position l of the sorted list to the first position of the partial

sequence s l
11 of the selected node l. The list of unscheduled jobs of this selected node l

is formed by the rest of the jobs.

Step 2: Generate candidate nodes: At iteration k, n−k candidate jobs are obtained by appending

each job in U l
k at the end of the partial sequence of each selected node l ∈ {1, · · · , x}.

Step 3: Evaluate candidate nodes: In this step, two aspects are considered: first, the influence

from the selected node and, second, the influence from the inserted job. The former is

computed as the forecast index, Fkl, which is explained in Step 5, and the latter is due

to the insertion of the new job,u l
jk, at the end of the partial sequence, which is measured

by CTjkl, see Eq. (4) and by ITjkl, which denotes the idle time incurred when inserting

job u l
jk in the selected node and is computed according to Eq. (3). Note that these two

last components are taken from the heuristic in Section 3.1, while Fkl is a component

specifically designed to allow the comparison of candidates from different nodes.
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Therefore, at each iteration k, the following indicator us used to compute the suitability

of inserting an unscheduled job u l
jk in a selected node l:

Bjkl := Fkl + a′ · ITjkl + CTjkl (6)

In Equation (6) the parameter a′ has been considered in order to balance the idle time

and the completion time of the new inserted job and its calibration is adressed in Section

4.3.

Step 4: Select the best x candidate nodes: The x candidate nodes with the lowest values of B

are selected and these nodes will formed the nodes of the next iteration, i.e. in iteration

k all the combinations of j and l are tested and those achieving the lowest values of Bjkl,

as defined in Eq. (6), are selected. The rest of candidate nodes are discarded and the

best candidate nodes are defined as the selected nodes for the next iteration. At each

iteration k, the combination of l and j of the l′th best Bjkl are denoted by branch[l′]

and job[l′], respectively.

Step 5: Update forecast index: The forecast index F is defined in order to compare candidate

nodes obtained from different nodes and, therefore, composed by different un- and sched-

uled jobs. F represents the completion time of the last scheduled job at each candidate

node and it is computed as in Eq. (7)

Fk,l′ = Fk−1,branch[l′] + b · ψjob[l′],k,branch[l′] (7)

where parameter b is designed to balance the influence of the last scheduled job to the

completion time and ψjob[l′],k,branch[l′] is the indicator already employed in NEW –see

Eq.(5)– computed when job u l
jk is appended. The calibration of b is discussed in Section

4.3. The pseudocode of the algorithm is shown in FigURE 2.

Clearly, the BSCH has only one parameter (x, the beam width). It can be seen that,

for x = 1, BSCH is tantamount to NEW . Note that the complexity of this heuristic is

O(max{m1n
2x,m2n

2x, n2x2}).
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Procedure BSCH_MMA(x)
Obtain a sequence Ω := (ω1, . . . , ωn) by applying algorithm S2;
Update U l

1(ul
1,1 = ωl) and S l

1(sl
1,1 = ∅).

for l = 1 to x do
F1,l = ψalpha[l],0,l

end
for k = 1 to n− 1 do

// Candidates Nodes Creation
Determination of ITjkl, CTjkl;
// Candidates Nodes Evaluation
Bjkl := Fkl + a′ · ITjkl + CTjkl ∀ l = 1, · · · , x and ∀ j = 1, · · · , n− x;
// Candidates Nodes Selection
for l′ = 1 to x do

Determination of the l′-th best candidate node according to non-decreasing Bjkl

in iteration k. Denote by branch[l′] and job[l′] the value of l and j respectively
of that candidate.

end
//Forecasting Phase. for l′ = 1 to x do

Update S l′
k+1 and U l′

k+1 by removing job ubranch[l′]
job[l′],k from U branch[l′]

k and including
in Sbranch[l′]

k .
Fk+1,l′ = Fk,branch[l′] + b · ψjob[l′],k,branch[l′];

end
end
// Final evaluation
Evaluate the flowtime of the scheduled jobs of each selected node and return the least
one

end

Figure 2: Pseudo-code of the proposed beam-search-based constructive heuristic.

3.2.1 Variable Beam Width

To the best of our knowledge, beam search-based heuristics employed in the literature always

use a constant beam width x. However, it is expected that the number of nodes analysed in

each iteracion has a large influence on the performance of this heuristic. So, we carry out this

study and analyse the behaviour of the BSCHMMA when x may take different values. More

specifically, we will test the following variants:

• Constant Beam Width: BSCHMMA is tested with different values of x. So, the influence

of the beam width over the heuristic performance can be analysed.
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• Ascending Beam Width: In this version, the heuristic, denoted as BSCHASC , starts

selecting x nodes and the beam width increases in one unit as the beam search advances.

The search is stronger on each iteration since the number of selected nodes is higher.

• Descending Beam Width: This version, labelled as BSCHDESC , starts by selecting a

number of nodes equal to x + n − 1, and the beam width decreases one by one as the

number of iterations increases. Therefore, in the last iteration, x nodes are considered.

• V-shaped Beam Width: In this version, the beam width is modified taking a V-shape.

Initially, x nodes are considered and, for each iteration k, the number of nodes is decreased

one by one while k ≤ n
2 and then it increases until k = n. We denote this version as

BSCHV .

• Peak-shaped Beam Width: The pattern of this version, labelled as BSCHP , is completely

opposed to the previous one. The initial beam width is x, and then it increases one by one

whereas k ≤ n · 2
3 and then it decreases also one by one until the last iteration.

We design and implement different versions, which are evaluated considering the next values

of x, x ∈ {2, 5, 10, 15, n
10 , n, n+ n

2 , 2n}. Note that the BSCHMMA has also been run consideringa

beam width equal to 1, which corresponds to the heuristic NEW .

4 Computational evaluation

In this section, we analyse the efficiency of the constructive heuristics proposed in Section

3. The testbed employed for the comparison is designed in Section 4.2, while in Section 4.3 we

perform a design of experiments to set up proper values for parameters a′ and b in BSCHMMA.

In Section 4.4, the different versions of the beam-search heuristics presented in Section 3.2.1

are compared to obtain the best variants. Finally, in Section 4.5 the proposed heuristics are

compared with existing heuristics for the problem and for related problems. All methods have

been coded in C# using Visual Studio and carried out in an Intel Core i7-3770 PC with 3.4GHz

and 16 GB RAM, using the same common functions and libraries. In order to obtain a better
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estimation of the performance of all algorithms, a total of 10 replicates for each instance are

carried out and the results are averaged.

4.1 Performance indicators

In this section, the indicators employed to compare the different results obtained from the

computational evaluation are presented. First, a comparison among the different versions of the

BSCHMMA, presented in Section 3.2.1, is carried out in terms of quality of the solutions and

computational effort. The former is computed by means of the Average Relative Percentage

Deviation (ARPD) as follows:

ARPDh =
∑
∀sRPDhs

S
, ∀ s = 1, · · · , S (8)

where S is the total number of instances and RPD computed as

RPDhs = Chs − C∗s
C∗s

· 100 (9)

with Chs the total completion time obtained by heuristic h (h = 1, · · · , H) in instance s

(s = 1, . . . , S) and C∗s the minimum completion time known for instance s. The computational

effort is measured by means of the Average CPU (ACPU) time:

ACPUh =
∑
∀s Ths

S
(10)

where Ths is the time (in seconds) required by heuristic h to obtain a solution for instance

s. Furthermore, since the ACPU indicator presents some problems when it is used to compare

heuristics with different stopping criteria (Fernandez-Viagas and Framinan, 2015), the Relative

Percentage Indicator (labelled RPT ′) is computed, as indicated in Eq. (11), in order to evaluate

heuristics with different number of steps in their procedure.

RPT ′hs = Ths −minh=1,...,h{Ths}
minh=1,...,h{Ths}

(11)

Additionally, a slightly different indicator, denoted RPT , is also used to graphically repre-
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sent the results in logarithmic scale. This indicator is also employed in Fernandez-Viagas and

Framinan (2015), Fernandez-Viagas and Framinan (2017) and Fernandez-Viagas et al. (2017):

RPThs = Ths −ACPU∗s
ACPU∗s

+ 1 (12)

Finally, the ARPT , the Average RPT can be defined as follows:

ARPTh =
S∑
∀s

RPThs

S
(13)

4.2 Testbed design

In the related literature there are different testbeds for the problem proposed by Al-Anzi and

Allahverdi (2006a), Al-Anzi and Allahverdi (2007), Allahverdi and Al-Anzi (2009) and Al-Anzi

and Allahverdi (2012). In these tests the processing times are generated in the same way, but

each testbed has a different number of jobs and machines in the first stage. In the computational

experience carried out in Sections 4.3, 4.4, and 4.5, a new testbed is obtained following the

procedure by Al-Anzi and Allahverdi (2012). We adapt this testbed in order to consider the

parameter m2. Thus, this testbed consists of 30 instances generated for each combination of

n, m1 and m2. More specifically, the problem data are generated for n ∈ {30, 40, 50, 60, 70},

m1 ∈ {2, 4, 6, 8} and m2 ∈ {2, 4, 6, 8}. The processing times of the jobs in the machines in the

first stage are drawn from a U [1, 100] distribution, while in the second stage the processing times

are drawn from a m2 · U [1, 100] distribution in order to balance both stages and have different

scenarios regarding the relative processing times on each stage. In total, 2400 instances have

been generated.

4.3 Experimental parameter tuning

In this section, a factorial design of experiments is performed to find the best values of the

parameters of the two heuristics presented in Section 3. More specifically, the following values

are tested:

• Parameter a for the NEW heuristic described in Section 3.1. The following levels for a
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are tested: a ∈ {1, 2, 5, 10, 15, 20, 50, 200}.

• Parameters a′ and b for the BSCHMMA heuristic described in Section 3.2. The following

levels for each parameter are tested (in total, there are 56 combinations):

– a′ ∈ {0.25, 0.5, 1, 2, 5, 10, 15, 20}

– b ∈ {0, 1, 2, 3, 4, 5, 6}

To determine the best combination of parameters, ten instances have been generated for the

different values of n, m1 and m2, as explained in section 4.3. The processing times of each job in

each stage are generated as described in Section 4.2. With this testbed, it has been found that

the best results correspond to a = 5. Regarding the BSCHMMA heuristic, it has been assumed

that x = n and the so-obtained results compared. The first two levels of a′ are discarded due to

their poor performance. After proving that the normality and homoscedasticity assumptions are

not fulfilled, a non parametric Kruskal-Wallis test is performed. The results indicate that there

are significant differences between parameters a′ and b since the significance of both parameters

is equal to 0.000. The best combination is obtained for a′=2 and b=2. These values are used for

the different versions of BSCH in Section 4.4 and Section 4.5 regardless the value of x.

4.4 Comparison of the different versions of BSCH

Prior to conducting a full comparison with existing heuristics, the best variant of the beam-search

based heuristics is selected. To do so, the versions of BSCH presented in Section 3.2.1 have

been run on the 2,400 instances generated in Section 4.2. The results are summarised in Table 2

using the indicators defined in Section 4.1. The ARPD values range from 1.3196 (BSCHMMA

(x = 2)) to 0.5227 (BSCHMMA (x = n + n/2)) whereas ACPU values range from 0.9969 to

0.004. Results are graphically shown in Figure 3 where the y-axis represents the ARPD for each

heuristic and the x-axis represents the ACPU.

In view of these results, the following conclusions can be derived:

• BSCHP (x = 2) with ARPD = 0.6174 improves the variants BSCHMMA (x = 2, x = 5, x

= n/10) with ARPD equal to 1.3196, 0.8064 and 0.7708 respectively, using approximately
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Figure 3: ARPD versus average CPU times of the different versions of BSCH with the
Pareto frontier.

a similar computational effort.

• BSCHV (x = 2) with ARPD = 0.5458 outperforms variants BSCHMMA (x = 10),

BSCHASC (x = 2) and BSCHP (x = 5), with ARPD equal to 0.6437, 0.6145 and 0.5777

respectively.

• BSCHDESC (x = 2) with ARPD = 0.5499 improves variant BSCHMMA (x = 15) using

the same ACPU .

• BSCHV (x = 5) with ARPD = 0.5324 outperforms variants BSCHP (x = 10) and

BSCHASC (x = 5), with ARPD equal to 0.5626 and 0.5760, respectively using the same

computational effort.

• BSCHV (x = n/10) with ARPD = 0.5295 outperforms variants BSCHDESC (x = 5) and

BSCHASC (x = n/10), with ARPD equal to 0.5467 and 0.5815, respectively using the

same computational effort.

• For x = n, variants BSCHMMA (x = n) and BSCHP (x = n) yield a similar performance,
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being its ARPD equal to 0.5382 and 0.5348, respectively. Moreover, version BSCHV

(x = 10) obtains a similar ARPD = 0.5349 with less computational effort.

• The minimum ARPD is achieved by BSCHMMA (x = n + n/2), being the rest of the

variants worse with respect to the quality of the solutions.

• The Pareto frontier (i.e. the efficient variants with respect to the quality of solutions and

the computational effort) is formed by BSCHMMA (x=2), BSCHMMA (x=5), BSCHP

(x=2), BSCHV (x=2), BSCHV (x=5), BSCHV (x=n/10) and BSCHMMA (x=n +

n/2).

• The performance of BSCHMMA get worse for x = 2n. For this value of x, this heuristic

selects 2n candidates in each iteration, so there are more candidates since the first iteration.

Due to this poor results, it has not been considered.

To establish the statistical significance of the results, a Holm’s procedure (Holm, 1979) is

performed where each hypothesis is evaluated using a non-parametric Wilcoxon signed-rank test

assuming a 0.95 confidence level, i.e. α = 0.05. In Holm’s test, the hypotheses are sorted in

non-descending order of the p-values obtained in the Wilcoxon test. Each hypothesis is rejected

if p < α/(k− i+ 1) where k is the total number of hypotheses. The results can be seen in Table

1, where R means that the hypothesis is rejected by Wilcoxon and/or Holm’s procedure. As

can be seen, hypothesis BSCHMMA (x=10) = BSCHASC (x=2) is the only one that cannot

be rejected by Holm’s procedure, but it has to be noted that the ARPD achieved by the latter

version, equal to 0.6145, is considerably lower than the one obtained by BSCHMMA (x=10). In

summary, it can be concluded that the variants in the Pareto frontier in Figure 3 are efficient

for the problem. However, as no variant obtains the best performance for all values of x, it can

be also concluded that, if x ≤ n the best variant is BSCHV , and if x > n, then BSCHMMA is

the most efficient one.

4.5 Comparison of heuristics

In order to determine the performance of the proposed heuristics (NEW and the best vari-

ants of the beam-search based heuristic), these have been compared with existing heuristics for
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i Hi p-value Wilcoxon α/(k − i− 1) Holm’s Procedure

1 BSCHMMA (x=10) = BSCHASC (x=2) 0.015 R 0.0083 A
2 BSCHMMA (x=5) = BSCHV (x=2) 0.001 R 0.0100 R
3 BSCHMMA (x=5) = BSCHP (x=2) 0.000 R 0.0125 R
4 BSCHMMA (x=10) = BSCHP (x=5) 0.000 R 0.0167 R
5 BSCHMMA (x=10) = BSCHV (x=2) 0.025 R 0.0125 R
6 BSCHMMA (x=15) = BSCHDESC (x=2) 0.000 R 0.0500 R

Table 1: Holm’s procedure for comparison of the different versions of BSCH.

x 2 5 n/10 10 15 n n+n/2 2n

ARPD ACPU ARPD ACPU ARPD ACPU ARPD ACPU ARPD ACPU ARPD ACPU ARPD ACPU ARPD ACPU

BSCHMMA 1.3196 0.0040 0.7708 0.0104 0.8064 0.0173 0.6437 0.0279 0.5874 0.0430 0.5382 0.1220 0.5227 0.2685 0.5408 0.5026
BSCHASC 0.5499 0.0268 0.5467 0.0568 0.5360 0.0874 0.5423 0.1229 0.5524 0.1648 0.5282 0.2803 0.5452 0.4638 0.5568 0.7294
BSCHDESC 0.5499 0.0439 0.5467 0.0916 0.5360 0.1406 0.5423 0.1962 0.5436 0.2602 0.5543 0.4189 0.5736 0.6593 0.5790 0.9969
BSCHV 0.5458 0.0251 0.5324 0.0522 0.5295 0.0796 0.5349 0.1100 0.5359 0.1442 0.5425 0.2199 0.5576 0.3305 0.5646 0.4821
BSCHP 0.6174 0.6482 0.5777 0.6084 0.5825 0.6133 0.5626 0.5934 0.5540 0.5848 0.5348 0.5656 0.5498 0.5806 0.5617 0.5924

Table 2: Summary of results of the different versions of BSCH.

the problem, as well as with heuristics adapted from similar problems. More specifically, the

heuristics used for the comparison are the following:

• Heuristics from the DPm → Pm||
∑

j Cj problem:

– New heuristics proposed in Section 3, i.e. heuristic NEW in Section 3.1 and the

variants of the BSCH proposed in Section 3.2 that are in the Pareto frontier found in

4.4: BSCHV (x=2), BSCHV (x=n/10), BSCHV (x=5), BSCHV (x=10), BSCHV

(x=15), BSCHMMA (x=n) and BSCHMMA (x=n+ n/2).

– SAK (Sung and Kim, 2008): This heuristic sorts the jobs in non decreasing order

of psumj =
∑

i=1,...,m1 pij + atj . Set k=1 and m=k+1, it exchanges the kth job and

the mth job. If the total completion time is improved, it keeps the exchange. If not,

m = m+1.

– NSDE (Al-Anzi and Allahverdi, 2012): This algorithm has been coded and run, but

it has been discarded due to its computational effort is far from the rest of heuristics

and the quality of its solution is poor.

• Heuristics adapted from the DPm → 1||
∑

j Cj problem. Since this problem is closely

related to the one addressed in this paper, it is interesting to test whether heuristics
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specifically designed for the problem with one assembly machine can be adapted to the

problem under consideration. These adaptations are:

– TCK1 and TCK2 (Tozkapan et al., 2003): The original TCK1 constructs m1+1

indices for each job, according to PTFij = tij and PTSj = atj . So, m1+1 sequences

are obtained by sorting the jobs in non decreasing order of these indicators, and

the sequence with the lowest TCT is selected. The index PTSj has been adapted

to our problem so that PTSj = atj/m2. Similarly, TCK2 computes three indices

for each job, so three sequences are obtained by sorting the jobs in non decreasing

order of these indices, and the sequence yielding the lowest TCT is selected. The

indices have been adapted to our problem taking into account m2, i.e.: MPTj =

min{p1j , p2j , · · · , pm1j , atj/m2}; APTj = 1
m1+m2

∑m1
i=1 pij + atj/m2; and MXPTj =

max{p1j , p2j , · · · , pm1j , atj}.

– A1 and A2 (Al-Anzi and Allahverdi, 2006a): These algorithms construct a sequence

by iteratively appending a job at the end of a partial sequence. For algorithm A1,

the job is chosen so that the following indicator is minimised:

A1j = max
i=1,...,m1


j−1∑
r=1

pi[r] + pij

 (14)

Note that this indicator does not require any adaptation to our problem. However, for

algorithm A2 the indicator is adapted by dividing the assembly time by the number

of assembly machines m2, so the modified index is:

A2j = max
i=1,...,m1


j−1∑
r=1

pi[r] + pij

 + atj
m2

(15)

– S1, S2 and S3 (Al-Anzi and Allahverdi, 2006a): S1 sorts the jobs in non decreasing

order of atj . Heuristic S2 is obtained by sorting the jobs in non decresing order of

maxi=1,...,m1{pij} and, finally, heuristic S3 orders the jobs in non decreasing order

of maxi=1,...,m1{pij} + atk. As with the previous heuristics, S1 and S3 have been

adapted by dividing atj by m2.
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– G1, G2, G3 and G4 (Lee, 2018): Each of these heuristics constructs a sequence by

inserting the job with the smallest value of one of the following indicators: G1j =

C[j] − C∗2 ; G2j = C1∗j − C1∗j−1; G3j = C1∗j − C∗2 and G4j = C[j] − C1∗j . These

indicators can be used for our problem in an straightforward manner.

– FAP (Framinan and Perez-Gonzalez, 2017b): This heuristic appends one by one

the unscheduled jobs at the end of a partial sequence by computing an estimate of

the completion times of the unscheduled jobs which takes into account which stage is

more important. This estimate has been adapted considering the number of assembly

machines so, if the first stage is dominant, then FAPl = C1∗j + n−j+1
n (C1•+ p•

m1+m2
).

Otherwise, FAPl = pωl
m1+m2

+ n−j+1
n (C1• + p•

m1+m2
). Where C1• is the completion

time of and artificial job, composed of the unscheduled jobs, in the first stage, and

p• is the processing times of the artificial job in the second stage.

• Heuristics adapted from DPm → 0||
∑

j Cj problem. As mentioned before, the order

scheduling problem is identical to the problem under consideration if the processing times

of the second stage are zero. Therefore, it is also of interest to test how the adaptation

of their best methods perform in our case. The most relevant methods for the order

scheduling problem are:

– STPT (Sung and Yoon, 1998): A sequence is constructed sorting the jobs in ascend-

ing order of their sum of their processing times on the m1 machines. In our case,

m1 +m2 machines are considered.

– SMPT (Sung and Yoon, 1998): A sequence is constructed sorting the jobs in as-

cending order of their maximum processing time on the m1 machines. As with the

previous heuristic, m1 +m2 machines are considered.

– ECT (Ahmadi et al., 2005; Leung et al., 2005): In this heuristic, the order with the

earliest completion time is selected as the next to be sequenced. This heuristic does

not require adaptation, as for each order, the completion time is computed according

to Eq. (??).
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– SHIFTk and SHIFTkOP T
(Framinan and Perez-Gonzalez, 2017a): SHIFTk ob-

tains iteratively a partial sequence using the ECT heuristic. Then, the jobs are

iteratively removed from their position and re-inserted. The procedure is repeated

until the so-obtained partial sequence does not returns a lower total completion time.

SHIFTkOP T
restarts the reinsertion phase whenever a better sequence is found and

repeats the process until no improvement is found.

These heuristics have been employed to solve the instances from the testbed in Section

4.2. The ARPD and ACPU are computed according to Eqs. (8) and (10), while indicator

ARPT is computed using Eq. (13). The detailed results of ARPD in terms of n×m1 ×m2 are

shown in Table 5 and 6. The average results in terms of ARPD, ACPU , and ARPT are shown

in Table 3 and graphically in Figure 4. Note that, in this figure, the dispatching rules are not

displayed in order to have a clearer interpretation of the results. In view of the results, a number

of conclusions can be noted:

• NEW (ARPD=1.8742) clearly outperforms heuristics A1, A2, G1, G2, G3 and G4 using a

similar computational effort. It can be seen thatNEW obtains very good results evaluating

only one job at each iteration and, consequently, consuming less computational time.

Furthermore, NEW obtains a similar ARPD than FAP , but our proposal requires much

less CPU time.

• S2 and TCK2 with ARPD equal to 15.2527 and 7.5253 respectively are the best dispatch-

ing rules. Although the quality of the solution is low, these rules obtain a solution very

fast.

• BSCHV (x = 2) with ARPD=0.5458 outperforms NEW , with ARPD equal to 1.8742,

using the same computational effort, as it can be checked in Figure 4.

• BSCHMMA (x=n) with ARPD =0.5382 outperforms SHIFTk, SHIFTkOP T
and SAK

with ARPD equal to 14.1752, 9.3225 and 12.6792, respectively. Moreover, it can be

pointed that this version of the BSCHMMA obtains the best result in terms of quality of

the solution, ARPD.
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Heuristic ARPD ACPU ARPT Heuristic ARPD ACPU ARPT

NEW 1.8742 0.001901 625.07 SAK 12.6792 0.359579 102534.03
FAP 1.6644 0.011425 3358.46 STPT 15.8731 0.000005 1.64
G1 17.4028 0.001870 615.74 SMPT 21.6706 0.000007 2.36
G2 6.1421 0.001845 605.78 ECT 17.4028 0.036756 10559.23
G3 6.8172 0.001799 590.66 SHIFTk 14.1752 0.122583 34958.62
G4 17.4652 0.001778 583.61 SHIFTkOP T

9.3225 0.158947 45640.85
A1 6.0290 0.001816 595.67 BSCHV (x=2) 0.5458 0.025120 7482.71
A2 9.2572 0.001812 593.95 BSCHV (x=5) 0.5324 0.052197 15574.12
S1 19.2741 0.000003 1 BSCHV (x=n/10) 0.5295 0.079588 23690.42
S2 15.2527 0.000006 2.13 BSCHV (x=10) 0.5349 0.110005 32796.73
S3 16.6488 0.000007 2.3 BSCHV (x=15) 0.5359 0.144172 43052.43
TCK1 15.3131 0.000764 242.55 BSCHMMA (x=n) 0.5382 0.121981 36705.90
TCK2 7.5253 0.000344 109.24 BSCHMMA (x=n+ n/2) 0.5227 0.268500 78987.16

Table 3: Summary of results of the different heuristics.

i Hi p-value Mann-Whitney α/(k − i− 1) Holm’s Procedure

1 NEW = A1 0.000 R 0.0100 R
2 S2 = S3 0.000 R 0.0125 R
3 TCK2 = TCK1 0.000 R 0.0167 R
4 BSCHV (x=2) = NEW 0.000 R 0.0250 R
5 BSCHMMA (x=n) = SHIFTkOP T

0.000 R 0.0500 R

Table 4: Mann-Whitney’s procedure.

• Taking into account these results and those obtained in the previous section, the group of

most efficient heuristics is formed by the dispatching rule S2, the existing heuristic TCK2

and the proposed versions of the beam search constructive heuristic: BSCHV (x=2),

BSCHV (x=n/10), BSCHV (x=5), BSCHV (x=10), BSCHV (x=15), BSCHMMA

(x=n) and (x=15), BSCHMMA (x=n+ n/2).

In order to check the statistical significance of these results, Holm’s procedure is used as

in the previous computational experience. However, each hypothesis is now analysed using a

non-parametric Mann-Whitney test assuming a 95% confidence level (i.e. α=0.05) to establish

de p-value of each hypothesis. The results are shown in Table 4. Each p-value is 0.000, so all

hypotheses can be rejected. In summary, it can be concluded that the proposed heuristics out-

perform the existing algorithms for the problem under consideration, as well as the adaptations

of efficient algorithms for related problems.
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5 Conclusions

In this paper we have addressed the 2-stage multi-machine assembly scheduling problem with the

objective of minimising the total completion time. We have presented two constructive heuristics:

The first algorithm, NEW , constructs a sequence by iteratively appending a job at the end of

a partial sequence. The job is selected according to a problem-specific indicator that takes

into account the idle time of the assembly machines at the second stage and the contribution

of the job to the total completion time. Due to the good performance of this heuristic, the

indicator has been embedded into a beam search based constructive heuristic, labelled BSCH,

which constructs several sequences at the same time, compares them and selects the best x

ones. Thereby, this heuristic combines the diversification of population-based algorithms and

the speed of the constructive heuristic. Furthermore, we have implemented different variants of

the BSCH, whose main difference is the way in which the beam width (x) is modified in each

iteration.

Using a testbed similar to Allahverdi and Al-Anzi (2012), the extensive computational

experience carried out shows that the best ARPD are found by variants BSCHV (∀ x ∈

{2, n/10, 5, 10, 15, n}) and BSCHMMA (∀ x ∈ {n, n + n/2}). These variants have been com-

pared with the NEW heuristic, and with existing heuristics for the problem under consideration

and their adaptations for related scheduling problems. The results show that the proposed

heuristics yield a much better performance than the existing ones.
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