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Abstract. In this paper, we present a novel approach to construct multi-
class classifiers by means of arrangements of hyperplanes. We propose dif-
ferent mixed integer (linear and non linear) programming formulations for
the problem using extensions of widely used measures for misclassifying ob-
servations where the kernel trick can be adapted to be applicable. Some
dimensionality reductions and variable fixing strategies are also developed
for these models. An extensive battery of experiments has been run which
reveal the powerfulness of our proposal as compared with other previously
proposed methodologies.

1. Introduction

Support Vector Machine (SVM) is a widely-used methodology in supervised
binary classification, firstly proposed by Cortes and Vapnik [12]. Given a num-
ber of observations with their corresponding labels, the SVM technique consists
of finding a strip in the feature space so that each class is included in a different
semispace maximizing the separation between classes (in a training sample) and
minimizing some measure of the misclassification errors. This problem can be
cast within the class of convex optimization and its dual enjoys very good prop-
erties. Actually, one can project the original data out onto a higher dimensional
space where the separation of the classes can be more adequately performed,
and still keeping the same computational effort that was required in the original
problem. This fact is the so-called kernel trick, and very likely this is one of
the reasons that has motivated the successful use of this tool in a wide range of
applications [4, 19, 23, 30, 38].

Most of the SVM literature concentrates on binary classification where sev-
eral extensions are available. One can use different measures for the separation
between classes [9, 21, 22], select important features [29], apply regularization
strategies [28], etc. However, the analysis of SVM-based methods for datasets
with more than two classes has been, from our point of view, only partially inves-
tigated. The k-label (k > 2) SVM consists of the following. Given a training sam-
ple of observations {x1, . . . , xn} ⊆ Rp with their labels (y1, . . . , yn) ∈ {1, . . . , k}n,
the goal is to construct a decision rule able to classify out-of-sample observations
learning from the training sample.

The most common techniques applied to supervised multiclass classification
are based on natural extensions of the tools valid for the binary case: Deep
Learning [1], k-Nearest Neighborhoods [13, 39] or Näıve Bayes [26], among oth-
ers.
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In addition, one can also find some techniques for multiclass classification that
take advantage of the SVM methods for binary classification. The most popular
multiclass SVM-based approaches are One-Versus-All (OVA) and One-Versus-
One (OVO). The former, namely OVA, computes, for each class r ∈ {1, . . . , k},
a binary SVM classifier labeling the observations as 1, if the observation is in the
class r and −1 otherwise. The process is repeated for all classes (k times), and
then each observation is classified into the class whose constructed hyperplane
is the furthest from it in the positive halfspace. In the OVO approach, classes
are separated with

(
k
2

)
hyperplanes using one hyperplane for each pair of classes,

where the decision rule comes from a voting strategy in which the most repre-
sented class among votes becomes the class predicted. OVA and OVO inherit
most of the good properties of binary SVM. In spite of that, they are not able
to correctly classify datasets where separated clouds of observations may belong
to the same class (and thus are given the same label) when a linear kernel is
used. Another popular method is the directed acyclic graph SVM (DAGSVM)
[37]. In this technique, although the decision rule involves the same hyperplanes
built with the OVO approach, it is not given by a unique voting strategy but
for a sequential number of voting in which the most unlikely class is removed
until only one class remains. In addition, apart from OVA and OVO, there are
other methods based on decomposing the multiclass problem into several binary
classification problems. In particular, in [2, 15], this decomposition is based on
the construction of a coding matrix that determines the pairs of classes that
will be used to build the separating hyperplanes. Alternatively, other methods
such as Cramer-Singer (CS) [14], Weston-Watkins (WW) [41] or Lee-Lin-Wahba
(LLW) [25], do not address the classification problem sequentially but as a whole
considering all the classes within the same optimization model. Obviously, this
seems to be the correct approach. In particular, in WW, k hyperplanes are
used to separate the k classes, each hyperplane separating one class from the
others, using k− 1 misclassification errors for each observation. The same sepa-
rating idea, is applied in CS but reducing the number of misclassification errors
for each observation to a unique value. In LLW, a sum-to-zero constraint is
used to reduce the dimensionality of the problem. We can also find a quadratic
extension based on LLW proposed in [18]. Finally, in [11], the authors propose
a multiclass SVM-based approach, GenSVM, in which the classification bound-
aries for a problem with k classes are obtained in a (k − 1)-dimensional space
using a simplex encoding. Some of these methods have become popular and
are implemented in most software packages in machine learning as e1071 [34],
scikit-learn [36] or MSVMpack [24] . Nevertheless, as far as we are concerned,
none of the existing multiclass SVM methods keeps the essence of binary SVM
which stems from finding a globally optimal partition of the feature space.

This paper proposes a novel approach to handle multiclass classification ex-
tending the paradigm of binary SVM classifiers. In particular, our method finds
a polyhedral partition of the feature space and an assignment of classes to the
cells of the partition, by maximizing the separation between classes and mini-
mizing two intuitive misclassification errors. Obviously, as in standard SVM, we
can also account in different ways the misclassification errors (hinge or ramp-
based losses). For bi-class instances, and using a single separating hyperplane,
the method coincides with the standard SVM. Nevertheless, even for 2-classes
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datasets, new alternatives appear if more than one hyperplane to separate the
data is permitted. In particular, our approach allows one to generalize the poly-
hedral conic classifiers presented in [3].

Apart from justifying the rationale of our method, we also propose different
mathematical programming formulations in order to solve the resulting opti-
mization problems. These formulations belong to the family of Mixed Integer
(Linear and Non Linear) Programming (MILP and MINLP) problems, in which
the nonlinearities come from the representation of the Euclidean distance margin
between classes, that can be modeled as a set of second order cone constraints [7].
This type of constraints can be handled nowadays by any of the most popular
off-the-shelf optimization solvers (CPLEX, Gurobi, XPress, SCIP, ...).

These models also have a combinatorial nature induced by the correct alloca-
tion of labels to cells. Therefore, they require using some binary variables. This
approach is not new and recently, a few attempts have been proposed for dif-
ferent classification problems using discrete optimization tools. For instance, in
[40] the authors construct classification hyperboxes for multiclass classification,
in [6] the authors provide formulations for SVM with unlabelled data (semi-
supervised SVM), and in [17, 29, 31] mixed integer linear programming tools
are provided for feature selection in SVM. Handling a large number of binary
variables in the models may become an inconvenient when trying to compute
classifiers for medium to large size instances. This inconvenience is alleviated
with some preprocessing and dimensionality reduction techniques that are also
introduced.

In case the data are, by nature, nonlinearly separable, in classical SVM one can
apply the so-called kernel trick to project the data out onto a higher dimensional
space where the linear separation has a better performance. The key point is
that one does not need to know neither the dimension of the final space nor the
specific transformation that is applied to the data: the resulting mathematical
programming problem is in the same space as the original one. Here, we show
that the kernel trick can be extended to our framework and therefore, it also
allows us to find nonlinear classifiers with this methodology.

To asses the validity of our method we have performed a battery of com-
putational tests on two different families of data. We have tested our method
against some well-known multiclass SVM classifiers (OVO, CS, WW and LLW)
on 6 databases from the UCI repository. Moreover, we also report results on
synthetic datasets specially tailored to capture the difficulty of multiclass su-
pervised classification. In all cases, our methods give results similar or superior
to those provided for the other methods. In particular, for the synthetic data
instances the improvement in accuracy on the test samples are remarkable (see
Table 3).

The rest of the paper is organized as follows. In sections 2 and 3 we describe
and set up the elements of the problem to be considered. Afterward, we introduce
a MINLP formulation for our model. Alternatively, we also present a linear
version, which is obtained whenever we measure the margins with the `1-norm. A
discussion on the extension, with very few modifications, of the previous models
to the Ramp Loss versions is included as well. In Subsection 3.2 we show how
an analogous to the kernel trick can be extended to be applied in this model.
Section 4 describes some heuristic strategies, preprocessing and dimensionality
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reductions to obtain good quality initial solutions of the MINLP. Finally, in
section 5 we report our computational results on different real and synthetic
datasets, and compare our method with the most classical ones for multiclass
SVM.

2. Multiclass Support Vector Machines

In this section, we introduce the problem under study and set the notation
used through this paper.

Given a training sample {(x1, y1), . . . , (xn, yn)} ⊆ Rp × {1, . . . , k} the goal of
supervised classification is to find a decision rule to assign labels (y) to data (x),
in order to be applied to out-of-sample data. We assume that a given number,
m, of hyperplanes in Rp have to be built to obtain a subdivision of this space
into full dimension polyhedral regions that we shall denote as cells. (Here, we
would like to mention that the term cell stands for a nonempty intersection
of the semispaces induced by the hyperplanes in the considered family). Let
us denote by H1, . . . ,Hm the hyperplanes to be found, which are in the form
Hr = {z ∈ Rp : ωtrz + ωr0 = 0} for r = 1, . . . ,m (here vt stands for the
transpose operator applied to the vector v ∈ Rp). Each cell induced with such
an arrangement of hyperplanes will be then assigned to a label in {1, . . . , k}.
In Figure 1 we illustrate a subdivision of R2 induced by 2 hyperplanes and
the labels assigned to each cell. In the left figure, we represent the observations,
highlighting the classes with different symbols (stars, circles and squares). In the
right figure, two hyperplanes which induce 4 cells are constructed to separate
the three classes. Each cell is assigned to a class (north → circles, south →
stars, east → stars and west → squares). In this example the subdivision in
cells and the assignment of labels reaches a perfect classification on the given
observations.

Class Stars

Class Stars

Class Squares

Class Circles

Figure 1. Illustration of a subdivision induced by 2 hyperplanes
in R2.

From the above, we would like to construct an arrangement of m hyperplanes,
H = {H1, . . . ,Hm}, determined by ω1, . . . , ωm ∈ Rp+1 (the first component of
each vector accounts for the intercept) and a decision rule that assigns a single
label to each one of the cells in the subdivision of the space induced by such an
arrangement. We would like to point out that each cell in the subdivision can
be univocally identified with a {−1,+1}-vector in Rm: the `-component of that
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vector represents the side (positive or negative) with respect to the hyperplane
H` where that cell lies in.

Definition 2.1 (Suitable Assignment). Given a subdivision C of Rp into cells
induced by the arrangement of hyperplanes H = {H1, . . . ,Hm} in Rp, a function
g : {−1, 1}m → {1, . . . , k} is said a suitable assignment, if g univocally maps
cells (equivalently, sign-patterns) to labels in {1, . . . , k}.

Observe that a suitable assignment, g, allows us to classify any observation
x ∈ Rp within the set of classes {1, . . . , k}, as follows:

(1) Identify x with a sign-pattern: s(x) = (s1(x), . . . , sm(x)) ∈ {−1,+1}m,
where sr(x) = sign(ωtrx+ ωr0) for r = 1, . . . ,m.

(2) Apply the function g to the sign-patterns: ŷ(x) = g(s(x)) ∈ {1, . . . , k},
is the predicted label of x.

The quality of the decision rule is based, on comparing predictions and actual
labels on a training sample, but also on maximally separating the classes in order
to find good predictions and avoid undesired overfitting.

In binary classification datasets, SVM is a particular case of our approach if
m = 1, i.e., a single hyperplane to subdivide the feature space is used. In such a
case, signs are in {−1, 1} and classes in {1, 2}, so whenever there are observations
in both classes, the assignment is one-to-one. However, even for biclass instances,
if more than one hyperplane is used, one may find better classifiers (we illustrate
this behavior with the dataset 2C4N of our computational experiments in Table
3). In Figure 2, left-and-right, we draw the same dataset of labeled (red and
blue) observations and the result of applying a standard SVM (left) and our
method with 2 hyperplanes. In that picture one may see that not only the
misclassification errors are smaller with two hyperplanes, as expected, but also
the separation between classes is larger, improving the predictive power of the
classifier.

Figure 2. Standard SVM (left) and our approach with 2 hyper-
planes (right).

The rationale of our approach is particularly adequate for datasets in which
there are several separated “clouds” of observations that belong to the same
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class. In Figure 3, we show two different instances in which, again, the colors
indicate the class of the observations. The classes in both instances cannot be
appropriately separated using any of the available linear SVM-based methods in
the literature since they are based on subdividing the space on class-connected
regions. However, we are able to perfectly separate the classes using 5 hyper-
planes.

Figure 3. A 5-classes instance classified with our approach using
5 hyperplanes (left) and a 6-classes instance classified with our
approach using 5 hyperplanes (right).

In Figure 4 we compare our approach and the One-versus-One (OVO) ap-
proach in an instance with 24 observations. In the left figure we show the result
of separating the classes with four hyperplanes, reaching a perfect classification
on the training sample. In the right figure we show the best linear OVO classi-
fier, in which only 66% of the data were correctly classified. We would like also
to highlight that, although nonlinear SVM-approaches may separate the data
more conveniently, our approach may help to avoid using kernels and ease the
interpretation of the results.

Figure 4. A 4-classes instance classified with our approach using
4 hypeplanes (left) and the same intance classified using the OVO
SVM approach (right).



Optimal arrangements of hyperplanes for multiclass classification 7

Different alternatives could be admissible to justify the rationale of the multi-
class classifiers in our framework. To simplify the presentation, we will concen-
trate on two different models which share the same paradigm but differ in the
way they account for misclassification errors. Recall that in SVM-based meth-
ods, two criteria are simultaneously optimized when constructing a classifier.
On the one hand, a measure of the quality of the decision rule on out-of-sample
observations, based on finding a maximum separation between classes; and on
the other hand a measure of the misclassification errors for the training set of
observations. Both criteria are adequately weighted in order to find a good
compromise between the two goals.

In what follows we describe how similar measures can be defined in our mul-
ticlass classification framework and the way we account them for.

2.1. Separation between classes . Separation between classes will be mea-
sured as it is usual in SVM-based methods. Let (ω1;ω10), . . . , (ωm;ωm0) ∈ Rp×R
be the coefficients and intercepts of a set of hyperplanes. The distance induced
by a norm ‖ · ‖ between the shifted hyperplanes H+

r = {z ∈ Rp : ωtrz + ωr0 = 1}
and H−r = {z ∈ Rp : ωtrz + ωr0 = −1} is given by 2

‖ωr‖∗ , where ‖ · ‖ is a given

norm in Rp and ‖ · ‖∗ is its dual norm (see [32]). Unless explicitly mentioned,
we will consider that ‖ · ‖ is the Euclidean norm which dual is also the Euclidean
norm.

Hence, in order to find globally optimal hyperplanes with maximum separa-

tion, we maximize the minimum separation between classes, that is min
{

2
‖ω1‖ , . . . ,

2
‖ωm‖

}
.

This measure will conveniently keep the minimum separation between classes as
largest as possible. Observe that finding the maximum min-separation is equiv-
alent to minimize max{1

2‖ω1‖2, . . . , 1
2‖ωm‖

2}. For a given arrangement of hyper-

planes, H = {H1, . . . ,Hm}, we will denote by hH(H1, . . . ,Hm) = max{1
2‖ω1‖2, . . . , 1

2‖ωm‖
2}.

We note in passing that different criteria could have been used to model the
separation between classes. For instance, one may consider to maximize the
summation of all separations namely

∑m
r=1

2
‖ωr‖ . However, although mathemat-

ically possible, this approach does not capture the original concept in classical
SVM and we have left it to be developed by the interested reader.

2.2. Misclassification errors. The performance of a classifier on the train-
ing set is usually measured with some function of the misclassification errors.
Classical SVMs with hinge-loss errors use, for non well-classified observations, a
penalty proportional to the distance to the side in which they would have been
well-classified. Then the overall sum of these errors is minimized. We extend
the notion of hinge-loss errors to the multiclass setting as follows.

Let H = {H1, . . . ,Hm} be an arrangement of hyperplanes and (x, y) a pair
observation (x), label (y), with s(x) = (s1(x), . . . , sm(x)) being the sign-pattern
of x with respect to the hyperplanes in H. Let g : {−1, 1}m → {1, . . . , k}
be a suitable assignment. We denote by t(x) = (t1(x), . . . , tm(x)) the signs of
the closest cell to x whose class by g is y. We will say that (x, y) is wrong-
classified with respect to Hr if sr(x) 6= tr(x), otherwise it is said that (x, y) is
well-classified.
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In what follows we describe the different error measures (misclassification
errors due to different causes) that will be considered for x in order to construct
an optimal decision rule.

Definition 2.2 (Multiclass In-Margin Hinge-Loss). The multiclass in-margin
hinge-loss for (x, y) with respect to the hyperplane Hr is given as:

hI

(
x, y,Hr

)
=

{
max{0, 1− sr(x) · (ωtrx+ ωr0)} if x is well classified through Hr,

0 otherwise.

Observe that hI models the error due to observations that although ade-
quately classified with respect to Hr, belong to the margin between the shifted
hyperplanes H+

r and H−r . These errors will be zero if the observation is wrong-
classified, or if it is well-classified and does not belong to the margin induced by
the r-th hyperplane.

Definition 2.3 (Multiclass Out-Margin Hinge-Loss). The multiclass out-margin
hinge-loss for (x̄, ȳ) with respect to the hyperplane Hr is given as:

hO

(
(x, y,Hr

)
=

{
1− tr(x) · (ωtrx+ ωr0) if x is not well classified through Hr,

0 otherwise.

hO measures, for wrong-classified observations, how far is from being well-
classified. This error is zero whenever an observation is well-classified. Note
that if an observation, besides being wrong-classified, belongs to the margin
between H+

r and H−r , then only hO should be accounted for. In Figure 5 we
illustrate the differences between the two types of losses.

hI > 0

hO > 0

Figure 5. Illustration of the error measures considered in our
approach.

3. Mixed Integer Non Linear Programming Formulations

In this section we describe the two mathematical optimization models that we
propose for the multiclass classification problem. Using the notation introduced
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in previous sections, the problem can be mathematically stated as follows:

min hH(H1, . . . ,Hm) + C1

n∑
i=1

m∑
r=1

hI

(
xi, yi,Hr

)
+ C2

n∑
i=1

m∑
r=1

hO

(
xi, yi,Hr

)
(1)

s.t. Hr is a hyperplane in Rp, for r = 1, . . . ,m.

C1 and C2 are parameters which model the cost of misclassified and strip-
related errors. Usually these constants will be considered equal, nevertheless,
in practice analyzing different values for them might lead to better results on
predictions. A case of interest results considering C2 = mC1, i.e., the unitary
cost of misclassification errors caused by out-margin observations is m times
the unitary cost caused by in-margin observations, giving a larger penalty to
wrongly classified observations, avoiding the calibration of a larger number of
parameters.

Observe that the problem above consists of finding the arrangement of hyper-
planes minimizing a combination of the three quality measures described in the
previous section: 1) the maximum margin between classes, 2) the overall sums
of the in-margin errors and 3) the out-margin misclassification errors. In what
follows, we describe how the above problem can be re-written as a mixed integer
non linear programming problem by means of adequate decision variables and
constraints. Furthermore, the proposed model will consist of a set of continuous
and binary variables, a linear objective function, and a set of linear and second
order cone constraints. It will allow us to push the model to a commercial solver
in order to easily solve, at least, small to medium instances.

First, we describe the variables and constraints needed to model the first
term in the objective function. We consider the continuous variables ωr ∈ Rp
and ωr0 ∈ R to represent the coefficients and intercept of hyperplane Hr, for
r = 1, . . . ,m. Since there is no distinction between hyperplanes, we can assume,
without loss of generality that they are non-decreasingly sorted with respect to
the norms of their coefficients, i.e., ‖ω1‖ ≥ ‖ω2‖ ≥ · · · ≥ ‖ωm‖. Then, it is
straightforward to see that the term hH(H1, . . . ,Hm) can be replaced in the
objective function by 1

2‖ω1‖2, once the following set of constraints is included in
the model:

1

2
‖ωr−1‖2 ≥

1

2
‖ωr‖2,∀r = 2, . . . ,m. (2)

As already applied in multivariate linear regression [8] or binary SVM [9],
other norms can also be used to measure the margin.

For the second term, the in-margin misclassification error, hI

(
xi, yi,Hr

)
, cor-

responding to the observation (xi, yi) will be identified with the continuous vari-
able eir ≥ 0, for i = 1, . . . , n, r = 1, . . . ,m. Observe that to properly determine
each of these errors, one has to determine whether the observation xi is well-
classified or not with respect to the rth hyperplane. In order to do that we need
to introduce some binary variables. First, we consider the following two sets of
binary variables:

tir =

{
1 if ωtrxi + ωr0 ≥ 0,
0 otherwise.

and zis =

{
1 if i is assigned to class s,
0 otherwise.
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for i = 1, . . . , n, r = 1, . . . ,m, s = 1, . . . , k. The t-variables model the sign-
pattern of the observations, while the z-variables give the allocation profile of
observations to classes. As mentioned above, the classification rule is based on
assigning sign-patterns to classes.

The adequate definition of the t-variables is assured with the following con-
straints:

ωtrxi + wr0 ≥ −T (1− tir), ∀i ∈ N, r ∈M (3)

ωtrxi + wr0 ≤ Ttir ∀i ∈ N, r ∈M (4)

where T is a big enough constant. Observe that T can be accurately estimated
based on the data set under consideration.

The following constraints assure the adequate relationships between the vari-
ables:

k∑
s=1

zis = 1, ∀i ∈ N, (5)

‖zi − zj‖1 ≤ 2‖ti − tj‖1, ∀i, j ∈ N, (6)

Observe that (17) enforce that a single class is assigned to each observation while
(18) assure that the assignments of two observations must coincide if their sign-
patterns are the same. Additionally, the set of z-variables determines whether
an observation is well-classified. Indeed, let δi ∈ {0, 1}k be defined as δis = 1 if
yi = s and 0 otherwise. (Observe that δi is the binary encoding of the class of
the ith observation.) Then, ξi = 1

2‖zi − δi‖1 ∈ {0, 1} assumes the value zero if
and only if the observation i is well-classified, i.e.,

ξi =

{
1 if i is well-classified,
0 otherwise.

Now, we will model whether the ith observation is well-classified or not, with
respect to the rth hyperplane. Observe that the measure of how far is a wrong-
classified observation from being well-classified, needs a further analysis. One
may has a wrong-classified observation and several training observations in its
same class. We assume that the error for this observation is the misclassification
error with respect to the closest cell for which there are well-classified observa-
tions in its class. Thus, we need to model the decision on the well-classified repre-
sentative observation for a wrong-classified observation. In Figure 6, we illustrate
this type of misclassification errors. The observation xi is wrong-classified but
the misclassification error of xi, in case xj is chosen as its representative (well-
classified) observation, is 0 with respect to hyperplane H1 (note that both xi and
xj are in the same side of H1), whereas the misclassification error with respect
to H2 is h. Observe h is the distance between xi and the shifted hyperplane
defining the halfspace where xj lies in. We consider the following set of binary
variables:

hij =

 1 if xj , which is well classified and verifies yj = yi, is the representative
of xi in its closest cell through hyperplanes,

0 otherwise
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These variables require to impose the following constraints:∑
j∈N :
yi=yj

hij = 1, ∀i ∈ N, (7)

ξj + hij ≤ 1 ∀i, j ∈ N(yi = yj), (8)

hii = 1− ξi ∀i ∈ N, (9)

The first set of constraints, (20), impose a single assignment between obser-
vations belonging to the same class. Constraints (21) avoid choosing wrong-
classified representative observations. The set of constraints (22) enforces well-
classified observations to be represented by themselves.

h

H1

H2

xj

xi

Figure 6. Illustration of the wrong-classification errors.

With these variables, we can model the in-margin errors by means of the
following constraints:

ωtrxi + ωr0 ≥ 1− eir − T (3− tir − tjr − hij), ∀r ∈M, (10)

ωtrxi + ωr0 ≤ −1 + eir + T (1 + tir + tjr − hij), ∀r ∈M, (11)

These constraints model, by using the sign-patterns given by t, that, eir =
max{0,min{1, 1 − sr(x)(ωtrxi + ωr0}}. Note that the constraints are active if
either tir = tjr = hij = 1, i.e., if the well-classified observation xj is the represen-
tative observation for xi and both are in the positive side of the rth-hyperplane;
or tir = tjr = 0 and hij = 1, i.e., if the well-classified observation xj is the
representative observation for xi and both are in the negative side of the rth-
hyperplane. Thus, constraints (23) and (24) adequately model the in-margin
errors for all observations . Furthermore, because of (15) and (16), and those
described above, the variables eir always take values smaller than or equal to 1.

Finally, the third addend, the out-margin errors, will be modeled through
the continuous variables dir ≥ 0, for i = 1, . . . , n, r = 1, . . . ,m. With the
set of variables described above, the out-margin misclassification errors can be
adequately modeled through the following constraints:

dir ≥ 1− ωtrxi − ωr0 − T (2 + tir − tjr − hij), ∀i, j ∈ N(yi = yj), r ∈M, (12)
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dir ≥ 1 + ωtrxi + ωr0 − T (2− tir + tjr − hij), ∀i, j ∈ N(yi = yj), r ∈M, (13)

Constraints (25) are active only if tir = 0 and tjr = hij = 1, that is, if xj is a
well-classified observation in the positive side of Hr, while xi is wrong-classified
in the negative side of Hr being xj the representative observation for xi (note
that if xi is well-classified then hii = 1 by (22) and then, the constraint cannot
be activated). The second set of constraints, namely (26), can be analogously
justified in terms of the negative side of Hr. The main difference of these con-
straints with respect to (23) and (24) is that (25) and (26) are active only if xi
is wrong-classified.

According to the above constraints, a misclassified observation xi is penalized
in two ways with respect to each hyperplane Hr. In case that xi is well-classified
with respect to Hr, but it belongs to the margin, then eir = 1 − sign(ωtrxi +
ωr0)(ωtrxi + ωr0) ≤ 1 and dir = 0 (tir = tjr). Otherwise, if xi is wrong-classified
with respect to Hr, then dir = 1− sign(ωtrxi + ωr0)(ωtrxj + ωr0) ≥ 1 and eir = 0
(hij = 1 and tir 6= tjr).

We illustrate the rationale of the proposed constraints on the data drawn
in Figure 7. Observe that A is not correctly classified since it lies within a
cell in which the blue-class is not assigned. Suppose that B, a well-classified
observation, is the representative of A (hAB = 1), then the model would have
to penalize two types of errors. The first one with respect to H2. If we suppose
tB2 = 1, then tA2 = 0, leading to an activation on constraint (25) being dA2 > 0.
On the other hand, even though A is well-classified with respect to H1, we also
have to penalize its margin violation. Again, if we assume tB1 = 1, then tA1 = 1,
what would activate the constraint (23) being eA1 > 0.

Figure 7. Illustration of the in-margin and out-margin con-
straints of our model.
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The above comments can be summarized in the following mathematical pro-
gramming formulation for the problem:

min ‖ω1‖2 + C1

n∑
i=1

m∑
r=1

eir + C2

n∑
i=1

m∑
r=1

dir (MCSVM)

s.t. (14)− (26)

ωr ∈ Rp, ωr0 ∈ R, ∀r ∈M,

dir, eir ≥ 0, tir ∈ {0, 1} ∀i ∈ N, r ∈M,

hij ∈ {0, 1}, ∀i, j ∈ N,
zis ∈ {0, 1}, ∀i ∈ N, s ∈ K,
ξi ∈ {0, 1}, ∀i ∈ N.

(MCSVM) is a mixed integer non linear programming model, whose non-
linear terms come from the norm minimization in the objective function and
constraints (14), so that they are second order cone representable. In case
one chooses the `1-norm instead of the Euclidean norm, the model becomes a
mixed integer linear programming problem. Therefore, the model is suitable to
be solved using any of the available commercial solvers, as Gurobi, CPLEX, etc.
The main bottleneck of the above formulation relies on the number O(n2) of
binary variables.

Remark 3.1 (Ramp Loss misclassification errors). An alternative measure of
misclassification training errors is the ramp loss. The ramp loss version of the
model is interesting for certain instances since it allows one to improve the ro-
bustness against potential outliers. Instead of using out of margin hinge loss
errors hO, the ramp-loss measure consists of penalizing wrong-classified observa-
tions by a constant, independently on how far they are from being well-classified.
Given an observation/label, (x̄, ȳ), the ramp-loss with respect to H, is defined as:

RL((x̄, ȳ),H) =

{
0 if x̄ is well-classified
1 otherwise

Note that, for the training sample, the ramp-loss is represented in our model
through the ξ-variables. More specifically, RL((xi, yi),H) = ξi for all i ∈ N .
In order to do that we just need to introduce the following modifications on the
MINLP problem:

min ‖ω1‖2 + C1

n∑
i=1

m∑
r=1

eir + C2

n∑
i=1

ξi (MCSVMRL)

s.t. (14)− (24)

ωr ∈ Rp, ωr0 ∈ R, ∀r ∈M,

eir ≥ 0, ∀i ∈ N, r ∈M,

hij ∈ {0, 1}, ∀i, j ∈ N,
zis ∈ {0, 1}, ∀i ∈ N, s ∈ K,
tir ∈ {0, 1}, ∀i ∈ N, r ∈M,

ξi ∈ {0, 1}, ∀i ∈ N.
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3.1. Building the classification rule. Recall that the main goal of multiclass
classification is to determine a decision rule such that, given any observation, it
is able to assign it a class, i.e., to determine the optimal suitable assignment.
Hence, once the solution of (MCSVM) is obtained, the decision rule has to be
derived. Given x ∈ Rp, two different situations are possible: (a) x belongs
to a cell with an assigned class; and (b) x belongs to a cell with no training
observations inside, so with non assigned class. For the first case, x is assigned
to its cell’s class. In the second case, different strategies to determine a class for
x are possible.

We propose the following assignment rule based on the same allocation meth-
ods used in (MCSVM): observations are assigned to their closest well-classified
representatives. More specifically, let s(x) be the sign-pattern of x with respect
to the optimal arrangement of hyperplanes H∗ = {(ω∗1, ω∗10), . . . , (ω∗m, ω

∗
m0)} ob-

tained from (MCSVM), and let J = {j ∈ {1, . . . , n} : ξ∗j = 0} (here ξ∗ stand

for the optimal vector obtained by solving (MCSVM)). Then, among all the
well-classified observations in the training sample, J , we assign to x the class of
the one whose cell is the closest (less separated from x). Such a classification
of x can be obtained by enumerating all the possible assignments, O(|J |) and
computing the distance measure over all of them. Equivalently, one can solve
the following mathematical programming problem:

min
n∑
j∈J

m∑
r=1

s(xj)r+s(x)r=0,

γj |(ω∗r )tx+ ω∗r0|

s.t.

n∑
j∈J

γj = 1,

γj ∈ {0, 1}, ∀j ∈ J

where γj =

{
1 if x is assigned to the same cell as xj ,
0 otherwise.

The integrality condition in the problem above can be relaxed, since the unique
constraint in the problem is totally unimodular and thus, the problem is a linear
programming problem. Clearly, the solution of the above problem gives the
optimal labelling of x with respect to the existing cells in the arrangement.

One could also consider other robust measures for such an assignment follow-
ing the same paradigm, as min-max error or the like.

3.2. Nonlinear Multiclass Classification. Finally, we analyze a crucial ques-
tion in any SVM-based methodology, which is whether one can apply the Theory
of Kernels in our framework. Using kernels means been able to map the obser-
vations (via some transformation ϕ : Rp → RP ) to a higher dimensional space,
where the separation of the data is more adequately performed. If the desired
transformation, ϕ, is known, one could transform the data and solve the prob-
lem (MCSVM) with a higher number of variables. However, in binary SVMs,
formulating the dual of the classification problem, one can observe that it only
depends on the original data via the inner products of each pair of observations
(originally in Rp), i.e., through the amounts xtixj for i, j = 1, . . . , n. If the trans-
formation ϕ is applied to the data, the observations only appear in the (classical
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SVM) problem as ϕ(xi)
tϕ(xj) for j = 1, . . . , n. Thus, kernels are defined as

generalized inner products as K(a, b) = ϕ(a)tϕ(b) for each a, b ∈ Rp, and they
can be introduced using any of the well-known families of kernel functions (see
e.g., [20]). Moreover, Mercer’s theorem gives sufficient conditions for a function
K : Rp ×Rp → R to be a kernel function (one which is constructed as the inner
product of a transformation of the features) what allows one to construct kernel
measures that induce transformations. The main advantage of using kernels,
apart from a probably better separation in the projected space, is that in binary
SVM, the complexity of the transformed problem is the same as the original
one. More specifically, the dual problems have the same structure and the same
number of variables.

Although problem (MCSVM) is a MINLP, and then, duality results do not
hold, one can apply decomposition techniques to separate the binary and the con-
tinuous variables and then, iterate over the binary variables by recursively solving
certain continuous and easier problems (see e.g. Benders decomposition[5, 16]...).
The following result, whose proof can be found in the extended version of this pa-
per (see [10]), states that our approach also allows us to find nonlinear classifiers
via the kernel tools.

This result is interesting by itself since links the general theory of nonlin-
ear classifiers, very well-known for the standard SVM theory with Euclidean
distance, to our multiclass framework. It is worth noting that for a func-
tion hH(H1, . . . ,Hm) =

∑m
r=1 ‖ωr‖2 the usual kernel trick construction applies

mutatis-mutandis. Nevertheless, as pointed out in Section 2.1, we elaborate our
approach based on the natural measure of margin that maximizes the minimum
separation between classes, namely hH(H1, . . . ,Hm) = max{‖ω1‖2, . . . , ‖ωm‖2}.
This change implies that the mathematical development known for the standard
kernel trick does not carry over our new approach without a further analysis. We
prove below that in this new framework one can also find nonlinear multiclass
classifiers that, as in the standard SVM case, only depend on the transformation
by means of inner products of the original data. Hence, extending the kernel
trick to this multiclass framework.

Theorem 3.1. Let ϕ : Rp → RP be a transformation of the feature space. Then,
one can obtain a multiclass classifier which only depends on the original data by
means of the inner products ϕ(xi)

tϕ(xj), for i, j = 1, . . . , n.

Proof. See Appendix 6. �

4. A Math-Heuristic Algorithm

As mentioned above, the computational burden for solving (MCSVM), that
is a mixed integer non linear programming problem (in which the nonlinearities
come from the norm minimization in the objective function), is the combination
of the discrete aspects and the non-linearities in the model. In this section we
provide some heuristic strategies that allow us to cut down the computational
effort by fixing some of the variables. It will also provide good-quality initial
feasible solutions when solving, exactly, (MCSVM) using a commercial solver.
Two different strategies are provided. The first one consists of applying a vari-
able fixing strategy to reduce the number of h-variables in the model. Note that
in principle, n2 variables of this type are considered in the model. The second
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approach consists of fixing to zero some of the z-variables. These nk variables
allow us to model assignments between observations and classes. The proposed
method is a math-heuristic approach, since after applying the adequate dimen-
sionality reductions, Problem (MCSVM) (or (MCSVMRL)) has to be solved.
Also, although our strategies do not ensure any kind of optimality certificate,
they produce a very good performance as will be shown in our computational ex-
periments. Observe that when classifying datasets, the measure of the efficiency
of a decision rule, as ours, is usually assessed by means of the accuracy of the
classification on out-of-sample data, whereas the objective value of the proposed
model is just an approximated measure of such an accuracy which cannot be
computed only with the training data.

Algorithm 1: A math-heuristic approach.

(1) Apply dimensionality reductions test based on algorithms 2 and 3.
(2) Find an initial solution generating k separating hyperplanes.
(3) Solve problem (MCSVM) (or (MCSVMRL)) up to a prescribed

accuracy for the train data.

In what follows we describe two strategies to reduce the dimensionality of
the problem. These approaches are based on applying clustering techniques to
the data. The methods are sensible to the number of clusters. For determining
this parameter, we run a hierarchical clustering method, using as termination
criterion a given squared Euclidean distance between the observations and their
centroids.

4.1. Reducing the h-variables. Our first strategy comes from the fact that
for a given observation xi, there may be several possible choices for hij to assume
the value one with the same final result. Recall that hij could be equal to one
whenever xj is a well-classified observation in the same class as xi. The errors
eir and dir are then computed by using the class of xj but not the observation
xj itself. Thus, if a set of well-classified observations of the same class is close
enough, only one of them can be the representative element of the group. In order
to illustrate the procedure, we show in Figure 8 (left) a 4-classes and 24-points
instance in which the classes are easily identified by applying any clustering
strategy. In such a case (MCSVM) has (24 × 24 =) 576 h-variables, but if we
allow h only to take value 1 at a single point in each cluster, we obtain the same
result but reducing to 144 (24×6+18, where the 18 comes from the observation
mentioned in the formulation in which each well-classified observation can be a
representative element of itself) the number of variables. In Figure 8 (right), we
show the some clusters based on the data, and a (random) selection of a unique
point at each cluster for which the h-values are allowed to be one.

This strategy is summarized in Algorithm 2.

Algorithm 2: Strategy to reduce h-variables.

(1) Cluster the dataset by approximated classes: C1, . . . , Cc.
(2) Randomly choose a single point at each cluster, xij ∈ Cj , for

j = 1, . . . , c.
(3) Set hij = 0 for j 6∈ {i1, . . . , ic}.
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Figure 8. Clustering observations for reducing h-variables.

Figure 9. Illustration of the strategy to reduce the z-variables.

4.2. Reducing the z-variables. The second strategy consists of fixing to zero
some of the point-to-class assignments (z-variables). In the picture shown in
Figure 9 (left), one can see a set of points which seems reasonable to group in 5
clusters. One may notice that assignments from the red class to the black class
(and vice versa) are rarely going to occur following our approach. This is due
to the fact that given this configuration of points, our model would provide a
cell for red points located far from a black cell (otherwise it would probably not
be maximizing the distance between classes). Following this idea, we derive a
procedure to fix some of the z-variables to zero. Another observation that comes
out from Figure 9, is that with respect to the red cluster we obtain the following
sorting on the set of distances: d1

green ≤ dblue ≤ dblack ≤ d2
green. Then, since

d1
green < d2

green, we may not take into account the distance to the green cluster
on the very right. Thus, we would fix to zero all zis variables that relate the red
cluster with the maximum of their minimum distance set, that is, in this case
we would fix to zero the zis-variables associated to the black cluster with the red
cluster (d1

green < dblack and dblue < dblack) and vice versa.
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The above observations lead us to some strategies for fixing z-variables to zero
that we summarize in Algorithm 3.

Algorithm 3: Strategy to reduce z-variables.

(1) Group the observations in L clusters, being each cluster formed by
points of the same class. Let a`s be the centroids of the cluster,
` = 1, . . . , L, s ∈ {1, . . . , k}.

(2) Compute the squared Euclidean distance matrix between centroids:

D =
(
‖a`s − aqs′‖2

)
.

(3) For each cluster `, ` = 1, . . . , L, assigned to class s, compute the cluster
q with class s′ 6= s such that ‖a`s − aqs′‖2 is maximum and greater than
a given threshold. For each observation i in cluster q, set zis = 0. For
each observation ı̂ in cluster `, set ẑıs′ = 0.

5. Experiments

5.1. Real Datasets. In this section we report the results of our computational
experience. We have run a series of experiments to analyze the performance
of our model in some real datasets widely used in the classification literature,
and that are available in the UCI machine learning repository [27]. Summarized
information about the datasets is detailed in Table 1. In such a table we report,
for each dataset, the number of observations considered in the training sample
(nTr) and test sample (nTe), the number of features (p), the number of classes
(k), the number of hyperplanes used in our separation (m), and the number of
hyperplanes required by the OVO methodology (mOVO).

Dataset nTr nTe p k m mOVO

Forest 75 448 28 4 3 6
Glass 75 139 10 6 6 15
Iris 75 75 4 3 2 3
Seeds 75 135 7 3 2 3
Wine 75 103 13 3 2 3
Zoo 75 26 17 7 4 21

Table 1. Data sets used in our computational experiments.

For these datasets, we have run both the hinge-loss (MCSVM) and the ramp-
loss (MCSVMRL) models, measuring the margin with the `1 and the `2 norms.
We have performed a 5-cross validation scheme to test each of the approaches.
Thus, the data sets were split into 5 train-test random partitions. Then, the
models were solved for the training sample and the resulting classification rule
was applied to the test sample. We report the average accuracy, ACC, in per-
centage, of the 5 repetitions of the experiment on test:

ACC =
#Well Classified Test Observations

nTe
· 100.

The parameters of our models were also chosen after applying a grid-based
4-cross validation scheme. In particular, we calibrate the value of m (number of
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hyperplanes to be located) and the misclassification costs C1 and C2 in:

m ∈ {2, . . . , k}, C1, C2 ∈ {0.1, 0.5, 1, 5, 10}.

For hinge-loss models C1 = C2, whereas for ramp-loss models we consider C1 <
C2 to give a high penalty to wrong-classified observations. As a result we obtain
a misclassification error for each grid point, and we choose the combination
of parameters that provide the lowest error. The same methodology was also
applied to the other methods: OVO, Weston-Watkins (WW), Crammer-Singer
(CS) and Lee, Lin and Wahba (LLW), calibrating the misclassifying cost C in
{10i, i = −6, . . . , 6}.

The mathematical programming models solving the MCSVM methods were
coded in Python 3.6, and solved using Gurobi 7.5.2 on a PC Intel Core i7-7700
processor at 2.81 GHz and 16GB of RAM. The standard methods (OVO, WW
and CS) were applied using R-KernLab. Finally, LLW was applied using the
software package MSVMpack provided by [24].

In Table 2 we report the average accuracies obtained with our 4 models:
((MCSVM) and (MCSVMRL) with `1 and `2 norms) and those obtained with
OVO, WW, CS and LLW. The first two columns (`1 RL and `1 HL) show the
average accuracies of our two approaches (Ramp Loss - RL- and Hing Loss -
HL-) using the `1-norm. On the other hand, the third and four columns (`2 RL
and `2 HL) provide the same results for the `2-norm. In the last four columns,
we report the average accuracies obtained with the OVO, WW, CS and LLW
methods. The best accuracies obtained for each dataset are bolfaced in Table 2.

One can observe that our methods always outperform the results obtained by
OVO, WW and CS, although the results are rather similar. Actually, running
the two samples proportion test among them, we can not ensure significative dif-
ferences in all cases. Comparing our methods with LLW the results are different.
In three out of the 6 databases (Forest, Glass and Iris) our methods are superior
to LLW with up to 10% significative differences with respect to the two samples
proportion tests. In the remaining three databases (Seeds, Wine and Zoo) the
results are similar with no statistical significative differences with respect to the
two samples proportion test.

The results indicate that these UCI databases are friendly for linear classifiers
(with the only exception of Glass) and thus all these methods perform reasonably
well on test prediction. Thus, it is not possible to establish a clear ranking of
these classification methods based only on these databases. In order to asses
a more complete comparative of the methods we continue the analysis in the
following subsection with a battery of more complex datasets.

5.2. Synthetic Experiments. This section reports extra computational exper-
iments over some synthetic instances that allow us to establish some rank of the
methods based on their accuracies. We have generated 6 instances of 750 ob-
servations in R10 distributed as multivariate normal distributions separated by
a constant factor. The instances are denoted as XCY N where X is the number
of classes (ranging in {2, 3, 4, 7, 10}) and Y the number of different multivariate
normal distributions (ranging in {4, 6, 8, 15, 20}). All the instances are available
at http://bit.ly/SynthData_MCSVM for benchmarking purposes. Observe that
for each instance, the class labels have been randomly assigned to the normal

http://bit.ly/SynthData_MCSVM
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Dataset `1 RL `1 HL `2 RL `2 HL OVO WW CS LLW

Forest 80.66 80.12 82.30 81.62 82.10 78.40 78.60 72.54
Glass 64.92 64.92 65.32 65.32 58.76 56.25 59.26 57.04
Iris 95.08 95.40 96.44 96.66 93.80 96.44 96.44 84.17
Seeds 93.66 93.66 93.52 93.52 91.02 93.52 93.52 95.46
Wine 95.20 95.20 96.82 96.82 96.34 96.09 96.17 96.31
Zoo 89.75 89.75 89.75 89.75 87.44 87.68 87.68 91.53

Table 2. Average accuracies obtained for the real-world instances

distributions. For illustration purposes, a two-dimensional instance generated
in the same way that our 10-dimensional instances is shown in Figure 10: the
data are generated according to 20 normal distributions which are assigned to
10 classes.

Figure 10. A 2-dimensional illustration of our instances.

In Table 3 we report the average accuracies obtained with a 10-fold cross vali-
dation experiment, in which 75 observations are taken into the training samples
and 675 in the test samples. As before, we have compared our approach (with
the Euclidean norm and Hinge-Loss misclassification error) with the existing
methodologies: OVO, WW, CS and LLW. The calibration of the parameters
was also done as in the previous section.

Dataset `2 HL m OVO WW CS LLW

2C4N 94.35 2 60.75 60.75 60.75 60.75
3C6N 85.74 3 39.47 41.69 39.03 36.50
4C8N 1 92.76 4 36.46 32.37 29.14 31.86
4C8N 2 91.78 4 48.54 35.14 34.69 39.14
7C15N 88.54 6 27.37 19.64 18.63 20.35
10C20N 85.81 7 29.73 16.17 15.37 15.10

Table 3. Average accuracies obtained for the synthetic instances.
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One can observe in Table 3 that the results obtained with our approach are
much better than those obtained with the other approaches. The generation
procedure permits that, in the synthetic instances, separated clouds of points are
assigned to the same class. As it can be anticipated, our methodology adapts well
to this characteristic whereas the other approaches fail to handle these data. The
reader may observe that this type of data are common in real-world datasets. In
particular, many diseases are associated to low or high values of certain medical
indices thus fitting to this topology in which separated clusters of observations
belong to the same class.

Our main conclusion, from the results reported in Table 3, is that our method
is adequate for this type of synthetic data, highly outperforming OVO, WW, CS
and LLW. Moreover, the accuracy percentages are not only superior but they
are also statistically better with respect to the two samples proportion test with
a significance level of 1%.

6. Conclusions

In this paper we propose a novel modeling framework for multiclass classifi-
cation based on the Support Vector Machine paradigm, in which the different
classes are linearly separated and the separation between classes is maximized.
We propose two approaches, that depend on the way to account for the misclas-
sification error, to compute an optimal arrangement of hyperplanes subdividing
the space into cells, and so that each cell is assigned to a class based on the
training data. The models result in Mixed Integer (Linear and Non Linear) Pro-
gramming problems. Some dimensionality reduction and preprocessing strategies
are presented in order to help solvers to find good (optimal) solutions of the cor-
responding problems. We also prove that an analogous of the kernel trick can be
extended to this framework. The performance of this approach is illustrated on
some well-known datasets of the multi-category classification literature as well as
in some synthetic, but still realistic, examples, in which our approach works re-
markably well compared to the existing methodologies. Several extensions of our
approach are possible. Among them we would like to mention the use of heuristic
algorithms to solve the complex mixed integer nonlinear programs which may
alleviate the computational burden of the methodology still keeping high qual-
ity solutions. Moreover, our approach could also be extended to the framework
of semisupervised learning [6, 35] by assigning unlabelled observations to their
closest well-classified cells (which are obtained using the labeled training data).
Both research lines seem to be promising and will be the focus of a forthcoming
paper.
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[31] Maldonado, S., Pérez, J., Weber, R., Labbé, M. (2014). Feature selection for support vector
machines via mixed integer linear programming. Information sciences, 279, 163-175.

[32] Mangasarian, O.L. Arbitrary-norm separating plane. Oper. Res. Lett., 24 (1– 2):15–23
(1999).

[33] Mart́ınez, D., Millerioux, G. (2000). Support vector committee machines. European Sym-
posium on Artificial Neural Networks-ESSANN’2000.

[34] Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A. and Leisch, F. e1071: Misc Func-
tions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU
Wien. R package version 1.6-8. https://CRAN.R-project.org/package=e1071 (2017)

[35] Ortigosa-Hernández, J., Inza, I., and Lozano, J. A. (2016). Semisupervised multiclass clas-
sification problems with scarcity of labeled data: A theoretical study. IEEE transactions
on neural networks and learning systems, 27(12), 2602-2614.

[36] Pedregosa, F., Varoquaux, G. , Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D.,
Brucher, M., Perrot, M. and Duchesnay, E., Scikit-learn: Machine Learning in Python.
Journal of Machine Learning Research 12, 2825–2830, 2011.

[37] Platt J.C., Cristianini N., and Shawe-Taylor J. (2000). Large margin DAGs for multi-
class classification. In S.A. Solla, T.K. Leen, and K.Mller, editors, Advances in Neural
Information Processing Systems 12, pages 547-553. MIT Press.

[38] Radhimeenakshi, S.: Classification and prediction of heart disease risk using data mining
techniques of support vector machine and artificial neural network. In: Computing for
Sustainable Global Development (INDIACom), 2016 3rd International Conference on, pp.
3107–3111. IEEE (2016)

[39] Tang, X., Xu, A.: Multi-class classification using kernel density estimation on k-nearest
neighbours. Electronics Letters 52(8), 600–602 (2016)
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Proof of Theorem 3.1

Let us consider the mathematical programming formulation for our problem:

min ‖ω1‖2 + C1

n∑
i=1

m∑
r=1

eir + C2

n∑
i=1

m∑
r=1

dir (MCSVM)

s.t.
1

2
‖ωr−1‖2 ≥

1

2
‖ωr‖2, ∀r = 2, . . . ,m, (14)

ωtrxi + wr0 ≥ −T (1− tir), ∀i ∈ N, r ∈M, (15)

ωtrxi + wr0 ≤ Ttir,∀i ∈ N, r ∈M, (16)

k∑
s=1

zis = 1, ∀i ∈ N, (17)

‖zi − zj‖1 ≤ 2‖ti − tj‖1, ∀i, j ∈ N, (18)

https://CRAN.R-project.org/package=e1071
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ξi ≥
1

2
‖zi − δi‖1,∀i ∈ N, (19)∑

j∈N :
yi=yj

hij = 1, ∀i ∈ N, (20)

ξj + hij ≤ 1,∀i, j ∈ N(yi = yj), (21)

hii = 1− ξi,∀i ∈ N, (22)

ωtrxi + ωr0 ≥ 1− eir − T (3− tir − tjr − hij), ∀r ∈M, (23)

ωtrxi + ωr0 ≤ −1 + eir + T (1 + tir + tjr − hij), ∀r ∈M, (24)

dir ≥ 1− ωtrxi − ωr0 − T (2 + tir − tjr − hij),∀i, j ∈ N(yi = yj), r ∈M,
(25)

dir ≥ 1 + ωtrxi + ωr0 − T (2− tir + tjr − hij),∀i, j ∈ N(yi = yj), r ∈M,
(26)

ωr ∈ Rp, ωr0 ∈ R,∀r ∈M,

dir, eir ≥ 0, tir ∈ {0, 1}, ∀i ∈ N, r ∈M,

hij ∈ {0, 1},∀i, j ∈ N,
zis ∈ {0, 1}, ∀i ∈ N, s ∈ K,
ξi ∈ {0, 1},∀i ∈ N.

Note that once the binary variables of our model are fixed, the problem be-
comes polynomial time solvable and it reduces to find the coordinates of the
coefficients and intercepts of the hyperplanes and the different misclassifying er-
rors. In particular, it is clear that the MINLP formulation for the problem is
equivalent to:

min
h,z,t,ξ

Φ(h, z, t, ξ)

s.t. (17)− (22),

hij ∈ {0, 1}, ∀i, j ∈ N,
tir ∈ {0, 1} ∀i ∈ N, r ∈M,

zis ∈ {0, 1}, ∀i ∈ N, s ∈ K,
ξi ∈ {0, 1}, ∀i ∈ N.

where Φ is the evaluation of the margin and hinge-loss errors for any assignment
provided by the binary variables. That is,

Φ(h, z, t, ξ) = min
ω,ω0,e,d

1

2
‖ω1‖2 + C1

n∑
i=1

m∑
r=1

eir + C2

n∑
i=1

m∑
r=1

dir (EvalΦ)

s.t. (14), (23)− (26),

ωr ∈ Rd, ωr0 ∈ R, ∀r ∈M,

dir, eir ≥ 0 ∀i ∈ N, r ∈M.

The above problem would be separable provided that the first m− 1 constraints
(14) were relaxed. For the sake of simplicity in the notation, we consider the
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following functions, κ` : {0, 1} → R for ` = 1, 2, 3, defined as:

κ1(t) := T (1− t), κ2(t) := Tt, κ3(t) := −1 + Tt

for t ∈ {0, 1}. Note that κ1(0) = κ2(1) = T , κ1(1) = κ2(0) = 0, and that
κ3(0) = −1, κ3(1) = T − 1.

Based on the separability mentioned above, we introduce another instrumental
family of problems for all r = 2, . . . ,m, namely,

Φr(h, z, t, ξ, ω1) = min
ωr,ωr0,e,d

C1

n∑
i=1

eir + C2

n∑
i=1

dir

s.t.
1

2
‖ωr‖2 −

1

2
‖ω1‖2 ≤ 0,

−ωtirxi − ωr0 ≤ κ1(tir), ∀i, r,
ωtirxi + ωr0 ≤ κ2(tir), ∀i, r,

−ωtrxi − ωr0 − eir ≤ κ3(u+
ijr),∀i, j, r

ωtrxi + ωr0 − eir ≤ κ3(u−ijr),∀i, j, r,

−ωtrxi − ωr0 − dir ≤ κ3(q+
ijr),∀i, j(yi = yj),

(SPr)

ωtrxi + ωr0 − dir ≤ κ3(q−ijr),∀i, j(yi = yj),

−dir ≤ 0,∀i,
−eir ≤ 0,∀i,

ωr ∈ Rd,ωr0 ∈ R,

where for simplifying the notation we have introduced the auxiliary variables
u+
ijr := 3− tir − tjr − hij , u−ijr := 1 + tir + tjr − hij , q+

ijr = 2 + tir − hij − tjr and

q−ijr = 2 + tjr − hij − tir, for i, j ∈ N and r ∈M .
Observe that Φr, apart from the first constraint, only considers variables as-

sociated to the rth hyperplane.
Moreover, we need another problem that accounts for the first part of Φ.

Φ1(h, z, t, ξ) = min
ω1,ω10,e,d

1

2
‖ω1‖21 + C1

n∑
i=1

ei1 + C2

n∑
i=1

di1

s.t. − ωt1xi − ω10 ≤ κ1(ti1), ∀i,
ωt1xi + ω10 ≤ κ2(ti1), ∀i,
− ωt1xi − ω10 − ei1 ≤ κ3(u+

ij1),∀i, j,

ωt1xi + ω10 − ei1 ≤ κ3(u−ij1), ∀i, j, r,

− ωt1xi − ω10 − di1 ≤ κ3(q+
ij1),∀i, j(yi = yj), (SP1)

ωt1xi + ω10 − di1 ≤ κ3(q−ij1),∀i, j(yi = yj),

− di1 ≤ 0, ∀i,
− ei1 ≤ 0,∀i,

ω1 ∈ Rd, ω10 ∈ R,



26 V. BLANCO, A. JAPÓN and J. PUERTO

Thus, using the above notation, (MCSVM) is equivalent to the following prob-
lem:

min
h,z,t,ξ,ω1

Φ1(h, z, t, ξ) +

m∑
r=2

Φr(h, z, t, ξ, ω1)

s.t. (17)− (22)

hij ∈ {0, 1}, ∀i, j ∈ N,
tir ∈ {0, 1} ∀i ∈ N, r ∈M,

zis ∈ {0, 1}, ∀i ∈ N, s ∈ K,
ξi ∈ {0, 1}, ∀i ∈ N.

Observe that the above problem only accounts for ω1 and the binary variables.
Once they are fixed can be plugged into the (SPr), r = 1, . . . ,m subproblems and
then it allows one to find the optimal values of the continuous variables. The ele-
ments κ1(tir), κ

2(tir), κ
3(u+

ijr), κ
3(u−ijr), κ

3(q+
ijr), and κ3(q−ijr) are fixed constants

once the binary variables are fixed.
In order to solve the problem for a fixed set of binary variables we can proceed

recursively, solving independently (SPr) for all r = 2, . . . ,m, and then combining
their solutions with (SP1).

Therefore, to get that goal we apply Lagrangean duality to obtain an ex-
act dual reformulation. Indeed, relaxing the constraints of (SPr) with dual
multipliers µr ≥ 0 (assuming that µ0

r 6= 0) and denoting by αir = αir =

µ1
ir − µ2

ir +
∑

j:yi=yj

(µ3
ijr − µ4

ijr + µ5
ijr − µ6

ijr), for all i = 1, . . . , n and r = 1, . . . ,m;

after some derivations that can be followed in Lemma .1, one can check that
evaluating Φ for given values of the binary variables, can be obtained solving
the continuous optimization problem (JSP). (All details can be found in Lemma
.1.)

Next, we analyze how the evaluation of the function Φ, given in problem
(EvalΦ), depends on the original data. In order to do that we find the optimal
solutions of (JSP). Dualizing the constraints that correspond to Φ1 with multi-
pliers µ1 ≥ 0 and those where the variables Γr appear, with dual multipliers γr,
the Lagrangean function of the problem (JSP) results in:
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L(ω1, ω01, d, e;µ) =
1

2
‖ω1‖2(1−

m∑
r=2

γrµ
0
r) + C1

n∑
i=1

ei1 + C2

n∑
i=1

di1 +
m∑
r=2

Γr(1− γr)

+

m∑
r=2

 γr
2µ0

r

n∑
i,j=1

αirαjrx
t
ixj +

∑
i,j:u+

ijr=0

µ3
ijr

+
∑

i,j:u−ijr=0

µ4
ijr +

∑
i,j:q+

ijr=0

µ5
ijr +

∑
i,j:q−ijr

µ6
ijr


+
∑
i

µ1
i1

(
− ωt1xi − ω10 − κ1(ti1)

)
+
∑
i

µ2
i1

(
ωt1xi + ω10 − κ2(ti1)

)
+
∑
i

µ3
ij1

(
− ωt1xi − ω10 − ei1 − κ3(ū+

ij1)
)

+
∑
i

µ4
ij1

(
ωt1xi + ω10 − ei1 − κ3(ū−ij1)

)

+
∑
i,j

µ5
ij1

(
− dir − ωt1xi − ω10 − κ3(q̄+

ij1)
)

+
∑
i,j

µ6
ij1

(
− dir + ωt1xi + ω10 − κ3(q̄−ij1)

)
+
∑
i

µ7
i1(−di1) +

∑
i

µ8
i1(−ei1)

and its KKT optimality conditions reduce to:

• (1−
∑m

r=2 γrµ
0
r)ω1 =

n∑
i=1

(
µ1
i1−µ2

i1 +
∑

j:yi=yj

(µ3
ij1−µ4

ij1 +µ5
ij1−µ6

ij1)
)
xi.

•
n∑
i=1

(
µ1
i1 − µ2

i1 +
∑

j:yi=yj

(µ3
ij1 − µ4

ij1 + µ5
ij1 − µ6

ij1)
)

= 0.

•
∑

j:yi=yj

(µ3
ij1 + µ4

ij1) + µ8
i1 = C1, for all i.

•
∑

j:yi=yj

(µ5
ijr + µ6

ijr) + µ7
ir = C2, for all i.

• 1− γr = 0, for all r = 2, . . . ,m.
• µ ≥ 0, γ ≥ 0.

Using the same notation as before, αi1 = µ1
i1 − µ2

i1 +
∑

j:yi=yj

(µ3
ij1 − µ4

ij1 +

µ5
ij1 − µ6

ij1), for all i = 1, . . . , n, and simplifying the expressions using the KKT
conditions and the complementary slackness conditions we get that the strong
dual of (JSP) is:
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max
ω,ω.0,d,e;µ

1

2(1−
∑m

r=2 µ
0
r)

n∑
i,j=1

αi1αj1x
t
ixj +

∑
i,j:u+

ij1=0

µ3
ijr +

∑
i,j:u−ij1=0

µ4
ij1

+
∑

i,j:q+
ij1=0

µ5
ijr +

∑
i,j:q−ij1=0

µ6
ij1 +

m∑
r=2

 1

2µ0
r

n∑
i,j=1

αirαjrx
t
ixj

+
∑

i,j:u+
ijr=0

µ3
ijr +

∑
i,j:u−ijr=0

µ4
ijr +

∑
i,j:q+

ijr=0

µ5
ijr +

∑
i,j:q−ijr=0

µ6
ijr


s.t.

n∑
i=1

αir = 0, ∀r (DJSP)

n∑
i=1

αi1xi = (1−
m∑
r=2

µ0
r)ω1,

n∑
i=1

αirxi = µ0
rωr,∀r ≥ 2∑

j:u+
ijr=0

µ3
ijr +

∑
j:u−ijr=0

µ4
ijr ≤ C1, ∀i,

∑
j:q+

ijr=0

µ5
ijr +

∑
j:q−ijr=0

µ6
ijr ≤ C2,∀i, r,

µ1
ir = 0, ∀i, r with t̄ir = 0,

µ2
ir = 0, ∀i, r with t̄ir = 1,

αir = µ1
ir − µ2

ir +
∑

i,j:u+
ij1=0

µ3
ijr −

∑
i,j:u−ij1=0

µ4
ijr +

∑
i,j:q−+ij1=0

µ5
ijr (27)

−
∑

i,j:q−ij1=0

µ6
ijr, ∀i,

µr ≥ 0, ωr ∈ Rd, ωr0 ∈ R, ∀r = 1, . . . ,m

Note that the objective function of (DJSP) only depends of the x-input data
through the inner products xtixj for i, j = 1, . . . , n, and also the expressions of
ω1 from the dual variables is given as:

(1−
m∑
r=2

µ0
r)ω1 =

n∑
i=1

αi1xi.

The dependence of ω1 with other ωr in the primal formulation is only through the
nonincreasing sorted values of ‖ω1‖, . . . , ‖ωm‖ in which we now that the largest
value is ‖ω1‖. Thus, solving the dual problem (DJSP) allows us to determine
all the optimal hyperplanes ωr, for all r = 1, . . . ,m. In case a transformation ϕ
is performed to the input data, the dependence of the data in the problem will
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be through the inner products ϕ(xi)
tϕ(xj) for all i, j = 1, . . . , n, and the kernel

Theory can be applied.
�

Lemma .1. The evaluation of Φ for given values of the binary variables t̄, ξ̄, h̄
and z̄ can be obtained solving the following continuous optimization problem:

Φ̂(h, z, t, ξ) = min

{
1

2
‖ω1‖2 + C1

n∑
i=1

ei1 + C2

n∑
i=1

di1 +
m∑
r=2

Γr

}

s.t.

−µ0
r

2
‖ω1‖2 +

1

2µ0
r

n∑
i,j=1

αirαjrx
t
ixj

+
∑

i,j:u+
ijr=0

µ3
ijr +

∑
i,j:u−ijr=0

µ4
ijr

+
∑

i,j:q+
ijr=0

µ5
ijr +

∑
i,j:q−ijr=0

µ6
ijr + C1

 ≤ Γr, ∀r ≥ 2,

− ωt1xi − ω10 ≤ κ1(ti1),∀i,
ωt1xi + ω10 ≤ κ2(ti1), ∀i,
− ωt1xi − ω10 − ei1 ≤ κ3(u+

ij1), ∀i, j,

ωt1xi + ω10 − ei1 ≤ κ3(u−ij1),∀i, j, r,

− ωt1xi − ω10 − di1 ≤ κ3(q+
ij1),∀i, j(yi = yj), (JSP)

ωt1xi + ω10 − di1 ≤ κ3(q−ij1), ∀i, j(yi = yj),

− di1 ≤ 0,∀i,
− ei1 ≤ 0,∀i,

ω1 ∈ Rd, ω10 ∈ R,∑
j:u+

ijr=0

µ3
ijr +

∑
j:u−ijr=0

µ4
ijr + µ8

ir ≥ C1,∀i,

∑
j:q+

ijr=0

µ5
ijr +

∑
j:q−ijr=0

µ6
ijr ≤ C2, ∀i, r,

µ1
ir = 0, ∀i, r with t̄ir = 0,

µ2
ir = 0, ∀i, r with t̄ir = 1,

αir = µ1
ir − µ2

ir +
∑

i,j:u+
ij1=0

µ3
ijr −

∑
i,j:u−ij1=0

µ4
ijr +

∑
i,j:q+

ij1=0

µ5
ijr (28)

−
∑

i,j:q−ij1=0

µ6
ijr, ∀i,

µ ≥ 0.

where µr ≥ 0 are the dual multipliers of the constraints in Problem (SPr).
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Proof. In order to prove the result, in what follows we derive the optimality
conditions of the Lagrangean dual of (SPr) for r = 2, . . . ,m. Relaxing the
constraints of (SPr) with dual multipliers µr ≥ 0, the Lagrangean function for
given values of the binary variables t̄, ξ̄, h̄ and z̄ (and consequently for values
ū+, ū−, q̄+ and q̄−) is:

Lr(ωr, ω0r, d, e;µ) = C1

n∑
i=1

eir + C2

n∑
i=1

dir + µ0
r

(1

2
‖ωr‖2 −

1

2
‖ω1‖2

)
+
∑
i

µ1
ir

(
− ωtrxi − ωr0 − κ1(tir)

)
+
∑
i

µ2
ir

(
ωtrxi + ωr0 − κ2(tir)

)
+
∑
i,j

µ3
ijr

(
− ωtrxi − ωr0 − eir − κ3(ū+

ijr)
)

+
∑
i,j

µ4
ijr

(
ωtrxi + ωr0 − eir − κ3(ū−ijr)

)
+
∑
i,j

µ5
ijr

(
− dir − ωtrxi − ωr0 − κ3(q̄+

ijr)
)

+
∑
i,j

µ6
ijr

(
− dir + ωtrxi + ωr0 − κ4(q̄−ijr)

)
+
∑
i

µ7
ir(−dir) +

∑
i

µ8
ir(−eir).

Therefore, the KKT optimality conditions read as:

• µ0
rωr =

n∑
i=1

(
µ1
ir − µ2

ir +
∑

j:yi=yj

(µ3
ijr − µ4

ijr + µ5
ijr − µ6

ijr)
)
xi.

•
n∑
i=1

(
µ1
ir − µ2

ir +
∑

j:yi=yj

(µ3
ijr − µ4

ijr + µ5
ijr − µ6

ijr)
)

= 0.

•
∑

j:yi=yj

(µ3
ijr + µ4

ijr) + µ8
ir = C1, for all i.

•
∑

j:yi=yj

(µ5
ijr + µ6

ijr) + µ7
ir = C2, for all i.

• µr ≥ 0.

First of all, we observe that if ‖ωr‖ < ‖ω1‖ at optimality then µ0
r = 0 and

actually, we do not have to consider the corresponding constraint nor the addend
µ0
r

2 (‖ωr‖2 − ‖ω1‖2) in the Lagrangean function. Hence, denoting by αir = µ1
ir −

µ2
ir +

∑
j:yi=yj

(µ3
ijr − µ4

ijr + µ5
ijr − µ6

ijr), for all i = 1, . . . , n, and assuming that

µ0
r 6= 0, the dual of (SPr) reads as:

max
ωr,ωr0,d,e;µ

− µ0
r

2
‖ω1‖2 +

1

2µ0
r

n∑
i,j=1

αirαjrx
t
ixj −

∑
i

µ1
irκ

1(t̄ir)−
∑
i

µ2
irκ

2(t̄ir)

−
∑
i

µ3
irκ

3(ū+
ijr)−

∑
i

µ4
irκ

4(ū−ijr)
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−
∑
i,j

µ5
ijrκ

5(q̄+
ijr)−

∑
i,j

µ6
ijrκ

6(q̄−ijr)

s.t.

n∑
i=1

αirxi = µ0
rωr,

n∑
i=1

αir = 0,∑
j:yi=yj

(µ3
ijr + µ4

ijr) ≤ C1, ∀i,∑
j:yi=yj

(µ5
ijr + µ6

ijr) ≤ C2, ∀i,

αir = µ1
ir − µ2

ir +
∑

i,j:u+
ij1=0

µ3
ijr −

∑
i,j:u−ij1=0

µ4
ijr +

∑
i,j:q+

ij1=0

µ5
ijr

−
∑

i,j:q−ij1=0

µ6
ijr, ∀i,

µr ≥ 0.

Let us simplify further the expressions above. We observe that:∑
i

µ1
irκ

1(t̄ir) +
∑
i

µ2
irκ

2(t̄ir) = 0,

−
∑
i,j

µ3
ijrκ

3(ū+
ijr)−

∑
i,j

µ4
ijrκ

3(ū−ijr) =
∑
i,j:

ū+
ijr

=0

µ3
ijr +

∑
i,j:

ū−
ijr

=0

µ4
ijr,

and

−
∑
i,j

µ5
ijrκ

3(q̄+
ijr)−

∑
i,j

µ6
ijrκ

4(q̄−ijr) =
∑
i,j:

q̄+
ijr

=0

µ5
ijr +

∑
i,j:

q̄−
ijr

=0

µ6
ijr.

Using those equations and substituting the problem becomes:

max
ωr,ω0,d,e;µ

− µ0
r

2
‖ω1‖2 +

1

2µ0
r

n∑
i,j=1

αirαjrx
t
ixj +

∑
i,j:u+

ijr=0

µ3
ijr +

∑
i,j:u−ijr=0

µ4
ijr

+
∑

i,j:q+
ijr=0

µ5
ijr +

∑
i,j:q−ijr=0

µ6
ijr

s.t.

n∑
i=1

αirxi = µ0
rωr,

n∑
i=1

αir = 0, ∀r,∑
j:u+

ijr=0

µ3
ijr +

∑
j:u−ijr=0

µ4
ijr ≤ C1, ∀i,
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j:q+

ijr=0

µ5
ijr +

∑
j:q−ijr=0

µ6
ijr ≤ C2,∀i, r, (DSPr)

µ1
ir = 0,∀i, r with t̄ir = 0,

µ2
ir = 0,∀i, r with t̄ir = 1,

αir = µ1
ir − µ2

ir +
∑

i,j:u+
ij1=0

µ3
ijr −

∑
i,j:u−ij1=0

µ4
ijr +

∑
i,j:q+

ij1=0

µ5
ijr (29)

−
∑

i,j:q−ij1=0

µ6
ijr, ∀i,

µ ≥ 0.

Using the strong duality in all the subproblems (SPr) for r = 2, . . . ,m, we
can obtain the following expansion of the join subproblem (SPr) that allows one
the evaluation of Φ defined in problem (EvalΦ).

Φ̂(h, z, t, ξ) = min

{
1

2
‖ω1‖2 + C1

n∑
i=1

ei1 + C2

n∑
i=1

di1)

+ max
ωr,ω0,d,e;µ

m∑
r=2

−µ0
r

2
‖ω1‖2 +

1

2µ0
r

n∑
i,j=1

αirαjrx
t
ixj +

∑
i,j:u+

ijr=0

µ3
ijr

(30)

+
∑

i,j:u−ijr=0

µ4
ijr +

∑
i,j:q+

ijr=0

µ5
ijr +

∑
i,j:q−ijr=0

µ6
ijr


s.t. − ωt1xi − ω10 ≤ κ1(ti1),∀i,
ωt1xi + ω10 ≤ κ2(ti1), ∀i,
− ωt1xi − ω10 − ei1 ≤ κ3(u+

ij1), ∀i, j,

ωt1xi + ω10 − ei1 ≤ κ3(u−ij1),∀i, j, r,

− ωt1xi − ω10 − di1 ≤ κ3(q+
ij1),∀i, j(yi = yj),

ωt1xi + ω10 − di1 ≤ κ3(q−ij1), ∀i, j(yi = yj),

− di1 ≤ 0,∀i,
− ei1 ≤ 0, ∀i,

ω1 ∈ Rd, ω10 ∈ R,∑
j:u+

ijr=0

µ3
ijr +

∑
j:u−ijr=0

µ4
ijr ≤ C1, ∀i,

∑
j:q+

ijr=0

µ5
ijr +

∑
j:q−ijr=0

µ6
ijr ≤ C2,∀i, r,

µ1
ir = 0, ∀i, r with t̄ir = 0,
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µ2
ir = 0,∀i, r with t̄ir = 1,

αir = µ1
ir − µ2

ir +
∑

i,j:u+
ij1=0

µ3
ijr −

∑
i,j:u−ij1=0

µ4
ijr +

∑
i,j:q+

ij1=0

µ5
ijr (31)

−
∑

i,j:q−ij1=0

µ6
ijr,∀i,

µ ≥ 0.

The usual transformation of the maximum in the objective function gives rise to
the equivalent reformulation of the above problem as (JSP). �
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