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Abstract

In this paper, we adress the two-stage multi-machine assembly scheduling prob-
lem where there are several dedicated parallel machines in the first stage and more
than one identical parallel machines in the second stage. The objective considered is
the minimisation of the total completion time. This problem is NP-hard and the lit-
erature surveys indicate that the problem considering several assembly machines has
not received much attention. In our paper, we first review the existing solution pro-
cedures for the problem under consideration and for related problems, adapt them
to our problem and develop two efficient heuristics. The first heuristic constructs a
solution taking into account some specific knowledge of the problem domain. This
algorithm is embedded into a beam search-based constructive heuristic and its be-
haviour when the beam width takes different values is analysed. The computational
experience carried out shows that the proposals are more efficient than the existing
heuristics.
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1 Introduction

The two-stage multi-machine assembly scheduling problem has many applications in industry
since many products are made up of different components that need to be manufactured in
the first stage and then assembled into final products in the second stage, which may consists
of several parallel machines. These decision problems are receiving an increasing attention of
researchers due to its applications in industry, such as personal computer manufacturing (Potts
et al) [1995), fire engine assembly plant (Lee et all |1993), or distributed database systems
(Allahverdi and Al-Anzi, 2006 Al-Anzi and Allahverdi, 2006b, [2007)).

In this paper we focus on a two-stage multi-machine assembly scheduling problem where there
are several dedicated machines in the first stage (e.g. to manufacture the different components
of the final product) and more than one identical (parallel) machines in the second stage (e.g.
to assembly the components into the final product). Clearly, processing a job in a second stage
—which can be done by any of the parallel machines in the second stage— can start only after
all operations for this job in the first stage have been completed. The objective is to minimize
the total completion time so, according to the classification and notation in [Framinan et al.
(2018), it can be denoted as the DPy, — Pp[|>2; Cj problem. This problem is connected to
other scheduling problems, i.e. as mentioned in [Sung and Kim| (2008) and Framinan and Perez-
Gonzalez| (2017D)), it can be seen as a generalisation of the two-machine flowshop problem. For
the case with only one machine at the first stage and one assembly machine at the second stage,
it is equivalent to scheduling in a flowshop with two machines. Since Gonzalez and Sahni (1978])
proved that the F,[|37; C; is NP-hard in the strong sense, it is clear that the problem under
study is strongly NP-hard.

While the two-stage assembly problem with only one machine in the second stage has been
widely discussed in the literature (see e.g. the recent review on the topic by |Framinan et al., 2018]),
to the best of our knowledge, the problem considering several (identical) assembly machines has
received much less attention. Most works addressing this problem consider at maximum two
assembly machines in the second stage. Some properties of this problem have been stated in

Al-Anzi and Allahverdi (2007) and |[Lee| (2018), while heuristics have been proposed by |Al-Anzi



and Allahverdi (2006a)), Sung and Kim| (2008) and |Al-Anzi and Allahverdi (2012), and different
metaheuristics have been designed and compared in |Al-Anzi and Allahverdi (2007)), Allahverdi
and Al-Anzi (2009)) and |Al-Anzi and Allahverdi (2012]).

The main contribution of this paper is to improve the performance of the approximate solution
procedures for the problem under consideration by proposing two new constructive heuristics that
explicitly use knowledge of the problem domain to construct the solutions. More specifically, we
propose a fast constructive heuristic which applies to our problem some dominance properties
by [Framinan and Perez-Gonzalez| (2017b) derived for the case where there is only one assembly
machine. In light of the excellent results of this heuristic in negligible computation times, it
is embedded into a beam search-based constructive heuristic. This type of heuristic has been
developed originally by [Fernandez-Viagas and Framinan (2017)) for the permutation flowshop
scheduling problem, but for our problem we use the idea of keeping only the most promising
nodes in each iteration to boost its performance, an idea successfully employed for different
scheduling problems (see e.g. Della Croce and T’kindt} 2003| Valente and Alves, [2008, and
Valente, 2010)). An extensive computational evaluation is performed to show that the proposals
are found to be more efficient than existing solution procedures for the problem.

The remainder of the paper is organised as follows: the problem is formally described and
the state of the art is presented in Section In Section [3] we explain in detail the proposed
heuristics: The constructive heuristic is presented in Section while in Section [3.2] the beam
search heuristic is explained. The computational experiments are conducted in Section [4] and,

finally, conclusions are discussed in Section

2 Problem statement and background

The problem studied in this paper can be stated as follows: There are n jobs to be scheduled
in a layout composed of two stages. Each job has mj + 1 operations. In the first stage, there
are m; dedicated parallel machines, in which the first m; operations are conducted, while in
the assembly stage there are mo identical parallel machines. Only after all m; operations are

completed, the assembly operation may start in the first available machine. A job j has a



processing time p;; on machine ¢ in the first stage and an assembly processing time at; in the
second stage. The decision problem consists on scheduling the jobs in the two machines so the
sum of the completion times of the jobs is minimised.

A solution for this problem is determined by giving a sequence of jobs indicating the order in

which the jobs are processed (see e..g. |Al-Anzi and Allahverdi, 20062/ and |Al-Anzi and Allahverdi,

2012). Therefore, given a sequence, let [j] denote the job processed in position j in the sequence.
C1; the maximum completion time of job in position j in the first stage can be computed as

follows:
J
Clj = max > Pin (1)
k=1

In order to know the first available assembly machine, the completion time of job [j]
in each assembly machine is computed as: Cj-; = max{Cjj_1,C1;} + at};), where i* =
argming_; .. ., {Cij-1}. Otherwise, Cj; = C;; 1. Then, C; the completion time of the job

processed in position j can be computed as:

Cij = Ci=; (2)

As mentioned in Section [T} literature surveys indicate that two-stage assembly scheduling

problems have been tackled with respect to different objectives. Lee et al.| (1993)) and

(1995) addressed this problem regarding the minimisation of the makespan. Other objectives

are the minimisation of the maximum lateness (Al-Anzi and Allahverdi, |2006b| and |Allahverdi|

and Al-Anzi, 2006)), additional constraints such as setup times (Al-Anzi and Allahverdi, [2007))

or additional stages for the transportation of components (Koulamas and Kyparisis, 2001 and

'Shoaardebili and Fattahi, [2015). Regarding the aim of our paper, there are few references

addressing the case with several machines in the second stage, namely the work by

Kim| (2008) and |Al-Anzi and Allahverdi (2012). |Sung and Kim| (2008) develop an heuristic,

denoted SAK from now on, applying a processing-time-based pairwise exchange mechanism,

while in |Al-Anzi and Allahverdi (2012)), a mathematical model of the problem with two assembly

machines is proposed, together with three new metaheuristics.



In view of the relationship of the problem under consideration with other scheduling problems,
it is worth also to analyse the existing solution procedures for related problems, namely for the
assembly scheduling problem with one machine in the last stage (DP,;, — 1[|>2; Cj problem)
and the customer order scheduling problem (D P, — 0| 3°; C;j problem).

Regarding the DPp, — 1]| 32, C; problem, the first reference addressing it is Tozkapan et al.
(2003), where the authors prove that permutation schedules are optimal for the DP,, — 1
problem and propose two heuristics, labelled TC' K1 and T'C' K2 in the following, to find an upper
bound for their branch and bound algorithm. |Al-Anzi and Allahverdi| (2006a) also address this
problem and derive a number of theoretical properties.They propose three simple constructive
heuristics (S1, S2 and S3) based on the idea of ordering the jobs according to the Shortest
Processing Time (SPT) rule, and two additional constructive heuristics, labelled A1 and A2 in
the following. Recently, [Framinan and Perez-Gonzalez| (2017b) also address this problem and
review the problem properties studied by |Al-Anzi and Allahverdi| (2006a)). The authors develop a
constructive heuristic, denoted FAP in the following, which outperforms the existing constructive
heuristics. The last reference where this problem is considered is |Lee (2018). Six lower bounds
are proposed and tested in a branch and bound algorithm. They also propose four greedy-type
constructive heuristics, labelled G1, G2, G3 and G4.

Regarding the DP,, — 0] >_; Cj problem, note that this problem is tantamount to the one
under consideration if the processing times of the jobs in the assembly stage are zero. Even if
this is not the usual case, both problems would be similar e.g. if the processing times in the first
stage largely influence the value of the objective function. Therefore, solution methods for the
customer order scheduling problem could be applied to the problem under consideration, hence
the interest in reviewing the related literature. For this problem, Sung and Yoon (1998)) propose
two constructive heuristics based on the SPT rule. The first one schedules the order with the
smallest total processing time across all m machines, labelled ST PT in the following, and the
second one selects the order with the smallest maximum amount of processing time on any of
the m machines, denoted as SM PT. |Leung et al. (2005) propose a constructive heuristic that
selects as the next order to be sequenced the one that would be completed the earliest, that

is, the order with the Earliest Completion Time (ECT). Based on this idea and including some



look-ahead concepts, Framinan and Perez-Gonzalez (2017a)) propose a constructive heuristic and
two specific local search mechanisms for the problem, labelled SHIFT), and SHIFT},, .
After this review, it can be seen that, despite some solution procedures exist for the problem,
the performance of the adaptation of procedures from related problems has not been tested so
far. Furthermore, there is some opportunity to improve existing methods for the problem by
incorporating some knowledge of the problem domain. These methods are presented in the next

section.

3 Proposed Constructive heuristics

In this section, we propose two heuristics for this problem. First, a constructive heuristic is

detailed (Section [3.1)) and then we propose a beam search based constructive heuristic (Section

3-2).

3.1 Constructive Heuristic 1

The idea of the proposed heuristic consists of iteratively constructing a sequence by selecting
one job among the unscheduled jobs and adding it at the end of the partial sequence, an idea
that has been addressed for different scheduling problems by [Framinan and Perez-Gonzalez
(2017bya) and |[Fernandez-Viagas and Framinan (2017) with excellent results. A key issue for the
performance of this type of heuristics is the development of a problem-specific indicator ) which
adequately represents the suitability of an unscheduled job to be appended since, once a job is
added to the sequence, its position cannot be modified in the subsequent iterations.

Thence, the algorithm starts with a set U containing all (unscheduled) jobs and an empty
schedule S. For each iteration j € (1,---,n), each unscheduled job w; € U is analysed as a
candidate to be added to position j in S, and its suitability is measured by computing the
indicator 1;, and the job in & with the lowest value of v is selected.

In our problem, two main aspects are considered to assess the suitability of appending a

candidate job w; at the end of the partial sequence, i.e.:

1. If its inclusion implies that the first available machine in the second stage has to wait for



processing the candidate job at the second stage. Therefore, the idle time induced by the
insertion of job w; is computed. Let us I7; denote the idle time induced by scheduling job

J at the end of the sequence. Clearly, IT} is computed as follows:

[T] = max {Clj - (C] - atj),()} (3)

Note that C; — at; computes the workload of the first available machine in the second
stage before scheduling job j (i.e. the machine in the second stage where the candidate
job will be processed). If the idle time induced by scheduling a job is greater than 0, then
the completion times in first stage dominate the completion time of this job when it is
evaluated as candidate to be scheduled. Otherwise, the completion time of the candidate
job is largely influenced by the second stage. As we are minimising the total completion
time, it is clear that the lower the idle time caused by a job, the more suitable it is to be

scheduled.

2. The contribution of the candidate job to the total completion time. As it can be seen,
the idle time takes into account the suitability of the job until its processing in the second
stage starts. In addition, its contribution to the total completion time would depend on
the processing time in the second stage, i.e. at,,, which roughly measures the influence of
the second stage. We weight this influence according to the number of assembly machines
(mg) since, with a higher number of machines in the second stage, the next jobs have a
lower probability of not being affected by the second stage. Furthermore, to take into
account the fact that, the higher the number of components in the first stage, the less
likely is for the processing time in the second stage to dominate the completion time, CT;

the expected contribution of job w; to the total completion time is measured as follows:

Aty

T} = (4)

mi - Mmy

By taking into account the two aspects, we will ensure that the jobs to be first sequences

are those with lower values of idle time and assembly time. Therefore, the indicator v;, which



estimates the suitability of appending a candidate job w; at the end of S, is computed as follows:

Y =a-IT; + CT) (5)

where a is a parameter to weight the influence of the two terms and that would be determined
via callibration of the algorithm.

Note that the complexity of this heuristic is O(n - (n — k) - m1 -logmy) ~ O(n?

-myq -logmy),
since the main loop in the algorithm performs n iterations. In each iteration, n — k jobs are
evaluated, each evaluation consisting on obtaining the maximum processing time in the first

stage, i.e. sorting m; elements. The pseudo-code of the proposed heuristic is shown in Figure [I}

3.2 Beam Search Constructive Heuristic

The heuristic proposed in Section [3.1] provides excellent results with negligible processing
times (see Section , proving that the indicator ¥ properly captured the suitability of a job to
be appended. Therefore, we embed the components of this indicator into a new beam search
-based constructive heuristic for the problem, labelled BSCHpsara. This type of heuristic has
been considered to solve different scheduling problems, such as in [Sotskov et al. (1996) (where
some constructive heuristics based on insertion techniques are combined with beam search for
the permutation flowshop scheduling problem), Erenay et al. (2010)) (for the single machine bicri-
teria scheduling problem), and |Fernandez-Viagas and Framinan| (2017) (also for the permutation
flowshop scheduling problem). In this type of heuristics, a number of candidate nodes, denoted
by a parameter x, are maintained in each iteration. In iteration k, each node ! (I € {1,--- ,z})
is formed by a partial sequence, i.e. a set of k scheduled jobs, S,i, and a set of unscheduled jobs,
L(,i. Then, all unscheduled jobs in M,i are inserted in position k+1 of S,lc, thus obtaining - (n—k)
candidate nodes. Out of these nodes, the x most suitable ones are selected as candidates for
the next iteration. Therefore, the ideas behind the use of the indicator ¥ could be used in this
heuristic. However, an additional complication arises because candidates from different nodes
may have to be compared. More specifically, the heuristic may have to deal with one of the

following situations:



Procedure Proposed Constructive Heuristic NEW

// All jobs are initially unscheduled

IT:= o,

// Completion times on stages 1 and 2 of sequence S:

Cl; =0 +=1,....,my

C2r:=0 i=1,...,my

§ = argming ;.. C27;

Obtain a sequence U := (wq,...,w,) by applying algorithm S2;

for j =1 tondo

for each w; € U do

// Compute the completion times in the first stage after selecting w; as candi-
date:

Ci(wr) = maxi<i<m; {C1] + Piw, }

// Compute the idle time induced if job wj is inserted at the end of the partial
sequence:

IT) = max {C(w;) — C2%,0}

// Compute the additional completion time induced when job wj is inserted at
the end of the partial sequence:

OT} = 50w

// Compute the indicator considering the idle time:

Yri=a-IT,+ CT,

end

o= argming ey, i Yk

Append w, at the end of II, i.e. IT := (mq, ..., 7j_1,w;);

Extract w, from U, i.e. U 1= (w1, ..., W1, Wity -« Wnojt1);

// Update values of the constructive sequence:

C1lf = C1f + piw,

02: = Imax {02;‘(, maxi<i;<m, Cl:} -+ atwl

end
return C2;
end

Figure 1: Pseudo-code of the proposed heuristic NEW.



e If the candidate jobs have been obtained by inserting different jobs in L{,l€ to a same node [,

their partial sequences «S,lC will be exactly alike with the exception of the last job appended.

So, the comparison can be done in reference to the completion time or the idle time caused

by the added job.

e If the candidate jobs have been obtained from different nodes, the unscheduled jobs and the

scheduled jobs are different for each candidate node. In this case, the comparison should

take into account that the previous scheduled jobs at each candidate node are different, so

this fact has to be considered when developing the indicator for suitability.

To explain the design of the heuristic in detail, we first denote by sjlk the jth scheduled job

of node [ in iteration k£ and by ujl-k the jth unscheduled job of selected node [ in iteration k. As

shown in Figure |2 the heuristic consists of the following steps:

Step 1:

Step 2:

Step 3:

Generate the initial  nodes: All jobs are initially sorted according to Algorithm S2 by
Al-Anzi and Allahverdi (2006a), as it is done in NEW. The first = nodes are obtained
by assigning the job in position [ of the sorted list to the first position of the partial
sequence si; of the selected node I. The list of unscheduled jobs of this selected node I

is formed by the rest of the jobs.

Generate candidate nodes: At iteration k, n—k candidate jobs are obtained by appending

each job in M,i at the end of the partial sequence of each selected node [ € {1,--- ,x}.

Evaluate candidate nodes: In this step, two aspects are considered: first, the influence
from the selected node and, second, the influence from the inserted job. The former is
computed as the forecast index, Fj;, which is explained in Step bl and the latter is due
to the insertion of the new job,u]l- &> at the end of the partial sequence, which is measured
by CTjk, see Eq. and by IT};, which denotes the idle time incurred when inserting
job ujl.k in the selected node and is computed according to Eq. . Note that these two
last components are taken from the heuristic in Section while Fj; is a component

specifically designed to allow the comparison of candidates from different nodes.

10



Step 4:

Step 5:

Therefore, at each iteration k, the following indicator us used to compute the suitability

of inserting an unscheduled job ujl< ;. in a selected node I:

Bjg := Fyy +d' - ITjp + CTj (6)

In Equation @ the parameter a’ has been considered in order to balance the idle time
and the completion time of the new inserted job and its calibration is adressed in Section

45|

Select the best x candidate nodes: The = candidate nodes with the lowest values of B
are selected and these nodes will formed the nodes of the next iteration, i.e. in iteration
k all the combinations of j and [ are tested and those achieving the lowest values of Bjy,,
as defined in Eq. @, are selected. The rest of candidate nodes are discarded and the
best candidate nodes are defined as the selected nodes for the next iteration. At each
iteration k, the combination of [ and j of the I'th best Bjj are denoted by branch[l’]

and job[l'], respectively.

Update forecast index: The forecast index F' is defined in order to compare candidate
nodes obtained from different nodes and, therefore, composed by different un- and sched-
uled jobs. F represents the completion time of the last scheduled job at each candidate

node and it is computed as in Eq.

Frey = Fi—1pranchi] + 0 Vo) k,branch'] (7)

where parameter b is designed to balance the influence of the last scheduled job to the
completion time and ¥;op(11] k,branchf] i the indicator already employed in NEW —see
Eq.f computed when job u]l-k is appended. The calibration of b is discussed in Section
3] The pseudocode of the algorithm is shown in FigURE 2]

Clearly, the BSCH has only one parameter (z, the beam width). It can be seen that,

for x =1, BSCH is tantamount to NEW . Note that the complexity of this heuristic is

2

O(maz{minx, man?z,n?x}).

11



Procedure BSCH_MMA (x)

Obtain a sequence €2 := (wy, ...,w,) by applying algorithm S2;
Update Uf(u} ; = w;) and S{(s}, = @).

for /=1 to x do

F11 = Yaphali,0,

end

ork=1ton—1do

// Candidates Nodes Creation

Determination of T}y, CTjk;

// Candidates Nodes Evaluation

Bjkl ::Fkl+a’~11}kl+07}kl Vi= 1, , L ande: 1, , N — I,

// Candidates Nodes Selection

for ' =1 to z do

Determination of the I’-th best candidate node according to non-decreasing Bj
in iteration k. Denote by branch[l'] and job[l'] the value of [ and j respectively

of that candidate.
nd

/Forecasting Phase. for I’ =1 to x do

—

@

~

Update Si,, and U}, by removing job u]ngTlL,Ch[l] from 24"} and including

S]l;ranch[l ] '

Fk+1,l’ = Fk,branch[l’] +0b- 2pjob[l’],k,b'ranch[l’];

in

end

end
// Final evaluation
Evaluate the flowtime of the scheduled jobs of each selected node and return the least

one
end

Figure 2: Pseudo-code of the proposed beam-search-based constructive heuristic.

3.2.1 Variable Beam Width

To the best of our knowledge, beam search-based heuristics employed in the literature always
use a constant beam width . However, it is expected that the number of nodes analysed in
each iteracion has a large influence on the performance of this heuristic. So, we carry out this
study and analyse the behaviour of the BSCHpspr4 when & may take different values. More

specifically, we will test the following variants:

e Constant Beam Width: BSCH 4 is tested with different values of x. So, the influence

of the beam width over the heuristic performance can be analysed.

12



e Ascending Beam Width: In this version, the heuristic, denoted as BSCH s5¢, starts
selecting = nodes and the beam width increases in one unit as the beam search advances.

The search is stronger on each iteration since the number of selected nodes is higher.

e Descending Beam Width: This version, labelled as BSCHpgsc, starts by selecting a
number of nodes equal to z +n — 1, and the beam width decreases one by one as the

number of iterations increases. Therefore, in the last iteration, = nodes are considered.

e V-shaped Beam Width: In this version, the beam width is modified taking a V-shape.
Initially, x nodes are considered and, for each iteration k, the number of nodes is decreased
n

one by one while k¥ < & and then it increases until & = n. We denote this version as

BSCHy.

e Peak-shaped Beam Width: The pattern of this version, labelled as BSCHp, is completely
opposed to the previous one. The initial beam width is z, and then it increases one by one

whereas k < n - % and then it decreases also one by one until the last iteration.

We design and implement different versions, which are evaluated considering the next values
of x, » € {2,5,10,15, {5, n,n+5,2n}. Note that the BSCH 4 has also been run consideringa

beam width equal to 1, which corresponds to the heuristic NEW.

4 Computational evaluation

In this section, we analyse the efficiency of the constructive heuristics proposed in Section
The testbed employed for the comparison is designed in Section while in Section we
perform a design of experiments to set up proper values for parameters a and bin BSCHara.
In Section [£.4] the different versions of the beam-search heuristics presented in Section
are compared to obtain the best variants. Finally, in Section the proposed heuristics are
compared with existing heuristics for the problem and for related problems. All methods have
been coded in C+# using Visual Studio and carried out in an Intel Core i7-3770 PC with 3.4GHz

and 16 GB RAM, using the same common functions and libraries. In order to obtain a better

13



estimation of the performance of all algorithms, a total of 10 replicates for each instance are

carried out and the results are averaged.

4.1 Performance indicators

In this section, the indicators employed to compare the different results obtained from the
computational evaluation are presented. First, a comparison among the different versions of the
BSCH 4, presented in Section [3:2.7] is carried out in terms of quality of the solutions and
computational effort. The former is computed by means of the Average Relative Percentage

Deviation (ARPD) as follows:

ZVS RPDhS

ARPD;, = S

7VS:17"'>S (8)

where S is the total number of instances and RPD computed as

Chs — CF
RPDy, = 25— =5 . 100 (9)
Cs
with Cjs the total completion time obtained by heuristic A (h = 1,---, H) in instance s
(s=1,...,5) and C} the minimum completion time known for instance s. The computational

effort is measured by means of the Average CPU (ACPU) time:

EVS Ths

ACPU, = =%

(10)

where T} is the time (in seconds) required by heuristic A to obtain a solution for instance
s. Furthermore, since the ACPU indicator presents some problems when it is used to compare
heuristics with different stopping criteria (Fernandez-Viagas and Framinan, 2015)), the Relative
Percentage Indicator (labelled RPT") is computed, as indicated in Eq. , in order to evaluate

heuristics with different number of steps in their procedure.

Ths — ming—1,. p{Ths}
RPT}, = T 11
hs ming—1,._p{Ths} ()

Additionally, a slightly different indicator, denoted RPT, is also used to graphically repre-

14



sent the results in logarithmic scale. This indicator is also employed in |[Fernandez-Viagas and

Framinan (2015), |[Fernandez-Viagas and Framinan| (2017)) and Fernandez-Viagas et al.| (2017)):

T)s — ACPU?*

RPThs = = cpos

+1 (12)

Finally, the ARPT, the Average RPT can be defined as follows:

S
ARPT}, =Y R];Ths (13)
Vs

4.2 Testbed design

In the related literature there are different testbeds for the problem proposed by [Al-Anzi and
Allahverdi| (2006a), Al-Anzi and Allahverdi (2007)), Allahverdi and Al-Anzi (2009) and |Al-Anzi
and Allahverdi (2012)). In these tests the processing times are generated in the same way, but
each testbed has a different number of jobs and machines in the first stage. In the computational
experience carried out in Sections and a new testbed is obtained following the
procedure by |Al-Anzi and Allahverdi (2012)). We adapt this testbed in order to consider the
parameter ms. Thus, this testbed consists of 30 instances generated for each combination of
n, m; and my. More specifically, the problem data are generated for n € {30, 40,50, 60,70},
my € {2,4,6,8} and mg € {2,4,6,8}. The processing times of the jobs in the machines in the
first stage are drawn from a U[1, 100] distribution, while in the second stage the processing times
are drawn from a mg - U[1, 100] distribution in order to balance both stages and have different
scenarios regarding the relative processing times on each stage. In total, 2400 instances have

been generated.

4.3 Experimental parameter tuning

In this section, a factorial design of experiments is performed to find the best values of the
parameters of the two heuristics presented in Section [3] More specifically, the following values

are tested:

e Parameter a for the NEW heuristic described in Section The following levels for a

15



are tested: a € {1,2,5,10, 15,20, 50,200}.

e Parameters o' and b for the BSC H s 4 heuristic described in Section The following

levels for each parameter are tested (in total, there are 56 combinations):

— d €{0.25,0.5, 1, 2, 5, 10, 15, 20}

~b€{0,1,2,3,4,5,6}

To determine the best combination of parameters, ten instances have been generated for the
different values of n, m; and msy, as explained in section The processing times of each job in
each stage are generated as described in Section [£.2] With this testbed, it has been found that
the best results correspond to a = 5. Regarding the BSC Hpspr 4 heuristic, it has been assumed
that = n and the so-obtained results compared. The first two levels of @’ are discarded due to
their poor performance. After proving that the normality and homoscedasticity assumptions are
not fulfilled, a non parametric Kruskal-Wallis test is performed. The results indicate that there
are significant differences between parameters a’ and b since the significance of both parameters
is equal to 0.000. The best combination is obtained for a’=2 and b=2. These values are used for

the different versions of BSCH in Section [£.4] and Section [4.5| regardless the value of z.

4.4 Comparison of the different versions of BSCH

Prior to conducting a full comparison with existing heuristics, the best variant of the beam-search
based heuristics is selected. To do so, the versions of BSCH presented in Section have
been run on the 2,400 instances generated in Section [£.2] The results are summarised in Table [2]
using the indicators defined in Section The ARPD values range from 1.3196 (BSCH a4
(x = 2)) to 0.5227 (BSCHppra (x = n+ n/2)) whereas ACPU values range from 0.9969 to
0.004. Results are graphically shown in Figure [3] where the y-axis represents the ARPD for each
heuristic and the z-axis represents the ACPU.

In view of these results, the following conclusions can be derived:

e BSCHp (z =2) with ARPD = 0.6174 improves the variants BSCHppa (x =2, 2 =5, x

=n/10) with ARPD equal to 1.3196, 0.8064 and 0.7708 respectively, using approximately
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Figure 3: ARPD versus average CPU times of the different versions of BSCH with the
Pareto frontier.

a similar computational effort.

e BSCHy (x = 2) with ARPD = 0.5458 outperforms variants BSCHppra (z = 10),
BSCHsc (x =2) and BSCHp (z =5), with ARPD equal to 0.6437, 0.6145 and 0.5777

respectively.

e BSCHppsc (x = 2) with ARPD = 0.5499 improves variant BSCHppra (x = 15) using
the same ACPU.

e BSCHy (x = 5) with ARPD = 0.5324 outperforms variants BSCHp (x = 10) and
BSCHysc (x = 5), with ARPD equal to 0.5626 and 0.5760, respectively using the same

computational effort.

e BSCHy (x =n/10) with ARPD = 0.5295 outperforms variants BSCHpgsc (x = 5) and
BSCH ss¢c (x = n/10), with ARPD equal to 0.5467 and 0.5815, respectively using the

same computational effort.

o For z = n, variants BSCHyp4 (x = n) and BSCHp (x = n) yield a similar performance,
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being its ARPD equal to 0.5382 and 0.5348, respectively. Moreover, version BSCHy

(x = 10) obtains a similar ARPD = 0.5349 with less computational effort.

e The minimum ARPD is achieved by BSCHprpra (x = n+ n/2), being the rest of the

variants worse with respect to the quality of the solutions.

e The Pareto frontier (i.e. the efficient variants with respect to the quality of solutions and
the computational effort) is formed by BSCHyrpra (x=2), BSCHprpa (x=5), BSCHp
(x=2), BSCHy (z=2), BSCHy (2z=5), BSCHy (x=n/10) and BSCHppa (z=n +
n/2).

e The performance of BSCHprpra get worse for x = 2n. For this value of x, this heuristic
selects 2n candidates in each iteration, so there are more candidates since the first iteration.

Due to this poor results, it has not been considered.

To establish the statistical significance of the results, a Holm’s procedure (Holml 1979) is
performed where each hypothesis is evaluated using a non-parametric Wilcoxon signed-rank test
assuming a 0.95 confidence level, i.e. a = 0.05. In Holm’s test, the hypotheses are sorted in
non-descending order of the p-values obtained in the Wilcoxon test. Each hypothesis is rejected
if p < a/(k—i+1) where k is the total number of hypotheses. The results can be seen in Table
where R means that the hypothesis is rejected by Wilcoxon and/or Holm’s procedure. As
can be seen, hypothesis BSCHypra (x=10) = BSCHs¢ (v=2) is the only one that cannot
be rejected by Holm’s procedure, but it has to be noted that the ARPD achieved by the latter
version, equal to 0.6145, is considerably lower than the one obtained by BSCH a4 (x=10). In
summary, it can be concluded that the variants in the Pareto frontier in Figure [3] are efficient
for the problem. However, as no variant obtains the best performance for all values of x, it can
be also concluded that, if < n the best variant is BSCHy, and if x > n, then BSCH pp4 is

the most efficient one.

4.5 Comparison of heuristics

In order to determine the performance of the proposed heuristics (NEW and the best vari-

ants of the beam-search based heuristic), these have been compared with existing heuristics for
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i H; p-value Wilcoxon «a/(k—i—1) Holm’s Procedure
1 BSCHypa (x=10) = BSCH ¢ (2=2) 0015 R 0.0083 A
2 BSCHpyma (z=5) = BSCHy (z=2) 0.001 R 0.0100 R
3 BSCHpya (z=5) = BSCHp (2=2) 0.000 R 0.0125 R
4 BSCHya (2=10) = BSCHp (z=5) 0.000 R 0.0167 R
5 BSCHya (x=10) = BSCHy (z=2) 0025 R 0.0125 R
6 BSCHya (2=15) = BSCHppsc (x=2)  0.000 R 0.0500 R

Table 1: Holm’s procedure for comparison of the different versions of BSCH.

z 5 n/10 10 15 n n+n/2 2n
ARPD ACPU ARPD ACPU ARPD ACPU ARPD ACPU ARPD ACPU ARPD ACPU ARPD ACPU ARPD ACPU

BSCHma 1.3196  0.0040 0.7708 0.0104 0.8064 0.0173  0.6437 0.0279 0.5874 0.0430  0.5382  0.1220  0.5227  0.2685  0.5408  0.5026

BSCHasc 0.5499  0.0268  0.5467  0.0568  0.5360 0.0874  0.5423  0.1229  0.5524  0.1648 0.5282  0.2803  0.5452 0.4638  0.5568  0.7294

BSCHpgsc 0.5499  0.0439  0.5467  0.0916  0.5360 0.1406  0.5423  0.1962  0.5436  0.2602  0.5543  0.4189  0.5736  0.6593  0.5790  0.9969

BSCHy 0.5458  0.0251 0.5324  0.0522  0.5295 0.0796 0.5349  0.1100  0.5359  0.1442  0.5425 0.2199 0.5576  0.3305 0.5646  0.4821

BSCHp 0.6174  0.6482  0.5777  0.6084 0.5825 0.6133  0.5626  0.5934  0.5540  0.5848  0.5348 0.5656  0.5498  0.5806  0.5617  0.5924

Table 2: Summary of results of the different versions of BSCH.

the problem, as well as with heuristics adapted from similar problems. More specifically, the

heuristics used for the comparison are the following:

e Heuristics from the DP,, — Pn|[ 3, C;j problem:

— New heuristics proposed in Section [3] i.e. heuristic NEW in Section [3.1] and the

variants of the BSC H proposed in Section[3.2]that are in the Pareto frontier found in
BSCHYy (z=2), BSCHy (z=n/10), BSCHy (z=5), BSCHy (z=10), BSCHy

(z=15), BSCHppa (x=n) and BSCH 4 (x=n 4+ n/2).

— SAK (Sung and Kim,| 2008): This heuristic sorts the jobs in non decreasing order

of psumj =32,y ., Pij +atj. Set k=1 and m=k+1, it exchanges the kth job and

the mth job. If the total completion time is improved, it keeps the exchange. If not,

m = m-+1.

— NSDE (Al-Anzi and Allahverdi, 2012)): This algorithm has been coded and run, but

it has been discarded due to its computational effort is far from the rest of heuristics

and the quality of its solution is poor.

e Heuristics adapted from the DFP, — 1[|3Z;C; problem. Since this problem is closely

related to the one addressed in this paper, it is interesting to test whether heuristics
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specifically designed for the problem with one assembly machine can be adapted to the

problem under consideration. These adaptations are:

— TCK1 and TCK?2 (Tozkapan et al., 2003): The original TC'K1 constructs mj+1
indices for each job, according to PT'F;; = t;; and PT'S; = at;. So, mi+1 sequences
are obtained by sorting the jobs in non decreasing order of these indicators, and
the sequence with the lowest TCT is selected. The index PT'S; has been adapted
to our problem so that PT'S; = atj/mg. Similarly, TCK2 computes three indices
for each job, so three sequences are obtained by sorting the jobs in non decreasing
order of these indices, and the sequence yielding the lowest TCT is selected. The
indices have been adapted to our problem taking into account mg, i.e.: MPT; =
min{pij, p2j, -+ s Pmyj, atj/mat; APT; = m S pij + atj/me; and MXPT; =
maz{pij,p2j,- - s Pmyj, ot;}-

— Al and A2 (Al-Anzi and Allahverdi, 2006a): These algorithms construct a sequence
by iteratively appending a job at the end of a partial sequence. For algorithm Al,

the job is chosen so that the following indicator is minimised:

yeees L

j—1
Alj = max { > pip + pij } (14)
o r=1

Note that this indicator does not require any adaptation to our problem. However, for
algorithm A2 the indicator is adapted by dividing the assembly time by the number

of assembly machines ms, so the modified index is:

i=1,....,m1 )

j—1
at;
A2; =  max {Zpi[r] +pij} + mfj (15)
r=1

— S1, 52 and S3 (Al-Anzi and Allahverdi, 2006a)): S1 sorts the jobs in non decreasing
order of at;. Heuristic S2 is obtained by sorting the jobs in non decresing order of
max;—1,..m,{Pij} and, finally, heuristic S3 orders the jobs in non decreasing order
of max;—1,..m,{pij} + aty. As with the previous heuristics, S1 and S3 have been

adapted by dividing at; by ms.
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— G1, G2, G3 and G4 (Lee, 2018): Each of these heuristics constructs a sequence by
inserting the job with the smallest value of one of the following indicators: G1; =
Cy — 035 G2 = C1; = C1]_4; G35 = C1; — C5 and G4; = CJ; — C1]. These
indicators can be used for our problem in an straightforward manner.

— FAP (Framinan and Perez-Gonzalez, 2017b|): This heuristic appends one by one
the unscheduled jobs at the end of a partial sequence by computing an estimate of

the completion times of the unscheduled jobs which takes into account which stage is

more important. This estimate has been adapted considering the number of assembly

machines so, if the first stage is dominant, then FAP, = C17 + %‘H(Cl. + L),

mi1+ma

Otherwise, FAP, = -2 4 "_ffl (Cre + —L=—). Where Cj, is the completion

mi+ma mi+ma

time of and artificial job, composed of the unscheduled jobs, in the first stage, and

De is the processing times of the artificial job in the second stage.

e Heuristics adapted from DP,, — OHZj C; problem. As mentioned before, the order
scheduling problem is identical to the problem under consideration if the processing times
of the second stage are zero. Therefore, it is also of interest to test how the adaptation
of their best methods perform in our case. The most relevant methods for the order

scheduling problem are:

— STPT (Sung and Yoon, [1998): A sequence is constructed sorting the jobs in ascend-
ing order of their sum of their processing times on the m; machines. In our case,

m1 + ms machines are considered.

— SMPT (Sung and Yoon, 1998): A sequence is constructed sorting the jobs in as-
cending order of their maximum processing time on the mj; machines. As with the

previous heuristic, mj + mo machines are considered.

— ECT (Ahmadi et al., |2005; Leung et al., 2005): In this heuristic, the order with the
earliest completion time is selected as the next to be sequenced. This heuristic does
not require adaptation, as for each order, the completion time is computed according

to Eq. (77?).
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— SHIFT), and SHIFT},,,, (Framinan and Perez-Gonzalez, 2017a): SHIFT} ob-
tains iteratively a partial sequence using the ECT heuristic. Then, the jobs are
iteratively removed from their position and re-inserted. The procedure is repeated
until the so-obtained partial sequence does not returns a lower total completion time.
SHIFT},,, restarts the reinsertion phase whenever a better sequence is found and

repeats the process until no improvement is found.

These heuristics have been employed to solve the instances from the testbed in Section
The ARPD and ACPU are computed according to Egs. and , while indicator
ARPT is computed using Eq. . The detailed results of ARPD in terms of n X my X mo are
shown in Table [f]and [6] The average results in terms of ARPD, ACPU, and ARPT are shown
in Table [3] and graphically in Figure [dl Note that, in this figure, the dispatching rules are not
displayed in order to have a clearer interpretation of the results. In view of the results, a number

of conclusions can be noted:

o NEW (ARPD=1.8742) clearly outperforms heuristics A1, A2, G1, G2, G3 and G4 using a
similar computational effort. It can be seen that N EW obtains very good results evaluating
only one job at each iteration and, consequently, consuming less computational time.

Furthermore, N EW obtains a similar ARPD than F'AP, but our proposal requires much

less CPU time.

e S2 and TCK2 with ARPD equal to 15.2527 and 7.5253 respectively are the best dispatch-
ing rules. Although the quality of the solution is low, these rules obtain a solution very

fast.

e BSCHy (x = 2) with ARPD=0.5458 outperforms NEW, with ARPD equal to 1.8742,

using the same computational effort, as it can be checked in Figure [4

e BSCHpypa (x=n) with ARPD =0.5382 outperforms SHIFTy, SHIFTy,,, and SAK
with ARPD equal to 14.1752, 9.3225 and 12.6792, respectively. Moreover, it can be

pointed that this version of the BSC Hjspr4 obtains the best result in terms of quality of

the solution, ARPD.
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Heuristic ARPD ACPU  ARPT Heuristic ARPD ACPU ARPT
NEW 1.8742 0.001901  625.07 SAK 12.6792  0.359579 102534.03
FAP 1.6644 0.011425 3358.46 STPT 15.8731  0.000005 1.64
G1 17.4028 0.001870  615.74 SMPT 21.6706  0.000007 2.36
G2 6.1421 0.001845  605.78 ECT 17.4028 0.036756  10559.23
G3 6.8172 0.001799  590.66 SHIFT} 14.1752 0.122583  34958.62
G4 17.4652 0.001778  583.61 SHIFTy, ., 9.3225 0.158947  45640.85
Al 6.0290 0.001816  595.67 BSCHy (z=2) 0.5458  0.025120 7482.71
A2 9.2572 0.001812  593.95 BSCHy (z=5) 0.5324 0.052197  15574.12
S1 19.2741  0.000003 1 BSCHy (x=n/10) 0.5295 0.079588  23690.42
S2 15.2527  0.000006 2.13 BSCHy (z=10) 0.5349 0.110005  32796.73
S3 16.6488  0.000007 2.3 BSCHy (z=15) 0.5359 0.144172  43052.43
TCK1 15.3131  0.000764  242.55 BSCHpp4 (z=n) 0.5382 0.121981  36705.90
TCK?2 7.5253 0.000344  109.24 BSCHpna (x=n+n/2)  0.5227 0.268500  78987.16

Table 3: Summary of results of the different heuristics.

i H; p-value Mann-Whitney «/(k—i—1) Holm’s Procedure
1 NEW = Al 0.000 R 0.0100 R
2 52=S53 0.000 R 0.0125 R
3 TCK2=TCK1 0.000 R 0.0167 R
4 BSCHy (z=2) = NEW 0.000 R 0.0250 R
5 BSCHpyma (x=n) = SHIFTy, 0.000 R 0.0500 R

Table 4: Mann-Whitney’s procedure.

e Taking into account these results and those obtained in the previous section, the group of

most efficient heuristics is formed by the dispatching rule 52, the existing heuristic TC K2

and the proposed versions of the beam search constructive heuristic: BSCHy (z=2),

BSCHy (x=n/10), BSCHy (x=5), BSCHy (x=10), BSCHy (x=15), BSCHna

(x=n) and (z=15), BSCH 4 (x=n+n/2).

In order to check the statistical significance of these results, Holm’s procedure is used as

in the previous computational experience. However, each hypothesis is now analysed using a

non-parametric Mann-Whitney test assuming a 95% confidence level (i.e. @=0.05) to establish

de p-value of each hypothesis. The results are shown in Table @] Each p-value is 0.000, so all

hypotheses can be rejected. In summary, it can be concluded that the proposed heuristics out-

perform the existing algorithms for the problem under consideration, as well as the adaptations

of efficient algorithms for related problems.
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5 Conclusions

In this paper we have addressed the 2-stage multi-machine assembly scheduling problem with the
objective of minimising the total completion time. We have presented two constructive heuristics:
The first algorithm, NEW, constructs a sequence by iteratively appending a job at the end of
a partial sequence. The job is selected according to a problem-specific indicator that takes
into account the idle time of the assembly machines at the second stage and the contribution
of the job to the total completion time. Due to the good performance of this heuristic, the
indicator has been embedded into a beam search based constructive heuristic, labelled BSCH,
which constructs several sequences at the same time, compares them and selects the best z
ones. Thereby, this heuristic combines the diversification of population-based algorithms and
the speed of the constructive heuristic. Furthermore, we have implemented different variants of
the BSCH, whose main difference is the way in which the beam width (z) is modified in each
iteration.

Using a testbed similar to [Allahverdi and Al-Anzi (2012), the extensive computational
experience carried out shows that the best ARPD are found by variants BSCHy (V z= €
{2,1/10,5,10,15,n}) and BSCHppra (¥ € {n,n 4+ n/2}). These variants have been com-
pared with the N EW heuristic, and with existing heuristics for the problem under consideration
and their adaptations for related scheduling problems. The results show that the proposed

heuristics yield a much better performance than the existing ones.
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