New efficient constructive heuristics for the two stage multi-machine assembly scheduling problem

Carla Talens Fayos ${ }^{1 *}$, Victor Fernandez-Viagas ${ }^{1}$, Paz Perez-Gonzalez ${ }^{1}$, Jose M. Framinan ${ }^{1}$
${ }^{1}$ Industrial Management, School of Engineering, University of Seville, Camino de los Descubrimientos s/n, 41092 Seville, Spain,

April 9, 2019

Abstract

In this paper, we adress the two-stage multi-machine assembly scheduling problem where there are several dedicated parallel machines in the first stage and more than one identical parallel machines in the second stage. The objective considered is the minimisation of the total completion time. This problem is NP-hard and the literature surveys indicate that the problem considering several assembly machines has not received much attention. In our paper, we first review the existing solution procedures for the problem under consideration and for related problems, adapt them to our problem and develop two efficient heuristics. The first heuristic constructs a solution taking into account some specific knowledge of the problem domain. This algorithm is embedded into a beam search-based constructive heuristic and its behaviour when the beam width takes different values is analysed. The computational experience carried out shows that the proposals are more efficient than the existing heuristics.

Keywords: Scheduling, Assembly, Total completion time, Constructive Heuristics

[^0]
1 Introduction

The two-stage multi-machine assembly scheduling problem has many applications in industry since many products are made up of different components that need to be manufactured in the first stage and then assembled into final products in the second stage, which may consists of several parallel machines. These decision problems are receiving an increasing attention of researchers due to its applications in industry, such as personal computer manufacturing (Potts et al., 1995), fire engine assembly plant (Lee et al. 1993), or distributed database systems (Allahverdi and Al-Anzi, 2006, Al-Anzi and Allahverdi, 2006b, 2007).

In this paper we focus on a two-stage multi-machine assembly scheduling problem where there are several dedicated machines in the first stage (e.g. to manufacture the different components of the final product) and more than one identical (parallel) machines in the second stage (e.g. to assembly the components into the final product). Clearly, processing a job in a second stage -which can be done by any of the parallel machines in the second stage- can start only after all operations for this job in the first stage have been completed. The objective is to minimize the total completion time so, according to the classification and notation in Framinan et al. (2018), it can be denoted as the $D P_{m} \rightarrow P_{m} \| \sum_{j} C_{j}$ problem. This problem is connected to other scheduling problems, i.e. as mentioned in Sung and Kim (2008) and Framinan and PerezGonzalez (2017b), it can be seen as a generalisation of the two-machine flowshop problem. For the case with only one machine at the first stage and one assembly machine at the second stage, it is equivalent to scheduling in a flowshop with two machines. Since Gonzalez and Sahni (1978) proved that the $F_{m} \| \sum_{j} C_{j}$ is NP-hard in the strong sense, it is clear that the problem under study is strongly NP-hard.

While the two-stage assembly problem with only one machine in the second stage has been widely discussed in the literature (see e.g. the recent review on the topic by Framinan et al., 2018), to the best of our knowledge, the problem considering several (identical) assembly machines has received much less attention. Most works addressing this problem consider at maximum two assembly machines in the second stage. Some properties of this problem have been stated in Al-Anzi and Allahverdi (2007) and Lee (2018), while heuristics have been proposed by Al-Anzi
and Allahverdi (2006a), Sung and Kim (2008) and Al-Anzi and Allahverdi (2012), and different metaheuristics have been designed and compared in Al-Anzi and Allahverdi (2007), Allahverdi and Al-Anzi (2009) and Al-Anzi and Allahverdi (2012).

The main contribution of this paper is to improve the performance of the approximate solution procedures for the problem under consideration by proposing two new constructive heuristics that explicitly use knowledge of the problem domain to construct the solutions. More specifically, we propose a fast constructive heuristic which applies to our problem some dominance properties by Framinan and Perez-Gonzalez (2017b) derived for the case where there is only one assembly machine. In light of the excellent results of this heuristic in negligible computation times, it is embedded into a beam search-based constructive heuristic. This type of heuristic has been developed originally by Fernandez-Viagas and Framinan (2017) for the permutation flowshop scheduling problem, but for our problem we use the idea of keeping only the most promising nodes in each iteration to boost its performance, an idea successfully employed for different scheduling problems (see e.g. Della Croce and T'kindt, 2003, Valente and Alves, 2008, and Valente, 2010). An extensive computational evaluation is performed to show that the proposals are found to be more efficient than existing solution procedures for the problem.

The remainder of the paper is organised as follows: the problem is formally described and the state of the art is presented in Section 2. In Section 3, we explain in detail the proposed heuristics: The constructive heuristic is presented in Section 3.1, while in Section 3.2 the beam search heuristic is explained. The computational experiments are conducted in Section 4 and, finally, conclusions are discussed in Section 5

2 Problem statement and background

The problem studied in this paper can be stated as follows: There are n jobs to be scheduled in a layout composed of two stages. Each job has $m_{1}+1$ operations. In the first stage, there are m_{1} dedicated parallel machines, in which the first m_{1} operations are conducted, while in the assembly stage there are m_{2} identical parallel machines. Only after all m_{1} operations are completed, the assembly operation may start in the first available machine. A job j has a
processing time $p_{i j}$ on machine i in the first stage and an assembly processing time $a t_{j}$ in the second stage. The decision problem consists on scheduling the jobs in the two machines so the sum of the completion times of the jobs is minimised.

A solution for this problem is determined by giving a sequence of jobs indicating the order in which the jobs are processed (see e..g. Al-Anzi and Allahverdi, 2006a and Al-Anzi and Allahverdi, 2012). Therefore, given a sequence, let $[j]$ denote the job processed in position j in the sequence. $C 1_{j}$ the maximum completion time of job in position j in the first stage can be computed as follows:

$$
\begin{equation*}
C 1_{j}=\max _{i=1, \ldots, m_{1}}\left\{\sum_{k=1}^{j} p_{i[k]}\right\} \tag{1}
\end{equation*}
$$

In order to know the first available assembly machine, the completion time of job [j] in each assembly machine is computed as: $C_{i^{*} j}=\max \left\{C_{i^{*} j-1}, C 1_{j}\right\}+a t_{[j]}$, where $i^{*}=$ $\arg \min _{i=1, \cdots, m_{2}}\left\{C_{i, j-1}\right\}$. Otherwise, $C_{i j}=C_{i, j-1}$. Then, C_{j} the completion time of the job processed in position j can be computed as:

$$
\begin{equation*}
C_{i j}=C_{i^{*} j} \tag{2}
\end{equation*}
$$

As mentioned in Section 1, literature surveys indicate that two-stage assembly scheduling problems have been tackled with respect to different objectives. Lee et al. (1993) and Potts et al. (1995) addressed this problem regarding the minimisation of the makespan. Other objectives are the minimisation of the maximum lateness (Al-Anzi and Allahverdi, 2006b and Allahverdi and Al-Anzi, 2006), additional constraints such as setup times (Al-Anzi and Allahverdi, 2007) or additional stages for the transportation of components Koulamas and Kyparisis, 2001 and Shoaardebili and Fattahi, 2015). Regarding the aim of our paper, there are few references addressing the case with several machines in the second stage, namely the work by Sung and Kim (2008) and Al-Anzi and Allahverdi (2012). Sung and Kim (2008) develop an heuristic, denoted $S A K$ from now on, applying a processing-time-based pairwise exchange mechanism, while in Al-Anzi and Allahverdi (2012), a mathematical model of the problem with two assembly machines is proposed, together with three new metaheuristics.

In view of the relationship of the problem under consideration with other scheduling problems, it is worth also to analyse the existing solution procedures for related problems, namely for the assembly scheduling problem with one machine in the last stage ($D P_{m} \rightarrow 1 \| \sum_{j} C_{j}$ problem) and the customer order scheduling problem ($D P_{m} \rightarrow 0 \| \sum_{j} C_{j}$ problem).

Regarding the $D P_{m} \rightarrow 1 \| \sum_{j} C_{j}$ problem, the first reference addressing it is Tozkapan et al. (2003), where the authors prove that permutation schedules are optimal for the $D P_{m} \rightarrow 1$ problem and propose two heuristics, labelled TCK1 and TCK2 in the following, to find an upper bound for their branch and bound algorithm. Al-Anzi and Allahverdi (2006a) also address this problem and derive a number of theoretical properties. They propose three simple constructive heuristics ($S 1, S 2$ and $S 3$) based on the idea of ordering the jobs according to the Shortest Processing Time (SPT) rule, and two additional constructive heuristics, labelled $A 1$ and $A 2$ in the following. Recently, Framinan and Perez-Gonzalez (2017b) also address this problem and review the problem properties studied by Al-Anzi and Allahverdi (2006a). The authors develop a constructive heuristic, denoted FAP in the following, which outperforms the existing constructive heuristics. The last reference where this problem is considered is Lee (2018). Six lower bounds are proposed and tested in a branch and bound algorithm. They also propose four greedy-type constructive heuristics, labelled $G 1, G 2, G 3$ and $G 4$.

Regarding the $D P_{m} \rightarrow 0 \| \sum_{j} C_{j}$ problem, note that this problem is tantamount to the one under consideration if the processing times of the jobs in the assembly stage are zero. Even if this is not the usual case, both problems would be similar e.g. if the processing times in the first stage largely influence the value of the objective function. Therefore, solution methods for the customer order scheduling problem could be applied to the problem under consideration, hence the interest in reviewing the related literature. For this problem, Sung and Yoon (1998) propose two constructive heuristics based on the SPT rule. The first one schedules the order with the smallest total processing time across all m machines, labelled $S T P T$ in the following, and the second one selects the order with the smallest maximum amount of processing time on any of the m machines, denoted as $S M P T$. Leung et al. (2005) propose a constructive heuristic that selects as the next order to be sequenced the one that would be completed the earliest, that is, the order with the Earliest Completion Time (ECT). Based on this idea and including some
look-ahead concepts, Framinan and Perez-Gonzalez (2017a) propose a constructive heuristic and two specific local search mechanisms for the problem, labelled SHIFT ${ }_{k}$ and $S H I F T_{k_{O P T}}$.

After this review, it can be seen that, despite some solution procedures exist for the problem, the performance of the adaptation of procedures from related problems has not been tested so far. Furthermore, there is some opportunity to improve existing methods for the problem by incorporating some knowledge of the problem domain. These methods are presented in the next section.

3 Proposed Constructive heuristics

In this section, we propose two heuristics for this problem. First, a constructive heuristic is detailed (Section 3.1) and then we propose a beam search based constructive heuristic (Section 3.2).

3.1 Constructive Heuristic 1

The idea of the proposed heuristic consists of iteratively constructing a sequence by selecting one job among the unscheduled jobs and adding it at the end of the partial sequence, an idea that has been addressed for different scheduling problems by Framinan and Perez-Gonzalez (2017b a) and Fernandez-Viagas and Framinan (2017) with excellent results. A key issue for the performance of this type of heuristics is the development of a problem-specific indicator ψ which adequately represents the suitability of an unscheduled job to be appended since, once a job is added to the sequence, its position cannot be modified in the subsequent iterations.

Thence, the algorithm starts with a set \mathcal{U} containing all (unscheduled) jobs and an empty schedule \mathcal{S}. For each iteration $j \in(1, \cdots, n)$, each unscheduled job $\omega_{l} \in \mathcal{U}$ is analysed as a candidate to be added to position j in S, and its suitability is measured by computing the indicator ψ_{l}, and the job in \mathcal{U} with the lowest value of ψ is selected.

In our problem, two main aspects are considered to assess the suitability of appending a candidate job ω_{l} at the end of the partial sequence, i.e.:

1. If its inclusion implies that the first available machine in the second stage has to wait for
processing the candidate job at the second stage. Therefore, the idle time induced by the insertion of job ω_{l} is computed. Let us $I T_{j}$ denote the idle time induced by scheduling job j at the end of the sequence. Clearly, $I T_{j}$ is computed as follows:

$$
\begin{equation*}
I T_{j}=\max \left\{C 1_{j}-\left(C_{j}-a t_{j}\right), 0\right\} \tag{3}
\end{equation*}
$$

Note that $C_{j}-a t_{j}$ computes the workload of the first available machine in the second stage before scheduling job j (i.e. the machine in the second stage where the candidate job will be processed). If the idle time induced by scheduling a job is greater than 0 , then the completion times in first stage dominate the completion time of this job when it is evaluated as candidate to be scheduled. Otherwise, the completion time of the candidate job is largely influenced by the second stage. As we are minimising the total completion time, it is clear that the lower the idle time caused by a job, the more suitable it is to be scheduled.
2. The contribution of the candidate job to the total completion time. As it can be seen, the idle time takes into account the suitability of the job until its processing in the second stage starts. In addition, its contribution to the total completion time would depend on the processing time in the second stage, i.e. $a t_{w_{l}}$, which roughly measures the influence of the second stage. We weight this influence according to the number of assembly machines $\left(m_{2}\right)$ since, with a higher number of machines in the second stage, the next jobs have a lower probability of not being affected by the second stage. Furthermore, to take into account the fact that, the higher the number of components in the first stage, the less likely is for the processing time in the second stage to dominate the completion time, $C T_{l}$ the expected contribution of job w_{l} to the total completion time is measured as follows:

$$
\begin{equation*}
C T_{l}=\frac{a t_{w_{l}}}{m_{1} \cdot m_{2}} \tag{4}
\end{equation*}
$$

By taking into account the two aspects, we will ensure that the jobs to be first sequences are those with lower values of idle time and assembly time. Therefore, the indicator ψ_{l}, which
estimates the suitability of appending a candidate job ω_{l} at the end of \mathcal{S}, is computed as follows:

$$
\begin{equation*}
\psi_{l}=a \cdot I T_{l}+C T_{l} \tag{5}
\end{equation*}
$$

where a is a parameter to weight the influence of the two terms and that would be determined via callibration of the algorithm.

Note that the complexity of this heuristic is $O\left(n \cdot(n-k) \cdot m_{1} \cdot \log m_{1}\right) \sim O\left(n^{2} \cdot m_{1} \cdot \log m_{1}\right)$, since the main loop in the algorithm performs n iterations. In each iteration, $n-k$ jobs are evaluated, each evaluation consisting on obtaining the maximum processing time in the first stage, i.e. sorting m_{1} elements. The pseudo-code of the proposed heuristic is shown in Figure 1.

3.2 Beam Search Constructive Heuristic

The heuristic proposed in Section 3.1 provides excellent results with negligible processing times (see Section 4), proving that the indicator ψ properly captured the suitability of a job to be appended. Therefore, we embed the components of this indicator into a new beam search -based constructive heuristic for the problem, labelled $B S C H_{M M A}$. This type of heuristic has been considered to solve different scheduling problems, such as in Sotskov et al. (1996) (where some constructive heuristics based on insertion techniques are combined with beam search for the permutation flowshop scheduling problem), Erenay et al. (2010) (for the single machine bicriteria scheduling problem), and Fernandez-Viagas and Framinan (2017) (also for the permutation flowshop scheduling problem). In this type of heuristics, a number of candidate nodes, denoted by a parameter x, are maintained in each iteration. In iteration k, each node $l(l \in\{1, \cdots, x\})$ is formed by a partial sequence, i.e. a set of k scheduled jobs, \mathcal{S}_{k}^{l}, and a set of unscheduled jobs, \mathcal{U}_{k}^{l}. Then, all unscheduled jobs in \mathcal{U}_{k}^{l} are inserted in position $k+1$ of \mathcal{S}_{k}^{l}, thus obtaining $x \cdot(n-k)$ candidate nodes. Out of these nodes, the x most suitable ones are selected as candidates for the next iteration. Therefore, the ideas behind the use of the indicator ψ could be used in this heuristic. However, an additional complication arises because candidates from different nodes may have to be compared. More specifically, the heuristic may have to deal with one of the following situations:

```
Procedure Proposed Constructive Heuristic NEW
    // All jobs are initially unscheduled
    \(\Pi:=\varnothing\);
    // Completion times on stages 1 and 2 of sequence \(\mathcal{S}\) :
    \(C 1_{i}^{*}:=0 \quad i=1, \ldots, m_{1}\)
    \(C 2_{i}^{*}:=0 \quad i=1, \ldots, m_{2}\)
    \(s:=\arg \min _{1 \leq i \leq m_{2}} C 2_{i}^{*}\);
    Obtain a sequence \(U:=\left(\omega_{1}, \ldots, \omega_{n}\right)\) by applying algorithm S 2 ;
    for \(j=1\) to \(n\) do
        for each \(\omega_{l} \in \mathcal{U}\) do
            // Compute the completion times in the first stage after selecting \(\omega_{l}\) as candi-
            date:
            \(C_{1}\left(\omega_{l}\right):=\max _{1 \leq i \leq m_{1}}\left\{C 1_{i}^{*}+p_{i \omega_{l}}\right\}\)
            // Compute the idle time induced if job \(\omega_{l}\) is inserted at the end of the partial
            sequence:
            \(I T_{l}=\max \left\{C_{1}\left(\omega_{l}\right)-C 2_{s}^{*}, 0\right\}\)
            // Compute the additional completion time induced when job \(\omega_{l}\) is inserted at
            the end of the partial sequence:
            \(C T_{l}=\frac{a t_{w_{l}}}{m_{1} \cdot m_{2}}\)
            // Compute the indicator considering the idle time:
            \(\psi_{l}:=a \cdot I T_{l}+C T_{l}\)
            end
        \(r:=\arg \min _{1 \leq k \leq n-j+1} \psi_{k} ;\)
        Append \(\omega_{r}\) at the end of \(\Pi\), i.e. \(\Pi:=\left(\pi_{1}, \ldots, \pi_{j-1}, \omega_{r}\right)\);
        Extract \(\omega_{r}\) from \(U\), i.e. \(\mathcal{U}:=\left(\omega_{1}, \ldots, \omega_{r-1}, \omega_{r+1}, \ldots, \omega_{n-j+1}\right)\);
        // Update values of the constructive sequence:
        \(C 1_{i}^{*}:=C 1_{i}^{*}+p_{i \omega_{r}}\)
        \(C 2_{i}^{*}:=\max \left\{C 2_{s}^{*}, \max _{1 \leq i \leq m_{1}} C 1_{i}^{*}\right\}+a t_{w_{l}}\)
    end
    return \(C 2_{i}^{*}\)
end
```

Figure 1: Pseudo-code of the proposed heuristic $N E W$.

- If the candidate jobs have been obtained by inserting different jobs in \mathcal{U}_{k}^{l} to a same node l, their partial sequences \mathcal{S}_{k}^{l} will be exactly alike with the exception of the last job appended. So, the comparison can be done in reference to the completion time or the idle time caused by the added job.
- If the candidate jobs have been obtained from different nodes, the unscheduled jobs and the scheduled jobs are different for each candidate node. In this case, the comparison should take into account that the previous scheduled jobs at each candidate node are different, so this fact has to be considered when developing the indicator for suitability.

To explain the design of the heuristic in detail, we first denote by $s_{j k}^{l}$ the j th scheduled job of node l in iteration k and by $u_{j k}^{l}$ the j th unscheduled job of selected node l in iteration k. As shown in Figure 2, the heuristic consists of the following steps:

Step 1: Generate the initial x nodes: All jobs are initially sorted according to Algorithm S2 by Al-Anzi and Allahverdi (2006a), as it is done in $N E W$. The first x nodes are obtained by assigning the job in position l of the sorted list to the first position of the partial sequence s_{11}^{l} of the selected node l. The list of unscheduled jobs of this selected node l is formed by the rest of the jobs.

Step 2: Generate candidate nodes: At iteration $k, n-k$ candidate jobs are obtained by appending each job in \mathcal{U}_{k}^{l} at the end of the partial sequence of each selected node $l \in\{1, \cdots, x\}$.

Step 3: Evaluate candidate nodes: In this step, two aspects are considered: first, the influence from the selected node and, second, the influence from the inserted job. The former is computed as the forecast index, $F_{k l}$, which is explained in Step 5, and the latter is due to the insertion of the new job, $u_{j k}^{l}$, at the end of the partial sequence, which is measured by $C T_{j k l}$, see Eq. (4) and by $I T_{j k l}$, which denotes the idle time incurred when inserting job $u_{j k}^{l}$ in the selected node and is computed according to Eq. (3). Note that these two last components are taken from the heuristic in Section 3.1, while $F_{k l}$ is a component specifically designed to allow the comparison of candidates from different nodes.

Therefore, at each iteration k, the following indicator us used to compute the suitability of inserting an unscheduled job $u_{j k}^{l}$ in a selected node l :

$$
\begin{equation*}
B_{j k l}:=F_{k l}+a^{\prime} \cdot I T_{j k l}+C T_{j k l} \tag{6}
\end{equation*}
$$

In Equation (6) the parameter a^{\prime} has been considered in order to balance the idle time and the completion time of the new inserted job and its calibration is adressed in Section 4.3.

Step 4: Select the best x candidate nodes: The x candidate nodes with the lowest values of B are selected and these nodes will formed the nodes of the next iteration, i.e. in iteration k all the combinations of j and l are tested and those achieving the lowest values of $B_{j k l}$, as defined in Eq. (6), are selected. The rest of candidate nodes are discarded and the best candidate nodes are defined as the selected nodes for the next iteration. At each iteration k, the combination of l and j of the l^{\prime} th best $B_{j k l}$ are denoted by branch $\left[l^{\prime}\right]$ and $j o b\left[l^{\prime}\right]$, respectively.

Step 5: Update forecast index: The forecast index F is defined in order to compare candidate nodes obtained from different nodes and, therefore, composed by different un- and scheduled jobs. F represents the completion time of the last scheduled job at each candidate node and it is computed as in Eq. (7)

$$
\begin{equation*}
F_{k, l^{\prime}}=F_{k-1, \text { branch }\left[l^{\prime}\right]}+b \cdot \psi_{j o b\left[l^{\prime}\right], k, \text { branch }\left[l^{\prime}\right]} \tag{7}
\end{equation*}
$$

where parameter b is designed to balance the influence of the last scheduled job to the completion time and $\psi_{\text {job }\left[l^{\prime}\right], k, b r a n c h\left[l^{\prime}\right]}$ is the indicator already employed in $N E W$-see Eq. (5) computed when job $u_{j k}^{l}$ is appended. The calibration of b is discussed in Section 4.3. The pseudocode of the algorithm is shown in FigURE 2.

Clearly, the BSCH has only one parameter (x, the beam width). It can be seen that, for $x=1, B S C H$ is tantamount to $N E W$. Note that the complexity of this heuristic is $O\left(\max \left\{m_{1} n^{2} x, m_{2} n^{2} x, n^{2} x^{2}\right\}\right)$.

Procedure $B S C H _M M A(x)$
Obtain a sequence $\Omega:=\left(\omega_{1}, \ldots, \omega_{n}\right)$ by applying algorithm S 2 ;
Update $\mathcal{U}_{1}^{l}\left(u_{1,1}^{l}=\omega_{l}\right)$ and $\mathcal{S}_{1}^{l}\left(s_{1,1}^{l}=\varnothing\right)$.
for $l=1$ to x do
$F_{1, l}=\psi_{\text {alpha }[l], 0, l}$
end
for $k=1$ to $n-1$ do
// Candidates Nodes Creation
Determination of $I T_{j k l}, C T_{j k l}$;
// Candidates Nodes Evaluation
$B_{j k l}:=F_{k l}+a^{\prime} \cdot I T_{j k l}+C T_{j k l} \forall l=1, \cdots, x$ and $\forall j=1, \cdots, n-x ;$
// Candidates Nodes Selection
for $l^{\prime}=1$ to x do
Determination of the l^{\prime}-th best candidate node according to non-decreasing $B_{j k l}$ in iteration k. Denote by branch $\left[l^{\prime}\right]$ and $j o b\left[l^{\prime}\right]$ the value of l and j respectively of that candidate.
end
//Forecasting Phase. for $l^{\prime}=1$ to x do Update $\mathcal{S}_{k+1}^{l^{\prime}}$ and $\mathcal{U}_{k+1}^{l^{\prime}}$ by removing job $u_{j o b\left[l^{\prime}\right], k}^{\text {branch }\left[l^{\prime}\right]}$ from $\mathcal{U}_{k}^{\text {branch }\left[l^{\prime}\right]}$ and including in $\mathcal{S}_{k}^{\text {branch }\left[l^{\prime}\right]}$. $F_{k+1, l^{\prime}}=F_{k, \text { branch }\left[l^{\prime}\right]}+b \cdot \psi_{j o b\left[l^{\prime}\right], k, \text { branch }\left[l^{\prime}\right]} ;$
end
end
// Final evaluation
Evaluate the flowtime of the scheduled jobs of each selected node and return the least one
end
Figure 2: Pseudo-code of the proposed beam-search-based constructive heuristic.

3.2.1 Variable Beam Width

To the best of our knowledge, beam search-based heuristics employed in the literature always use a constant beam width x. However, it is expected that the number of nodes analysed in each iteracion has a large influence on the performance of this heuristic. So, we carry out this study and analyse the behaviour of the $B S C H_{M M A}$ when x may take different values. More specifically, we will test the following variants:

- Constant Beam Width: $B S C H_{M M A}$ is tested with different values of x. So, the influence of the beam width over the heuristic performance can be analysed.
- Ascending Beam Width: In this version, the heuristic, denoted as $B S C H_{A S C}$, starts selecting x nodes and the beam width increases in one unit as the beam search advances. The search is stronger on each iteration since the number of selected nodes is higher.
- Descending Beam Width: This version, labelled as $B S C H_{D E S C}$, starts by selecting a number of nodes equal to $x+n-1$, and the beam width decreases one by one as the number of iterations increases. Therefore, in the last iteration, x nodes are considered.
- V-shaped Beam Width: In this version, the beam width is modified taking a V-shape. Initially, x nodes are considered and, for each iteration k, the number of nodes is decreased one by one while $k \leq \frac{n}{2}$ and then it increases until $k=n$. We denote this version as $B S C H_{V}$.
- Peak-shaped Beam Width: The pattern of this version, labelled as $B S C H_{P}$, is completely opposed to the previous one. The initial beam width is x, and then it increases one by one whereas $k \leq n \cdot \frac{2}{3}$ and then it decreases also one by one until the last iteration.

We design and implement different versions, which are evaluated considering the next values of $x, x \in\left\{2,5,10,15, \frac{n}{10}, n, n+\frac{n}{2}, 2 n\right\}$. Note that the $B S C H_{M M A}$ has also been run consideringa beam width equal to 1 , which corresponds to the heuristic $N E W$.

4 Computational evaluation

In this section, we analyse the efficiency of the constructive heuristics proposed in Section 3. The testbed employed for the comparison is designed in Section 4.2, while in Section 4.3 we perform a design of experiments to set up proper values for parameters a^{\prime} and b in $B S C H_{M M A}$. In Section 4.4 the different versions of the beam-search heuristics presented in Section 3.2.1 are compared to obtain the best variants. Finally, in Section 4.5 the proposed heuristics are compared with existing heuristics for the problem and for related problems. All methods have been coded in C\# using Visual Studio and carried out in an Intel Core i7-3770 PC with 3.4 GHz and 16 GB RAM, using the same common functions and libraries. In order to obtain a better
estimation of the performance of all algorithms, a total of 10 replicates for each instance are carried out and the results are averaged.

4.1 Performance indicators

In this section, the indicators employed to compare the different results obtained from the computational evaluation are presented. First, a comparison among the different versions of the $B S C H_{M M A}$, presented in Section 3.2.1, is carried out in terms of quality of the solutions and computational effort. The former is computed by means of the Average Relative Percentage Deviation (ARPD) as follows:

$$
\begin{equation*}
A R P D_{h}=\frac{\sum_{\forall s} R P D_{h s}}{S}, \forall s=1, \cdots, S \tag{8}
\end{equation*}
$$

where S is the total number of instances and $R P D$ computed as

$$
\begin{equation*}
R P D_{h s}=\frac{C_{h s}-C_{s}^{*}}{C_{s}^{*}} \cdot 100 \tag{9}
\end{equation*}
$$

with $C_{h s}$ the total completion time obtained by heuristic $h(h=1, \cdots, H)$ in instance s $(s=1, \ldots, S)$ and C_{s}^{*} the minimum completion time known for instance s. The computational effort is measured by means of the Average CPU (ACPU) time:

$$
\begin{equation*}
A C P U_{h}=\frac{\sum_{\forall s} T_{h s}}{S} \tag{10}
\end{equation*}
$$

where $T_{h s}$ is the time (in seconds) required by heuristic h to obtain a solution for instance s. Furthermore, since the $A C P U$ indicator presents some problems when it is used to compare heuristics with different stopping criteria (Fernandez-Viagas and Framinan, 2015), the Relative Percentage Indicator (labelled $R P T^{\prime}$) is computed, as indicated in Eq. (11), in order to evaluate heuristics with different number of steps in their procedure.

$$
\begin{equation*}
R P T_{h s}^{\prime}=\frac{T_{h s}-\min _{h=1, \ldots, h}\left\{T_{h s}\right\}}{\min _{h=1, \ldots, h}\left\{T_{h s}\right\}} \tag{11}
\end{equation*}
$$

Additionally, a slightly different indicator, denoted $R P T$, is also used to graphically repre-
sent the results in logarithmic scale. This indicator is also employed in Fernandez-Viagas and Framinan (2015), Fernandez-Viagas and Framinan (2017) and Fernandez-Viagas et al. (2017):

$$
\begin{equation*}
R P T_{h s}=\frac{T_{h s}-A C P U_{s}^{*}}{A C P U_{s}^{*}}+1 \tag{12}
\end{equation*}
$$

Finally, the $A R P T$, the Average $R P T$ can be defined as follows:

$$
\begin{equation*}
A R P T_{h}=\sum_{\forall s}^{S} \frac{R P T_{h s}}{S} \tag{13}
\end{equation*}
$$

4.2 Testbed design

In the related literature there are different testbeds for the problem proposed by Al-Anzi and Allahverdi (2006a), Al-Anzi and Allahverdi (2007), Allahverdi and Al-Anzi (2009) and Al-Anzi and Allahverdi (2012). In these tests the processing times are generated in the same way, but each testbed has a different number of jobs and machines in the first stage. In the computational experience carried out in Sections 4.3, 4.4, and 4.5, a new testbed is obtained following the procedure by Al-Anzi and Allahverdi (2012). We adapt this testbed in order to consider the parameter m_{2}. Thus, this testbed consists of 30 instances generated for each combination of n, m_{1} and m_{2}. More specifically, the problem data are generated for $n \in\{30,40,50,60,70\}$, $m_{1} \in\{2,4,6,8\}$ and $m_{2} \in\{2,4,6,8\}$. The processing times of the jobs in the machines in the first stage are drawn from a $U[1,100]$ distribution, while in the second stage the processing times are drawn from a $m_{2} \cdot U[1,100]$ distribution in order to balance both stages and have different scenarios regarding the relative processing times on each stage. In total, 2400 instances have been generated.

4.3 Experimental parameter tuning

In this section, a factorial design of experiments is performed to find the best values of the parameters of the two heuristics presented in Section 3. More specifically, the following values are tested:

- Parameter a for the $N E W$ heuristic described in Section 3.1. The following levels for a
are tested: $a \in\{1,2,5,10,15,20,50,200\}$.
- Parameters a^{\prime} and b for the $B S C H_{M M A}$ heuristic described in Section 3.2. The following levels for each parameter are tested (in total, there are 56 combinations):

$$
\begin{aligned}
& -a^{\prime} \in\{0.25,0.5,1,2,5,10,15,20\} \\
& -b \in\{0,1,2,3,4,5,6\}
\end{aligned}
$$

To determine the best combination of parameters, ten instances have been generated for the different values of n, m_{1} and m_{2}, as explained in section 4.3. The processing times of each job in each stage are generated as described in Section 4.2. With this testbed, it has been found that the best results correspond to $a=5$. Regarding the $B S C H_{M M A}$ heuristic, it has been assumed that $x=n$ and the so-obtained results compared. The first two levels of a^{\prime} are discarded due to their poor performance. After proving that the normality and homoscedasticity assumptions are not fulfilled, a non parametric Kruskal-Wallis test is performed. The results indicate that there are significant differences between parameters a^{\prime} and b since the significance of both parameters is equal to 0.000 . The best combination is obtained for $a^{\prime}=2$ and $b=2$. These values are used for the different versions of BSCH in Section 4.4 and Section 4.5 regardless the value of x.

4.4 Comparison of the different versions of BSCH

Prior to conducting a full comparison with existing heuristics, the best variant of the beam-search based heuristics is selected. To do so, the versions of BSCH presented in Section 3.2.1 have been run on the 2,400 instances generated in Section 4.2. The results are summarised in Table 2 using the indicators defined in Section 4.1. The $A R P D$ values range from $1.3196\left(B S C H_{M M A}\right.$ $(x=2))$ to $0.5227\left(B S C H_{M M A}(x=n+n / 2)\right)$ whereas $A C P U$ values range from 0.9969 to 0.004. Results are graphically shown in Figure 3 where the y-axis represents the $A R P D$ for each heuristic and the x-axis represents the ACPU.

In view of these results, the following conclusions can be derived:

- $B S C H_{P}(x=2)$ with $A R P D=0.6174$ improves the variants $B S C H_{M M A}(x=2, x=5, x$ $=n / 10$) with $A R P D$ equal to $1.3196,0.8064$ and 0.7708 respectively, using approximately

Figure 3: ARPD versus average CPU times of the different versions of $B S C H$ with the Pareto frontier.
a similar computational effort.

- $B_{S C H}(x=2)$ with $A R P D=0.5458$ outperforms variants $B S C H_{M M A}(x=10)$, $B S C H_{A S C}(x=2)$ and $B S C H_{P}(x=5)$, with $A R P D$ equal to $0.6437,0.6145$ and 0.5777 respectively.
- $B S C H_{D E S C}(x=2)$ with $A R P D=0.5499$ improves variant $B S C H_{M M A}(x=15)$ using the same $A C P U$.
- $B S C H_{V}(x=5)$ with $A R P D=0.5324$ outperforms variants $B S C H_{P}(x=10)$ and $B S C H_{A S C}(x=5)$, with $A R P D$ equal to 0.5626 and 0.5760 , respectively using the same computational effort.
- $B S C H_{V}(x=n / 10)$ with $A R P D=0.5295$ outperforms variants $B S C H_{D E S C}(x=5)$ and $B S C H_{A S C}(x=n / 10)$, with $A R P D$ equal to 0.5467 and 0.5815 , respectively using the same computational effort.
- For $x=n$, variants $B S C H_{M M A}(x=n)$ and $B S C H_{P}(x=n)$ yield a similar performance,
being its $A R P D$ equal to 0.5382 and 0.5348 , respectively. Moreover, version $B S C H_{V}$ $(x=10)$ obtains a similar $A R P D=0.5349$ with less computational effort.
- The minimum $A R P D$ is achieved by $B S C H_{M M A}(x=n+n / 2)$, being the rest of the variants worse with respect to the quality of the solutions.
- The Pareto frontier (i.e. the efficient variants with respect to the quality of solutions and the computational effort) is formed by $\operatorname{BSCH}_{M M A}(x=2), B S C H_{M M A}(x=5), B S C H_{P}$ $(x=2), B S C H_{V}(x=2), B S C H_{V}(x=5), B S C H_{V}(x=n / 10)$ and $B S C H_{M M A}(x=n+$ $n / 2$).
- The performance of $B S C H_{M M A}$ get worse for $x=2 n$. For this value of x, this heuristic selects $2 n$ candidates in each iteration, so there are more candidates since the first iteration. Due to this poor results, it has not been considered.

To establish the statistical significance of the results, a Holm's procedure (Holm, 1979) is performed where each hypothesis is evaluated using a non-parametric Wilcoxon signed-rank test assuming a 0.95 confidence level, i.e. $\alpha=0.05$. In Holm's test, the hypotheses are sorted in non-descending order of the p-values obtained in the Wilcoxon test. Each hypothesis is rejected if $p<\alpha /(k-i+1)$ where k is the total number of hypotheses. The results can be seen in Table 1. where R means that the hypothesis is rejected by Wilcoxon and/or Holm's procedure. As can be seen, hypothesis $B S C H_{M M A}(x=10)=B S C H_{A S C}(x=2)$ is the only one that cannot be rejected by Holm's procedure, but it has to be noted that the $A R P D$ achieved by the latter version, equal to 0.6145 , is considerably lower than the one obtained by $B S C H_{M M A}(x=10)$. In summary, it can be concluded that the variants in the Pareto frontier in Figure 3 are efficient for the problem. However, as no variant obtains the best performance for all values of x, it can be also concluded that, if $x \leq n$ the best variant is $B S C H_{V}$, and if $x>n$, then $B S C H_{M M A}$ is the most efficient one.

4.5 Comparison of heuristics

In order to determine the performance of the proposed heuristics ($N E W$ and the best variants of the beam-search based heuristic), these have been compared with existing heuristics for

i	H_{i}	p-value	Wilcoxon	$\alpha /(k-i-1)$	Holm's Procedure
1	$B S C H_{M M A}(x=10)=B S C H_{A S C}(x=2)$	0.015	R	0.0083	A
2	$B S C H_{M M A}(x=5)=B S C H_{V}(x=2)$	0.001	R	0.0100	R
3	$B S C H_{M M A}(x=5)=B S C H_{P}(x=2)$	0.000	R	0.0125	R
4	$B S C H_{M M A}(x=10)=B S C H_{P}(x=5)$	0.000	R	0.0167	R
5	$B S C H_{M M A}(x=10)=B S C H_{V}(x=2)$	0.025	R	0.0125	R
6	$B S C H_{M M A}(x=15)=B S C H_{D E S C}(x=2)$	0.000	R	0.0500	R

Table 1: Holm's procedure for comparison of the different versions of $B S C H$.

x	2		5		$n / 10$		10		15		n		$n+n / 2$		$2 n$	
	$A R P D$	$A C P U$	$A R P D$	$A C P U$	$A R P D$	$A C P U$	ARPD	$A C P U$	$A R P D$	$A C P U$	$A R P D$	$A C P U$	$A R P D$	$A C P U$	ARPD	$A C P U$
$B S C H_{M M A}$	1.3196	0.0040	0.7708	0.0104	0.8064	0.0173	0.6437	0.0279	0.5874	0.0430	0.5382	0.1220	0.5227	0.2685	0.5408	0.5026
$\mathrm{BSCH}_{A S C}$	0.5499	0.0268	0.5467	0.0568	0.5360	0.0874	0.5423	0.1229	0.5524	0.1648	0.5282	0.2803	0.5452	0.4638	0.5568	0.7294
$\mathrm{BSCH}_{\text {DESC }}$	0.5499	0.0439	0.5467	0.0916	0.5360	0.1406	0.5423	0.1962	0.5436	0.2602	0.5543	0.4189	0.5736	0.6593	0.5790	0.9969
BSCH_{V}	0.5458	0.0251	0.5324	0.0522	0.5295	0.0796	0.5349	0.1100	0.5359	0.1442	0.5425	0.2199	0.5576	0.3305	0.5646	0.4821
BSCH_{P}	0.6174	0.6482	0.5777	0.6084	0.5825	0.6133	0.5626	0.5934	0.5540	0.5848	0.5348	0.5656	0.5498	0.5806	0.5617	0.5924

Table 2: Summary of results of the different versions of $B S C H$.
the problem, as well as with heuristics adapted from similar problems. More specifically, the heuristics used for the comparison are the following:

- Heuristics from the $D P_{m} \rightarrow P_{m} \| \sum_{j} C_{j}$ problem:
- New heuristics proposed in Section 3, i.e. heuristic $N E W$ in Section 3.1 and the variants of the $B S C H$ proposed in Section 3.2 that are in the Pareto frontier found in 4.4. $B S C H_{V}(x=2)$, BSCH $_{V}(x=n / 10)$, BSCH $_{V}(x=5), B S C H_{V}(x=10), B S C H_{V}$ $(x=15), B S C H_{M M A}(x=n)$ and $B S C H_{M M A}(x=n+n / 2)$.
- SAK (Sung and Kim, 2008): This heuristic sorts the jobs in non decreasing order of $p s u m_{j}=\sum_{i=1, \ldots, m_{1}} p_{i j}+a t_{j}$. Set $k=1$ and $m=k+1$, it exchanges the k th job and the m th job. If the total completion time is improved, it keeps the exchange. If not, $m=m+1$.
- NSDE (Al-Anzi and Allahverdi, 2012): This algorithm has been coded and run, but it has been discarded due to its computational effort is far from the rest of heuristics and the quality of its solution is poor.
- Heuristics adapted from the $D P_{m} \rightarrow 1 \| \sum_{j} C_{j}$ problem. Since this problem is closely related to the one addressed in this paper, it is interesting to test whether heuristics
specifically designed for the problem with one assembly machine can be adapted to the problem under consideration. These adaptations are:
- TCK1 and TCK2 (Tozkapan et al., 2003): The original TCK1 constructs $m_{1}+1$ indices for each job, according to $P T F_{i j}=t_{i j}$ and $P T S_{j}=a t_{j}$. So, $m_{1}+1$ sequences are obtained by sorting the jobs in non decreasing order of these indicators, and the sequence with the lowest TCT is selected. The index $P T S_{j}$ has been adapted to our problem so that $P T S_{j}=a t_{j} / m_{2}$. Similarly, TCK2 computes three indices for each job, so three sequences are obtained by sorting the jobs in non decreasing order of these indices, and the sequence yielding the lowest TCT is selected. The indices have been adapted to our problem taking into account m_{2}, i.e.: $M P T_{j}=$ $\min \left\{p_{1 j}, p_{2 j}, \cdots, p_{m_{1} j}, a t_{j} / m_{2}\right\} ; A P T_{j}=\frac{1}{m 1+m_{2}} \sum_{i=1}^{m_{1}} p_{i j}+a t_{j} / m_{2} ;$ and $M X P T_{j}=$ $\max \left\{p_{1 j}, p_{2 j}, \cdots, p_{m_{1} j}, a t_{j}\right\}$.
- $A 1$ and $A 2$ (Al-Anzi and Allahverdi 2006a): These algorithms construct a sequence by iteratively appending a job at the end of a partial sequence. For algorithm $A 1$, the job is chosen so that the following indicator is minimised:

$$
\begin{equation*}
A 1_{j}=\max _{i=1, \ldots, m_{1}}\left\{\sum_{r=1}^{j-1} p_{i[r]}+p_{i j}\right\} \tag{14}
\end{equation*}
$$

Note that this indicator does not require any adaptation to our problem. However, for algorithm $A 2$ the indicator is adapted by dividing the assembly time by the number of assembly machines m_{2}, so the modified index is:

$$
\begin{equation*}
A 2_{j}=\max _{i=1, \ldots, m_{1}}\left\{\sum_{r=1}^{j-1} p_{i[r]}+p_{i j}\right\}+\frac{a t_{j}}{m_{2}} \tag{15}
\end{equation*}
$$

- $S 1, S 2$ and $S 3$ (Al-Anzi and Allahverdi, 2006a): $S 1$ sorts the jobs in non decreasing order of $a t_{j}$. Heuristic $S 2$ is obtained by sorting the jobs in non decresing order of $\max _{i=1, \ldots, m_{1}}\left\{p_{i j}\right\}$ and, finally, heuristic $S 3$ orders the jobs in non decreasing order of $\max _{i=1, \ldots, m_{1}}\left\{p_{i j}\right\}+a t_{k}$. As with the previous heuristics, $S 1$ and $S 3$ have been adapted by dividing $a t_{j}$ by m_{2}.
- G1, G2, G3 and G4 (Lee, 2018): Each of these heuristics constructs a sequence by inserting the job with the smallest value of one of the following indicators: $G 1_{j}=$ $C_{[j]}-C_{2}^{*} ; G 2_{j}=C 1_{j}^{*}-C 1_{j-1}^{*} ; G 3_{j}=C 1_{j}^{*}-C_{2}^{*}$ and $G 4_{j}=C_{[j]}-C 1_{j}^{*}$. These indicators can be used for our problem in an straightforward manner.
- FAP (Framinan and Perez-Gonzalez, 2017b): This heuristic appends one by one the unscheduled jobs at the end of a partial sequence by computing an estimate of the completion times of the unscheduled jobs which takes into account which stage is more important. This estimate has been adapted considering the number of assembly machines so, if the first stage is dominant, then $F A P_{l}=C 1_{j}^{*}+\frac{n-j+1}{n}\left(C_{1} \bullet+\frac{p_{\bullet}}{m_{1}+m_{2}}\right)$. Otherwise, $F A P_{l}=\frac{p_{\omega_{l}}}{m_{1}+m_{2}}+\frac{n-j+1}{n}\left(C_{1} \bullet+\frac{p_{\bullet}}{m_{1}+m_{2}}\right)$. Where $C_{1} \bullet$ is the completion time of and artificial job, composed of the unscheduled jobs, in the first stage, and p_{\bullet} is the processing times of the artificial job in the second stage.
- Heuristics adapted from $D P_{m} \rightarrow 0 \| \sum_{j} C_{j}$ problem. As mentioned before, the order scheduling problem is identical to the problem under consideration if the processing times of the second stage are zero. Therefore, it is also of interest to test how the adaptation of their best methods perform in our case. The most relevant methods for the order scheduling problem are:
- STPT (Sung and Yoon, 1998): A sequence is constructed sorting the jobs in ascending order of their sum of their processing times on the m_{1} machines. In our case, $m_{1}+m_{2}$ machines are considered.
- SMPT (Sung and Yoon, 1998): A sequence is constructed sorting the jobs in ascending order of their maximum processing time on the m_{1} machines. As with the previous heuristic, $m_{1}+m_{2}$ machines are considered.
- ECT (Ahmadi et al., 2005 Leung et al. 2005): In this heuristic, the order with the earliest completion time is selected as the next to be sequenced. This heuristic does not require adaptation, as for each order, the completion time is computed according to Eq. (??).
- SHIFT ${ }_{k}$ and SHIFT $_{k_{O P T}}$ (Framinan and Perez-Gonzalez, 2017a): SHIFT ${ }_{k}$ obtains iteratively a partial sequence using the ECT heuristic. Then, the jobs are iteratively removed from their position and re-inserted. The procedure is repeated until the so-obtained partial sequence does not returns a lower total completion time. $S H I F T_{k_{O P T}}$ restarts the reinsertion phase whenever a better sequence is found and repeats the process until no improvement is found.

These heuristics have been employed to solve the instances from the testbed in Section 4.2. The $A R P D$ and $A C P U$ are computed according to Eqs. (8) and (10), while indicator $A R P T$ is computed using Eq. (13). The detailed results of $A R P D$ in terms of $n \times m_{1} \times m_{2}$ are shown in Table 5and 6. The average results in terms of $A R P D, A C P U$, and $A R P T$ are shown in Table 3 and graphically in Figure 4. Note that, in this figure, the dispatching rules are not displayed in order to have a clearer interpretation of the results. In view of the results, a number of conclusions can be noted:

- $N E W(A R P D=1.8742)$ clearly outperforms heuristics $A 1, A 2, G 1, G 2, G 3$ and $G 4$ using a similar computational effort. It can be seen that $N E W$ obtains very good results evaluating only one job at each iteration and, consequently, consuming less computational time. Furthermore, $N E W$ obtains a similar $A R P D$ than $F A P$, but our proposal requires much less CPU time.
- $S 2$ and $T C K 2$ with $A R P D$ equal to 15.2527 and 7.5253 respectively are the best dispatching rules. Although the quality of the solution is low, these rules obtain a solution very fast.
- $B S C H_{V}(x=2)$ with $A R P D=0.5458$ outperforms $N E W$, with $A R P D$ equal to 1.8742 , using the same computational effort, as it can be checked in Figure 4
- BSCH $_{M M A}(x=n)$ with $A R P D=0.5382$ outperforms $S H I F T_{k}, S H I F T_{k_{O P T}}$ and $S A K$ with $A R P D$ equal to $14.1752,9.3225$ and 12.6792 , respectively. Moreover, it can be pointed that this version of the $B S C H_{M M A}$ obtains the best result in terms of quality of the solution, $A R P D$.

Heuristic	$A R P D$	$A C P U$	$A R P T$	Heuristic	$A R P D$	$A C P U$	$A R P T$
$N E W$	1.8742	0.001901	625.07	$S A K$	12.6792	0.359579	102534.03
$F A P$	1.6644	0.011425	3358.46	$S T P T$	15.8731	0.000005	1.64
$G 1$	17.4028	0.001870	615.74	$S M P T$	21.6706	0.000007	2.36
$G 2$	6.1421	0.001845	605.78	$E C T$	17.4028	0.036756	10559.23
$G 3$	6.8172	0.001799	590.66	$S H I F T_{k}$	14.1752	0.122583	34958.62
$G 4$	17.4652	0.001778	583.61	$S H I F T_{k_{O P T}}$	9.3225	0.158947	45640.85
$A 1$	6.0290	0.001816	595.67	$B S C H_{V}(x=2)$	0.5458	0.025120	7482.71
$A 2$	9.2572	0.001812	593.95	$B S C H_{V}(x=5)$	0.5324	0.052197	15574.12
$S 1$	19.2741	0.000003	1	$B S C H_{V}(x=n / 10)$	0.5295	0.079588	23690.42
$S 2$	15.2527	0.000006	2.13	$B S C H_{V}(x=10)$	0.5349	0.110005	32796.73
$S 3$	16.6488	0.000007	2.3	$B S C H_{V}(x=15)$	0.5359	0.144172	43052.43
$T C K 1$	15.3131	0.000764	242.55	$B S C H_{M M A}(x=\mathrm{n})$	0.5382	0.121981	36705.90
$T C K 2$	7.5253	0.000344	109.24	$B S C H_{M M A}(x=n+n / 2)$	0.5227	0.268500	78987.16

Table 3: Summary of results of the different heuristics.

i	H_{i}	p-value	Mann-Whitney	$\alpha /(k-i-1)$
1	$N E W=A 1$	0.000	R	0.0100
R				
2	$S 2=S 3$	0.000	R	0.0125
R				
3	$T C K 2=T C K 1$	0.000	R	0.0167
R				
4	$B S C H_{V}(x=2)=N E W$	0.000	R	0.0250
R				
5	$B S C H_{M M A}(x=n)=S H I F T_{k_{O P T}}$	0.000	R	0.0500
R				

Table 4: Mann-Whitney's procedure.

- Taking into account these results and those obtained in the previous section, the group of most efficient heuristics is formed by the dispatching rule $S 2$, the existing heuristic TCK2 and the proposed versions of the beam search constructive heuristic: $B S C H_{V}(x=2)$, $B S C H_{V}(x=n / 10), B S C H_{V}(x=5)$, $B S C H_{V}(x=10), B S C H_{V}(x=15), B S C H_{M M A}$ $(x=n)$ and $(x=15), B S C H_{M M A}(x=n+n / 2)$.

In order to check the statistical significance of these results, Holm's procedure is used as in the previous computational experience. However, each hypothesis is now analysed using a non-parametric Mann-Whitney test assuming a 95% confidence level (i.e. $\alpha=0.05$) to establish de p-value of each hypothesis. The results are shown in Table 4. Each p-value is 0.000 , so all hypotheses can be rejected. In summary, it can be concluded that the proposed heuristics outperform the existing algorithms for the problem under consideration, as well as the adaptations of efficient algorithms for related problems.

Figure 4: $A R P D$ versus $A C P U$. $A C P U$ (x-axis) is shown in logarithmic scale. Poner Efficient BSCH versions en vez de border
Table 5: RPD of heuristics (I).

n	m_{1}	m_{2}	A1	A2	S1	S2	S3	TCK1	TCK2	G1	G2	G3	G4	ECT	STPT	SMPT	SHIFT $_{k}$	SHIFT $T_{\text {kOPT }}$	SAK	FAP	NEW	$\begin{array}{r} x=2 \\ B S C H_{V} \end{array}$	$\begin{array}{r} x=5 \\ B S C H_{V} \end{array}$	$\begin{gathered} x=n / 10 \\ B_{S C H} \end{gathered}$	$\begin{array}{r} x=10 \\ B S C H_{V} \end{array}$	$\begin{array}{r} x=15 \\ B S C H_{V} \end{array}$	$\begin{array}{r} x=n \\ B S C H_{M M A} \end{array}$	$\begin{array}{r} x=n+n / 2 \\ B S C H_{M M A} \end{array}$
30	2	2	9.36	9.33	24.48	11.25	12.84	19.16	7.36	16.30	9.56	10.62	16.70	16.30	13.55	22.31	10.81	6.01	9.78	1.66	1.88	0.66	0.53	0.64	0.47	0.54	0.52	0.55
30	2	4	5.33	9.44	19.74	7.93	12.39	15.15	5.98	19.17	5.40	6.26	19.34	19.17	18.24	23.27	14.52	7.00	13.37	1.51	1.55	0.64	0.68	0.65	0.71	0.62	0.70	0.59
30	2	6	3.85	7.15	18.30	6.45	11.07	13.53	5.77	18.86	3.98	4.78	18.97	18.86	18.87	21.98	13.71	4.13	13.70	1.54	1.45	0.49	0.59	0.51	0.56	0.54	0.53	0.59
30	2	8	3.31	6.94	15.44	5.32	10.73	13.37	6.29	18.86	3.34	3.69	18.89	18.86	18.69	20.97	14.02	4.30	13.52	1.34	1.14	0.45	0.39	0.42	0.39	0.49	0.36	0.50
30	4	2	7.34	10.58	22.35	18.75	21.02	16.01	8.84	16.17	7.50	7.18	16.39	16.17	13.69	23.08	12.57	10.34	9.93	1.65	1.85	0.72	0.71	0.83	0.76	0.78	0.75	0.70
30	4	4	5.54	7.86	17.95	17.39	17.55	13.70	6.99	15.98	5.35	4.61	16.06	15.98	14.10	20.98	11.91	6.62	10.28	1.43	1.65	0.52	0.53	0.54	0.55	0.74	0.54	0.68
30	4	6	3.39	7.62	15.93	14.67	15.38	12.21	6.44	15.34	3.65	3.83	15.37	15.34	15.54	18.41	11.54	6.61	11.32	1.46	1.68	0.49	0.61	0.58	0.64	0.57	0.57	0.64
30	4	8	1.95	6.39	14.51	12.74	13.40	11.33	5.83	13.48	2.10	2.21	13.52	13.48	13.06	15.45	10.17	5.54	9.30	1.12	1.23	0.52	0.52	0.45	0.46	0.41	0.50	0.41
30	6	2	5.61	9.00	19.89	18.05	18.27	13.80	8.67	13.27	5.64	5.78	13.40	13.27	11.13	19.52	10.33	8.69	8.14	1.18	1.82	0.69	0.81	0.79	0.68	0.80	0.73	0.77
30	6	4	4.60	7.97	16.08	16.23	16.69	11.84	8.43	14.94	4.85	4.36	15.00	14.94	14.05	18.50	11.16	7.20	10.01	1.52	1.51	0.80	0.85	0.87	0.86	0.90	0.83	0.83
30	6	6	2.80	6.73	15.47	14.18	13.91	11.10	6.31	13.27	2.99	2.85	13.30	13.27	12.65	15.58	9.74	6.46	9.26	1.14	1.16	0.43	0.53	0.46	0.46	0.61	0.53	0.68
30	6	8	2.64	6.18	13.49	12.68	12.38	9.86	5.39	11.64	2.89	3.18	11.65	11.64	11.12	13.58	8.60	5.50	7.97	1.49	1.06	0.43	0.55	0.43	0.36	0.38	0.45	0.52
30	8	2	4.03	8.04	17.86	17.18	17.04	11.80	7.94	12.57	4.18	4.24	12.65	12.57	9.66	19.45	9.32	7.63	6.96	1.32	1.68	0.80	0.85	0.76	0.94	0.80	0.84	0.99
30	8	4	3.31	7.36	14.90	14.87	15.35	10.30	8.39	13.85	3.20	3.87	13.88	13.85	12.82	17.48	10.61	6.85	9.31	1.34	1.67	0.70	0.58	0.64	0.71	0.75	0.74	0.68
30	8	6	2.72	6.13	14.98	13.68	14.58	9.57	6.13	12.69	2.73	3.16	12.72	12.69	11.99	14.85	9.29	5.68	8.21	1.17	1.29	0.59	0.50	0.47	0.50	0.49	0.57	0.65
30	8	8	2.33	5.91	13.14	11.94	12.61	8.87	6.26	11.57	2.27	2.25	11.58	11.57	11.33	13.45	8.61	5.64	8.16	1.19	1.27	0.58	0.57	0.58	0.69	0.62	0.62	0.60
40	2	2	11.38	10.86	27.11	12.82	15.34	22.84	9.06	19.26	11.43	11.99	19.60	19.26	16.73	26.12	15.02	10.36	13.04	2.05	2.25	0.58	0.46	0.57	0.48	0.56	0.48	0.52
40	2	4	9.22	9.29	24.33	10.82	12.77	19.74	7.26	20.49	9.55	9.96	20.62	20.49	19.25	25.13	15.74	7.53	15.07	1.65	1.64	0.77	0.58	0.80	0.56	0.56	0.59	0.55
40	2	6	6.13	7.85	19.13	7.71	11.36	16.44	5.95	20.92	6.38	6.39	20.95	20.92	20.30	24.63	16.33	4.42	16.08	1.85	1.25	0.61	0.55	0.59	0.58	0.54	0.62	0.65
40	2	8	4.87	7.45	19.46	6.72	10.32	16.60	5.86	19.14	5.12	5.54	19.22	19.14	19.10	21.94	14.95	4.57	14.93	1.67	1.37	0.45	0.50	0.54	0.50	0.56	0.51	0.56
40	4	2	8.46	11.07	22.56	22.37	22.90	17.55	8.98	17.06	8.51	9.01	17.21	17.06	13.22	23.88	13.58	11.44	10.16	1.66	2.35	0.55	0.58	0.58	0.66	0.67	0.63	0.52
40	4	4	4.92	9.47	20.19	18.49	19.50	15.50	8.51	18.81	5.07	6.43	18.89	18.81	16.77	23.70	15.06	8.68	13.13	1.46	1.83	0.64	0.54	0.60	0.57	0.67	0.58	0.59
40	4	6	3.58	8.34	18.17	15.52	15.49	13.02	5.61	15.87	3.87	4.24	15.90	15.87	15.00	18.67	12.51	7.69	12.12	1.46	1.40	0.52	0.60	0.61	0.59	0.54	0.69	0.49
40	4	8	3.31	7.01	16.22	15.26	14.30	12.72	6.53	15.03	3.53	3.84	15.06	15.03	14.81	17.24	11.62	7.07	11.35	1.63	1.60	0.58	0.57	0.50	0.55	0.57	0.63	0.49
40	6	2	5.92	10.02	20.21	18.75	19.99	15.51	9.43	15.00	5.93	6.42	15.09	15.00	12.05	22.19	12.42	9.92	9.08	1.50	2.05	0.69	0.67	0.60	0.75	0.73	0.72	0.72
40	6	4	3.57	8.71	17.10	16.59	17.55	13.15	7.10	15.11	3.81	4.77	15.13	15.11	13.64	19.06	12.16	9.22	10.37	1.63	1.63	0.63	0.58	0.57	0.60	0.57	0.55	0.58
40	6	6	2.86	7.54	16.58	15.53	17.83	11.85	7.30	15.65	2.92	4.86	15.69	15.65	15.48	18.86	12.40	7.81	11.73	1.52	1.65	0.74	0.65	0.59	0.69	0.74	0.70	0.53
40	6	8	2.89	7.58	14.79	15.21	15.44	11.56	6.40	15.14	3.33	4.01	15.16	15.14	14.34	17.43	11.78	7.35	11.14	1.42	1.38	0.56	0.48	0.51	0.55	0.56	0.59	0.58
40	8	2	5.22	10.57	17.48	17.67	18.60	13.33	9.45	14.42	5.15	6.42	14.51	14.42	11.36	20.20	11.86	10.86	8.42	1.35	2.08	0.61	0.68	0.58	0.60	0.76	0.65	0.78
40	8	4	4.23	8.73	17.99	16.60	17.62	12.62	7.74	14.61	4.24	4.84	14.62	14.61	13.01	18.59	11.75	9.03	10.01	1.61	1.77	0.60	0.63	0.63	0.66	0.52	0.68	0.51
40	8	6	3.28	7.25	14.88	13.83	14.39	11.41	7.27	13.33	3.33	4.15	13.34	13.33	12.37	16.30	10.53	7.43	9.33	1.29	1.46	0.51	0.52	0.45	0.57	0.58	0.62	0.63
40	8	8	3.16	6.88	14.54	14.53	13.91	10.41	6.67	13.36	2.97	3.70	13.38	13.36	12.87	15.18	10.53	6.48	9.66	1.40	1.51	0.65	0.52	0.57	0.56	0.60	0.56	0.70
50	2	2	13.65	11.44	28.81	14.56	16.52	23.83	8.69	21.17	13.63	13.97	21.43	21.17	18.07	28.37	16.70	11.51	14.51	1.94	2.31	0.48	0.39	0.39	0.41	0.41	0.28	0.39
50	2	4	9.01	9.32	22.68	10.80	14.45	20.56	6.63	23.75	9.43	9.59	23.86	23.75	22.54	29.50	19.17	8.28	18.63	2.09	1.90	0.58	0.44	0.44	0.47	0.43	0.49	0.43
50	2	6	7.78	8.71	21.55	9.70	11.89	18.34	6.06	23.05	8.14	8.39	23.11	23.05	22.27	26.76	18.70	7.76	18.40	1.98	1.64	0.59	0.59	0.59	0.53	0.55	0.55	0.47
50	2	8	6.11	8.32	21.09	8.14	12.15	16.47	6.17	21.82	6.26	6.57	21.85	21.82	21.62	24.27	17.55	5.56	17.63	1.64	1.53	0.52	0.48	0.48	0.42	0.46	0.46	0.50
50	4	2	8.52	11.62	23.51	20.39	22.21	19.35	9.24	17.46	8.76	9.75	17.57	17.46	13.06	25.33	14.74	12.91	10.56	1.81	2.63	0.50	0.47	0.47	0.47	0.41	0.40	0.44
50	4	4	6.92	10.35	21.46	19.96	20.58	16.82	7.25	18.59	7.07	8.35	18.65	18.59	16.96	23.38	15.17	10.85	13.86	1.63	2.18	0.57	0.53	0.53	0.51	0.53	0.46	0.42
50	4	6	4.99	9.48	19.46	17.44	18.16	14.94	7.15	18.35	5.32	6.26	18.38	18.35	17.86	21.62	15.11	9.00	14.59	1.74	1.84	0.49	0.38	0.38	0.39	0.56	0.51	0.47
50	4	8	4.40	8.23	18.10	15.77	17.20	14.46	6.86	18.02	4.28	5.19	18.05	18.02	17.43	20.43	14.62	7.67	14.27	1.67	1.45	0.49	0.50	0.50	0.51	0.46	0.46	0.49
50	6	2	7.28	10.97	20.47	19.16	20.66	16.19	9.43	16.60	7.12	8.77	16.70	16.60	11.98	23.53	13.75	12.19	9.44	1.78	2.36	0.45	0.61	0.61	0.63	0.49	0.53	0.47

Table 6: RPD of heuristics (II).

n	m_{1}	m_{2}	A1	A2	S1	S2	S3	TCK1	TCK2	G1	G2	G3	G4	ECT	STPT	SMPT	SHIFT_{k}	SHIFT $_{\text {kop } T}$	SAK	FAP	NEW	$\begin{array}{r} x=2 \\ B S C H_{V} \end{array}$	$\begin{array}{r} x=5 \\ B S C H_{V} \end{array}$	$\begin{aligned} & x=n / 10 \\ & B S C H_{V} \end{aligned}$	$\begin{array}{r} x=10 \\ B S C H_{V} \end{array}$	$\begin{array}{r} x=15 \\ B S C H_{V} \end{array}$	$B S C H_{M M A}$	$\begin{array}{r} x=n+n / 2 \\ B S C H_{M M A} \end{array}$
50	6	4	4.76	10.06	18.88	17.94	19.21	13.86	8.10	16.62	5.10	5.49	16.64	16.62	15.14	20.95	13.89	10.43	12.05	1.49	1.70	0.47	0.52	0.52	0.48	0.49	0.40	0.42
50	6	6	4.85	8.80	17.49	16.98	17.85	13.66	7.63	16.46	4.70	4.62	16.48	16.46	15.71	19.33	13.50	9.35	12.51	1.65	1.61	0.43	0.50	0.50	0.63	0.57	0.54	0.60
50	6	8	2.87	7.67	15.53	13.87	15.07	11.73	7.05	14.72	3.20	4.08	14.74	14.72	14.53	16.94	11.98	8.64	11.43	1.55	1.57	0.52	0.40	0.40	0.50	0.46	0.41	0.42
50	8	2	5.89	11.18	18.27	18.76	19.20	14.55	9.15	14.75	5.93	7.59	14.78	14.75	11.00	20.87	12.49	11.67	8.94	1.52	2.14	0.59	0.49	0.49	0.49	0.51	0.51	0.49
50	8	4	5.47	10.34	17.96	16.56	17.54	13.52	8.29	15.83	5.74	6.65	15.84	15.83	14.39	19.54	13.09	10.98	11.48	1.31	1.98	0.62	0.50	0.50	0.57	0.52	0.55	0.50
50	8	6	3.60	8.69	15.99	15.04	15.76	11.75	7.31	14.51	3.63	4.69	14.51	14.51	13.90	17.07	12.16	9.70	11.26	1.48	1.82	0.49	0.41	0.41	0.42	0.42	0.44	0.50
50	8	8	3.68	8.07	14.47	13.83	15.37	10.72	6.50	14.98	3.62	3.80	14.98	14.98	14.02	17.14	12.31	8.71	11.07	1.37	1.41	0.54	0.42	0.42	0.43	0.52	0.46	0.48
60	2	2	13.16	9.75	25.94	14.66	14.28	21.95	8.60	19.43	13.19	13.00	19.58	19.43	15.63	27.41	16.16	9.28	12.66	1.78	2.41	0.33	0.27	0.37	0.31	0.33	0.48	0.31
60	2	4	10.49	9.74	25.24	12.45	13.17	21.05	7.17	22.95	10.70	12.33	23.06	22.95	21.77	28.41	19.22	9.89	18.49	2.19	2.47	0.57	0.57	0.57	0.52	0.51	0.61	0.39
60	2	6	8.08	9.02	23.01	9.63	12.55	19.73	6.60	22.82	8.27	9.21	22.88	22.82	22.09	26.82	19.04	8.93	18.73	2.04	2.09	0.48	0.58	0.53	0.60	0.67	0.52	0.50
60	2	8	6.93	9.72	20.72	8.57	12.92	18.55	6.56	23.20	7.29	7.73	23.25	23.20	22.78	26.17	19.42	7.32	19.02	1.94	2.05	0.70	0.69	0.63	0.70	0.57	0.63	0.54
60	4	2	12.71	12.42	23.61	22.45	23.39	19.77	10.44	19.03	12.51	12.02	19.09	19.03	14.51	26.60	16.40	13.93	11.88	2.23	2.76	0.43	0.33	0.35	0.42	0.35	0.34	0.36
60	4	4	6.53	11.04	20.31	18.94	19.76	17.30	8.04	19.61	6.71	7.89	19.67	19.61	17.88	24.10	16.65	12.30	15.05	1.80	2.19	0.53	0.50	0.51	0.53	0.47	0.55	0.48
60	4	6	6.01	9.75	19.19	16.93	18.22	15.79	7.49	19.81	6.61	6.96	19.84	19.81	18.66	23.33	16.43	9.92	15.56	1.72	1.79	0.47	0.48	0.47	0.51	0.48	0.47	0.51
60	4	8	4.36	8.28	19.05	17.25	17.61	15.44	6.16	18.64	4.76	5.53	18.67	18.64	17.89	21.46	15.42	8.64	15.02	1.66	1.72	0.48	0.56	0.51	0.47	0.47	0.53	0.55
60	6	2	8.21	11.45	21.11	19.95	20.62	17.38	9.65	16.35	8.05	9.04	16.43	16.35	12.72	23.08	14.30	13.06	10.51	2.03	2.67	0.49	0.51	0.54	0.47	0.37	0.46	0.47
60	6	4	5.76	10.37	19.74	17.79	18.82	14.99	8.59	17.93	5.75	6.99	17.95	17.93	16.63	22.75	15.22	11.94	13.64	1.74	2.11	0.48	0.49	0.47	0.50	0.46	0.48	0.40
60	6	6	6.06	9.52	17.20	16.61	18.45	14.30	7.30	17.00	5.89	6.06	17.02	17.00	16.46	20.23	14.35	10.77	13.69	1.57	1.87	0.53	0.51	0.53	0.52	0.47	0.54	0.41
60	6	8	3.71	8.17	16.91	15.89	16.44	13.17	6.54	16.87	3.71	4.30	16.88	16.87	16.43	19.37	13.87	9.08	13.13	1.42	1.59	0.49	0.45	0.48	0.47	0.48	0.48	0.46
60	8	2	6.44	11.20	20.76	18.46	19.29	15.13	9.10	15.24	6.55	8.47	15.28	15.24	11.38	21.70	13.12	12.37	9.04	1.80	2.46	0.58	0.53	0.46	0.54	0.51	0.49	0.45
60	8	4	5.99	10.98	18.01	16.76	20.28	13.82	9.33	17.42	6.10	6.13	17.43	17.42	15.94	21.89	14.78	11.64	13.26	1.74	2.20	0.60	0.56	0.58	0.56	0.49	0.58	0.52
60	8	6	3.76	9.22	16.26	16.01	17.65	12.58	7.74	16.20	3.46	5.02	16.22	16.20	15.44	19.18	13.58	10.04	12.29	1.57	1.82	0.47	0.46	0.37	0.47	0.45	0.45	0.36
60	8	8	3.57	8.06	14.83	15.09	15.64	12.18	6.57	15.27	3.67	4.30	15.27	15.27	14.25	17.48	12.53	9.47	11.62	1.57	1.68	0.51	0.50	0.51	0.44	0.41	0.49	0.52
70	2	2	15.42	11.27	29.00	16.33	15.20	25.76	8.41	20.48	15.37	16.39	20.68	20.48	17.05	28.01	17.00	11.47	14.35	2.45	2.78	0.42	0.41	0.46	0.43	0.40	0.41	0.35
70	2	4	13.09	10.94	26.08	14.32		23.22	7.20	24.80			24.82	24.80	23.63	30.56	21.49	11.84	20.43	2.26	2.31	0.56	0.61	0.47	0.45	0.58	0.52	0.42
70		6	9.88	9.38	22.37	11.45	13.96	20.68	6.96	25.29	10.10	10.75	25.35	25.29	24.90	29.48	21.34	9.10	21.59	2.09	1.98	0.61	0.64	0.61	0.57	0.66	0.63	0.60
70		8	7.37	9.41	21.10	9.09	12.92	19.34	6.50	23.38	7.74	8.52	23.42	23.38	23.00	26.41	19.90	7.74	19.62	2.00	1.94	0.61	0.59	0.53	0.49	0.58	0.61	0.54
70	4	2	10.54	12.50	24.00	22.10	23.59	19.51	8.75	18.56	10.44	11.11	18.65	18.56	13.59	26.49	16.18	14.08	11.39	2.31	2.83	0.44	0.40	0.44	0.35	0.38	0.40	0.34
70	4	4	7.17	11.21	21.64	19.44	20.38	17.68	7.72	20.01	7.17	8.06	20.04	20.01	18.44	24.85	17.40	14.06	15.80	1.87	2.31	0.50	0.44	0.43	0.46	0.51	0.55	0.37
70	4	6	6.41	9.83	20.48	18.28	18.31	17.50	7.29	19.27	6.56	7.52	19.30	19.27	18.20	22.77	16.30	11.87	15.78	1.93	2.12	0.53	0.44	0.52	0.46	0.45	0.51	0.46
70	4	8	4.04	9.26	18.70	16.63	17.94	15.84	7.35	19.34	4.35	5.51	19.38	19.34	18.93	21.94	16.35	10.53	16.15	1.71	1.91	0.53	0.55	0.51	0.44	0.54	0.48	0.55
70	6	2	6.40	11.87	20.58	18.63	19.84	16.51	9.46	15.90	6.31	9.17	15.96	15.90	12.94	22.59	14.08	13.01	10.75	1.90	2.37	0.43	0.48	0.38	0.48	0.41	0.40	0.43
70		4	7.21	10.94	18.42	17.63	19.58	15.54	7.99	18.06	7.45	7.30	18.07	18.06	15.54	22.82	15.68	12.07	12.93	1.67	2.37	0.51	0.47	0.43	0.47	0.45	0.43	0.39
70		6	6.10	10.87	17.97	16.46	18.43	14.60	7.30	18.25	6.28	6.75	18.26	18.25	17.39	21.53	15.78	13.03	14.35	1.86	2.04	0.51	0.54	0.60	0.66	0.66	0.62	0.48
70	6	8	5.06	9.53	16.93	15.28	18.30	13.41	7.39	17.90	5.23	5.64	17.91	17.90	17.40	20.49	15.29	11.38	14.41	1.85	1.78	0.57	0.71	0.66	0.63	0.59	0.62	0.53
70	8	2	6.52	11.92	19.75	18.38	21.06	15.95	10.05	16.18	6.69	8.33	16.24	16.18	12.00	23.14	14.54	13.58	9.93	1.82	2.57	0.40	0.45	0.53	0.51	0.41	0.40	0.47
70	8	4	4.96	9.72	17.94	17.26	19.28	13.93	8.41	16.46	5.05	6.37	16.47	16.46	14.41	21.37	14.28	12.02	11.95	1.67	2.01	0.52	0.51	0.53	0.49	0.48	0.54	0.47
70	8	6	5.14	9.76	18.35	16.58	17.64	13.78	7.24	16.66	4.93	6.10	16.66	16.66	15.08	20.00	14.16	11.56	12.59	1.48	1.90	0.45	0.39	0.40	0.36	0.35	0.39	0.47
70	8	8	4.31	9.00	15.76	14.30	15.87	12.05	6.49	16.07	4.32	4.99	16.09	16.07	15.64	18.25	13.67	10.60	13.26	1.59	1.62	0.46	0.44	0.41	0.44	0.38	0.43	0.46
			6.73	10.02	19.73	16.22	17.58	16.11	7.81	18.26	6.84	7.67	18.30	18.26	16.60	22.63	15.47	10.92	13.79	1.79	2.08	0.51	0.49	0.49	0.49	0.48	0.50	0.46

5 Conclusions

In this paper we have addressed the 2-stage multi-machine assembly scheduling problem with the objective of minimising the total completion time. We have presented two constructive heuristics: The first algorithm, $N E W$, constructs a sequence by iteratively appending a job at the end of a partial sequence. The job is selected according to a problem-specific indicator that takes into account the idle time of the assembly machines at the second stage and the contribution of the job to the total completion time. Due to the good performance of this heuristic, the indicator has been embedded into a beam search based constructive heuristic, labelled $B S C H$, which constructs several sequences at the same time, compares them and selects the best x ones. Thereby, this heuristic combines the diversification of population-based algorithms and the speed of the constructive heuristic. Furthermore, we have implemented different variants of the $B S C H$, whose main difference is the way in which the beam width (x) is modified in each iteration.

Using a testbed similar to Allahverdi and Al-Anzi (2012), the extensive computational experience carried out shows that the best $A R P D$ are found by variants $B S C H_{V}(\forall x \in$ $\{2, n / 10,5,10,15, n\})$ and $B S C H_{M M A}(\forall x \in\{n, n+n / 2\})$. These variants have been compared with the $N E W$ heuristic, and with existing heuristics for the problem under consideration and their adaptations for related scheduling problems. The results show that the proposed heuristics yield a much better performance than the existing ones.

Acknowledgement

This research has been funded by the Spanish Ministry of Science and Innovation, under the project "PROMISE" with reference DPI2016-80750-P.

References

Ahmadi, R., Bagchi, U., and Roemer, T. A. (2005). Coordinated scheduling of customer orders for quick response. Naval Research Logistics, 52(6):493-512.

Al-Anzi, F. S. and Allahverdi, A. (2006a). A Hybrid Tabu Search Heuristic for the Two-Stage Assembly Scheduling Problem. International Journal of Operations Research, 3(2):109-119.
Al-Anzi, F. S. and Allahverdi, A. (2006b). Empirically discovering dominance relations for scheduling problems using an evolutionary algorithm. International Journal of Production Research, 44(22):47014712.

Al-Anzi, F. S. and Allahverdi, A. (2007). A self-adaptive differential evolution heuristic for two-stage assembly scheduling problem to minimize maximum lateness with setup times. European Journal of Operational Research, 182(1):80-94.
Al-Anzi, F. S. and Allahverdi, A. (2012). Better Heuristics for a Two-Stage Multi- Machine Assembly Scheduling Problem to Minimize Total Completion Time Better Heuristics for a Two-Stage MultiMachine Assembly Scheduling Problem to Minimize Total Completion Time. International Journal of Operations Research, pages 66-75.
Allahverdi, A. and Al-Anzi, F. (2012). A new heuristic for the queries scheduling problem on distributed database systems to minimize mean completion time. In Proceedings of the 21st International Conference on Software Engineering and Data Engineering, SEDE 2012.
Allahverdi, A. and Al-Anzi, F. S. (2006). A PSO and a Tabu search heuristics for the assembly scheduling problem of the two-stage distributed database application. Computers and Operations Research, 33(4):1056-1080.
Allahverdi, A. and Al-Anzi, F. S. (2009). The two-stage assembly scheduling problem to minimize total completion time with setup times. Computers and Operations Research, 36(10):2740-2747.

Della Croce, F. and T'kindt, V. (2003). Improving the preemptive bound for the one-machine dynamic total completion time scheduling problem. Operations Research Letters, 31(2):142-148.
Erenay, F., Sabuncuoglu, I., Toptal, A., and Tiwari, M. (2010). New solution methods for single machine bicriteria scheduling problem: Minimization of average flowtime and number of tardy jobs. European Journal of Operational Research, 201(1):89-98. cited By 18.

Fernandez-Viagas, V. and Framinan, J. M. (2015). A new set of high-performing heuristics to minimise flowtime in permutation flowshops. Computers and Operations Research, 53:68-80.
Fernandez-Viagas, V. and Framinan, J. M. (2017). A beam-search-based constructive heuristic for the PFSP to minimise total flowtime. Computers and Operations Research, 81:167-177.

Fernandez-Viagas, V., Ruiz, R., and Framinan, J. M. (2017). A new vision of approximate methods for the permutation flowshop to minimise makespan: State-of-the-art and computational evaluation. European Journal of Operational Research, 257(3):707-721.
Framinan, J. M. and Perez-Gonzalez, P. (2017a). New approximate algorithms for the customer order scheduling problem with total completion time objective. Computers and Operations Research, 78:181192.

Framinan, J. M. and Perez-Gonzalez, P. (2017b). The 2-stage assembly flowshop scheduling problem with total completion time: Efficient constructive heuristic and metaheuristic. Computers and Operations Research, 88:237-246.
Framinan, J. M., Perez-Gonzalez, P., and Fernandez-Viagas, V. (2018). Deterministic assembly scheduling problems: A review and classification of concurrent-type scheduling models and solution procedures. European Journal of Operational Research, 0:1-17.
Gonzalez, T. and Sahni, S. (1978). Flowshop and jobshop schedules: Complexity and approximation. Oper. Res., 26(1):36-52.
Holm, S. (1979). Board of the Foundation of the Scandinavian Journal of Statistics. 6(2):65-70.
Koulamas, C. and Kyparisis, G. (2001). The three-stage assembly flowshop scheduling problem. Computers and Operations Research, 28(7):689-704.
Lee, C.-Y., Cheng, T. C. E., and Lin, B. M. T. (1993). Minimizing the makespan in the 3-machine
assembly-type flowshop scheduling problem. Management Science, 39(5):616-625.
Lee, I. S. (2018). Minimizing total completion time in the assembly scheduling problem. Computers and Industrial Engineering, 122(June):211-218.
Leung, J. Y. T., Li, H., and Pinedo, M. (2005). Order scheduling in an environment with dedicated resources in parallel. Journal of Scheduling, 8(5):355-386.
Potts, C. N., Sevast'janov, S. V., Strusevich, V. A., Van Wassenhove, L. N., and Zwaneveld, C. M. (1995). The Two-Stage Assembly Scheduling Problem: Complexity and Approximation. Operations Research, 43(2):346-355.

Shoaardebili, N. and Fattahi, P. (2015). Multi-objective meta-heuristics to solve three-stage assembly flow shop scheduling problem with machine availability constraints. International Journal of Production Research, 53(3):944-968.
Sotskov, Y., Tautenhahn, T., and Werner, F. (1996). Heuristics for permutation flow shop scheduling with batch setup times. OR Spectrum, 18(2):67-80. cited By 13.

Sung, C. S. and Kim, H. A. (2008). A two-stage multiple-machine assembly scheduling problem for minimizing sum of completion times. International Journal of Production Economics, 113(2):10381048.

Sung, C. S. and Yoon, S. H. (1998). Minimizing total weighted completion time at a pre-assembly stage composed of two feeding machines. 54:247-255.
Tozkapan, A., Kirca, Ö., and Chung, C. S. (2003). A branch and bound algorithm to minimize the total weighted flowtime for the two-stage assembly scheduling problem. Computers and Operations Research, 30(2):309-320.
Valente, J. M. (2010). Beam search heuristics for quadratic earliness and tardiness scheduling. Journal of the Operational Research Society, 61(4):620-631.

Valente, J. M. and Alves, R. A. (2008). Beam search algorithms for the single machine total weighted tardiness scheduling problem with sequence-dependent setups. Computers and Operations Research, $35(7): 2388-2405$.

[^0]: *Corresponding author. Email:

