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Chapter 1

Introduction

This chapter presents the motivation, objectives and outline of this thesis. Furthermore, a
literature review of the advanced control methods related with the algorithms developed in
the following chapters is provided. Finally, a list of the contributions published in journals
and conference proceedings from the work carried out during this thesis is also given.

1.1 Motivation

Control techniques research has always been driven by the necessities of industry. From
classical control methods to more advanced control techniques, companies have chased to
operate their plants trying to improve different objectives, sometimes conflicting, such as
safety, efficiency, reliability and economic optimality. Tackling all these objectives simul-
taneously in large scale complex systems such as water distribution networks, chemical
processes or renewable energy plants, provide a difficult challenge from the control point
of view. Thus, it is desirable to develop control strategies to address these issues.

Traditionally, most of the controllers employed in industry are classical PIDs because of
their simplicity and reliability. However, advance control techniques have the potential to
take into account multiple objectives and operate a system in a more efficient and safe way.
Most advanced control techniques, like model predictive control (MPC) which is widely
extended in industry, are based on a model of the system which is used to make predic-
tions and estimations of its closed-loop behaviour. High quality models can be obtained
from first principles or input/output analysis techniques, however model identification is,
generally speaking, a hard problem to cope with when dealing with large scale nonlinear
systems. In general, a simplified model of a complex system can provide poor predictions
of its behaviour while a high quality complex models may not be appropriate for controller
design tasks.

Nowadays, the use of large amounts of data is present in most scopes of our lives. Internet
and new technologies have allowed us to manage a huge amount of information while new
devices with environment inter-actuation, interconnection capabilities and bigger storage
capacity have helped us to produce and store information data of almost everything in
our daily life. In industry, although the incorporation of this class of technologies has
taken some time to be considered, the use of data can provide a paradigm shift. At the
present time, it is common to find numerous different sensors, reading every measurable

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1.1: Richmond water distribution network diagram.

aspect of an industrial process, interconnected with other devices. The large amount of
available historian data has the potential to provide new methods to improve performance
and other objectives. In recent years, the research community has been interested in using
the information that can be obtained from this data. Even if the plant is controlled by
a classical and simple technique, the stored data can be very useful for understanding
the system dynamics behaviour, for estimating disturbances signals and for identification
proposes. The literature collects all these strategies under the broad concepts of data-
driven/based and machine learning methods.

Water distribution networks (WDN) pose control challenges due to their size, diverse
nature of the process and manipulated variables and disturbance rich operating conditions.
These networks are an example of large scale complex systems for which data can be
obtained and used to improve its operation. As we can see in figure 1.1.1, where a simplified
model of Richmond’s WDN [111] is shown, this kind of system is a complex network with
a high number of tanks, pipes, nodes and pumps that can be found in every city of the
world. Usually, the dynamics that define the pipe flows and pressures are nonlinear and
their actuators, in most cases, are binary. The large number of sensors typically found in
these systems, can provide us a huge amount of process data. Furthermore, client demands,
generally considered as disturbances, and sensors measurement noises, are uncertainties
hard to model but of which historic data is in general available.

Motivated by these issues, the development and application of data based predictive control
algorithms for complex systems, such as water distribution networks, in which historic data
is used instead of standard modelling and identification approaches, has been carried out
during this thesis. The objective of these algorithms is to improve the performance of
model-based methods like MPC using historical data, tackling the identification problem
from different point of view.



1.2. MODEL PREDICTIVE CONTROL 3

r(k) -��
��
+-
6

-

e(k)

MPC -

u(k)

System

?

w(k)

-��
��
+
+
?

v(k)

- y(k)

Model- � {ŵ(k + i)
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Figure 1.2.1: Standard MPC scheme.

1.2 Model predictive control

Model predictive control (MPC) [25, 62] is one of the most successful forms of feedback
control due to its ability to control almost any kind of process while considering operating
constraints explicitly. MPC techniques rely on the use of a model to predict the evolution
of the system state over a prediction horizon and thus compute the values of the control
signals that minimize a performance cost. Therefore, the use of a model is a key concept
in these techniques. The theoretical bases have been well established for both linear and
nonlinear systems [88] and, in many cases, real time implementation is possible on a
wide range of applications, from process to automotive industries. These are some of the
reasons that explain why MPC is more spread in the industry than any other form of
modern control. Figure 1.2.1 shows the scheme of a MPC controller in closed-loop with
a system, in which the control action u(k) is applied in receding horizon manner. In this
diagram a reference signal r(k) for the output y(k) is considered. The system has state
disturbances w(k) and output noise d(k). Note the importance of the model in order to
make predictions.

In a general case without disturbances, MPC considers discrete models that estimate the
next state value with the current state and input as follows:

x(k + 1) = f(x(k), u(k)),

where k is the sample time, x(k) ∈ Rnx is the state vector, u(k) ∈ Rnu is the control action
vector and f(·, ·) represents a set of equations that model the dynamic behaviour of the
system.

Another ingredient of MPC is the cost function V , which describes the criteria to optimize.
This function is usually definite positive and can consider closed-loop operation costs,
economic costs, model error minimization or a combination of them. General optimal
control formulations are based on a minimization problem that takes into account an
infinite number of steps in the future. In MPC however, only a finite amount of them
are typically considered in order to define a optimization problem that can be solved
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numerically. This is known as the prediction horizon N . It is very common in literature
to divide the cost function in to terms: stage cost and terminal cost. Given an initial
state x(k), a general discrete cost function formulation with a finite prediction horizon is:

V (x(k),u) =
N−1∑
i=0

`(x̂(k + i), û(k + i)) + `N (x̂(k +N)),

where x̂(k + i) = x(k + i|k) and û(k + i) = u(k + i|k) are the state and control action
prediction (both made from instant k) of x(k+i) and u(k+i) respectively, u is the sequence
of predicted control action vectors from û(k) to û(k+N−1), `(·, ·) is the stage cost, which
depends on the i-th predicted state and control action vectors with i ∈ {0, . . . , N−1}, and
`N (·) is the terminal cost, which depends on the N -th predicted state vector x̂(k +N).

Constraints are the last component considered in this sort of strategy. They are a set of
mathematical equations and inequalities which represents physical limits of the system,
i.e minimal and maximal flow of a pump or the lower and higher value of a tank level,
or virtual limits imposed to preserve a safe control, to respect dynamic behaviour of the
model, to maintain closed-loop stability, etc.

Taking into account a model of the system, a cost function in order to optimize some
criteria and the appropriate constraints, MPC poses the following general optimization
problem:

min
u

V (x,u)
s.t. h(x,u) = 0

g(x,u) ≤ 0,

where x is the current measured state and h(x,u) and g(x,u) are the equality and inequal-
ity constraints respectively. Predictions can satisfy the model including it in h(x,u) as
equality equations and physical limits, generally defined as sets x ∈ X and u ∈ U , can be
added to g(x,u) as inequalities. The solution obtained from MPC optimization problem,
denoted as u* is usually applied in a receding horizon manner, that is

1. Solve the optimization problem.

2. Apply the first component of u*.

3. Wait for the next time step in order to read or estimate the state value x.

4. Repeat the procedure.

Assuming a system without disturbances and a perfect model, u* will be the sequence of
inputs that, starting from x(k), carries the system to x(k +N) in N steps. Nevertheless,
in real complex systems with disturbances and noise, MPC approaches can be applied
because the receding horizon strategy compensates the errors due to the uncertainties and
disturbances. This translates into the necessity of solving an on-line optimization problem
every time step and the importance of an accurate model as simple as possible.

As previously commented, there are many MPC approaches depending on the minimiza-
tion criteria of the cost function or the constraints considered which provide guaran-
teed closed-loop properties for the system, such as, stability, recursive feasibility, robust-
ness against uncertainties, etc. Some examples are set-point tracking MPC [88], robust
MPC [69] or economic MPC [87]. The reviews [67, 68] show the latests advances and MPC
state of the art.
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Figure 1.2.2: Classification diagram of optimization problems.

Optimization problems obtained applying MPC techniques can be classified depending on
different criteria. We can see in figure 1.2.2 a classification regarding the nature of model
variables, constraints properties and cost function qualities. Linear programming (LP) and
quadratic programming (QP) problems are usually found in the context of MPC for linear
systems with linear and quadratic cost functions respectively. However, sometimes, mixed
integer programming (MIP) or integer programming (IP) can be found due to discrete
sensors or actuators.

There are cases in which the real time application of MPC can be difficult due to the
computational burden associated with the computation of the control law, specially when
the model is nonlinear or based on a mix of integer and real variables [8, 26, 32]. For
example, this is the situation when an on-off actuator is used. Such actuators appear
in the form of pulse width modulation switches, power electronic devices or thrusters in
spacecrafts, to name a few examples. Having the control action restricted to a set of
discrete values makes the optimization problem associated to MPC much harder to solve.

In order to solve a binary optimization problem it is necessary, in general, to compute all
the possible combinations of the control actions along the prediction horizon and select
the one with the lowest cost. As the number of combinations grows exponentially with
the length of the prediction horizon, this can only be done if the prediction horizon is
small as in [41, 98], where MPC of switched power electronics is considered. When the
prediction horizon is large, the number of candidate solutions must be reduced by some
strategy [105].

This is the case in WDN if the decision variables are the switching of several on-off valves
or pumps. An example can be observed in [112] where an operational optimization of the
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Figure 1.2.3: Data based predictive control diagram. Identifying a model from the data.

binary signals which control the pumps of Richmond’s WDN [111] is made. In addition,
water demands, which are considered disturbance signals in these networks, usually have a
daily periodicity, so, when model predictive methods are used, it is common to control these
systems with a large prediction horizon. In [78] we can observe an example of controlling
the Barcelona’s WDN applying a robust periodic MPC with a prediction horizons equal
to a day. Thus, large prediction horizons are needed to obtain good performance with this
class of systems.

There are many applications in which obtaining a prediction model is not a problem using
standard identification techniques [61]. Figure 1.2.3 shows a general predictive control
scheme in which model identification is used. However, there are also large and complex
processes for which the task of identifying a good model can be very difficult. Moreover,
in those cases, the resulting model (if identified) may be too complex to be used with most
MPC techniques, as they may result in an optimization problem difficult to solve on line
each sampling time. When first-principle models are not available, procedures to use the
measured data, both online and off-line, are required for designing the predictive controller,
avoiding the need for initially accurate dynamic models [82]. This situation appears in
the control of large infrastructures such as water distribution networks in which simplified
models are often used, see for example [22, 76, 81]. For this reason it is necessary to
research alternative model identification strategies.

1.3 Data driven inference

This section gives an overview of the generic inference approaches that can be found in
the literature. Nowadays, there has been an increasing interest of the MPC community
on developing controllers based on machine learning techniques because of the recent
theoretical and technological ground-breaking advances in this field.

There exists a wide extension of inference approaches, such as Gaussian process (GP),
parametrized models, set membership or direct weight optimization (DWO). These meth-
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ods have been applied in different data based control strategies.

The theory of Gaussian processes has been used to derive different learning methods [14,
86] designed to solve regression problems and probabilistic classification. These techniques
can be used with identification proposes because they predict by means of kernels which
interpolate probabilistically the available data. One of its main advantages is that they can
compute confidence intervals with its predictions and make an online/adaptative adjust-
ment of the kernels. Other recent approach derived from this field is Kinky inference [24]
that has been applied to MPC in [65].

Parametrized modelling based on data is one of the main tendencies in control. In MPC,
different data-driven strategies to obtain and adapt prediction models using ad-hoc identi-
fication and adaptive techniques have been proposed [44, 55, 113, 117] which need knowl-
edge of the system to fit the structure of the process model. In [50], a data-driven subspace
approach is introduced to design the predictive controller. More recently, reinforcement
learning has been studied in [57, 97].

Set membership is another data driven inference method. In order to quantify the mis-
match between the model and the real system, knowing the uncertainty of the model is
crucial. Against the common assumption in literature that a bound on the parametric
uncertainty is available [13, 19, 56, 69], set membership [70] is an identification method
that derive this bound with noisy input-output data of the real system. In this approach,
data is reorganized in regressors with the size given by the assumed order of the system,
which establishes predictor dimension too. Then, several LP problems are posed and have
to be solved in order to find the predictor that minimizes this uncertainty bound. In recent
years, a number of contributions have addressed this problem exploiting set membership
techniques [47, 71], that are promising in this context since they allow to quantify the
model uncertainty from data [73].

Direct weight optimization methods provide low computational burden algorithms1 [90, 91,
92] carried out using affine combinations of locally weighted past data. Other works related
with this methodology are [21, 20], in which predictors based on bounding techniques are
considered. These methods will be used in this thesis to define different strategies. A brief
summary of the fundamental concepts of this approach is presented in the following.

Given data obtained from an unknown system {φ(t), y(t)}nD
t=0, where

y(t) = f(φ(t)) + e(t)

is the output vector, f(·) is not known, φ(t) is the regression vector and e(t) is a disturbance
signal, the goal is to obtain a predictor of the system f̂(φ). To find it, one of the simplest
ideas is to consider a linear predictor as

f̂(φ∗) = w0 +
nD∑
t=1

wty(t)

at a given point φ∗. The performance of predictors depends on the selection of w0 and
wt weights. The problem of finding the value of these weights is called the direct weight
optimization problem.

1Notice that the computational burden increases with the amount of data taken into account.
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This class of algorithms have been used for example in lazy learning approaches [6, 7],
in which training is deferred until a query is to be answered. Other works that have
considered similar ideas in control applications include [40], in which local weighted pro-
jection regression is used together with partial least squares combined with a predictive
controller, [45] where local learning is used in a data driven control method that performs
a model free dynamic linearisation within the context of a an adaptive predictive control
and [83] which tackles the problem of trajectory tracking with a hierarchical three level
controller that relies on past memorized optimal input-output pairs that are adaptively
merged using a similarity measurement.

One of the main ideas of this thesis is that it is possible to include DWO as part of the
optimization carried out in a predictive control approach. In this thesis, we have used
direct weight optimization methods in several problems with different objectives. One of
them is to use past data to predict the future behaviour of the system and, with these
predictions, to estimate some cost function value which can be optimized. Other problem
is to recover the closed-loop control law implicit in the past historian process data of the
system. Finally, to use data in order to identify an unknown system while optimizing the
control action is another strategy considered.

1.4 Data driven/based control

In recent years the terms data driven/based control have been applied to different control
strategies based on completely different paradigms. Since data driven is a broad concept,
this section presents a literature review of different scopes in which researchers apply these
techniques and the goals they try to reach with them.

Data driven approaches based on time domain models [46] and frequency domain meth-
ods [51] have been researched, as well as modern paradigms like behavioural [66] or big
data based control [99]. Data driven controller tuning methods which directly synthesize
a controller with an iterative procedure [27, 43] or which obtain desirable properties as
to ensure closed-loop stability [106] have been developed. Data driven predictive con-
trol [79, 100] and iterative learning control [31] have also been proposed.

Using data based inference strategies to obtain prediction models is the most popular data
based control approaches. In section 1.3 some of the generic inference strategies that are
used in these approaches were presented. The use of data to identify a model, to build
regressors and predictors, to train neural networks which simulate systems dynamics or
to modify on-line a set of parameters from a parametrized model has been widely studied
in the literature.

An approach widely used is to derive an explicit model from data to later use it in the
controller as in [5, 3]. Regression trees and ensemble learning have been used by Jain
et al. [48] to obtain a prediction model from data. A major breakthrough in system
identification was the developing of subspace identification methods (see the book [110]
and works [108, 109] of Van Overschee and De Moor) which have also been used in the
context of data driven predictive control [50].

A different technique used by Canale et al. [28], based on nonlinear set membership [72],
is used to obtain an approximate model with a bound on the worst-case model error
that can be used to infer closed loop-stability properties. Prediction models are also
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Figure 1.4.1: Model free data based predictive control diagram.

inferred from experimental data of inputs and outputs of the plant in the work of Limón
et al. [59]. Prediction methods can also return an interval obtained from historic input-
output measurements that bounds the system output as in the work of Bravo et al. [20].

A different point of view is to completely avoid the model estimation phase. Approaches
framed in this scope are usually known as model-free data driven techniques. Their goal
is to provide a control law through the data avoiding explicitly to derive a model.

All these strategies have a similar general scheme shown in figure 1.4.1. Notice that, in this
case, the problem of model identification is avoided because the controller directly defines
the control law using the database and the current information available (reference value,
current output, estimated state, predicted future disturbance sequence, recent previous
inputs and outputs, etc.). Favoreel et al. [36] used this approach to derive, by means of
matrix decompositions, an LQG control law directly from data. Model free data driven
MPC has been presented by Piga et al. [79] in which no model is explicitly obtained from
data and a hierarchical structure with an inner linear controller is used. Other strategy
without explicit model is presented by Tanaskovic et al. [100], where past data obtained
from the system are used off-line to guarantee a predictable closed loop behaviour whereas
on-line collected data is used to adapt the controller.

Another approach would be the use of some form of machine learning technique to learn the
controller directly from data, like in the work of Fagiano et al. [35] where a l1-norm regular-
ized learning algorithm based on convex programming is presented; or to solve iteratively
infinite horizon control problems by using approximate dynamic programming [11, 80] or
approximate Q-learning techniques [58, 12] in which the direct computation of the perfor-
mance function is avoided by using a suitable approximation [106] or applying distributed
optimization algorithms to tackle adaptative dynamic programming problems [101]; or to
identify the process dynamics [50].

In [79] data-driven direct controller synthesis are combined with MPC to control systems
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under input and output constraints without the need of a model of the open-loop process.
Using similar techniques, model-free optimal control has been proposed in [96]. In [5]
some machine learning techniques are proposed to estimate the global uncertainty of the
system, in order to improve predictions. In [28, 59] nonlinear predictive controllers are
designed based on data using Lipschitz interpolation techniques.

A data-driven control design technique which is based on the on-line inversion of the model
and copes with MIMO nonlinear system is presented in [75]. Other works, as in [33], focus
on achieving high tracking performance through learning for unknown LTI systems subject
to unknown disturbances. Nonlinear systems with output saturation are addressed in [23].

1.5 Objective of the thesis

In this thesis, the main goal is to propose novel data based predictive controllers to cope
with complex industrial infrastructures such as water distribution networks. This sort of
systems have several inputs and outputs, complicate nonlinear dynamics, binary actuators
and they are usually perturbed by disturbances and noise and require real-time control
implementation. The proposed controllers have to deal successfully with these issues while
using the available information, such as past operation data of the process, or system
properties as fading dynamics.

To this end, the control strategies presented in this work follow a predictive control ap-
proach. The control action computed by the proposed data-driven strategies are obtained
as the solution of an optimization problem that is similar in essence to those used in MPC
based on a cost function that determines the performance to be optimized. In the pro-
posed approach however, the prediction model is substituted by an inference data based
strategy, either to identify a model, an unknown control law or estimate the future cost of
a given decision. As in MPC, the proposed strategies are based on a receding horizon im-
plementation, which implies that the optimization problems considered have to be solved
online.

In order to obtain problems that can be solved efficiently, most of the strategies proposed
in this thesis are based on DWO for ease of implementation and computational complexity
reasons. Linear convex combination is a simple and strong tool in continuous domain and
computational load associated with the constrained optimization problems generated by
linear convex combination are relatively soft. This fact makes the proposed data based
predictive approaches suitable to be used in real time applications.

One drawback of using this approach is that the number of optimization variables and
constraints depend directly on the size of the considered database. Nevertheless, this
issue can be addressed by selecting the most adequate information (similar to the current
situation according to output, state, input, disturbances,etc.), in particular, data which is
close to the current state or situation of the system. Using local data can be interpreted as
an implicit local linearisation of the system every time we solve the model-free data driven
optimization problem. This implies that even though, model free data driven approaches
presented in this thesis are based on linear theory, they can successfully deal with nonlinear
systems because of the implicit information available in the database.

In the next section, an outline of this thesis is provided. In each chapter, a different control
strategy has been developed.
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1.6 Thesis outline

The outline of this thesis is organized as follows:

Chapter 2. MPC for partially fading memory systems

The first control problem tackled in this thesis was motivated by drinking water networks.
In particular, the objective of the first research was to develop an MPC controller for a
WDN with on-off actuator and valves able to consider long prediction horizons. To this
end, the following chapter presents a heuristic algorithm to implement a model predictive
controller for systems with binary inputs in which the effect of the control signal on the
response partially vanishes before reaching steady state, for example systems that exhibit
both fast and slow stable dynamics. The proposed algorithm is based on an iterative
procedure that constructs a reduced set of suboptimal solutions. The size of this set
can be set accordingly to the computing capabilities and the sample time. The iterative
procedure rejects possible solutions profiting from the partial fading memory property of
the system and an approximation of the optimal cost-to-go function.

Chapter 3. Historian data based predictive control

One of the main problems of applying the proposed MPC for partially fading memory
systems to large scale WDN was how to approximate the optimal cost-to-go functions.
Motivated by this issue, in this chapter we present a data-based strategy in which DWO
is used to estimate the performance of a given future trajectory, as a previous step to
evaluate optimal costs. This idea lead to the heuristic historian data based predictive
control strategy presented in this chapter. The control actions are computed based on
past historian data. The historian stores closed loop operation data of the process with
different controllers used in the past which may not provide sufficient information for a
precise system nor controller identification. The proposed predictive controller computes
the current control actions as a weighted sum of past control actions so that an estimation
of the performance cost over a prediction horizon is minimized. Only a subset of the past
control actions in the historian close to the current state of the process are considered
in the current control computations to carry out a local linearisation. This predictive
strategy is well suited to control applications of large and complex processes for which
it is difficult to carry out identification experiments such as water distribution systems.
This strategy is used to control a water distribution system simulated using the EPANET
software, in particular, the Richmond water distribution system. The trajectories of a set
of relay controllers are used through the proposed approach to take into account pressure
constraints and periodic references.

Chapter 4. Offset free data driven control

The proposed historian data based controller was applied not only to the Richmond case
study, but also to a laboratory scaled four tank process. The results showed that even
if the historian data was obtained from offset free closed-loop trajectories (in particular
obtained using a PI controller), in order to obtain zero tracking error the proposed control
scheme had to be modified. Motivated by this issue, the problem of learning an off-set free
control law using DWO was tackled. This chapter presents a data driven control strategy
able to track a set point without steady state error. The control sequence is computed
as an affine combination of past control signals, which belong to a set of trajectories
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stored in a process historian database. This affine combination is computed so that the
variance of the tracking error is minimized. It is shown that offset free control, that is,
zero mean tracking error, is achieved under the assumption that the state is measurable,
the underlying dynamics are linear and the trajectories of the database share the same
error dynamics and are in turn offset free. The proposed strategy learns the underlying
controller stored in the database while maintaining its offset free tracking capability in
spite of differences in the reference, disturbances and operating conditions. No training
phase is required and newly obtained process data can be easily taken into account.

Chapter 5. Data-based predictive control via direct weight optimization

In the previous chapters, DWO has been used to estimate the cost of a future trajectory and
to learn the underlying controller stored in a database. In this chapter we take a different
approach and focus on using DWO to estimate the unknown system model and to decide
the optimal control simultaneously. A novel data-based predictive control scheme in which
the prediction model is obtained from a linear combination of past system trajectories is
presented. The proposed controller optimizes the weights of this linear combination taking
into account simultaneously performance and the variance of the estimation error. For
unconstrained systems, dynamic programming is used to obtain an explicit linear solution
of a finite or infinite horizon optimal control problem. When constraints are taken into
account, the controller needs to solve online a quadratic optimization problem to obtain the
optimal weights, possibly considering also local information to improve the performance
and estimation.

Chapter 6. Learning based predictive control for MIMO systems

Up to here, the main idea has been to use DWO in different control problems. Nevertheless,
the effect of the estimation and measuring errors or the effect of unknown perturbations
have not been considered. In this chapter, we present a joint work with Enrico Terzi,
Marcello Farina, Lorenzo Fagiano and Ricardo Scattolini from the Politecnico di Milano
carried out during an academic stay, in which the issue of robustness in data based predic-
tive control is considered. In particular, a learning-based approach for robust predictive
control design for multi-input multi-output (MIMO) linear systems is presented in this
chapter. The identification stage allows to obtain multi-step ahead prediction models and
to derive tight uncertainty bounds. The identified models are then used by a robust model
predictive controller, that is designed for the tracking problem with stabilizing properties.
Numerical results show the effectiveness of the proposed approach on a benchmark exam-
ple, a quadruple-tank process linearised around a working point. The proposed algorithm
is later used to control the nonlinear model of the benchmark example using data gathered
from it. The resulting controller, suitably modified to account for the nonlinear system
gain matrix, results in remarkable tracking performances.

Chapter 7. Conclusions and future lines

An analysis of the results obtained in the research developed along this thesis is presented
in the last chapter. Furthermore, future research lines which continue with the work
carried out are also proposed.
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Chapter 2

Model predictive control of
partially fading memory systems
with binary inputs

Binary programming problems are a specific case of MILP/MIQP, or more generally speak-
ing, of mixed integer programming (MIP) problems. Brute force algorithms that take into
account all the possibles combinations in predictive control with large predictions horizons
can not be implemented, specially in real time applications which have certain time slot
to compute the next input.

On approach is to consider only a set of the possible combinations using some selection
criteria. Some examples of these strategies are branch and bound, genetic algorithms or
L-band algorithms ([1, 37]). In [29] two different approaches based on branch and bound
techniques and genetic algorithms were applied to the control of a batch reactor with on-
off valves. Genetic algorithms have also been used by Schmitz et al. [95] for the control
of the aeration in a waste water treatment plant with the goal of lowering the operating
costs. Branch and bound algorithms has been used together with an event driven sampling
mechanism to apply an MPC strategy to the control of pH in photobiorreactors [10, 77].
Attitude control of a spacecraft using on-off thrusters with linear parameter varying models
and branch and bound techniques has been considered in [4]. The solution of the MIQP
problem using methods not based on branch and bound has also been considered in the
context of optimal control problems of systems with discrete inputs. Sager et al. [93]
used, in the optimal control of a subway train with discrete gears, a convexification on the
control inputs and a relaxation of the MIQP problem in a proposed strategy based on the
direct multiple shooting method ([16]). Finally in some rare cases, the optimal control
policy can be identified a priori and online optimization can be avoided ([89]).

All these approaches provide suboptimal solutions, but they can be applied in real time
processes because of their reduced computational timing which, in some cases as branch
and bound, can be set to a fixed value. The efficiency provided by these suboptimal
methods depends on the exploitation of some property of the class of systems considered.

This chapter presents a heuristic algorithm to obtain a suboptimal solution of the MPC
optimization problem for processes with binary inputs in which a part of the dynamics

15
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is not influenced by past values of the control signal beyond a certain time instant. We
denote this class of systems as partial fading memory systems (PFMS). The algorithm
constructs iteratively a series of sets of candidate solutions that are likely to contain the
optimal solution, in a similar way to the L-Band algorithm, profiting from the partial
fading memory property of the system and an approximation of the optimal cost-to-go
function. The size of this set provides a trade-off between optimality and computational
burden. These properties are illustrated by means of a simulated example.

2.1 Problem formulation
The system considered throughout the chapter will be represented by a discrete-time linear
model:

x(t+ 1) = Ax(t) +Bu(t) (2.1)
where x(t) ∈ Rnx is the state of the process, u(t) ∈ {0, 1} is the binary control input, t ∈ Z
is discrete valued, A ∈ Rnx×nx is the state transition matrix and B ∈ Rnx is the input
matrix.

Definition 1 (Partially fading memory system). A system is said to be a partially fading
memory system if for any given state sequences xa(t), xb(t) with different initial states but
driven by the same input sequence, the following holds:

‖xa(t)− xb(t)‖ ≤ ‖Cs(xa(t)− xb(t))‖+ σtf‖Cf (xa(0)− xb(0))‖, ∀t ≥ L

where L ∈ N is the fading time of the fast dynamics, σf ∈ [0, 1) is the fading parameter
such that σLf � 1 and Cs and Cf are projection matrices that satisfy ‖xa(t) − xb(t)‖ ≤
‖Cs(xa(t)− xb(t))‖+ ‖Cf (xa(t)− xb(t))‖ ∀t, where ‖ · ‖ is a given vector norm.

This definition implies that part of the state x(t) for time instant t is only barely influenced
by past values of u(t) beyond t − L (i.e, u(t − L), u(t − L − 1), . . . ). This can be seen as
the fast dynamics part of the state, denoted as zf (t) so that

zf (t) = Cfx(t).

On the other hand, the remaining part of the state is influenced by past values of u(t)
beyond u(t−L). This part of the state vector, the slow dynamics of system (2.1), will be
denoted as zs(t), so that

zs(t) = Csx(t).

Systems that combine stable and integrating dynamics and systems with both fast and
slow stable dynamics are examples of PFMS.

Assumption 1. System (2.1) is a partially fading memory system (PFMS).

Assuming that (2.1) is a partial fading memory system, it is possible to partition the
eigenvalues of matrixA in two sets, ξs and ξf related to slow and fast dynamics respectively,
such that

min
λ∈ξs

|λ| > max
λ∈ξf

|λ| = σf . (2.2)

Since all the eigenvalues in ξs are different from the ones in ξf , there exists a matrix T
such that

A = T

[
Hs 0
0 Hf

]
T−1 (2.3)
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where Hs, Hf are Jordan blocks that represent the slow and fast dynamics of the system
respectively. That is, the eigenvalues of Hs and Hf are contained in ξs and ξf respectively.
The slow and fast projections, denoted zs and zf , are obtained from

z =
[
zs
zf

]
= T−1x (2.4)

where z ∈ Z ⊂ Rnx . The following property shows that if σf < 1, then system (2.1)
satisfies Assumption 1. Moreover, the proof that we present for this property provides a
procedure to obtain matrices Cs and Cf .

Property 1 (Fading parameter in linear systems). Suppose that the eigenvalues of matrix
A are partitioned in two set as in (2.2) with σf < 1, then system (2.1) is a partially fading
memory system with fading parameter σf .

PROOF: Suppose that the same first control input u(0) is applied to different initial
conditions xa(0), xb(0). We have,

xa(1)− xb(1) = Axa(0) +Bu(0)−Axb(0)−Bu(0)
= A(xa(0)− xb(0)).

From (2.3) we obtain

xa(1)− xb(1) = T

[
Hs 0
0 Hf

]
T−1(xa(0)− xb(0))

T−1 (xa(1)− xb(1)) =
[
Hs 0
0 Hf

]
T−1(xa(0)− xb(0)),

and taking into account (2.4)

za(1)− zb(1) =
[
Hs 0
0 Hf

]
(za(0)− zb(0)).

Proceeding in a recursive way, we obtain that if the same control sequence is applied to
both projected initial conditions

za(t)− zb(t) =
[
Ht
s 0

0 Ht
f

]
(za(0)− zb(0)). (2.5)

There are two possible cases depending on whether the maximum singular value of matrix
Hf , denoted as σ̄(Hf ), is equal or greater than the fading parameter.

a) σ̄(Hf ) = σf .
This is the most general case and occurs, for example, when the eigenvalues of Hf are
different.

We have,

za(t)− zb(t) =
[
zsa(t)− zsb(t)
zfa (t)− zfb (t)

]

=
[

zsa(t)− zsb(t)
Ht
f (zfa (0)− zfb (0))

]

=
[
zsa(t)− zsb(t)

0

]
+
[

0
Ht
f

(
zfa (0)− zfb (0)

) ] . (2.6)
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From the triangular inequality we now obtain, for the Euclidean norm ‖ · ‖2, the following
inequality

||za(t)− zb(t)||2 ≤
∣∣∣∣∣
∣∣∣∣∣
[
zsa(t)− zsb(t)

0

]∣∣∣∣∣
∣∣∣∣∣
2

+
∣∣∣∣∣
∣∣∣∣∣
[

0
Ht
f

(
zfa (0)− zfb (0)

) ]∣∣∣∣∣
∣∣∣∣∣
2

= ||zsa(t)− zsb(t)||2 +
∣∣∣∣∣∣Ht

f

(
zfa (0)− zfb (0)

)∣∣∣∣∣∣
2

≤ ||zsa(t)− zsb(t)||2 +
∣∣∣∣∣∣Ht

f

∣∣∣∣∣∣ ∣∣∣∣∣∣zfa (0)− zfb (0)
∣∣∣∣∣∣

2
,

where ‖Hf‖ denotes the matrix norm induced with the Euclidean norm (‖Hf‖ = σ̄(Hf ) =
σf ). Since the induced matrix norm is submultiplicative we have ‖Ht

f‖ ≤ ‖Hf‖t = σtf .
Therefore,

||za(t)− zb(t)||2 ≤ ||z
s
a(t)− zsb(t)||2 + σtf

∣∣∣∣∣∣zfa (0)− zfb (0)
∣∣∣∣∣∣

2
. (2.7)

If (2.4) is applied again,

‖xa(t)− xb(t)‖2 = ‖T (za(t)− zb(t))‖2
≤ ‖T‖‖za(t)− zb(t)‖2
= σ̄(T )‖za(t)− zb(t)‖2.

Then, from (2.7) we obtain

‖xa(t)− xb(t)‖2 ≤ σ̄(T )
∥∥∥[ I 0

]
T−1 (xa(t)− xb(t))

∥∥∥
2

+σtf σ̄(T )
∥∥∥[ 0 I

]
T−1 (xa(0)− xb(0))

∥∥∥
2
.

We conclude,

‖xa(t)− xb(t)‖2 ≤ ‖Cs(xa(t)− xb(t))‖2 + σtf ‖Cf (xa(0)− xb(0))‖2 .

where Cs = σ̄(T )
[

I 0
]
T−1 and Cf = σ̄(T )

[
0 I

]
T−1. Thus, the value of the fading

parameter is
σf = max

λ∈ξf

|λ| = σ̄(Hf ) = ||Hf || .

b) σ̄(Hf ) > σf
This may occur only whenHf has repeated eigenvalues. Consider the following generalized
eigenvalue minimization problem,

min
αf ,Pf

αf

s.t. H>f PfHf ≤ αfPf
Pf ≥ I.

(2.8)

Since Hf is strictly stable we have from quadratic Lyapunov theory ([17]) that this op-
timization problem is always feasible and the optimal solution α∗f belongs to the interval
[0, 1). Suppose that (Pf , αf ), with αf ∈ [0, 1) is a feasible solution to the previous opti-
mization problem. We define σf = √αf < 1 and

P =
[

I 0
0 Pf

]
.
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This matrix defines a weighted norm, that is

||z||P =
√
z>Pz.

Since the pair (Pf , αf ) is a feasible solution for (2.8), we have H>f PfHf ≤ αfHf = σ2
fHf .

Denoting ∆zf (t) = zfa (t)− zfb (t) we obtain

‖∆zf (t)‖Pf
= ‖zfa (t)− zfb (t)‖Pf

= ‖Hf

(
zfa (t− 1)− zfb (t− 1)

)
‖Pf

= ‖Hf∆zf (t− 1)‖Pf

=
√

(∆zf (t− 1))>H>f PfHf∆zf (t− 1)

≤
√
σ2
f (∆zf (t− 1))> Pf∆zf (t− 1)

= σf‖∆zf (t− 1)‖Pf
.

Proceeding in a recursive fashion we have

‖∆zf (t)‖Pf
≤ σtf‖∆zf (0)‖Pf

.

Since Pf > I we have P−1
f < I. Therefore,

‖∆zf (t)‖2 =
√

(∆zf (t))>P
1
2
f P
−1
f P

1
2
f ∆zf (t)

≤
√

(∆zf (t))>P
1
2
f P

1
2
f ∆zf (t)

= ‖∆zf (t)‖Pf

≤ σtf‖∆zf (0)‖Pf

= σtf‖P
1
2
f ∆zf (0)‖2. (2.9)

Then

‖xa(t)− xb(t)‖2 = ‖T T−1 (xa(t)− xb(t)) ‖2
≤ σ̄(T )

∥∥∥T−1 (xa(t)− xb(t))
∥∥∥

2
= σ̄(T ) ‖za(t)− zb(t)‖2
= σ̄(T ) ‖∆z(t)‖2
≤ σ̄(T )

(
‖∆zs(t)‖2 +

∥∥∥∆zf (t)
∥∥∥

2

)
.

From (2.9)

‖xa(t)− xb(t)‖2 ≤ σ̄(T )
(
‖∆zs(t)‖2 + σtf

∥∥∥∥P 1
2
f ∆zf (0)

∥∥∥∥
2

)
= σ̄(T )

(
‖zsa(t)− zsb(t)‖2 + σtf

∥∥∥∥P 1
2
f

(
zfa (0)− zfb (0)

)∥∥∥∥
2

)
= σ̄(T )

∥∥∥[ I 0
]
T−1 (xa(t)− xb(t))

∥∥∥
2

+σtf σ̄(T )
∥∥∥∥P 1

2
f

[
0 I

]
T−1 (xa(0)− xb(0))

∥∥∥∥
2
.
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We conclude that

‖xa(t)− xb(t)‖2 ≤ ‖Cs (xa(t)− xb(t))‖2 + σtf ‖Cf (xa(0)− xb(0))‖2

where Cs = σ̄(T )
[

I 0
]
T−1 and Cf = σ̄(T )P

1
2
f

[
0 I

]
T−1.

The control objective is to regulate the state of the system to the origin while minimizing
a particular performance index. To this end we propose to use an MPC formulation based
on a stage cost `(x, u) and a terminal cost `N (x).

Assumption 2 (Lipschitz continuity). It is assumed that `(x, u) and `N (x) are Lipschitz
continuous with respect to x. That is,

|`(xa, u)− `(xb, u)| ≤ ρ`‖xa − xb‖, ∀(xa, xb, u)
|`N (xa)− `N (xb)| ≤ ρ`N ‖xa − xb‖, ∀(xa, xb)

for some ρ` and ρ`N with ρ`, ρ`N ∈ R > 0.

We notice that no convexity assumption is required on `(·, ·) or `N (·). Following the
conventions in MPC, N time steps sequences into the future will be considered for the
input, u ∈ UN , with UN ⊆ {0, 1}N . Given an initial state x and a candidate input
sequence u ∈ UN , the performance cost V (x,u) is defined as

V (x,u) =
N−1∑
k=0

`(x(k), u(k)) + `N (x(N)), (2.10)

where x(0) = x, x(k + 1) = Ax(t) +Bu(t) and N is the prediction horizon.

The Lipschitz continuity assumption on `(·, u) and `N (·) and the PFMS nature of the
system imply that the performance cost V (·,u) is also Lipschitz continuous, thus

|V (xa,u)− V (xb,u)| ≤ ρV ‖xa − xb‖, ∀xa, xb,u (2.11)

for some ρV ∈ R > 0.

The MPC controller solves at each sampling time the following binary optimization prob-
lem:

u∗ = arg min
u
V (x,u) (2.12)

in which only the first component of the optimal solution u∗ is applied, i.e., u(t) = u∗(0).
The optimal cost function will be then defined as

V ∗(x) = V (x,u∗) (2.13)

which, by definition, satisfies

V ∗(x) ≤ V (x,u), ∀u ∈ UN .

Optimization problem (2.12) is a binary optimization problem which, in general, is NP-
Hard.
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2.2 Optimization algorithm
This section presents a heuristic algorithm to obtain a suboptimal solution of problem
(2.12) in an efficient way. The algorithm is an iterative procedure that builds a series of
candidate solution sets of increasingly longer binary input sequences until those sequences
have a length equal to the prediction horizon N . Those candidate solution sets will have a
size (cardinality) that can be set accordingly to the computing power and available storage
capacity, and are likely to contain a near optimal solution to (2.12).

2.2.1 Criterion for candidate set reduction

The reduction of the size of the candidate sets will be based on a screening criterion which,
given two input sequences with only the first k − 1 components known, will screen which
one will result in a higher performance cost and therefore could be discarded. The problem
with this approach is that at iteration k the performance cost for a sequence is unknown,
because the sequence is incomplete, so instead of using the performance cost for screening
non optimal sequences, it is necessary to use an approximation of this value.

Given an initial state x, a candidate solution u and a time step k, the performance cost
can be divided in two terms: the cost up to time step k and the cost from time step k to
the end of the prediction horizon, i.e.

V (x,u) = V k−1
0 (x,u) + `Nk (xk,u) (2.14)

where, with a slight abuse of notation, xk is the predicted state for time step k using
model (2.1) and

V k−1
0 (x,u) =

k−1∑
j=0

`(x(j), u(j))

where x(0) = x and

`Nk (x,u) =
N−1∑
j=k

`(x(j), u(j)) + `N (x(N))

where x(k) = x.

The optimal cost to go for an incomplete binary input sequence is defined as follows

`∗k,N (x) = min
u
`Nk (x,u). (2.15)

Property 2 (Lipschitz continuity of `∗k,N (x)). The optimal cost to go
`∗k,N (x) is Lipschtiz continuous.

PROOF: By definition `Nk (x,u) is Lipschitz continuous in x as it is the sum and com-
position of Lipschitz continuous functions. Consider u∗a,u∗b the minimizers of (2.15) for
x = xa and x = xb respectively. Then the following inequality holds:

`∗k,N (xa) = `Nk (xa,u∗a) ≤ `Nk (xa,u∗b). (2.16)

On the other hand, being `Nk (x(k),u) Lipschitz continuous in x, with Lipschitz constant
γl∗ , then

`Nk (xa,u∗b) ≤ `Nk (xb,u∗b) + γl∗‖xa − xb‖. (2.17)
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Taking into account that `Nk (xb,u∗b) = `∗k,N (xb) and (2.16):

`∗k,N (xa)− `∗k,N (xb) ≤ γl∗‖xa − xb‖. (2.18)

Exchanging u∗a by u∗b and xa by xb leads to

`∗k,N (xb)− `∗k,N (xa) ≤ γl∗‖xa − xb‖. (2.19)

Thus taking into account (2.18) and (2.19):

|`∗k,N (xa)− `∗k,N (xb)| ≤ γl∗‖xa − xb‖, (2.20)

which implies that the optimal cost to go is Lipschitz continuous. �

The optimal cost to go for a particular state is defined by (2.15), however this function
is hard to obtain. We assume that there exists a function ˆ̀N

k (x) that approximates the
optimal cost. As an approximation, ˆ̀N

k (x) will differ from the optimal cost to go by an
error Φk(x), so that

Φk(x) = `∗k,N (x)− ˆ̀N
k (x) (2.21)

is the cost to go approximation error function.

Assumption 3. It is assumed that there exists some constants γΦ and σΦ such that the
error function Φk(x) satisfies:

Φk(xa)− Φk(xb) < γΦ ||xa − xb||+ σΦ, k = 1, . . . , N (2.22)

Note that if the cost to go approximation ˆ̀N
k (x) is Lipschitz continuous, then Φk(x) is also

Lipschitz continuous, because it is the difference of two Lipschitz functions (see property
2). In this case this assumption is satisfied with σΦ = 0. Nevertheless, the results presented
in the following do not require the Lipschitz continuity of ˆ̀N

k (x).

Using this approximated cost to go function, the approximated cost of a given incomplete
input sequence is defined as follows:

V̂ k(x,u) = V k−1
0 (x,u) + ˆ̀N

k (xk) (2.23)

where, with a slight abuse of notation, xk is the predicted state for time step k using
model (2.1). This cost function is used in the algorithm to reject possible candidates.

Theorem 1 (Screening criterion). Let ua and ub ∈ UN be two different input binary
sequences. If the approximate costs at time instant k satisfy

V̂ k(x0,ub)− V̂ k(x0,ua) ≥ γΦ ||xa − xb||+ σΦ, (2.24)

where x0 is the initial state that is equal for all possible input and xa, xb are the k-steps
ahead predicted states from x0 for ua,ub respectively, then, ub will not be the optimal
solution to problem (2.12), therefore it can be discarded.

PROOF: Note that for any sequence u:

V k−1
0 (x0,u) + `∗k,N (xk) = V̂ k(x0,u) + `∗k,N (xk)− ˆ̀N

k (xk)
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Thus, taking into account this and the definition of Φk(x) in (2.21):

V k−1
0 (x0,ua) + `∗k,N (xa)

−V k−1
0 (x0,ub)− `∗k,N (xb) = V̂ k(x0,ua)− V̂ k(x0,ub)

+`∗k,N (xa)− `∗k,N (xb)
−ˆ̀N

k (xa) + ˆ̀N
k (xb)

= V̂ k(x0,ua)− V̂ k(x0,ub)
+Φk(xa)− Φk(xb) (2.25)

Furthermore, taking into account (2.22) in the right hand side of equality (2.25) yields:

V k−1
0 (x0,ua) + `∗k,N (xa)

−V k−1
0 (x0,ub)− `∗k,N (xb) ≤ V̂ k(x0,ua)− V̂ k(x0,ub)

+γΦ ||xa − xb||+ σΦ (2.26)

Now it is easy to see that if

V̂ k(x0,ub)− V̂ k(x0,ua) ≥ γΦ ||xa − xb||+ σΦ

then
V̂ k(x0,ua)− V̂ k(x0,ub) + γΦ ||xa − xb||+ σΦ ≤ 0

which taking into account (2.26) leads to

V k−1
0 (x0,ua) + `∗k,N (xa)− V k−1

0 (x0,ub)− `∗k,N (xb) ≤ 0

and finally to
V k−1

0 (x0,ub) + `∗k,N (xb) ≥ V k−1
0 (x0,ua) + `∗k,N (xa) (2.27)

�

This result can be interpreted as a guarantee that there exists a complete input sequence
beginning with the first k components of ua with a lower cost than the best (i.e., with lowest
cost) input sequence beginning with the first k components of ub. Thus, the sequence ub
can be discarded. Note that this implies, that, if the bounds γΦ and σΦ are known,
theorem 1 can be used to obtain the optimal solution of problem (2.12).

Notice that neglecting σΦ in the screening criterion amounts to a suboptimality bounded
by σΦ. That is,

V̂ k(x0,ub)− V̂ k(x0,ua) ≥ γΦ ||xa − xb||

implies that

V k−1
0 (x0,ub) + `∗k,N (xb) ≥ V k−1

0 (x0,ua) + `∗k,N (xa)− σΦ.

The screening criterion of theorem 1 could be applied for all possible candidate sequence
pairs considered for solution of (2.12). However this is not a realistic approach, as the
number of candidate sequences will be always high enough to pose a computational burden
too heavy for a real time solution of (2.12). The approach considered here is to compare
only pairs that result in ‖xa − xb‖ small, as it will be easier to reject one of the sequences
in the pair. To find pairs that result in ‖xa − xb‖ small, consider xa(k), xb(k) whose
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input sequences share the same most recent L input values. If the system is PFMS (see
definition 1) then

‖xa(k)− xb(k)‖ ≤ ‖zsa(k)− zsb(k)‖+ σLf ‖zfa (k − L)− zfb (k − L)‖.

The best way to ensure that ‖xa(k)− xb(k)‖ is small, is to compare pairs in which zsa(k)
and zsb(k) are similar (which implies that ‖zsa(k)− zsb(k)‖ is small), and then, in addition
to that, compare pairs that also share the same or similar most recent L input values. The
latter condition implies that σLf ‖zfa (k−L)−zfb (k−L)‖ is small, since σLf � 1. This shows
how to take advantage of the PFMS nature of the system to guarantee that ‖xa(k)−xb(k)‖
is small.

These observations suggest that an algorithm that uses the screening criterion should rely
on a grouping of the candidate input sequences, based on the slow state zs they reach.
Then, in each group, the screening criterion should be applied to pairs of input sequences
that have similar most recent L input values.

2.2.2 Iterative algorithm for PFMS

We present next an algorithm based on the screening criterion presented in the previous
subsection. The algorithm is suboptimal because γΦ and σΦ cannot be computed in
general. Instead, σΦ will be supposed to be zero and γΦ will be chosen in a way such
that the number of candidates is lower than a fixed value M . The algorithm starts with
a set of 2k different binary input sequences with the first k non-zero components with
k = blog2Mc, where M is the maximum allowable size of the candidate solution set. This
initial set contains all the possible beginnings, up to time instant k, of the binary input
sequences of length N that are candidate solutions to problem (2.12).

At each iteration k, the algorithm builds a hypothesis set of binary input sequences (can-
didates) of k components. The hypothesis set doubles the number of candidates of the
previous step candidates set. Each hypothesis sequence is then compared with two other
close candidates and γkΦ is chosen so that the resulting candidates set has less than or
equal to M components, repeating the procedure until a full size candidate set is ob-
tained, choosing the solution from this set.

In order to determine the comparison pairs that provide small deviations in the k-steps
ahead predictions of the state of the corresponding hypotheses sequences, and hence max-
imize the possibilities of rejection, the algorithm profits from the partial fading property
of the system. Instead of classifying the hypothesis by their full state predictions, the
algorithm first classifies all the hypothesis sequences in a predefined NG number of groups
on behalf of the lower dimension slow state predicted k-steps ahead from the initial state.
Then, each hypothesis is compared with the two other hypothesis from the group that
have the most similar last sequence of inputs. If the last input values before a given time
step k of each sequence of a comparison pair are similar, the part of the predicted state
that fades faster (see definition 1) will be approximately equal after step k. These two
steps are motivated by the necessity of comparing sequences that have a similar k-step
predicted state, which in turn will make the gap needed to apply the screening criterion
in (2.24) small. With such a small gap it will be much easier to reject sequences applying
the screening criterium of theorem 1.



2.2. OPTIMIZATION ALGORITHM 25

Algorithm 1 (MPC for PFMS). The input parameters are: M (the maximum of the
candidate set), N (the prediction horizon) and implicitly the initial state and the process
model. The output parameter is u∗ (the suboptimal solution to problem (2.12)). The
algorithm steps can be stated as:

1. Let k = blog2Mc.

2. Create the candidate set Ck = {ck0, ck1, . . . , ck|Ck|}, composed by all the possible com-
binations of binary input sequences of length N with the first k non-zero components
and zero values for the last N − k components. See figure

3. Form the hypothesis set Hk+1 = {hk+1
0 ,hk+1

1 , . . . , hk+1
2|Ck|} from the sequences in Ck

so that for all i = 1, . . . , |Ck| and for all j = 1, . . . , N :

hk+1
i (j) = cki (j)

hk+1
i+|Ck|(j) =

{
cki (j) if j 6= k + 1

1 otherwise

where cki (j), hk+1
i (j) and hk+1

i+|Ck|(j) denotes the j − th component of each sequence
respectively.

4. For each input sequence hk+1
i in Hk+1, compute its approximate cost V̂ k+1(x,hk+1

i ).

5. Classify Hk+1 in NG groups so that each group contains input sequences that lead to
a similar slow state zs predicted k + 1-steps ahead from the initial state x.

6. Sort the sequences in each group of Hk+1 by a numeric index calculated as∑N
j=0 2jhk+1

i (j), ∀i = 1, . . . , |Hk+1|1 .

7. Find γkΦ such that when each hypotheses sequence hk+1
i is compared with its neigh-

bours applying Theorem 1 with γkΦ and σΦ = 0 the resulting candidate set Ck+1 has
less than M components.

8. Let k = k + 1.

9. Repeat from step 3 until k = N .

10. Return u∗ = arg minu∈CN
V (x,u).

Step 3 builds the hypothesis set duplicating the candidates set taking into account that
at time step k+ 1 for each candidate there are two possible values that the input can take
(0 for hk+1

i and 1 for hk+1
i+|Ck|). Note that in order to simplify the notation, all the input

sequences are of dimension N and that by construction, all the inputs of the candidates
in Ck are zero for the last N − k steps.

Step 4 of the algorithm can be computationally demanding depending on the function used
to approximate the optimal cost to go. In the example section we present an application
in which for each candidate the optimal cost to go is approximated by carrying out an
open-loop simulation with an explicit controller.

Step 5 of the algorithm groups the hypothesis sequences based on the value of zs(k)
reached so that only sequences which yield a similar zs(k) should be later compared using

1By construction the N − k components after step k of each hypotheses sequence are zero. This implies
that sequences with similar last input values will be placed next to each other after sorting.
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Figure 2.2.1: Representation of step 2,3 and 5 of Algorithm 1.
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Step 6: Ordering a group from the NG groups.

Figure 2.2.2: Representation of step 6 of Algorithm 1.

the screening criterium. In doing so, it is more likely to achieve a small ‖xa − xb‖ which
would help to reject sequences. Thus this step is based on solving a classification problem
in which the hypotheses sequences hk+1

i are grouped depending on their corresponding
value of the slow state of the k + 1 steps ahead state xk+1

i (k + 1). The complexity of this
step depends on the dimension of zs(k), that is, the dimension of the slow dynamics. The
number of elements of each group and the number of groups depends on the classification
procedure. In the example section we consider a single dimension slow dynamic and
propose to sort the hypotheses sequences by the value of their slow mode and divide
them into a predefined fixed number of groups NG with the same number of sequences.
There are other low computational burden classification procedures such as classifying the
sequences by their distance to a predefined set of a priori chosen points in the slow state
space, possibly leading to groups with different number of sequences.

The purpose of step 6 of the algorithm is to ensure that the sequences that are to be
compared using the screening criterium, in addition to yield a similar zs(k) also reach a
similar zf (k). This helps to compare only sequences that lead to a small ‖xa−xb‖, which
in turn makes easier to reject sequences. This is based on sorting the sequences of each
group accordingly a numerical index, which it is related to the value of zf (k), so that only
sequences with a similar numerical index will be compared.

In step 7 the value of γkΦ can be found explicitly once the estimated cost and predicted state
differences between each of the neighbour sequences are computed because these values
do not depend on γkΦ. To this end, the comparisons are assumed to be simultaneous, that
is, even if one sequence is rejected by one neighbour, it is still compared with its other
neighbour.

Algorithm 1 can be modified to take into account different comparing procedures that pair
sequences of Hk+1. In fact, instead of doing any classification or sorting, each sequence
could be compared to each other hypotheses sequence. This procedure would possibly
lead to a higher value of γkΦ but, as commented before, that would lead to an unaffordable
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number of comparisons. The procedure presented in Algorithm 1 provides a trade-off be-
tween optimality and computational cost by reducing the comparisons to those candidates
closest in a particular sense.

Algorithm 1 does not consider explicitly constraint handling, but it can be modified to do
so. Hard constraints on the input sequence values are very easy to deal with by simply
rejecting those sequences that violate the constraints. Such rejection can be done before
step 9, rejecting for example those sequences that have a high switching frequency. Note
that this strategy has been used before in other works like [105]. This has the benefit of
reducing the number of possible sequences to those which are feasible, thus making the
problem easier to solve. Constraints on the state are more difficult to be tackled in this
way and should be included in the performance cost and penalizing their violation like in
exact penalty function methods ([74]).

Note that the algorithm does not need the bounds of Assumption 3, but it will provide
better results if the cost-to-go function is a good approximation of the optimal cost-to-go.

One property of the proposed heuristic algorithm is that the computational complexity of
the algorithm depends linearly on M and N , and also the computational burden is quite
consistent and hence it can be tuned by means ofM and N depending on the computation
time available. The degree of suboptimality depends greatly on the values of M and N
and the approximation error of the cost-to-go function.

2.3 Example

The algorithm presented in the previous section will be applied to a simulated model of a
process containing a slow first order dynamics plus a fast oscillating second order one. The
transfer function model, akin to that of the pH control in a photobiorreactor ([10, 77]), is:

G(s) = K

τs+ 1 ·
w2
n

s2 + 2δwns+ w2
n

(2.28)

where K = −1.6, τ = 1320 (seconds), wn = 0.05 (radian/seconds) and δ = 0.085. The
output variable is the pH deviation from the operating point, which is 8.5. The manipu-
lated variable is the opening of an on-off valve that controls the injection of CO2 with a
fixed flow into the photobiorreactor with the purpose of feeding the algae in the reactor.
The CO2 forms carbonic acid when dissolved into the water, lowering the pH. However,
the CO2 is consumed by the algae, thus rising the pH unless more CO2 is injected.

The control objective is to regulate the pH to a reference value because the pH affects the
growing rates and living conditions of the algae. As a secondary objective, the number of
commutations of the valve will be minimized.

Note that the 2% settling time of the fast oscillating dynamics in (2.28) is approximately
3.9
δωn

= 917.6 s, whereas the slow overdamped dynamic in (2.28) has an approximate 2%
settling time of about 4τ = 5280 s. It is clear that this system can be described as a
PFMS, which is also evident in the impulse response of the complete system (2.28) shown
in figure (2.3.1).

In order to apply the proposed MPC control law, a state space discrete time model of
(2.28) is used. The sampling time is 30 seconds. The state space representation has been
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Figure 2.3.1: Impulse response and settling time of system (2.28).

chosen so that the slow and fast dynamics are decoupled using the Jordan canonical form.
The slow dynamics state will be used to create the groups in the step 5 of algorithm (1).

To satisfy the control objectives, the stage cost of the MPC controller penalizes the square
of the deviation plus a fixed cost if the valve changes its state, that is:

`(k) = Jsp + αJsw (2.29)

where r is the target pH, Jsp = (y(k) − r)2 is the cost of the tracking term, and Jsw =
|u(k) − u(k − 1)| is the switching effort term (note that this term is one or zero for each
stage depending on whether the valve switches or not) and the constant α provides a
tuning knob to balance both terms. Note that this stage cost satisfies Assumption 2.

The prediction horizon is chosen to be N = 100, which is more than two time constants
of the slow dynamics. This implies that the MPC optimization problem can be posed
as a BQP with 100 binary variables which could be solved using standard optimization
methods. The computational burden of that approach would be much greater than the
one of the proposed algorithm.

The computation of the approximated costs in algorithm 1 require the selection of the
approximation of the optimal cost to go ˆ̀N

k (xk). Ideally, this approximation should be
equal to the optimal cost to go, but this is very difficult in practice because it would imply
solving an optimization problem similar to the original one and the approximation of the
cost to go must be computed in real time for all the input sequences in the candidate
solutions set. The strategy used in this example is to compute the cost to go using closed-
loop simulations with explicit on-off controllers that can be computed in real time.



30 CHAPTER 2. MPC FOR PARTIALLY FADING MEMORY SYSTEMS

Note that the simulations required to compute the approximated costs of each candidate
input sequence are independent of each other, thus the computations can be done in paral-
lel. In fact, the problem is suited to be solved using general-purpose computing on graphics
processing units (GPGPU) instead of using multi-core CPU implementations ([30, 53]).
Using this parallel programming paradigm allows the computation of the optimal cost
to go approximation for all the candidate input sequences in real time, with a computa-
tion time that is a very small fraction of the overall computation time required when a
multi-core CPU implementation is used. Moreover, GPGPU computing using NVIDIA
CUDA capable GPUs can be done in Matlab, thus it can be integrated easily with the
implementation of algorithm 1.

Two possible explicit controllers have been considered: a relay controller that regulates the
pH to the desired value with a sampling time of 30 seconds and a proportional controller
that regulates the pH deviation to zero with a sample time of 300 seconds in which the
continuous control signal is implemented using a 10-bit pulse frequency modulation (PFM)
converter with a sampling time of 30 seconds.2 Figures 2.3.2 and 2.3.3 show a simulation of
system (2.28) in closed-loop with the relay controller and the proportional controller with
Kp = −3. In the simulations, the initial pH is 8.5 and the reference switches from 8 to 8.2
at time 4500 seconds and from 8.2 to 7.8 at time 9000 seconds. The total simulation length
is 14400 seconds. For the relay controller the accumulated reference tracking cost Jsp is
3.7052 and the total number of commutations is 176. For the proportional controller, the
accumulated reference tracking cost Jsp is 2.7818 and the total number of commutations
is 273. In this case, it can be seen that the proportional controller provides a better
performance, hence it will be used in the optimization algorithm to estimate the optimal
cost to go.

Although the computational complexity grows with N , the parameter which has the most
influence on the performance of the algorithm is the maximum allowed candidate set size
M . The computational burden grows linearly when it is increased, thus it is important to
keep M as low as possible. However, the suboptimality of the solution and the values of
γkΦ are also determined by M . In order to demonstrate the trade-off between optimality
and computational burden, over a hundred problems have been solved with different initial
conditions and references for eight different values of M .

On the other hand, a small number of groups NG leads to a range of variation of zs(k)
within each group larger than the one obtained with higher values of NG. Algorithm (1)
assumes that the sequences in each group have a similar zs(k), thus large groups are to
be avoided. On the other hand big values of NG result in very small groups in which it
can be difficult to find suitable pairs of sequences for the screening criterion of theorem
(1). Therefore, the number of groups has been chosen as NG = M/256, as a group size
of 256 have been found to work well in this example. Furthermore, different values of M
have been used to exemplify some aspects of the algorithm.

The problems for the comparison have been generated choosing a random pH reference
and assuming that the system pH is equal to the target reference to focus on the regulation
performance, that is, in this set of simulations the transient cost is zero. Note that the
transient cost does not provide a lot of information on the performance of the proposed

2The proportional controller calculates the input as u(k) = ur + Kp(r − y(k)) where ur is the steady
state opening (between 0 and 1) corresponding to the desired reference and is calculated using the static
gain of system (2.28).



2.3. EXAMPLE 31

Time [s]

0 2000 4000 6000 8000 10000 12000 14000

p
H

7.8

8

8.2

8.4

8.6

Time [s]

0 2000 4000 6000 8000 10000 12000 14000

C
O

2
 I

n
je

c
ti
o

n
 [

O
n

-O
ff

]

0

0.2

0.4

0.6

0.8

1

Figure 2.3.2: System controlled by a relay.
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Figure 2.3.3: System controlled by a proportional controller with KP = −3 and pulse
frequency modulation.
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Figure 2.3.4: Relation between J̄ and log(M).

controller because there is a single input that can only take two possible values, and hence,
it only starts switching once the set point is reached. For each value ofM 100 optimization
problems were solved, and the average cost of the 100 different optimization problems and
the mean value of the parameter γkΦ have been computed. Figures 2.3.4 and 2.3.5 show
the results of these tests. It can be seen in figure 2.3.4 that the mean cost decreases with
M .

Figure (2.3.5) shows how increasing the value of M leads to greater values of the average
γkΦ. If M is increased, the difference between the slow state projection of neighbouring
sequences is generally smaller. This smaller difference results in larger γkΦ values that still
meet the screening criterion.

A set of 100 problems with random initial states and random set points have been gener-
ated for increasing values of the prediction horizon in order to obtain computation timing
and suboptimality measurements. Note that in this sort of problems transient cost is
different to zero. Table 2.1 shows the mean value and the standard deviation of the com-
putation time and the suboptimality average for the set of random problems solved with
PFMS algorithm and M = 215. The optimal solution for each of the same 100 random
is necessary in order to calculate the suboptimality average, thus they are provided by
SCIP solver based on SoPlex [64] with zero duality gap3. It can be seen that the proposed
strategy is a quasi-exhaustive heuristic algorithm, quite consistent in the computational

3The optimal solution has been obtained only up to N = 50 because it takes too much time to compute
it for larger values of N (note that for N = 50 the average computation time of SCIP is 345.96 seconds
and the standard deviation is 1214.93 seconds).
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Figure 2.3.5: Relation between γ̄kΦ and log(M).

burden, which leads to a low standard deviation in the computing times. This consistency
in the computational burden allows a fine tuning of the maximumM which yields the most
accurate solution. Furthermore, the average suboptimality of the proposed algorithm is
very low even for long values of N .

Table 2.2 shows the average and standard deviation of the computation time and average
suboptimality of the proposed algorithm computed for the set of one hundred random
problems for different values ofM and N = 50. It can be seen that the average computing
times increases in a close to linear trend asM increases and that, as expected, the average
suboptimality decreases as M increases.

Figures 2.3.6 and 2.3.7 show closed-loop simulations with set-point changes for two differ-

PFMSA (M = 215)
N tave σt %sub-opt

30 2.9877 0.1895 0.3544
35 3.9249 0.0903 0.2787
40 4.8481 0.0957 0.4985
45 5.7933 0.0947 0.2007
50 6.7910 0.1118 0.2265

Table 2.1: Computational timing average and standard deviation and subotimality average
PFMSA with M = 215.
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PFMSA (N = 50)
M tave σt %sub-opt

28 0.3130 0.0076 1.1290
29 0.3726 0.0068 0.5861
210 0.4025 0.0170 0.5853
211 0.5848 0.0222 0.4260
212 0.9731 0.0327 0.2503
213 1.8153 0.0466 0.3256
214 3.4488 0.0685 0.2963
215 6.8292 0.1741 0.2265
216 14.6569 0.1722 0.2176
217 36.4092 1.2354 0.2330
218 102.7905 2.8205 0.2527

Table 2.2: Computational time average, standard deviation and sub-optimality average
analysis of PFMSA with N = 50.

Control M α Jsp nsw J(0) J(0.001) J(0.002) J(0.005)
0 2.6355 278 2.6355 2.9135 3.1915 4.0255

PFMSA 215 0.001 2.6565 241 2.6565 2.8975 3.1385 3.8615
0.002 2.8523 132 2.8523 2.9843 3.1163 3.5123
0.005 2.96 79 2.96 3.039 3.197 3.355

P (Kp = −3) 2.7818 273 2.7818 3.0548 3.3278 4.1468
Relay 3.7052 176 3.7052 3.8812 3.9572 4.5852

Table 2.3: Closed-loop performance comparison.

ent α values, M = 215 and NG = M/256. The optimization problem is solved in less than
10 seconds on a computer with Intel Core i7-4790 CPU and a Matlab implementation
of algorithm 1 using the Parallel Computing Toolbox for computing the optimal cost to
go approximation on a mid-range consumer-grade NVIDIA GM206 GPU. The effect of
varying α can be seen in figure 2.3.6 for α = 0.001 and figure 2.3.7 for α = 0.005. It is
clear that, for greater values of α, the number of valve switchings is lower.

Finally, a comparison of the tracking cost (column Jsp) and the number of switches (column
nsw) can be seen in table (2.3) for the MPC controller with different values of α, the relay
controller and the P controller with the PFM converter and Kp = −3. Notice that on
the right side, there is a comparison of the total cost (J(α)) for different values of α.
For each case of α value, notice that the minimal value of the total cost is obtained with
the algorithm implementation calculated with the same α. Also, note that the predictive
controller always performs with a lower cost than the relay or proportional controller.
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Figure 2.3.6: System controlled by PFMSA with ˆ̀N
k (xk) computed using a proportional

controller, M = 215, NG = 27, N = 100 and α = 0.001.
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Figure 2.3.7: System controlled by PFMSA with ˆ̀N
k (xk) computed using a proportional

controller, M = 215, NG = 27, N = 100 and α = 0.005.
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Chapter 3

Historian data based predictive
control

In chapter 2, a MPC controller for systems with binary actuators and partially fading
memory was presented. The proposed approach inherits the good properties of MPC
such as dealing with linear and nonlinear system with single or multiple inputs/outputs,
managing constraints and performance optimization taking into account future predicted
trajectories. However, it is a model based approach, which is sometimes hard to obtain,
specially for large scale systems like WDN. In addition, even if a model is available, the
computation of the cost-to-go of a given candidate can be difficult or cumbersome to
obtain.

On the other hand, as presented in chapter 1, complex network systems usually provide
a huge amount of data that can be used for identification proposes. In this chapter, a
different approach is taken regarding these goals. Instead of first identifying a model
and then finding the best future input trajectory based on this model, we limit the set of
possible input trajectories to a convex combination of past trajectories with an initial state
close (in some sense) to the current state of the system. We will then use the information
in the database to estimate the performance of the chosen trajectory using a heuristic
linear approximation based on a particular extreme case of direct weight optimization
methods [92] that results in the solution of a QP problem (or LP if only regulation around
a set point is considered). This is a predictive control strategy in the sense that it uses the
future in the past to predict the future evolution of the process. Note that this concept is
very general and it does not impose almost any condition on the closed loop trajectories
stored in the database, although it would be logical to consider only those that resulted
in a good control performance.

A typical assumption is that, although the model is unknown, appropriate data for iden-
tifying the system dynamics or a specific control law is available, either from appropriate
identification experiments or through the extensive use of a simulator, which may not be
possible for some applications. However, we do not assume that the trajectories stored
in the database have been chosen or designed to provide sufficient information for a pre-
cise identification of the system dynamics or the corresponding control law. This is the
case when historian trajectories are available from the closed-loop operation of the system
under different conditions, controllers and even control objectives. This issue limits the

37
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applicability of standard identification procedures in which the quality of the information
available greatly affects the quality of the resulting identified models.

3.1 Problem formulation
The system considered throughout the chapter will be represented by a discrete time
invariant system:

x(k + 1) = f(x(k), u(k)), (3.1)
where x ⊂ Rnx is the state, u ⊂ Rnu is the input and f is the unknown transition function.

A regulation problem is considered along this chapter, thus the control objective is to
regulate the system to the origin while minimizing the performance defined by a stage cost
`(·, ·). Standard model predictive control [25, 62, 88] is based on solving an optimal control
finite horizon problem in which the cost of a predicted trajectory of length N is minimized
at each time step to obtain an optimal control sequence that is applied in a receding
horizon manner. In order to approximate an infinite horizon problem, often a terminal
cost function `N (·) is also considered, which leads to the finite horizon performance cost
V : Rnx × RnuN → R:

V (x(k),u) =
N−1∑
i=0

`(x(k + i|k), u(k + i|k)) + `N (x(k +N |k)), (3.2)

where x(k+i|k) is the predicted state obtained applying the future input sequence u(k+i|k)
with i = {0, . . . , N − 1} from the initial state x(k), `(·, ·) and `N (·) are convex positive
definite functions, N defines the prediction horizon and

u =


u(k|k)

u(k + 1|k)
...

u(k +N − 1|k)

 (3.3)

is the optimization variable.

Standard MPC solves an optimization problem based on the model. In this chapter, as
the function that models the system f is unknown, a database will be used to obtain
a straightforward estimation of the cost V which implicitly predict the behaviour of the
system. The database stores different closed loop trajectories. These trajectories contain
the state and the input trajectories of different controllers applied in the past. The infor-
mation stored in the historian database is used to generate a set of candidate trajectories
of appropriate length. This set of candidates is built using all the sample times in the
historian database for which a N step trajectory is available. Each candidate trajectory
q is defined by its state and input after i time steps, xq(i), uq(i) with i = 0, . . . N , where
xq(0) is the initial state of the candidate trajectory and they satisfy

xq(i+ 1) = f(xq(i), uq(i)). (3.4)

We denote its corresponding input trajectory as

uq =


uq(0)
uq(1)
...

uq(N − 1)

 (3.5)
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and its corresponding cost for the objective function considered as

Vq(xq(0),uq) =
N−1∑
i=0

`(xq(i), uq(i)) + `N (xq(k +N)). (3.6)

In this chapter, we propose to use a control law derived from the control trajectories in the
candidates set. Following a receding horizon approach, at each sampling time, the control
signal to be applied will be computed as a weighted sum of the initial control signals of
the candidates considered, that is

u∗(k) =
∑
q

λ∗quq(0), (3.7)

where the optimal values of the weights λq are chosen to minimize an estimation of
V (x(k),

∑
λquq). The following section discuss how to define this estimation and im-

plement the proposed controller.

3.2 Controller formulation
The proposed predictive controller computes the current control actions as a weighted sum
of past control actions. In order to minimize the computational burden and to provide
good cost estimations based on local data, only a subset of the past control actions in
the historian are considered in current control computations. This subset is comprised
of closed loop trajectories starting from an initial state close to the current state of the
process.

In particular, at time k, we propose to choose the nQ candidates with an initial state
xq(0) closest to the current state x(k) taking into account a given metric1. Once the nQ
candidate trajectories are obtained, the optimal control sequence will be chosen among
the convex combination of the control sequences of the candidate trajectories with an
initial state equal to x(k), that is, the optimization variables are the nQ weights λq with
q = 1, . . . , nQ such that:

x(k) =
nQ∑
q=1

λqxq(0),
nQ∑
q=1

λq = 1,

λq ≥ 0, ∀q ∈ {1, . . . , nQ}.

(3.8)

For a given choice of candidates weights λq, we consider the following estimation of its
corresponding cost

V
(
x(k),

∑
λquq

)
= V

(∑
λqxq(0),

∑
λquq

)
'
∑

λqVq. (3.9)

This approach is related to direct weight optimization nonlinear identification meth-
ods [92]. DWO methods are based on postulating an estimator that is linear in the
observed outputs of the estimated function (in this case the predicted cost) and then

1Candidates with the same distance value will be randomly selected if necessary so that only nQ

candidates are included in the set.
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determining the weights in this estimation by direct optimization of a suitable chosen
criterion. Different criteria can be defined depending on the properties of the estimated
function in order to take into account the non linearities of the function by penalizing far
away points and the effect of noise. In the proposed approach, we assume that for the set
of nQ closest candidates, the function can be approximated by a linear function and we
neglect the effect of noise. In practice, using local trajectories is similar to carrying out an
online linearization of the dynamics around the current state. Under these assumptions,
(3.9) is a valid estimation of the cost for any particular choice of weights (see remark 4
in [92]). The optimization then is carried out to optimize the expected predicted perfor-
mance as in standard MPC. Note that because of the receding horizon implementation,
the estimation of the future cost is recalculated at each sampling time, reducing the effect
of the prediction error through feedback.

Summing up, the proposed controller is based on solving the following linear programming
optimization problem based on minimizing the upper bound on the trajectory defined by
the convex combination of the candidate trajectories that start from the current state:

min
λ∈RnQ

nQ∑
q=1

λqVq

s.t. x(k) =
nQ∑
q=1

λqxq(0),
nQ∑
q=1

λq = 1,

λq ≥ 0, ∀q ∈ {1, . . . , nQ}.

(3.10)

Problem (3.10) is a LP problem that can be solved using off-the-shelf algorithms, even
for large number of optimization variables. In the next section, in order to illustrate the
proposed strategy, it is applied to control the Richmond water distribution system.

Remark 1. We notice that if V : Rnx × RnuN → R is a convex function in Rnx × RnuN

then, in view of Jensen’s inequality[18], we have

V
(
x(k),

∑
λquq

)
= V

(∑
λqxq(0),

∑
λquq

)
≤
∑

λqVq. (3.11)

Thus, the proposed approach, under the convexity assumption, minimizes an upper bound
of the cost for the chosen future input trajectory. Note that V is convex for linear systems
and quadratic cost functions, which are widely used in the MPC literature.

Remark 2. Although we have considered a state feedback setting, the proposed approach
can also be used in an output feedback setting in which the output measurements are stored
in the database. In addition, constraints can be taken into account using the weighted
predicted state and input trajectories. In section 3.3 we present an example in which a
constraint on an output of the system (the pressure at one of the demand nodes of the
water drinking network) is considered.

Remark 3. The cardinality of the candidate trajectories nQ is important because larger
values carry higher computational burdens. Moreover, a large number of candidates in-
creases the distance from x(k) of the last candidate selected with a local linearity loss (if
the system were nonlinear). On the opposite side, smaller values of nQ could produce
feasibility problems. Figure 3.2.1 shows the feasibility problem in R2. On the left side, S3
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Figure 3.2.1: Feasibility problem in R2: left infeasible, right feasible.

is the subset contained in the convex envelope formed by states xq(0) with nQ = 3. It is
shown that x(k) /∈ S3, so the optimization problem is infeasible. On the right side, S4 is the
subset contained in the convex envelope formed by states xq(0) with nQ = 4. In this case,
x(k) ∈ S4, so the minimization problem is feasible. The solution to feasibility problems
could be to increase the value of nQ to find a convex envelope that contains x(k). However,
sometimes this may not be possible because there is not enough information in the database
or because the current state is close to the system operating boundaries and the trajectories
in the database operate far from these boundaries. In these cases, a different solution has
to be considered. In this approach we propose to apply the uq(0) of the closest candidate.
However, there are other options like using the input corresponding to the nearest point of
the convex envelope of the candidates or consider some form of extrapolation procedure.

Remark 4. Hyperparameters of the trajectories stored in the data base are defined as
additional information of the controllers that generate these trajectories. Examples of
hyperparameters are the tuning values of a PID controller, reference and hysteresis of a
relay controller or the prediction horizon and the matrices that define the cost of a MPC
controller. Hyperparameters can be taken into account in the distance function, the cost
function, or in the constraints of the optimization problem to improve the performance of
the proposed approach. In section 3.3 we present an example in which the information
of the reference of the controller of each trajectory stored in the database is used as an
hyperparameter in the proposed controller.

3.3 Application to a water distribution system
The Richmond water distribution system is a well known case study [111, 112] that can
be simulated using the EPANET hydraulic simulation software [34]. This case study
describes a system that is a good candidate for the historian data based predictive control
strategy presented in this chapter which has also been used in a standard MPC framework,
see [114]. Although the system is nonlinear and complex, it can be approximated by a
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Figure 3.3.1: Richmond water distribution network diagram.

linear water balance based model with sufficiently large sampling times, in this case,
one hour. Figure 3.3.1 shows the Richmond water distribution system diagram which is
composed by 6 tanks, 7 pumps, 41 nodes of which 11 are demand nodes, 44 pipes of which
8 are unidirectional pipes and 1 source.

Note that for a given tank there are several demand nodes that withdraw water from that
tank. Water is introduced by the pumps from a single water source and demand nodes
consume this water, lowering the levels in the tanks. The control objective considered
is to keep the water levels in each tank around a specified set-point, while satisfying the
demands. The state vector x is composed by the levels of the 6 tanks, that is, x ∈ R6.
Demands are considered disturbances, modelled by the disturbance signal vector d ∈ R11.

In order to attain the control objective, water flows are used as manipulated variables,
thus the input signal vector u ∈ R7 contains the water flows that have to be attained
using each pump in the system. Note that in the Richmond case study (as in many water
distribution systems), pumps are operated with an ON-OFF mode, thus the necessity of
a low level switching logic that transform each real component of u into an equivalent
logic sequence for each particular pump. In this section, discrete time intervals of 1 hour
(k ∈ N) and low level switching logic intervals of 1

24 hours = 2.5 minutes are considered.
To minimize the number of pump switches, a duty cycle policy consisting on applying the
control effort in a single pulse is used.

It is assumed that the water demand is composed by a periodic signal with a random
component, that is:

d(k) = dp(k) + dr(k), (3.12)

where dp ∈ R11 is a set of periodic signals that satisfy dp(k) = dp(k + T ), with T = 24
hours, obtained from the demand profiles used by Zyl [111, 112] and dr(k) is a set of
random zero mean signals, which added to dp(k) result in a demand signals with 5% of
variation around dp(k).

The Richmond water distribution system has 6 tanks, however, because of the network
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RbC 1 RbC 2 RbC 3 RbC 4
Pump Tank Level ON Level OFF Level ON Level OFF Level ON Level OFF Level ON Level OFF
u1 x1 2.3685 2.9799 2.4785 3.0899 1.5018 2.1132 1.9352 2.5466
u2 x1 3.0405 3.2513 3.1505 3.3613 2.1738 2.3846 2.6072 2.8180
u3 x1 2.8888 3.1126 2.9988 3.2226 2.0221 2.2459 2.4555 2.6793
u4 x2 3.2623 3.5789 3.3323 3.6489 2.5956 2.9122 2.9290 3.2456
u5 x3 0.7185 1.8850 0.8285 1.9950 0.5852 1.7517 0.6518 1.8183
u6 x4 1.5907 1.9708 1.7207 2.1008 1.2774 1.6575 1.4340 1.8141
u7 x6 1.7037 2.1095 1.7837 2.1895 0.7037 1.1095 1.2037 1.6095

Table 3.1: Switching levels (in meters) of the relays of each of the controllers used to
generate the data base.

x1r x2r x3r x4r x6r
RbC1 2.9403 3.4206 1.3018 1.7808 1.9066
RbC2 3.0503 3.4906 1.4118 1.9108 1.9866
RbC3 1.6403 2.4206 1.1018 1.3108 0.4066
RbC4 2.5069 3.0873 1.2351 1.6241 1.4066

Table 3.2: Set-points (in meters) of the controllers used to generate the data base.

structure, in order to maintain the desired levels, Tank 5 is always full in normal operating
conditions. For this reason, only the rest of the tanks are considered for the purposes of
computing the control signals. Note, however, that the EPANET simulation uses the
whole state information.

The cost function in these examples is the following tracking error penalty stage cost that
only depend on x (i.e., in these examples l(x, u) = l(x)):

`(x) = |xc − xr|22, (3.13)

where xc ∈ R5 are the levels of the 5 tank levels considered of x and xr ∈ R5 are their
corresponding reference values. Furthermore, the terminal cost is equal to the stage cost,
that is `N (·) = `(·).

The database stores the closed loop trajectories of four different controllers, each one based
on a different set of relays denoted RbC1, RbC2, RbC3 and RbC4 respectively. Every
pump is switched on and off depending on the level of the tank that is directly downstream.
Table 3.1 shows this relation and the switching on and off levels for every pump of each
controller.

Table 3.2 shows set-points values for each controller. The set-points are obtained as the
middle point of the corresponding pump switching on and off levels. In the case of tank 1,
denoted as x1 which is the first component of x, the set-point is the average of the three
middle switching levels of pumps 1, 2 and 3, denoted as u1, u2 and u3 respectively.

Tank 1 Tank 2 Tank 3 Tank 4 Tank 5 Tank 6
Min. level 1.02 2.03 0.5 1.1 0.2 0.19
Max. level 3.37 3.65 2 2.11 2.69 2.19

Table 3.3: Maximum and minimum safety tank water levels (in meters) in Richmond
system.
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For each controller, there are 100 trajectories stored in the data base, each one with 96
hours of closed loop simulated operation of the system. Each of the trajectories starts with
different random initial values of the tank levels that satisfy the minimum and maximum
safety constraints of table 3.3. In addition, the head at the demand node four, denoted
z(k), is also included in the database. Head information will be used to include a soft
constraint to limit the maximum pressure in that particular demand node to demonstrate
that historic data can be used to model complex, possibly nonlinear, outputs and take them
into account in the control decision. The amount of information stored in the database is
equivalent to 4.38 years of historian information. Although a realistic size for a historian,
the database is very small in relation to the dimensionality of the problem which is R6,
which could lead to identification problems.

Using the information of these simulations, over 38000 24-h candidates trajectories are
defined, for which at each sampling time, only nQ will be considered to formulate the
controller. The choice of the number of candidates considered depends mainly on the
density and quality of the historian trajectories stored in the database. There is a trade-
off between complexity, feasibility and relevance. Higher number of candidates in general
avoid feasibility issues, but may take into account candidates whose information is not
relevant because its initial state is too far away from the current state leading to lower
quality cost estimations. In this example, a value of nQ = 500 has been found to be
appropriate in regard to the aforementioned trade-off.

3.3.1 Example 1

The example is a closed loop simulation of 120 hours with initial state:

x(0) = [3, 2.44, 1.58, 1.5, 0.99, 1.51], (3.14)

and the reference used is:

xr = [3.0503, 3.4906, 1.4118, 1.9108, 1.9866]. (3.15)

This reference is equal to the reference of one of the controllers used to create the database,
in particular the relay based controller 2 (RbC 2). In order to take into account the periodic
nature of the demand, the distance function takes the following form:

distq = ‖x(k)− xq(0)‖2α + αp∆q(k)2 (3.16)

where
α = diag

(
[ 1.0831 1 1.825 1.7299 1.6667 ]

)
, (3.17)

where diag(·) is the diagonal matrix formed with the elements of the vector in the argument
and αp = 0.2. The term ∆q(k) is the time difference, in hours, between the candidate
initial time and the current time. This distance function (3.16) takes into account the
periodic nature of the demands of the system, penalizing candidates trajectories that
start at a different hour because the demand differs.

The optimization problem solved at each time instant is defined in (3.10) and the control
input applied is calculated as in (3.7). A standard LP solver can be used to obtain the
solution as, in our case, linprog in Matlab. Figure 3.3.2 shows the water levels in the
six tanks of the Richmond system during the closed loop simulation using EPANET.
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Figure 3.3.2: References (black dash) and closed-loop trajectories (blue solid) of the tank
levels with the proposed controller. Maximum and minimum physical level constraints
(red dashed) are represented for each tank.
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Minimum, maximum and reference levels are represented for each tank (in red dashed and
black dashed respectively). Tank 5 is not controllable and there is not any reference signal
in its level graphic.

The pump flows, in litres per second, can be observed in figure 3.3.3. Notice that the
solution obtained with the proposed controller tends to a quasi periodic behaviour. Since
demand signals periodicity produces periodic trajectories and control action stored in the
database when system is controlled with relay controllers, the convex combination of the
control actions in the database is almost periodic too.
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Figure 3.3.3: Closed-loop control actions for each pump with the proposed controller.

To evaluate the performance of the controller it is necessary to take into account the
periodic nature of the system. The performance metric will be the summation of the closed
loop performance cost over a period of d(k) computed at each hour of the simulation as:

J(x(k)) =
N∑
i=0

`(x(k + i)), (3.18)

where x(k+ i) are the values of the tank levels of the closed loop simulation, `(·) is defined
as in (3.13) and N = 24. Note that in this system, the instantaneous performance cost has
no meaning, as it will go up and down as the periodic disturbance changes. The summation
of the closed loop performance cost over a period is a sensible choice as it should converge
to a constant value when the closed-loop system reaches a quasi steady state periodic
trajectory, provided that the controller is working fine. Note that the random part of d(k)
has an impact on the behaviour of J(x(k)).

Figure 3.3.4 shows the evolution of J(x(k)) for two of the relay based controllers and the
proposed strategy. The relay based controllers 3 and 4 are not represented because their
performance costs are much higher. In particular, their mean cost are 76.99 and 27.7
respectively, while the mean cost of the proposed historian data based predictive control
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Figure 3.3.4: Performance cost comparison of the proposed controller (JDbPC) and the
relay based controllers 1 and 2 (JRbC1 and JRbC2).

is 3.36. The historian data based predictive controller improves the controllers included
in the data-base, although the performance and behaviour is similar to a relay controller.

3.3.2 Example 2

In this example the proposed strategy is applied taking into account the set-point value
of each closed loop trajectory stored in the database. The reference of each relay based
controller is shown in table 3.2. According to Remark 4, which presents hyperparameters
and the way to use them in the proposed strategy, this example focuses on applying the
hyperparameter information in both the distance and the cost function.

Firstly, hyperparameters are used when building the subset of nQ candidate trajectories.
Defining xrq as the set-point value of candidate q, the distance function in (3.16), is modified
adding a term which penalizes candidate trajectories whose references are far from the
reference of the problem xr, that is:

distq = ‖x(k)− xq(0)‖2α + αp∆q(k)2 + αr‖xr − xrq‖22, (3.19)

where αr = 10 weights the deviation between the current reference and the reference of
the candidate.

Secondly, the cost function is also modified to take into account the hyperparameters.
In the previous example, the stage cost does not consider the particular target of the
candidates. This can affect the set-point tracking capabilities of the controller. One
possibility is to add a constraint to optimization problem (3.10) to guarantee that the
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convex combination of the candidates corresponding references xrq is equal to the target
reference of the predictive controller xr, that is

nQ∑
q=1

λqx
r
q = xr.

This constraint aims at taking into account not only where a given trajectory is, but
also where is headed. However, adding this constraint may compromise the feasibility of
the optimization problem. For this reason, in this example we propose to add it as a
soft constraint modifying the objective function. To this end, at each sampling time the
historian based controller solves the following optimization problem:

min
λ

nQ∑
q=1

λqVq + ρr

∣∣∣∣∣
∣∣∣∣∣xr − nQ∑

q=1
λqx

r
q

∣∣∣∣∣
∣∣∣∣∣
2

2

s.t. x(k) =
nQ∑
q=1

λqxq(0),
nQ∑
q=1

λq = 1,

λq ≥ 0, ∀q ∈ {1, . . . , nQ}.

(3.20)

Any standard QP solver can be used as, in our case, quadprog in Matlab. Figure 3.3.5 shows
the level trajectories of the closed loop simulation of the proposed control strategy using
hyperparameters with a weight ρr = 1. Figure 3.3.6 shows the closed-loop performance of
the proposed controller with and without hyperparameters and the cost of the two best
relay based controllers. It can be seen that the use of hyperparameters leads to better
set-point regulation and to a lower performance cost.

Figure 3.3.7 shows the number of candidates provided by each relay controller along the
whole simulation for the proposed controller with and without the use of the information
provided by the hyperparameters.

Note that in both cases most candidates trajectories belong to relay based controller 1 and
2 because their set-points are close to the reference, in fact relay based controller 2 has
the same reference and it can be seen that when hyperparameters are considered, almost
all candidates belong to this controller. Note also that, even if most of the trajectories are
of a single relay controller, the proposed strategy achieves a better performance cost.

3.3.3 Example 3

In this subsection, constraints are taken into account, in particular, a maximum average
head constraint in demand node four. Hydraulic head is a specific measurement of liquid
pressure above a geodetic datum and it relates the energy in an incompressible fluid to
the height of an equivalent static column of the fluid. As mentioned before, the historian
data includes the average head in this node for all the trajectories, which we denote as z.

There exist a nonlinear relation between head and flow, which we can observe if we consider
the head loss Hazen-William formula[115]:

z = γu1.852, (3.21)
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Figure 3.3.5: References (black dash) and closed-loop trajectories (blue solid) of the tank
levels with the proposed controller using hyperparameters.
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Figure 3.3.6: Performance cost comparison with relay based controllers and historian
predictive control with and without hyperparameters.
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where γ is a parameter calculated with the length of the pipe, the pipe roughness coeffi-
cient and the inside pipe diameter. Despite this nonlinear relation, the estimated average
pressure sequence:

ẑk+i =
nQ∑
q=1

λqzq(i), (3.22)

provides a good approximation based on local data.

Head constraints are included in the optimization problem as soft constraints (slack vari-
ables) instead of hard constraints in order to eliminate feasibility issues caused by this sort
of constraints. Note that these feasibility issues are related to the high dimension of the
state in relation to the database size in this example. Thus, for lower dimensional systems
it could be possible to use hard constraints. The number of slack variables added to the
optimization problem is equal to the prediction horizon N to ensure that all the average
heads in the estimated average head sequence, denoted as ẑ and obtained as the convex
combination of the candidate head sequences, satisfy this soft constraints.

Including constraints in z modifies the optimization problem (3.20) in the following form:

min
λ,τ

nQ∑
q=1

λqVq + ρr

∣∣∣∣∣
∣∣∣∣∣xr − nQ∑

q=1
λqx

r
q

∣∣∣∣∣
∣∣∣∣∣
2

2
+ ρz

N−1∑
i=0

(τ2
i + τi)

s.t. x(k) =
nQ∑
q=1

λqxq(0),
nQ∑
q=1

λq = 1,

λq ≥ 0, ∀q ∈ {1, . . . , nQ},

zcons ≥
(
nQ∑
q=1

λqzq(i)
)
− τi, ∀i ∈ {0, . . . , N − 1},

τi ≥ 0, ∀i ∈ {0, . . . , N − 1},

(3.23)

where τ is a set of slack variables which lets a small violation of the average head con-
straints, ρz is the weight of the slack variables with respect to the other terms, zcons are
the average head constraint values and zq(i) is the average head of the q-th candidate
sequence at instant i2. Similar to problem (3.20), a standard QP solver can be used to
obtain the solution of (3.23).

The optimization problem solved tracks the same reference in level as in (3.15) and imple-
ment the proposed controller with hyperparameters using a number of candidates nQ = 500
and without hyperparameters. The value of the head constraints weight is ρz = 105. For
simplicity, head constraint are considered only in one demand node, that is, demand node
4, and the average head constraint values in meters is:

zcons = 187.3. (3.24)

Figure 3.3.8 shows a comparison between the average head in demand node 4 obtained
with and without head average constraints. In case of the proposed controller without
constraints, the constraint in average head is clearly violated by the optimal solution.

2Notice that with the same slight abuse of the notation used before, we define the head of the q-th
candidate trajectory zq(i) as the i-th row ahead average head after the initial row nr of the candidate
trajectory.
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Figure 3.3.8: Comparison between the average head in demand node 4 with and without
constraints.

When the controller takes into account this constraint, the optimal solution mostly satisfies
it.

Figure 3.3.9 shows the average head estimation signal error for the demand node 4, which
is calculated as the difference between the real average head, obtained by simulation, and
the estimation of the average head, obtained as in 3.22. We can observe that the error
signal has approximately zero mean (0.21%).

3.3.4 Example 4

In this subsection, we consider a set of periodic level reference signals instead of the
constant signals used in the previous examples. Typically, water distribution networks
are controlled taking into account economic issues such as the tariff pattern related to
the electricity price. In the Richmond benchmark, the electricity costs considered had a
different tariff during day and night hours. In general, this leads to non-steady level in the
tanks, which fill during the night in which pumping water is more economic, and discharge
to satisfy the demands during the day. According to this idea and considering the period
of the tariff pattern and demand signals, a sinusoidal signal of 24-hours period is taken
into account with its maximal at 3 a.m. and its minimal at 15 p.m. in order to build the
reference signals for the tank levels. Table 3.4 shows the amplitude and offset for every
reference signal considered.
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Figure 3.3.9: Difference between the estimated average head and the real average head of
demand node 4 .

Tank 1 Tank 2 Tank 3 Tank 4 Tank 6
Amplitude 1.41 1.07 0.31 0.6 1.58

Offset 2.3453 2.9556 1.2568 1.6108 1.1966

Table 3.4: Amplitude and offset of the sinusoidal reference signal of each controllable tank.

Figure 3.3.10 shows the level references considered and the closed loop trajectories of the
proposed controller, together with that of the relay-based controller 4 (which provided the
best performance of all the relay based-controllers). This figure shows that the proposed
controller provides a quasi-periodic closed-loop trajectory which is almost in phase with
the reference, while clearly the relay based trajectory (which is akin to the trajectories of
the database) is not correlated. This implies that the proposed strategy does not simply
learn (or identify) the control law in the database, but, rather than that, it uses the
stored trajectories to fullfill as best as possible the current control objective, which can be
different from that used to build the database.
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Figure 3.3.10: Periodic reference for every tank (dashed black), closed-loop simulation with
the proposed controller (blue) and with the relay-controller 4 (dashed-dotted yellow).



Chapter 4

Offset-free data driven control

The idea of using affine combinations of stored trajectories exposed in chapter 3, resulted
in a model free predictive controller which has nice properties when dealing with large scale
system like WDN. Nevertheless, the presence of disturbances or noise signals, specially with
non zero mean, in real complex systems may lead to some offset issues. These disturbances
are included in the trajectories that are stored in the historian process of a noisy system.
Since the controller combines noisy trajectories, this approach cannot achieve offset-free
tracking, except for the ideal case of a noise and disturbance free database.

Tracking variable set points without steady state error, even in presence of constant dis-
turbances, is one of the most desirable capabilities of a feedback control system. Classical
control methods for linear systems achieve this by using integral action controllers, as in
the case of the ever popular PI or PID control algorithms. Generally speaking, offset-free
control is a well understood problem, although still researched in more ambitious control
formulations [63].

In data driven approaches, offset free control is often achieved by following a reference
model and assuming an integrator mode [84], controller or set point adaptation [99], rein-
forcement learning [119] or exploiting the linear dependence in input-output data of linear
processes [46].

Following this line of research, in this chapter, a data driven control strategy based on
a database of past state trajectories that aim to produce a similar offset free closed loop
response in spite of different operating conditions is presented. The control laws used
to generate the database trajectories are assumed to be unknown, so that the proposed
strategy will learn the underlying unknown control law that obtain similar closed loop
responses for different operating conditions. The proposed controller computes the input
signal to be applied as an affine combination of the control signals. Zero mean tracking
error with minimum variance is achieved under the assumption that the state is measur-
able, the underlying dynamics are linear and the trajectories of the database share the
same error dynamics and are in turn offset free.

With respect to other data driven control approaches, the proposed method does not
perform an identification step, avoiding the potential problems that can arise in this phase.
Furthermore, being related to the lazy learning techniques ([92]), no training phase is
required to learn the underlying control law in the database, thus it possible to include new

55
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data that is made available online. The results are illustrated by means of an application
to a well known process control trainer [61, Chap. 4].

4.1 Problem statement
In this chapter we consider a system for which a model of its dynamics is not available,
but a particular state representation is known and measurable. This implies that although
we propose a model-free approach, some knowledge of the system is needed to define this
state. In some cases, the measured state vector corresponds to physical measurements
chosen based on first principles; while in others, for those systems in which the state is not
completely measurable, the state will be considered composed by present and past values
of the system inputs and outputs, following a standard input-output modelling procedure
and assuming that an estimation of the order of the system and the delays is known.

Although unknown, we assume that the system is a linear system subject to bounded state
and output disturbances, hence, the measured state satisfies the following model

x(t+ 1) = Ax(t) +Bu(t) + w(t) (4.1)
y(t) = Cx(t) +Du(t) + v(t) (4.2)

where t is the discrete time variable, x(t) ∈ Rnx , u(t) ∈ Rnu and y(t) ∈ Rny are the
measured state, input and output of the system at time step t respectively, A ∈ Rnx×nx ,
B ∈ Rnx×nu , C ∈ Rny×nx , and D ∈ Rny×nu are the unknown system matrices and
w(t) ∈ Rnx and v(t) ∈ Rny are unknown state and output disturbances respectively with
non zero mean, that is

E{w(t)} = we, E{v(t)} = ve. (4.3)
Note that the state and output disturbances include all the discrepancies between mea-
sured and real states due to noises and, to some extent, uncertainties and slight non-
linearities.

The control objective is to track a reference r ∈ Rny without offset. The stochastic
disturbances considered in (4.1) and (4.2) make impossible to reach true offset free control.
Thus, by offset free control we mean that y is probabilistically ultimately bounded into a
set with mean equal to r [54]. Also, to ensure a well posed control problem we assume the
following:

Assumption 4. The system given by (4.1) and (4.2) is assumed to have full state and
output controllability. Furthermore, the reference r ∈ Rny is assumed to be reachable.

4.1.1 Historian database

In this chapter, instead of using a model to define the controller, we present a procedure
to take a decision on behalf of the information stored in a historian database. This
historian database has a large number of past offset free state, input, output and reference
trajectories. Each trajectory stored in the database, which may be of different length,
represents the closed loop behaviour of the system given by (4.1) and (4.2) controlled with
a different unknown control law and constant reference. In addition, we assume that the
disturbances of each stored trajectory are characterized by a possibly different mean value.
Using this framework, the disturbance may account for time-varying and state dependent
perturbations.
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If the measured state for each trajectory is given by x̃ and its corresponding steady state
value is denoted as x̃e, we assume that all the trajectories in the historian database satisfy
the following property:

Assumption 5. It is assumed that the dynamics of the trajectories of the database satisfy

x̃(t+ 1)− x̃e = Ac(x̃(t)− x̃e) + τ̃(t), (4.4)

where Ac is a Schur stable matrix and τ̃(t) a zero mean error term with bounded covariance.

The objective of the approach proposed in this chapter is to learn from the historian
database the underlying controller defined by Assumption 5, while preserving its offset
free property in the presence of different mean perturbations. Note that using a standard
function approximation procedure to determine a function that relates state, reference and
output would yield a static controller that would not provide offset free constant reference
tracking for different mean perturbations.

There are different areas of applicability for the proposed control scheme depending on
the origin of the historian database. The trajectories stored can be obtained from real
operation (which may include manual operation and different controllers) of the system
in the past, or from dedicated tests. In the first case, the controller objective is to learn
the underlying control law that has provided good performance in the past, in spite of
changing operating conditions. This procedure may be of interest in complex systems for
which great amounts of data are available.

In the second case, using closed-loop testing may be a benefit, for example when trying to
control a open-loop unstable system, because identification is avoided. In this case, because
the transient closed loop response will depend on those of the trajectories stored in the
database, it is important to store trajectories that exhibit a good control performance so
that the controller inherits it. The design criteria can be anything from a performance cost
to transient response measures (e.g., overshoot) that can be used to characterize the good
trajectories. In some sense, tuning is carried out using extensive off-line experimentation,
which depending on the application, may or may be not possible or be less appropriate
than using standard identification modelling techniques. This procedure is shown in the
temperature control application example.

Besides closed-loop testing and real past behaviours, it is also possible to include open-loop
tests for stable systems in which for a predefined input sequence, obtained for example
from step tests with filtering or lead/lag, the reference is defined for the steady state
reached. In addition, these results can be combined with trajectories obtained from past
operation or closed-loop testing.

Remark 5. The requirement that all the trajectories of the database satisfy (4.4) could
seem very restrictive but it is consistent with the standard control practice in which the
process is desired to have the same performance in spite of the different operating condi-
tions. For a real process this implies that different controllers used to generate the historian
database were characterized by a similar closed-loop dynamic behaviour (for example, sim-
ilar rise time and overshoot). Note also that the zero mean error term is not bounded,
which provides a certain degree of robustness for closed-loop trajectories with slightly dif-
ferent error dynamics. Furthermore, the bounded covariance implies that the probability
of getting high errors is small.
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4.1.2 Building the candidate set

The information stored in the historian database is used to generate a set of possible can-
didate tuples j ∈ S. Each tuple consists of the inputs, states, outputs and corresponding
reference of a particular trajectory and sampling time of the historian database. These tu-
ples will be used to define the optimization problem that has to be solved at each sampling
time to implement the proposed controller and is built off-line using all the trajectories
available in the database excluding those that are the first stored element of a particular
trajectory. The reason of this is that, in the proposed strategy, for each candidate tu-
ple, it is necessary to know the state and input value of the previous sample time in its
corresponding trajectory.

For each candidate, we denote as xj(0), uj(0), yj(0), wj(0) and vj(0) the state, input, out-
put and disturbances at the corresponding sample time of the candidate, and xj(k), uj(k),
yj(k), wj(k) and vj(k) the corresponding values shifted k sample times (i.e. xj(−1) de-
notes the state at the sample time before the candidate’s corresponding sample time).
Moreover, for each candidate, we denote as rj the corresponding reference of its trajectory
(note that the reference does not depend on the time because it is assumed constant for
each trajectory). The database does not store the values of the disturbances, and hence
the variables wj(·) and vj(·) are unknown for the controller. Although the disturbances
are not stored in the database, their effects are indirectly stored by means of the state and
output measurements.

Sampling time index variable t refers to the sampling time of a real trajectory, either
from the historian data base or online implementation, in particular, in the controller
implementation x(t) refers to the current state measurement. On the other hand, sampling
time index variable k refers to displacement relative to a candidate of the set S. Note that
the only values of k needed to define the proposed controller are k = 0 and k = −1. In
the proof of the main theorem, k = 1 is also used.

To clarify how to define the candidates from the trajectories stored in the historian
database, consider figure 4.1.1, which shows an example of a one dimensional state tra-
jectory with 5 sampled values, x̃(1) to x̃(5) that reach its corresponding target state x̃e.
From this trajectory, four different state candidates can be defined, one for each state in
the trajectory that has a predecessor. In the figure, the possible candidates are denoted as
xj(0) with j ∈ a, b, c, d, e. In this particular case, xa(0) cannot be included in S because
xa(−1) does not exists. The value of each candidate is defined by a different sample time;
that is

xa(0) = x̃(1)
xb(0) = x̃(2)
xc(0) = x̃(3)
xd(0) = x̃(4)
xe(0) = x̃(5).

(4.5)

The corresponding previous state of each candidate are also defined by the states in this
trajectory; that is

xa(−1) = NA
xb(−1) = x̃(1)
xc(−1) = x̃(2)
xd(−1) = x̃(3)
xe(−1) = x̃(4).

(4.6)
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Figure 4.1.1: Example of the notation employed to describe the candidates that conform
the set S.

With this notation, the candidates satisfy

xj(k + 1) = Axj(k) +Buj(k) + wj(k)
yj(k) = Cxj(k) +Duj(k) + vj(k). (4.7)

For each candidate, we denote its corresponding reference as rj which has a constant value
for the whole trajectory, thus shared with the other candidates that are from the same
trajectory. In addition, for each candidate, we denote the constant mean disturbance
values of its corresponding trajectory as wej and vej ; that is

E{wj} = wej , E{vj} = vej . (4.8)

Taking into account that all the trajectories in the database satisfy Assumption 5, the
candidates also satisfy:

xj(k + 1)− xej = Ac(xj(k)− xej) + τj(k). (4.9)

Assumption 5 and (4.9) implies a direct consequence for all the candidates trajectories.
Given 0 < pj ≤ 1 and Ωj ⊂ Rnx+nu , there exists Nj such that for its corresponding future
state and input trajectories satisfy

Pr
[
xj(k)− xej ∈ Ωj

]
≥ pj , ∀k ≥ Nj (4.10)

where Ωj is a probabilistic ultimate bound ([54]) which is a neighbourhood around the
steady state xej whose size is related to the covariance of τj(k). Notice that Nj depends on
the initial state of the candidate trajectory xj(0). We also remark that if the disturbances
τj(k) are bounded, it is possible to find a deterministic ultimate bound, that is a Ωj which
satisfies (4.10) with probability pj = 1 [15, Chap. 4].



60 CHAPTER 4. OFFSET-FREE DATA DRIVEN CONTROL

Remark 6. The size of the candidates set influences the learning capabilities of the pro-
posed approach and it is also directly related to the computational burden. On the other
hand, as in other data based and learning approaches, the dimension of the state vector
(and other variables) affects the necessary size of the set S. From a practical point of view,
this leads to use the minimum dimension state representation necessary for the control
objectives considered.

4.2 Steady state characterization

Although the proposed controller is based on state feedback, we have considered an output
reference tracking problem. In this section, we consider the notion of steady state for the
output equal to a given reference r. This characterization will be used on the proof of the
main result of this chapter.

The pair (xe, ue), with xe ∈ Rnx , ue ∈ Rnu , represents a steady state and steady control
input if and only if

xe = Axe +Bue + we

r = Cxe +Due + ve.
(4.11)

We assume that each of the trajectories of the database has been generated to track a
particular reference and moreover, we assume that the control input trajectory drives the
output to this reference in spite of the disturbances. Thus, similarly to (4.11), a pair
(xej , uej), with xej ∈ Rnx , uej ∈ Rnu , represents a steady state and steady control input for
the trajectory of the j-th candidate if and only if

xej = Axej +Buej + wej ,

rj = Cxej +Duej + vej ,
(4.12)

The following assumption is a necessary controllability condition and it is required to
ensure that a steady state pair (xej , uej) exists for a given reference r.

Assumption 6. Let G be defined as:

G =
[

I−A −B
C D

]
. (4.13)

It is assumed that G has full column rank.

It is possible to provide a characterization of the pair (xej , uej), through theorems 2 and 3
given in the following.

Theorem 2. Suppose that assumption 6 holds, and that G is a square matrix. Then, the
pair (xej , uej) is uniquely given by a linear expression of rj − vej and wej .

Proof. The equality constraints (4.12) can be rewritten as[
I−A −B
C D

] [
xej
uej

]
=
[

wej
rj − vej

]
. (4.14)
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Since it is assumed that G has full column rank, the previous system of equations has a
unique solution equal to [

xej
uej

]
= G−1

[
wej

rj − vej

]
, (4.15)

and this completes the proof.

Theorem 3. Suppose that assumption 6 holds, and that the number of columns of G is
larger than the number of rows, and that the steady state pair (xej , uej) is defined as the
solution of

min
xe

j ,u
e
j

1
2‖x

e
j‖2Q + 1

2‖u
e
j‖2R

s.t. (4.16)

G

[
xej
uej

]
= bej ,

where bej =
[

wej
rj − vej

]
, Q > 0 and R > 0. Then the pair (xej , uej) is uniquely given by a

linear expression of rj − vej and wej .

Proof. Let zej be

zej =
[
xej
uej

]
, (4.17)

and 0 a,b the zero matrix with a rows and b columns. It is well known ([18, Chap. 10])
that if the block diagonal matrix

Υ =
[

Q 0nx,nu

0nu,nx R

]
(4.18)

is strictly definite positive and G has full rank, then the optimal value for zej , defined as
in (4.17) and solution to (4.16), is given by the following system of equations[

Υ G>

G 0nG,nG

] [
zej
βej

]
=
[

0nz ,1
bej

]
, (4.19)

where nz = nx + nu is Υ dimension, nG < nz is the number of rows of G and βej denotes
the optimal value for the dual variables of the optimization problem. From

Υzej +G>βej = 0nz ,1 (4.20)

we obtain
zej = −Υ−1G>βej . (4.21)

From (4.19) we also have
Gzej = bej . (4.22)

Substituting (4.21) in (4.22), we obtain the optimal value for βej

−GΥ−1G>βej = bej
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βej = −(GΥ−1G>)−1bej . (4.23)

From (4.21) and (4.23) results

zej = Υ−1G>(GΥ−1G>)−1bej . (4.24)

We now denote
MΥ = Υ−1G>(GΥ−1G>)−1, (4.25)

to get
zej = MΥb

e
j . (4.26)

Thus, it is shown that there is a linear relationship between vector bej and vector zej .

4.3 Offset-free data driven control
In this chapter, we propose to use a control law derived from the control signals in the
candidates set S. The control signal to be applied at time t will be computed as a weighted
sum of the initial control signals of every candidate of S, that is

u(t) =
∑
j∈S

λjuj(0). (4.27)

The following sections discuss the conditions that {λj} must meet in order to recover
the underlying closed-loop properties of the trajectories stored in the historian database.
Offset free with minimum variance must be achieved for all possible references r and mean
disturbance values we, ve, not only those included in the candidate’s data.

At a first approximation, suppose that we compute {λj} so that the current state, output
and reference are a combination of the candidates as in chapter 3, that is

x(t) =
∑
j∈S

λjxj(0), (4.28)

1 =
∑
j∈S

λj . (4.29)

y(t) =
∑
j∈S

λjyj(0), (4.30)

r =
∑
j∈S

λjrj . (4.31)

Taking into account (4.27) and (4.28) in the state equation (4.1),

x(t+ 1) = Ax(t) +Bu(t) + w(t)

= A
∑
j∈S

λjxj(0) +B
∑
j∈S

λjuj(0) + w(t)

=
∑
j∈S

λj (Axj(0) +Buj(0)) + w(t)

=
∑
j∈S

λjxj(1) +
∑
j∈S

λj(w(t)− wj(0)). (4.32)
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We notice that approximating the next state x(t+ 1) as a combination of the next states
of the candidates yields an estimation error given by∑

j∈S
λj(w(t)− wj(0)), (4.33)

which is not guaranteed to have zero mean. This means that if we use a control strategy
similar to that exposed in chapter 3, the state in t+ 1 will be a combination of the states
of every trajectory in S, but it will have an offset caused by the approximation error even
if the trajectories in the database are offset free.

To obtain an offset free control, additional constraints have to be imposed on {λj} in order
to force the controller to have memory, in the sense that the previous state and applied
control signal have to be related with the previous ones of every trajectory in S through
the values of {λj}. The constraints

x(t− 1) =
∑
j∈S

λjxj(−1), (4.34)

u(t− 1) =
∑
j∈S

λjuj(−1), (4.35)

take this issue into account. The next properties demonstrate that the estimation error of
the next state obtained using a set of weights that satisfy the above mentioned constraints
has a zero mean error term. This property will be used to prove offset free tracking.

Property 3. Assuming that (4.27), (4.28), (4.29), (4.34) and (4.35) hold; then

x(t+ 1) =
∑
j∈S

λjxj(1) + ex(t), (4.36)

where ex(t) is a zero mean error term.

Proof. From the state equation (4.1) shifted backwards and the constraints (4.28), (4.34)
and (4.35),

w(t− 1) = x(t)−Ax(t− 1)−Bu(t− 1)

=
∑
j∈S

λjxj(0)−A
∑
j∈S

λjxj(−1)−B
∑
j∈S

λjuj(−1)

=
∑
j∈S

λj (xj(0)−Axj(−1)−Buj(−1))

=
∑
j∈S

λjwj(−1). (4.37)

From (4.27) and (4.28), as mentioned before, we obtain the estimated value of the next
time step

x(t+ 1) =
∑
j∈S

λjxj(1) +
∑
j∈S

λj(w(t)− wj(0))

=
∑
j∈S

λjxj(1) + w(t)−
∑
j∈S

λjwj(0). (4.38)
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Defining the prediction error as

ex(t) = x(t+ 1)−
∑
j∈S

λjxj(1), (4.39)

and substituting in (4.38), we have

ex(t) = w(t)−
∑
j∈S

λjwj(0). (4.40)

From (4.37) we obtain

−w(t− 1) +
∑
j∈S

λjwj(−1) = 0. (4.41)

Adding this equality to (4.40) yields

ex(t) = w(t)− w(t− 1)−
∑
j∈S

λj(wj(0)− wj(−1))

= ∆w(t)−∆w(t− 1)−
∑
j∈S

λj(∆wj(0)−∆wj(−1)),

(4.42)

where ∆w(·) = w(·)−we and ∆wj(·) = wj(·)−wej . Notice that ex(t) is a zero mean error
term because, by construction, ∆wj(·) and ∆w(·) have zero mean.

The weights {λj} obtained can be used not only to obtain an estimation of the future
state, but also to estimate the mean value of the current perturbations with zero mean
error. This property is proved next.

Property 4. Assuming that (4.27), (4.28), (4.29), (4.30), (4.34) and (4.35) hold; then

we =
∑
j∈S

λjw
e
j + ew(t), (4.43)

ve =
∑
j∈S

λjv
e
j + ev(t), (4.44)

where ew(t) and ev(t) are zero mean error terms.

Proof.

x(t) = Ax(t− 1) +Bu(t− 1) + w(t)
= Ax(t− 1) +Bu(t− 1) + we + ∆w(t). (4.45)
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Thus,
we = x(t)−Ax(t− 1)−Bu(t− 1)−∆w(t)

=
∑
j∈S

λj(xj(0)−Axj(−1)−Buj(−1))−∆w(t)

=
∑
j∈S

λjwj(−1)−∆w(t)

=
∑
j∈S

λj(wej + ∆wj(−1))−∆w(t)

=
∑
j∈S

λjw
e
j +

∑
j∈S

λj∆wj(−1)−∆w(t)

=
∑
j∈S

λjw
e
j + ew(t), (4.46)

where ew(t) is a zero mean error term. In a similar way
y(t) = Cx(t) +Du(t) + v(t)

= Cx(t) +Du(t) + ve + ∆v(t). (4.47)

Thus,
ve = y(t)− Cx(t)−Du(t)−∆v(t)

=
∑
j∈S

λj(yj(0)− Cxj(0)−Duj(0))−∆v(t)

=
∑
j∈S

λjvj(0)−∆v(t)

=
∑
j∈S

λj(vej + ∆vj(0))−∆v(t)

=
∑
j∈S

λjv
e
j +

∑
j∈S

λj∆vj(0)−∆v(t)

=
∑
j∈S

λjv
e
j + ev(t), (4.48)

where ev(t) is a zero mean error term.

The control objective is to drive the output to the reference r. Taking into account
Assumption 5, this implies that, for each candidate, the state and the input have to
reach the corresponding steady state values xej , uej . In the next result, it is proved that
the evolution of the deviation of the state from its target state can be estimated from
the weighted evolution of the deviation of each of the candidate trajectories from its
corresponding target states with zero mean error. This relation will be used to prove
convergence and zero mean tracking error.

Theorem 4. Suppose that [
xe

ue

]
= M

[
we

r − ve

]
, (4.49)[

xej
uej

]
= M

[
wej

rj − vej

]
, (4.50)
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and that (4.27), (4.28), (4.29), (4.30) (4.31), (4.34) and (4.35) holds; then

x(t+ 1)− xe =
∑
j∈S

λj(xj(1)− xej) + η(t), (4.51)

where η(t) is a zero mean error term.

Proof. From property 4 it holds that[
xe

ue

]
= M

[
we

r − ve

]

= M


∑
j∈S

λjw
e
j + ew(t)∑

j∈S
λjrj −

∑
j∈S

λjv
e
j − ev(t)


=

∑
j∈S

λjM

[
wej

rj − vej

]
+M

[
ew(t)
−ev(t)

]

=
∑
j∈S

λj

[
xej
uej

]
+M

[
ew(t)
−ev(t)

]
. (4.52)

From the previous equation,

xe =
∑
j∈S

λjx
e
j + es(t), (4.53)

where es(t) is a zero mean error term. From property 3 and subtracting (4.53) to (4.36)
we finally obtain

x(t+ 1)− xe =
∑
j∈S

λj(xj(1)− xej) + ex(t)− es(t)

=
∑
j∈S

λj(xj(1)− xej) + η(t), (4.54)

where η(t) = ex(t)− es(t).

Theorem 4 and the stability of the error dynamics of all the candidates1 will be used in
the following to prove the main result of the chapter. Since the disturbances w(t) and v(t)
are random variables with non zero mean, offset free tracking will be attained if we can
prove that the closed loop trajectory converges to a neighbourhood of xe.

Theorem 5. Under the assumptions of Theorem 4, there exist γ ∈ (0, 1) such that

‖x(t+ 1)− xe‖P ≤ ‖ψ(t)‖P +√γ‖x(t)− xe‖P , (4.55)

where ψ(t) is a zero mean error term, which implies that the state converges to a neigh-
bourhood of xe.

1This is a direct consequence of assumption 5.
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Proof. Under the assumptions of Theorem 4 we have that

x(t+ 1)− xe =
∑
j∈S

λj(xj(1)− xej) + η(t). (4.56)

From Assumption 5 we also have

xj(k + 1)− xej = Ac(xj(k)− xej) + τj(k), (4.57)

where Ac is Schur stable and τj(t) has zero mean. Therefore, each trajectory satisfies

xj(1)− xej = Ac(xj(0)− xej) + τj(0). (4.58)

Substituting (4.58) into equation (4.56):

x(t+ 1)− xe = η(t) +
∑
j∈S

λj(Ac(xj(0)− xej) + τj(0)), (4.59)

We now denote ξ(t) the aggregation of all the error terms. That is,

ξ(t) = η(t) +
∑
j∈S

λjτj(0). (4.60)

With this notation,

x(t+ 1)− xe = ξ(t) +Ac
∑
j∈S

λj(xj(0)− xej). (4.61)

Since x(t) =
∑
j∈S

λjxj(0) and taking into account (4.53), we obtain

x(t+ 1)− xe = ξ(t) +Ac
∑
j∈S

λj(xj(0)− xej) (4.62)

= ξ(t) +Ac(x(t)− xe) +Aces(t).

Aggregating again the error terms in ψ(t) = ξ(t) +Aces(t) we have

x(t+ 1)− xe = ψ(t) +Ac(x(t)− xe), (4.63)

where ψ(t) is a zero mean error term. This is enough to ensure the existence of a proba-
bilistic ultimate bound set ([54]). Consider now the weighted norm ‖x(t+ 1)− xe‖P . The
triangle inequality yields

‖x(t+ 1)− xe‖P = ‖ψ(t) +Ac(x(t)− xe)‖P
≤ ‖ψ(t)‖P + ‖Ac(x(t)− xe)‖P . (4.64)

Since Ac is assumed to be Schur stable, there is P > 0 and γ ∈ (0, 1) such that

A>c PAc < γP, (4.65)

Taking into account this into (4.64)

‖x(t+ 1)− xe‖P ≤ ‖ψ(t)‖P +√γ‖x(t)− xe‖P . (4.66)

This means that the trajectory converges to a neighbourhood of xe.

Notice that the distance to the desired steady state xe decreases at each sample time
provided that

‖ψ(t)‖P < (1−√γ)‖x(t)− xe‖P . (4.67)
From here we infer that the size of the set in which x(t) is ultimately bounded can be
characterized by an upper bound on ‖ψ(t)‖P .
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4.4 Controller formulation
In this section, a general formulation for the proposed strategy and an implementation
procedure (see Algorithm 2) are presented. Furthermore, we focus on some details of the
algorithm that provide a simplification in its implementation and a relaxation on some
theoretical assumptions made in sections 4.2 and 4.3.

The objective of the proposed controller is to minimize at each sampling time the the
variance of the tracking error which following the results of the previous section can be
defined as ∑

j∈S
λ2
jE{‖ej(0)‖2}. (4.68)

where the ej(0) represents the part of the error term ψ(t) related to the tracking error in
the stored trajectory j. It can be difficult to obtain the expectation E{‖ej(0)‖2}, but if
we assume an upper bound

E{‖ej(0)‖2} ≤ σj , ∀j ∈ S, (4.69)

then the optimization problem to solve is to minimize∑
j∈S

σ2
jλ

2
j , (4.70)

subject to the equality constraints presented in the previous section. Furthermore, if it is
considered that the values for σj are all equal to an unknown value σ, the optimization
problem can be rewritten as

λ∗j (t) = arg min
λj

∑
j∈S

λ2
j (4.71a)

s.t.
∑
j∈S

λjxj(0) = x(t) (4.71b)

∑
j∈S

λjxj(−1) = x(t− 1) (4.71c)

∑
j∈S

λjuj(−1) = u(t− 1) (4.71d)

∑
j∈S

λjyj(0) = y(t) (4.71e)

∑
j∈S

λjrj = r (4.71f)

∑
j∈S

λj = 1 (4.71g)

Using the solution obtained with the previous problem, the control signal to be applied is

u(t) =
∑
j∈S

λ∗j (t)uj(0) (4.72)

where λ∗j (t) are obtained every sampling time from the solution of (4.71a) taking into
account the current values of x(t), x(t − 1), u(t − 1) and y(t). This control law can be
obtained using a simple explicit equation and will result in an offset free tracking trajectory
as shown in the previous section.
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4.4.1 Reducing the candidate set

Given a database, a set S of candidate trajectories that includes all the information avail-
able can be obtained. In general, the cardinality of this set can be very high if the database
is large (note that for each trajectory a number of candidates can be obtained with dif-
ferent initial states along such trajectory). In this section, we propose to use, at each
sampling time t, not all the candidates available, but a reduced subset denoted Ŝ(t). In
particular, we propose to use only the nc candidates closer, in a sense, to the current
state of the system. The cardinality of Ŝ(t) becomes a tuning parameter that provides
a trade-off between the amount of information used, the computational burden and the
estimation error due to nonlinearities. In practice, there are several reasons that justify
using local information including the high computational burden with a large database and
the low information value between trajectories or data repetition. In addition, using local
information reduces the estimation error produced when the proposed approach is applied
to a nonlinear system. Using local information is akin to carrying out a linearisation in
the current state [20].

In order to reduce the candidate set, a selection criteria has to be specified. We propose to
use a distance function that evaluates the trajectories stored in the database with respect
the current situation taking into account not only the current state, but also the current
output, the reference and the past state and input; that is, all the information used to
define the optimization problem of the proposed controller. This information is condensed
in the following vectors

z(t) =


r(t)
y(t)
x(t)

x(t− 1)
u(t− 1)

 zj =


rj

yj(0)
xj(0)
xj(−1)
uj(−1)

 (4.73)

with j ∈ S. At each sampling time, the nc candidates from S that yield the lowest value
of a given weighted distance function are selected. This distance function can be defined
as

df (z(t), zj) = ‖z(t)− zj‖α, (4.74)

where α is the weight matrix that is tuned to normalize and prioritize each entry of the
deviation vector.

Algorithm 2. Reducing the candidates set implies that at each sampling time, the fol-
lowing procedure has to be implemented

1. Build z(t) as in (4.73).

2. For each candidate j ∈ S compute a suitable distance function d(z(t), zj) (e.g., like
(4.74)).

3. Build Ŝ from the nc closest candidates.

4. Solve problem (4.71) using the constraints defined by Ŝ.

5. Compute and apply the control signal u(t) using (4.72) with Ŝ.
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Figure 4.5.1: Two-tanks System

Problem (4.71) can be posed as a quadratic programming problem subject to equality
constraints:

λ∗(t) = arg min
λ

λ>λ

s.t. Hλ = b,
(4.75)

where λ is a vector that includes the nc weights, matrix H ∈ Rnh×nc depends on the
reduced candidate set Ŝ and vector b ∈ Rnh depends on the current sample time data z(t).
The number of equality constraints is nh = 2 · nx + nu + 2 · ny + 1, which in general is
much lower than the number of candidates of the reduced set nc (see subsection 10.1.1.
in [18]). The solution to this optimization problem is well known and given by

λ∗(t) = H>(HH>)−1b. (4.76)

Note that this solution has to be calculated at each sampling time, because matrix H
changes with the candidates selected and vector b depends on the current measurements.
Note however that the most time consuming calculation is the inversion of matrix HH>,
whose dimension is nh. This implies that the proposed procedure avoids the use of iterative
optimization algorithms and can be implemented on a wide range of applications. In the
next section we apply this procedure to a scaled laboratory process with fast dynamics.

4.5 A simulated example with two-tank system
In this section a simulated example will be used to illustrate the proposed strategy. Two
tanks system with gravity discharge is considered, which is shown in Figure 4.5.1. The
input flow is qin(t) (measured in m3/s) and the water levels in each tank are h1(t) and
h2(t) respectively (measured in meters). The continuous time dynamics of the system are
assumed to be given by the following nonlinear differential equations:

ḣ1(t) = A−1
1

(
qin(t)− k1

√
h1(t)

)
+ d1(t)

ḣ2(t) = A−1
2

(
k1
√
h1(t)− k2

√
h2(t)

)
+ d2(t)

(4.77)
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where A1 = 0.07m2 is the section of the upper tank, A2 = 0.08m2 is the section of the lower
tank, k1 = 0.007m3/(

√
m · s) and k2 = 0.012m3/(

√
m · s) are the discharge coefficients

of the upper and lower tank respectively and d1(t) and d2(t) are additive disturbances
measured in m/s. The state vector x is formed by the heights in meters of both tanks, so
x = [h1, h2] ∈ R2. The control action is the input flow of the upper tank, thus u = qin ∈ R.
The output of the system y is the height of the lower tank, that is y = h2 ∈ R. Besides the
full nonlinear model given in (4.77), a linearised model of the system around the operating
point ho1 = 1, ho2 = 0.3403 and qo = 0.007 will be considered for some of the simulations.

The database has been build using different controllers in closed-loop operation. PI con-
trollers has been selected because they produce trajectories without offset. The values of
the controller’s parameters are randomly obtained in the following ranges:

Kp = [0.0045, 0.0055] Ti = [7000, 9000].

The intervals for Kp and Ti have been chosen so that all closed loop trajectories in the
database are stable but with different degrees of overshoot and settling time, with the
purpose of showing the offset free property of the proposed strategy, i.e., no design criteria
for the transient response has been taken into account. The sample time used is 10 minutes.
The database has 1000 trajectories and all of them have a time length of 1000 minutes.
Each trajectory included in the database start, with a random stable pair {xej , uej} defined
by an initial random value of the reference rj . At time t = 0, a random reference value is
chosen. The random reference values, and consequently the heights of the lower tank, are
in the interval h2(t), r(t) ∈ [0.2, 1.5]. The upper tank height is in the range h1 ∈ [0, 4.1]
and the input flow qin ∈ [0.0006, 0.017]. The disturbances have non zero mean, being
randomly selected in the range E{d1}, E{d2} ∈ [0.01, 0.03].

In order to get the subset S of partial trajectories of the database, a distance function like
4.74 is taken into account. Notice that the output y(t) is included as a part of x(t) because,
in this example, x(t) = [h1(t);h2(t)] and y(t) = h2(t). The data driven controller considers
the κ nearest points calculated with the proposed distance function, so j = [1, . . . , κ].

The first simulation considers the linearised model of (4.77) to both generate the database
and for the closed loop simulated experiments. In this simulation, the initial state and
control action are those of the operating point. During the simulation time, which is 4000
seconds, two step changes are given. At time t = 2000 there is a sudden increment in the
mean value of the disturbances, from an initial value set to E{d1(t)} = E{d2(t)} = 0.005
to 0.02 after t = 2000. Figure 4.5.2 shows the result of the proposed simulation. The
upper plot shows the reference signal r(t) and the level of the lower tank h2(t), plotted
in orange color. The lower plot shows the input signal qin(t) (plotted in orange color). It
can be seen that offset free tracking is achieved through all the simulation.

Notice that the reference signal is set to 1.7 meter after time t = 3000, which is a reference
value out of the range of references of the trajectories contained in the database. However,
the proposed controller reaches the desired steady state even if the database does not store
any information about them.

The same closed loop simulation is then run considering the nonlinear model of the plant
and a database obtained in the same conditions, but closing the loop this time with the
nonlinear model (4.77). It can be observed that the proposed strategy with nonlinear
model obtains offset free tracking (blue plot of figure 4.5.2) as in the previous case with
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Figure 4.5.2: Closed loop simulation with the proposed controller for the linearized (orange
plot) and nonlinear model (blue plot).

a linearized model. The reason for this, is that, although based on a linear model like
(4.1), the proposed controller is designed to reject non zero mean disturbances. Thus it
can compensate for discrepancies between the dynamics registered in the database and
the one shown by the process. For a more exhaustive study of this case, a total of 100
set point tracking and disturbance rejection simulations have been simulated for the non
linear model and the linearized. In each simulation, the initial state, step amplitude,
and disturbance amplitude are randomly chosen within the ranges used for simulations in
figure 4.5.2. The average steady state error in the linearized simulations is 2.28 · 10−9 and
1.39 ·10−4 in the nonlinear case. Then, a set of 100 simulations for reference values outside
the database range have been performed, being the average steady state error 3.23 · 10−9

for the linear case and 6.24 · 10−2 for the nonlinear case. This confirms offset free tracking
in the linear case and that, in practice, the offset in nonlinear systems can be very small,
especially when the set point to be tracked is within the database range.

Finally, figure 4.5.3 shows two different simulations to demonstrate the necessity of memory
constraints (4.34) and (4.35) and offset free trajectories in the database. First simulation is
with a similar controller to the proposed data driven controller but removing the memory
constraints (named without memory). Second simulation is with the proposed data driven
controller but with a database in which the trajectories are obtained with proportional (P)
controllers (named P-database). It can be observed that both cases show obvious steady
state errors. Thus, memory constraints and a database with offset free trajectories are
the main ingredients to get an offset free tracking with the proposed strategy which with
both ingredients can recover the underlying control law.



4.6. APPLICATION TO THE FEEDBACK PROCESS TRAINER 37-100 73

time [s]

0 500 1000 1500 2000 2500 3000 3500 4000

h
2
 [

m
]

0

0.5

1

1.5

2

2.5

r

h
2
 without memory

h
2
 P-database

time [s]

0 500 1000 1500 2000 2500 3000 3500 4000

q
 [

m
3
/s

]

0

0.01

0.02

0.03

q
in

 without memory

q
in

 P-database

Figure 4.5.3: Closed loop simulation with without-memory (blue plot) and P-database
(orange plot).

4.6 Application to the Feedback Process Trainer 37-100

The proposed controller has been tested on the Feedback Process Trainer 37-100 (see figure
4.6.1), a renewed version of the Feedback PT-326 [61]. In this equipment, an axial fan
is used to circulate air through a heating element inside a propylene tube. The heating
element can be controlled using a voltage input and the air temperature is measured at
the end of the tube by a bead thermistor. The system exhibits air and tube thermal
time constants. The dynamic characteristics of the system can be changed by manually
changing the fan speed using a potentiometer. The controlled variable in these experiments
is the voltage output of the bead thermistor, whereas the manipulated variable is the
voltage input that controls the heating element.

Although an scaled laboratory process, this equipment is a challenging test bed for data
driven algorithms or other complex control methods because of its fast dynamics, that
require sampling times of a few hundredths of a second. A sampling time of 0.07 seconds
has been used through all the experiments shown in this section. The delay is neglected
because it is lower than the sample time, thus no delay compensation has been taken into
account.

Following the nomenclature, the input u is the voltage that controls the heating element,
that is u(t) = V (t) ∈ [0, 10] volts, and the output y is the temperature measured by the
sensor represented in a voltage, that is y(t) = VT (t) ∈ [0, 10] volts. As it is well known that
the process control trainer can be characterized by a first order model, in this experiments
the state is equal to the output, so x(t) = y(t).

A total of 300 eight minute trajectories have been generated with the fan speed poten-
tiometer set to 50%. Each trajectory is defined by a random initial set point and a step
set point change of random amplitude, computed in a way such that the initial and final
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Figure 4.6.1: Feedback Process Trainer 37-100 unit.

set point values differ between 1 and 8 volts. For each trajectory 4 different PI controllers
have been tested (each one for 2 minutes, changing from the initial set point value to the
step value and back again to the initial value). Table 4.1 shows the parameters for each
PI controller while Figure 4.6.2 shows the behaviour of the transient response for each
PI controller with 4 different closed-loop tracking experiments. The database comprises
a total of 300 two minute closed loop offset free trajectories which results in 51400 differ-
ent candidates in S. It is noteworthy that the database took 40 hours to be generated,
thus the ambient temperature changed quite a bit during the morning and night hours.
This implies that the process dynamics are not constant through the database leading to
different perturbations mean values for each trajectory.

PI1 PI2 PI3 PI4
Kp 1 1 1 1
Ki 1.5 1.07 0.64 0.21

Table 4.1: Parameters for PI controllers of the database.

Following the procedure presented in Algorithm 2, the distance function (4.74), with α = I
has been used to select the nc = 6000 nearest points to the current state in the database.
It is noteworthy that the solution of (4.71) and the control law (4.72) can be computed
within the sampling time of 0.07 seconds in Matlab with a Intel Core-i3 running Windows.

Figure 4.6.3 shows the results of a set point tracking experiment with two reference changes
using the proposed approach. The controller achieves offset free tracking in each set point
value (plotted in red), despite the obvious noise and disturbances. It can be seen how the
controller adjusts continually, in a clear trend, the control effort to keep the controlled
variable near the set point. The reason of this trend is the heating of the propylene tube,
much slower than the heating of the air, but nonetheless able to affect the controlled
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Figure 4.6.2: Tracking experiments in closed-loop with the PI controllers that generate
the database.

variable.

To demonstrate the disturbance rejection properties of the controller, three different ex-
periments have been considered. First, a constant error of amplitude 2 volts is added
artificially to the temperature measure after 3 minutes. Figure 4.6.4 shows the trajectory
of the measured temperature and how it converges again to the reference value because
the proposed controller successfully rejects the disturbance. Note that the input has to
modify its steady state value to compensate for the effect of the additive disturbance.

Second, the fan speed potentiometer has been increased from 50%, the value used to
generate the database trajectories, to 80%. As a result of the increased fan speed, the
temperature drops and the controller is forced to raise the voltage applied to the heater.
After the disturbance is rejected, the fan speed is changed back to its previous value,
which is again another disturbance that it is also effectively rejected. Figure 4.6.5 shows the
experimental results. It is noteworthy that the changes induced in the system by increasing
the fan speed are more severe than the additive measurement disturbance included in the
previous simulation. Despite this disturbance, the nonlinearity of the system and the
variations in the ambient temperature, the controller is able to track set point changes
and reject disturbances.

Finally, an even more difficult case is shown in figure 4.6.6 where the fan speed was reduced
from 50% to 30%. This case is more difficult than the previous one because in addition to
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Figure 4.6.3: Tracking test results on the Feedback Process Trainer 37-100.

the changes in the process dynamics, the dead-time is increased. Nevertheless, as shown
in figure 4.6.6, the controller is able to track the set-point with minimal steady state error
while compensating the slow drifts in the temperature.

In order to study the effect of the number of candidates nc on the closed-loop performance,
we will compare the tracking error of a set of controllers with nc taking values nc =
{1000, 1500, 2000, 2500, 3000}. For each controller, 15 closed-loop tracking experiment
with length 60 seconds (857 samples) have been carried out with different reference values,
in particular, five experiments with reference r = 3.5 , five with reference r = 5 and another
five with reference r = 7. For each experiment the mean value of the squared error is
computed for 172 samples once the closed-loop system has converged to its corresponding
reference.

Figure 4.6.7 shows the steady state error for the 75 experiments as magenta dots. Fur-
thermore, the average of the steady state error for the 5 closed-loop experiments with the
same constant reference signal and nc is computed. The blue dashed-dotted line shows this
result for reference r = 3.5, the red dashed line represents the average of the experiments
with r = 5 and the green dotted one is with r = 7. The average of the 15 experiments
with the same nc is represented with the black solid line. We can observe that the steady
state error for all the experiments is always upper-bounded by 2.5 · 10−2. Moreover, the
steady state error decreases when nc is increased which is the expected behavior.

It is important to remark that reducing too much the number of candidates has a negative
impact on the performance of the controller. In those cases, the controller is forced to
extrapolate, which results in worse control. Figure 4.6.8 shows a tracking experiment
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Figure 4.6.4: Disturbance rejection test with the Feedback Process Trainer 37-100: Arti-
ficial additive disturbance.

where only the 50 closest candidates are considered. In this experiment, the average
tracking error is quite large (almost 0.4 volts with a standard deviation of 0.36), but as
shown in table 4.2, these numbers drop as expected if the experiment is repeated with
an increasingly higher number of candidates (note that these experiments are different of
that of figure 4.6.7 as they contain several set point changes, hence the greater average
error and standard deviation).

nc 50 100 500 1500
ē 0,3998 0,1423 0,0889 0,0872
σ 0,3686 0,1487 0,1434 0,1480

Table 4.2: Average tracking error and standard deviation in varying set-point tracking
experiment for low numbers of candidates.

Finally, it is demonstrated that the proposed strategy performance is strongly dependent
on the database trajectories considered. Figure 4.6.9 shows the output of the data-based
controller in closed loop using two different databases for the same reference signal (dashed
red). In the first case, a more oscillating PI controller with parameters Kp = 1 and
Ki = 1.5 is used to obtain the database. On the other hand, a PI controller less aggressive
with parameters Kp = 1 and Ki = 0.21 generates the second database. Note that the
closed-loop trajectory of the data-based controller reaches the reference independently of
the database used, however its behaviour in the transient response is inherited from the
database trajectories.
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Figure 4.6.5: Disturbance rejection test the Feedback Process Trainer 37-100: Fan speed
increased.
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Chapter 5

Data based predictive control via
direct weight optimization

Multi-objective optimization (MOO), also known as multi-criteria or multi-performance, is
a different paradigm to deal with optimization problems. In recent years, control research
community has paid attention to these techniques, as demonstrate the overviews [39, 60] of
MOO application in control engineering. In MPC different optimization criteria depending
on the minimization objective can be considered, thus MOO can be combined with MPC
as in [49, 52], or even with data driven approaches as in [118, 120].

Regarding large complex systems, different objectives with contradictory performance are
present. An example is WDNs, where economic performance and demand satisfaction
objectives are to be met. The first one proposes to spend as less as possible electricity
while trying to consume it in the low tariff period (usually at night) in order to reduce
the cost of pumping water. The second one sets that it is necessary to satisfy client’s
water demands, so to fill up water tanks in the network over safety levels is priority. Thus,
multi-performance is required in these kind of systems.

Previous chapters have shown that, typically, data based techniques have focused on a sin-
gle objective. Identification methods try to obtain a model from data with low estimation
errors (i.e. [14, 50, 71]) which allows MPC approaches to predict future behaviour of the
system. On the other hand, in model-free strategies, the only information available on the
system is past trajectories which are directly used to achieve the final control objective as
in [27, 38, 43, 94, 100, 107].

In this chapter we propose to use a prediction model based on identification via direct
weight optimization ([20, 92]) which are based on postulating an estimator that is lin-
ear in the observed outputs and then determining the weights in this estimator by direct
optimization of a suitably chosen criterion. In particular, taking MOO philosophy, we pro-
pose to optimize the weights of this linear combination taking into account simultaneously
performance and estimation error. For unconstrained systems, dynamic programming is
used to obtain an explicit linear solution of a finite or infinite horizon optimal control
problem. To obtain the explicit solution, a procedure to exploit the structure of the re-
sulting quadratic optimization problem based on the matrix inversion lemma ([116]) is
also provided. If constraints are taken into account, we propose to solve online a con-

81
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strained quadratic optimization problem. In this case, the optimization problem can take
into account local information to improve the performance.

5.1 Problem formulation
We consider a system described by an unknown time-invariant discrete-time model

z = f(x, u), (5.1)

where x ∈ X ⊆ Rnx is the system state, u ∈ U ⊆ Rnu is the control input vector, z ∈ X
is the successor state, and f is the unknown transition function. In our setting, we will
treat the system generating the data as if it were linear, although it may not be in reality
if f is nonlinear.

The control objective is to regulate the system to the origin while minimizing the perfor-
mance cost defined by the following quadratic stage cost

`(x, u) = x>Qx+ u>Ru,

where Q and R are the tuning parameters of the controller.

If function f were known, this problem could be solved using off-the-shelf techniques, for
example dynamic programming. Instead in this chapter we propose to use the information
stored in a database to predict the behavior of the system and solve simultaneously the
control design problem. This database stores M different triplets of data corresponding
to a state xq, an input uq, and the corresponding successor state zq.

We assume that the samples collected in the data-set satisfy the following equation

zq = f(xq, uq) + wq, (5.2)

where wq models measurement errors that we assume independent from xq, uq.

Each data triplet (xq, uq, zq) is denoted as a “candidate". The main idea is to estimate
the dynamics of the system using a weighted linear combination of the candidates that
is consistent with the current state and input ([92, 20]). The weight of each candidate is
λq ∈ R.

Lemma. Consider a set of M weights λq ∈ R and candidates (xq, uq, zq) that satisfy (5.2)
where (xq, uq) are independent for all q. If f : X ×U → X is linear and each entry wqi of
vector wq is a zero-mean, i.i.d. random variable with variance σ2, then

f

 M∑
q=1

λqxq,
M∑
q=1

λquq

 =
M∑
q=1

λqzq + e,

where the estimation error e is a random vector whose entries are zero-mean, i.i.d. random

variables with variance
M∑
q=1

λ2
qσ

2.

Proof.

Since f is linear,

f

 M∑
q=1

λqxq,
M∑
q=1

λquq

 =
M∑
q=1

λqf(xq, uq).
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From (5.2), if follows that
f(xq, uq) = zq − wq,

and hence

f

 M∑
q=1

λqxq,
M∑
q=1

λquq

 =
M∑
q=1

λq(zq − wq).

By defining e = −
M∑
q=1

λqwq we have that

f

 M∑
q=1

λqxq,
M∑
q=1

λquq

 =
M∑
q=1

λqzq + e.

and taking into account that each entry wqi of vector wq is a zero-mean, i.i.d. random
variable with variance σ2, then e is a random vector whose entries are zero-mean, i.i.d.

random variables with variance
M∑
q=1

λ2
qσ

2.

In the following section we propose to solve an optimization problem to determine the
optimal candidates weights λq to minimize both the performance cost and the estimation
error variance following a predictive control approach based on dynamic programming.

5.2 Unconstrained explicit data based predictive control
In this section we present a data-based predictive control for unconstrained systems. The
controller is based on solving a dynamic programming problem over a finite horizon in
which the optimization variables are, at each iteration i, the optimal weights λiq for each
candidate q.

Following a dynamic programming approach for linear systems and quadratic costs, given
a state x we assume that the cost to go is a quadratic function of the state,

Ji(x) = x>Pix, (5.3)

where P0 defines the terminal cost of the data-based predictive controller. Then, Ji(x) is
defined recursively as follows:

Ji+1(x) = x>Qx+ u>Ru+ Ji(z), (5.4)

with

x =
M∑
q=1

λ∗iq(x)xq, u =
M∑
q=1

λ∗iq(x)uq, z =
M∑
q=1

λ∗iq(x)zq,

and
λ∗iq(x) = arg min

λi1...λiM

u>Ru+ Ji(z) + β
M∑
q=1

λ2
iq

s.t. x =
M∑
q=1

λiqxq,

u =
M∑
q=1

λiquq,

z =
M∑
q=1

λiqzq,

(5.5)
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where β > 0 is a tuning parameter to provide a trade-off between performance and esti-
mation error.

Note that the cost function of problem (5.5), which is used to calculate the optimal weights

λ∗iq(x), includes a term that is proportional to the variance of the estimation error,
M∑
q=1

λ2
iq.

This term, however, is not included in the definition of the optimal cost of the proposed
controller, Ji(x).

Optimization problem (5.5) is solved recursively from i = 1, . . . , N . The proposed uncon-
strained explicit data-based predictive control is then defined as

u∗(x) =
M∑
q=1

λ∗N−1,q(x)uq.

5.2.1 Multi-parametric solution of the proposed optimization problem

In this section, an explicit solution of problem (5.5) is provided using a multi-parametric
approach in order to compute Ji+1(x) from Ji(x). To this end, we define the optimization
vector

λi = [λi1 . . . λiM ]> ∈ RM×1,

and the following matrices obtained from the database

Xq = [ x1 x2 . . . xM ],
Uq = [ u1 u2 . . . uM ],
Zq = [ z1 z2 . . . zM ].

By treating x as a vector of parameters, optimization (5.5) is equivalent to the following
parametric optimization problem

λ∗i (x) = arg min
λi

λ>i U
>
q RUqλi + λ>i Z

>
q PiZqλi

+λ>i βMλi
s.t. x = Xqλi,

(5.6)

where βM = βI.

Problem (5.6) can be rewritten as

min
λi

λ>i Hiλi

s.t. Tλi = Sx,
(5.7)

where
Hi = U>q RUq + Z>q PiZq + βM ∈ RM×M ,
T = Xq ∈ Rnx×M ,
S = I ∈ Rnx×nx .

If Hi � 0, the solution of problem (5.7) can be obtained solving by the following set of
linear equations obtained from the Karush-Kuhn-Tucker conditions:[

Hi T>

T 0

] [
λi
τi

]
=
[

0
Sx

]
, (5.8)
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where τi are the Lagrange multipliers of the equality constraints in (5.7).

Since Hi � 0, from (5.8) the optimal value of vector λi can be obtained as a explicit
function of τi,

λ∗i (τi) = −H−1
i T>τi. (5.9)

From (5.8) and (5.9) we obtain that τi must satisfy the following equation

T (−H−1
i T>τi) = Sx.

Assuming that the linear quadratic constraint qualification (LICQ) condition holds so that
TH−1

i T> is invertible, we get

τ∗i (x) = −(TH−1
i T>)−1Sx. (5.10)

By substituting (5.10) in (5.9) we obtain

λ∗i (x) = H−1
i T>(TH−1

i T>)−1Sx = Ki+1x,

where
Ki+1 = H−1

i T>(TH−1
i T>)−1S. (5.11)

Taking into account (5.3) and (5.4) it follows that

Pi+1 = Q+K>i (U>q RUq + Z>q PiZq)Ki. (5.12)

Equation (5.12) provides an iterative procedure to obtain the value of Pi+1 from Pi. The
proposed unconstrained explicit data-based predictive control is then defined as

u∗(x) = UqKNx.

5.2.2 Efficient computation of the inverse of Hi

The computation of matrices Ki+1 and Pi+1 requires the computation of the inverse of
Hi. This can be a cumbersome problem when the number of rows in the database M is
high. We present next a procedure to compute this inverse efficiently profiting from the
structure of the matrix.

Matrix Hi can be parametrized as follows

Hi = βM −Θ>ΥΘ,

where
Θ =

[
Uq
Zq

]
, Υ = −

[
R 0
0 Pi

]
.

Considering the matrix inversion lemma, or the Sherman-Morrison-Woodbury formula,
particularized for symmetric matrices, we have that

H−1
i = (βM −Θ>ΥΘ)−1

= β−1
M + β−1

M Θ>(Υ−1 −Θβ−1
M Θ>)−1Θβ−1

M

= 1
β
I + 1

β2 Θ>(Υ−1 − 1
β

ΘΘ>)−1Θ.
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Figure 5.2.1: Comparison between direct inverse of Hi and inverse obtained by the inver-
sion lemma.

The dimension of (Υ−1 − 1
βΘΘ>) is (nu + nx)× (nu + nx) which is much lower than the

dimension M of Hi. This implies that using the inversion lemma is more efficient than a
direct inversion. Figure 5.2.1 shows the comparison between the relation of computational
time and M , matrix Hi dimension, for both techniques, direct inversion and inversion
lemma method.

5.3 Constrained single-step data based predictive control
The proposed control-synthesis procedure can also be applied to constrained systems.
However, in this case the resulting optimal control law would be a piece-wise linear func-
tion, and the corresponding optimal cost to go, a piece-wise quadratic function ([9]). This
implies that a dynamic programming approach cannot be easily applied. Instead, a finite
horizon open-loop constrained optimal control problem can be formulated and solved. In
this case, for each prediction step j and candidate q a weight λjq must be optimized so
that for each prediction step j ∈ {1, . . . , N − 1} the following constraints are satisfied in
order to obtain a state and input prediction

xj =
M∑
q=1

λjqxq, uj =
M∑
q=1

λjquq, zj =
M∑
q=1

λjqzq,

with xj+1 = zj and x0 equal to the current measured state. Taking into account that
the number M of possible candidates can be very large, we propose to use a prediction
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horizon of one step in order to consider state and input constraints, that we define as
linear constraints by taking the sets X and U as polyhedra.

Solving an online optimization problem at each time step following a receding horizon
approach allows us to take into account the current measured state in the definition of the
optimization problem, in particular, in the estimation procedure. To this end we propose
that, at each sampling time, only a subset of the candidates G(x) is taken into account
(for example, the closest candidates in the state space) and in addition, that the cost that
depends on the square of the candidate weight for each candidate βq(x) depends also on
the current state (for example, proportionally with the distance between the current state
x and the candidate state xq). Using close candidates and penalizing those that are far,
in some sense, aims at obtaining a better local approximation of the system dynamics.

For a given state x, we propose to solve online the following optimization problem to
determine the optimal candidates weights λ∗q(x) that minimize a cost function that depends
on both the performance and the estimation error variance:

min
λq , q∈G(x)

x>Qx+ u>Ru+ z>Pz +
M∑
q=1

βq(x)λ2
q

s.t. x =
∑

q∈G(x)
λqxq,

u =
∑

q∈G(x)
λquq ∈ U, (5.13)

z =
∑

q∈G(x)
λqzq ∈ X.

The optimization problem (5.13) is solved at each sampling time k for the current state x.
The proposed unconstrained explicit data-based predictive control law is then defined as

u∗ =
∑

q∈G(x)
λ∗q(x)uq.

5.4 Example 1

In this section proposed approach will be applied to obtain an approximation of the optimal
linear quadratic regulator for the double integrator system, that is

f(x, u) = Ax+Bu (5.14)

with

A =
[

1 1
1 0

]

B =
[

0
1

]
.

To generate the controller a database of M = 1000 rows is generated. Each row contains
a random initial state xq whose components belong to the interval [−10, 10] and a random
control action uq in the interval [−1, 1]. The successor state zq is generated as (5.2 using
model (5.14) where wq is a random vector whose components have zero mean and belong
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Figure 5.4.1: Representation of the Database. In x1 and x2 axis are represented the first
and the second components of the current (and the successor) state.

to the interval [−0.1, 0.1]. Figure 5.4.1 shows the representation of the information of xq
and zq states stored in the database.

We group set of G = 10 consecutively rows from the database and form a grouped database
of size MG = M/G = 100 whose rows are the average of the values of each set, in order to
reduce the computational burden because of the lower information used from the grouped
database. An additional advantage is that the effect obtained is similar to filter the noise
wq. Figure 5.4.2 shows the representation of the information of xq and zq states stored in
the grouped database

The control objective is defined by the following matrices.

Q =
[

1 0
0 1

]
R = 10, P0 = Q.

Using the iterative explicit solution of the proposed controller, we can define the error e
as

e = |PLQR − Pi| (5.15)
where PLQR is the matrix solution of the Riccati equation, obtained with a discrete LQR
controller and model (5.14) without noise.

Considering the least square method in order to get an estimation of the matrices of the
model, denote as Â and B̂, it is possible to define the following error

eLS = |PLQR − PLS | (5.16)
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Figure 5.4.2: Representation of the grouped Database with the same representation as in
Figure 5.4.1.

where PLS is the matrix solution of the Riccati equation, obtained with a discrete LQR
controller and the model

z = Âx+ B̂u (5.17)

Figure 5.4.3 shows the evolution of the iterative explicit method error with respect the
number of iterations with a fixed value of β = 20. Notice that the dashed line represent
the error obtained with the estimation of the least squared method which is greater than
the proposed controller method when the number of iteration is higher than a certain
amount.

The best value for β parameter depends on the model issues and the disturbance char-
acteristics. Figure 5.4.4 shows the relation between β parameter an the explicit Pi error
when it converges for the model and the disturbance specified.

Notice that, in this case, only for β values in the interval [17, 23], the error of the proposed
method is lower than the error obtained with the least square method.

5.5 Example 2

In this section the proposed approach is applied to control a quadruple-tank system which
is shown in figure 5.5.1. The systems is made of four tanks that are filled from a storage
tank located at the bottom of the plant through two three-way valves. The tanks at the
top (tanks 3 and 4) discharge into the corresponding tank at the bottom (tanks 1 and 2,
respectively). The inlet flows of the three-way valves are the manipulated variables of the
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Figure 5.4.3: Comparison between explicit Pi error and number of iterations with β = 20.
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Figure 5.4.4: Comparison between explicit Pi (converged) error and β.
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Figure 5.5.1: Quadruple tank plant system diagram.

real plant.

In order to generate data and test the controllers in closed-loop, a simulation model has
been used. This model is based on the quadruple-tank process used in ([2]) and is given
by the following differential equations:

Sḣ1(t) = −a1
√

2gh1(t) + a3
√

2gh3(t) + γaqa(t),
Sḣ2(t) = −a2

√
2gh2(t) + a3

√
2gh4 + γbqb(t),

Sḣ3(t) = −a3
√

2gh3(t) + (1− γb)qb(t),
Sḣ4(t) = −a4

√
2gh4(t) + (1− γa)qa(t),

(5.18)

where hi and ai with i ∈ {1, . . . , 4} refer to the water level and the discharge constant
of tank i, respectively, S is the cross section of the tanks, qj and γj with j ∈ {a, b}
denote the flow and the ratio of the three-way valve of pump j, respectively, and g is
the gravitational acceleration. In this simulation we use the parameters of the quadruple
tank process benchmark presented in ([2]) shown in Table 5.1 including maximum and
minimum level and flow limits.

The level and flow variables define the following vectors

h = [h1 h2 h3 h4]>, q = [qa qb]>.

In order to design the proposed controller, a database of M = 1000 candidate triplets
(hq,qq,hfq) is generated using the continuous-time model (5.18) and sampling every 5
seconds the solution,

hfq = h(0) +
∫ 5

0

dh(t)
dt

dt+ wq
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Table 5.1: Parameters of the plant.
a1 a2 a3 a3 γa γb

value 1.31e-4 1.51e-4 9.57e-4 8.82e-4 0.3 0.4
unit m2 m2 m2 m2 - -

S hmax hmin qmax qmin
value 0.06 1.3 0.3 3 0
unit m2 m m m3/h m3/h

Table 5.2: Target references.
Reference r 2 3 4

hr1 0.30 0.50 0.90
hr2 0.30 0.75 0.75
hr3 0.30 0.30 1.06
hr4 0.30 1.18 0.58
qra 1.11 2.20 1.53
qrb 1.35 1.36 2.54

with h(0) = hq, q(t) = qq for all t. Each entry wqi of vector wq is a zero-mean, i.i.d.
random variable with uniform distribution inside the interval [−0.01, 0.01] meters that
models both measurement errors and perturbations. The level hq and flow values qq in
each triplet are generated randomly between the maximum and minimum levels with a
uniform distribution.

A tracking experiment is defined where a set of reference changes in the levels of the tanks,
must be followed by manipulating the inlet flows. Each reference is defined by a target
equilibrium point (hr,qr) where

hr = [hr1 hr2 hr3 hr4]>, qr = [qra qrb ]>,

with r ∈ {2, 3, 4}.

The initial levels in the experiment are 0.65 for all tanks. Reference changes occur every
3000 seconds. The initial reference is (h2,q2), which changes to (h4,q4), then to (h3,q3)
and then back to (h2,q2). The references are the same used in the benchmark although
in different order. The level and flow values of each reference are given in Table 5.2.

First, the proposed unconstrained explicit controller is applied. To this end, for each
reference r a different controller is designed defining as state, input and prediction variables
the deviation of the levels and flows from the corresponding target reference; that is,

x = h− hr, u = q− qr, z = hf − hr. (5.19)

By applying the change of variables of (5.19), for each reference r a different database
including the M candidates (xrq, urq, zrq) is calculated. These data are used to solve the
finite horizon optimal control problem explicitly using a dynamic programming approach.

The controller design parameters are Q = I, R = 0.01I, P = 10I, N = 4 and βq =
1 ∀ q ∈ {1, . . . ,M}. These parameters are used for the three different references. With
a slight abuse of notation, we denote by P r and Kr the matrices PN and KN for each
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reference r with N = 4. This implies that at each sampling time k, the controller is defined
as

q(k) = qr + U rqK
r(h(k)− hr),

where r is the appropriate reference.
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Figure 5.5.2: Tank levels with unconstrained explicit controller.

To carry out the simulation, the nonlinear model is used, including a bounded additive ran-
dom perturbation in each level with uniform distribution inside the interval [−0.01, 0.01].
Figures 5.5.2 and 5.5.3 show the level and flow closed-loop trajectories for the uncon-
strained explicit controllers. It can be seen that the controller does not satisfy the input
constraints, in particular, every time there is a reference change. In addition, from time
9000 to 9500 seconds, the level of the third tank falls below 0.3 meters during the transient.

Next, we apply the constrained predictive controller with prediction horizon one. For each
reference, a different optimization problem is defined using the corresponding candidates
(xrq, urq, zrq) error variables and P r as terminal cost in (5.13). In this simulation, the set
of candidates taken into account at each sampling time k is obtained by selecting the 250
closest candidates to the current state x. In addition, for each candidate q ∈ G(x)) , the
parameter βq(x) is equal to the squared distance between the candidate and the current
state, that is,

βq(x) = (x(k)− xq)>(x(k)− xq)
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Figure 5.5.3: Pump flows with unconstrained explicit controller.

Limiting the set of candidates and penalizing the weights of candidates far away from the
current state may provide more smooth predictions ([92, 20]).

Figures 5.5.4 and 5.5.5 show the level and flow closed-loop trajectories for the constrained
implicit controller.

It can be seen that the level constraints are taken into account and constraint violations
are reduced when compared with the unconstrained controller.

The error of the direct weight optimization prediction for all the tank levels throughout this
simulation is lower than 0.1 meters. This error depends on the deviation of the levels and
flows from the corresponding target references considered. The mean value of the errors
is lower than 0.001 meters. Finally, the same simulation has been carried out with a MPC
based on the nonlinear model of the system to compare the performance. The difference
between the predictive controller with horizon one based on direct weight optimization
and the nonlinear controller is below 5%, although the number of sampling times in which
the minimum level constraints are violated is lower in the simulation carried out by using
the nonlinear MPC controller.
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Figure 5.5.4: Tank levels with constrained implicit controller.
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Figure 5.5.5: Pump flows with constrained implicit controller.
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Chapter 6

Learning-based predictive control
for MIMO systems

Noise and disturbances affect every real application. White noise measured in all elec-
tronic devices, noise induced by different actuators of the system, disturbances created
by external agents or by random variables of the system are example of noise presence
in real plants. Disturbances can affect the performance of controllers, even to reach the
extreme case of becoming unstable in closed-loop. In MPC, uncertainties produced by
discrepancies between the model and the system have an adverse effect in the controller.
To avoid this, a common assumption is to consider a perfect match between the model and
the plant with a given bound on the uncertainty, typically additive. Moreover, full state
measurement is not an usual quality of real systems which poses problems that aggravate
uncertainties such as setting the model order or estimating the state length.

Set membership identification [102] can be used to derive multi-step prediction models
and for quantifying their associated uncertainty bounds. Specifically tailored robust MPC
controllers have also been proposed for regulation [104], which are able to include explicitly
multi-step predictors and prediction error bounds into the MPC controller formulation.
Recently, a novel approach has been proposed for linear systems, that addresses model
identification, model mismatch quantification, and MPC design in a unitary and consistent
fashion [103]. These contributions focus on single input and single output (i.e., SISO)
systems, and they have been tested on linear academic examples taken from the related
literature.

Following this line of work, in this chapter, we present a joint work with Enrico Terzi,
Marcello Farina, Lorenzo Fagiano and Ricardo Scattolini from the Politecnico di Milano
carried out during an academic stay, in which the issue of robustness in data based predic-
tive control is considered. In particular, a learning-based approach for robust predictive
control design for multi-input multi-output (MIMO) linear systems is presented. This
joint work is an extension of the results presented in [103] and has been tested on a real-
istic benchmark example, i.e., the quad-tank system [2]. As a first step, we consider the
extension to linear MIMO systems, testing the approach on a linearised system model.
Secondly, we discuss about some issues and possible solutions arising in the application
of our approach on nonlinear systems and we test the control scheme on the nonlinear
simulator. Notably, the uncertainty models are identified based on regressors built from

97
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data of the nonlinear system, thus ensuring robustness of the controller also on the plant
tested. Finally, we introduce a modification in the MPC controller that is able to compen-
sate for the static mismatch between the (linear) model and the (nonlinear) plant. The
extension of the approach to non-square systems is also discussed.

6.1 Problem formulation

Consider a discrete-time, linear time invariant, MIMO system of order n with input u ∈
Rnu , output z ∈ Rny and measured output y ∈ Rny described by the autoregressive
equations:

z(k + 1) = θ
(1)
z

T
φ

(1)
z (k) + v(k)

y(k) = z(k) + d(k),
(6.1)

where v ∈ Rny is an additive process disturbance, d ∈ Rny is an additive measurement
noise and φ(1)

z (k) ∈ R(ny+nu)n is the regressor defined as:

φ(1)
z (k) = [zT (k), . . . , zT (k − n+ 1), uT (k − 1), . . . ,

uT (k − n+ 1), uT (k)]T

The matrix θ
(1)
z contains the real system parameters, that are unknown, as well as the

order of the system n.

Assumption 7 (System and signals).

• System (6.1) is asymptotically stable

• u(k) ∈ U ⊂ Rnu ∀ k ∈ Z, where U is a compact and convex set.

• the process disturbances v(k) and the output noises d(k) are bounded, i.e.

|vi(k)| ≤ v̄i |di(k)| ≤ d̄i ∀ k ∈ Z, ∀i = 1, . . . , ny

where d̄i > 0 are known and v̄i > 0 are possibly not known (and assumed unknown
in the sequel).

In this chapter, for simplicity, we also assume that the system is square (i.e., nu = ny)
and that the input-output static gain matrix (denoted µ) is invertible.
A dataset collected from the plant is available, composed of Ns input-output pairs (u, y),
and it is assumed that the input signal in the database excites all the system modes to
ensure its identifiability.
The problem addressed in this chapter consists of designing a theoretically sound robust
model predictive controller based on identified multi-step prediction models, endowed with
a tight prediction error bound estimated from data.

6.2 Tracking MPC with learned models

In this section we extend the procedure for the design of an MPC robust controller for
tracking proposed in [103] to MIMO systems.
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6.2.1 Available models

The proposed approach requires the definition of a state-space simulation model with
state X(k) = [zT (k), . . . , zT (k− o+ 1), uT (k− 1), . . . , uT (k− o+ 1)]T ∈ R(ny+nu)o−nu and
dynamics

X(k + 1) = AX(k) +Bu(k) +Mw(k)
z(k) = CX(k)
y(k) = z(k) + d(k)

(6.2)

where o (see later) is selected in the identification phase and the entries wi(k) of w(k) ∈ Rny

are bounded, i.e., |wi(k)| ≤ w̄i. Note that w(k) accounts for various sources of uncertainty,
e.g., the model mismatch with the real system and the process disturbances. Also, our
approach requires the definition of optimal predictors of z(k + p) (denoted zp(k)), for
p = 1, . . . , p̄, based on the present system state and on the future control actions U(k) =[
u(k)T . . . u(k + p̄)T

]T
:

zp(k) = CpX(k) +DpU(k) (6.3)

Model (6.2) will be defined through a suitable learning phase. Also, the peculiarity of our
approach lies in the fact that (6.3) will not be defined by iterating (6.2) p times, but by
means of dedicated identification steps, in order to optimize their multi-step predictive
potentialities.
For consistency of notation we define C0 = C and D0 = 0ny ,(p+1)nu

such that we can write
z(k) = z0(k) = C0X(k) +D0U(k).
A dedicated observer is designed, that includes the estimate ŵ(k) of the disturbance w,
derived later on.

X̂(k + 1) = AX̂(k) +Bu(k) +Mŵ(k) + L(y(k)− CX̂(k)) (6.4)

X̂(k) is the estimated state and the matrix L is chosen such that the closed-loop matrix
(A− LC) is Schur stable. We also define the nominal dynamic system as

X̄(k + 1) = AX̄(k) +Bū(k) +Mŵ(k) (6.5)

where
u(k) = ū(k) +K(X̂(k)− X̄(k)) (6.6)

The gain K is defined in such a way that the closed-loop transition matrix A + BK is
Schur stable. The corresponding nominal outputs are, for all p = 1, . . . , p̄

z̄p(k) = CpX̄(k) +DpŪ(k) (6.7)

where Ū(k) =
[
ūT (k) . . . ūT (k + p̄)

]T
. We finally define z̄(k) = C0X̄(k) = z̄0(k). In

line with [69], the optimization problem will be formulated by regarding the nominal model
(6.5), while the displacement of the real variables X(k), u(k) with respect to X̄(k), ū(k)
will be considered for constraint tightening purposes.
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6.2.2 Definition of the cost function

The overall goal of the proposed method is to track the reference output zgoal. However,
for feasibility purposes, in the optimization problem the reference set point is zref, which
in turn is defined as a further optimization variable. Assuming that a reliable (invertible)
estimate µ̂ of the system static gain matrix µ is available, the corresponding input and
state references are

uref(k) = µ̂−1zref(k), Xref(k) = Nzref(k) (6.8)

where N =
[

1o ⊗ Iny

1o−1 ⊗ µ̂−1

]
. As a result, the estimate ŵ(k) of w(k) is defined according to

the steady-state expression Xref(k) = AXref(k) +Buref(k) +Mŵ(k), i.e.,

ŵ(k) = ηzwzref(k) (6.9)

where ηzw = MT
[
(I(ny+nu)o−nu

−A)N −Bµ̂−1
]
. Moreover, for consistency, the term

ŵ(k) will be forced to be bounded, i.e., |ŵi(k)| ≤ w̄i for all i = 1, . . . , ny through dedicated
constraints in the optimization problem.
From this we can define, ∀p ∈ [0, p̄], the consistent set point for each p-steps ahead
prediction model as

zpref(k) =
[
Cp Dp

] [ Xref(k)
1p̄+1 ⊗ uref(k)

]
(6.10)

The cost function to be minimized at each step k is

J(k) =
p̄∑
p=0

(
‖z̄p(k)− zpref(k)‖2Qp

+ ‖ū(k + p)− uref(k)‖2Rp

)
+ ‖X̄(k + p̄+ 1)−Xref(k)‖2P + σ‖zref(k)− zgoal‖2

(6.11)

where X̄(k + p̄ + 1) is obtained by iterating the unperturbed state equation (6.5) p̄ + 1
times, i.e.,

X̄(k + p̄+ 1) = Ap̄+1X̄(k) + ΓŪ(k) + Γw(1p̄+1 ⊗ ŵ(k)) (6.12)

Also, Γ =
[
Ap̄B . . . B

]
,Γw =

[
Ap̄M . . . M

]
, The weights Qp, Rp, P , and σ > 0 are

defined to guarantee convergence properties, see [103] for details.

6.2.3 Definition of the tightened constraints

Suitable tightened input and output constraints are imposed on variables ū(k) and z̄(k) =
CX̄(k)

ū(k) ∈ Ū, z̄(k) ∈ Z̄, ŵ(k) ∈W, (6.13)

where W = {w ∈ Rny : |wi| ≤ w̄i, i = 1, . . . , ny} and the sets Ū and Z̄ are closed and
satisfy:

Ū ⊆ U	KĒ (6.14a)
Z̄ ⊆ Z	 C(Ē⊕ Ê) (6.14b)

Set Ê is robust positively invariant (RPI) [85] for the system

ê(k + 1) = (A− LC)ê(k) +M(w(k)− ŵ(k))− Ld(k) (6.15)
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Note that (6.15) describes the evolution of ê(k) = X(k)− X̂(k). Also, Ē is the RPI set for

ē(k + 1) = (A+BK)ē(k) + LCê(k) + Ld(k) (6.16)

where ē(k) = X̂(k)−X̄(k). To define the terminal constraint set we consider the following
auxiliary control law

ū(k) = uref(k) +K(X̄(k)−Xref(k)) (6.17)

To compute an invariant set where (X̄(k), zref) must lie in order to guarantee that con-
straints (6.13) are verified for all k, we need to define the Maximal Output Admissible Set
(MOAS, see [42]) O for the system[

X̄(k + 1)
zref(k + 1)

]
=
[

A+BK BM2 +Mηzw
0ny ,(nu+ny)o−nu

Iny

]
︸ ︷︷ ︸

F

[
X̄(k)
zref(k)

]
(6.18)

that is subject to the auxiliary control law (6.17), where M2 = µ̂−1 − KN . The triplet
(ū(k), z̄(k), ŵ(k)) is computed as z̄(k)

ū(k)
ŵ(k)

 =

 C 0ny ,ny

K M2
0ny ,(nu+ny)o−nu

ηzw


︸ ︷︷ ︸

C

[
X̄(k)
zref(k)

]
(6.19)

In the following we will use the invariant, polytopic inner approximation Oε to the MOAS.

6.2.4 The optimization problem

The optimization problem, to be solved at each time instant k ≥ 0, reads

min
X̄(k),Ū(k),zref(k)

J(k) (6.20a)

subject to (6.5), (6.7), (6.8), (6.9), (6.10) and

X̂(k)− X̄(k) ∈ Ē (6.20b)

Also, ∀p ∈ [0, p̄]

ū(k + p) ∈ Ū, z̄(k + p) = C0X̄(k + p) ∈ Z̄, ŵ(k) ∈W (6.20c)

Finally, as a terminal constraint, the following must be fulfilled[
X̄(k + p̄+ 1)

zref(k)

]
∈ Oε (6.20d)

If available, the solution to the optimization problem (6.20) is denoted X̄(k|k), Ū(k|k) =
(ū(k|k), . . . , ū(k + p|k)), zref(k|k), and u(k) in (6.6) is applied to the system according to
the receding horizon principle. Theorem 1 in [103] guarantees convergence and recursive
feasibility.
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6.3 Learning multi-step models

6.3.1 Definition of multistep prediction models in normal form

In this section we discuss how to obtain multistep models and uncertainty bounds by
adapting the original algorithm in [102], [103] in case of MIMO systems.

In particular, we first note that, by iteration of (6.1), the p-steps ahead output value of the
real system can be computed. In particular, defining the sequence V(k) = [vT (k), . . . , vT (k+
p−1)]T and the extended regressor vector, containing also future inputs up to time k+p−1,
φ

(p)
z (k) =

=[zT (k), . . . , zT (k − n+ 1), uT (k − 1), . . . ,
uT (k − n+ 1), uT (k), uT (k + 1), . . . , uT (k + p− 1)]T

it is possible write:
z(k + p) = θ

(p)
z

T
φ

(p)
z (k) + θ

(p)
v

T
V(k) (6.21)

In (6.21) the matrices θ(p)
z and θ(p)

v are polynomial combinations of the entries of θ(1)
z , and

they are thus unknown. By introducing the vector D(k) = [dT (k), dT (k + 1), . . . , dT (k +
p̄− 1)]T , expression (6.21) can be re-written as a function of the regressor φ(p)

y (k), which
corresponds to φ

(p)
z (k) where z samples have been replaced by y ones. The resulting

expression reads:

z(k + p) = θ
(p)
y

T
φ

(p)
y (k) + θ

(p)
d

T
D(k) + θ(p)

v

TV(k)︸ ︷︷ ︸
H(k)

(6.22)

Inspired by the form of (6.22), that provides directly the p-steps ahead value of output
vector z from φ

(p)
y (k), we select an independent model to predict the output vector at each

value of p = 1, . . . , p̄. Each one of these predictors, that we term “multistep", is of the
following form:

ẑ(k + p) = θ̂(p)T
φ̃

(p)
y (k) (6.23)

In (6.23) θ̂(p)T is a matrix ∈ Rny×(ny+nu)o+nu(p−1), where o is the chosen model order,
so that φ̃(p)

y (k) = [yT (k), . . . , yT (k − o + 1), uT (k − 1), . . . , uT (k − o + 1), uT (k), uT (k +
1), . . . , uT (k+ p− 1)]T . Note that, given the definition of φ̃(p)

y (k), the matrix θ̂(p)T can be
naturally partitioned into submatrices referred to variable y (denoted with θ̂(p)

Y ), to past
inputs (denoted with θ̂(p)

Ū
) and to current and future inputs (denoted with θ̂(p)

U ), so that
ẑ(k + p) =

[
θ̂

(p)T

Y θ̂
(p)T

Ū
θ̂

(p)T

U

]
φ̃

(p)
y (k). Model (6.23), though, is not in a form that is

suitable for the direct application of the identification algorithm in [103], which requires
the model parameters to be in a vector.

We thus reformulate (6.23) in a more convenient way. In particular, considering that
θ̂

(p)
•i , i = 1, . . . , ny contains the set of parameters associated to the i-th output, we write
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ẑ(k + p) =


φ̃

(p)T

y (k) 0 . . . 0
0 φ̃

(p)T

y (k) 0 0

0 0 . . . 0
0 . . . 0 φ̃

(p)T

y (k)


︸ ︷︷ ︸

Φ̃(p)T
y


θ̂

(p)
•1
θ̂

(p)
•2
...

θ̂
(p)
•ny


︸ ︷︷ ︸

Θ̂(p)

(6.24)

In equation (6.24) the predictor contains a unique vector of unknown parameters to be
identified, and it thus fits the form required by the algorithm in [103], to which the reader
is referred for details.

The outcome of the identification procedure consists, for each prediction step p = 1, . . . , p̄
in:

• A nominal model vector, denoted with Θ̂∗(p). It can be straightforwardly recast as
in (6.23), and we denote this representation with:

θ̂∗(p)
T =

[
θ̂
∗(p)T

Y θ̂
∗(p)T

Ū
θ̂
∗(p)T

U

]
.

• A global prediction error bound for each one of the system outputs, i.e. a vector
τ̂ (p)(·) ∈ Rny such that:

|zj(k + p)− ẑj(k + p)| ≤ τ̂ (p)
j (Θ̂∗(p)),

∀k ∈ Z, j = 1, . . . , ny
These bounds are termed global since they depend only on the vector of parameters
(i.e. the model) and not on the specific regressor. They are valid over a compact set
of regressor trajectories of interest, and they enjoy asymptotic convergence properties
under suitable assumptions on the informative content of the data collected in such
a compact set, see [103] for details.

6.3.2 Definition of the control-oriented models

The models (6.2) and (6.3) are obtained by setting

A =


θ̂
∗(1)T

Y θ̂
∗(1)T

Ū
I(o−1)ny

0(o−1)ny ,ny
0(o−1)ny ,(o−1)nu

0(o−1)nu,ony

0nu,(o−1)nu

I(o−2)nu
0(o−2)nu,nu

 ,

B =


θ̂
∗(1)T

U

0(o−1)ny ,nu

Inu

0(o−2)nu,nu

 , C =
[
Iny 0ny ,(ny+nu)(o−1)

]
,M = CT

Cp =
[
θ̂
∗(p)T

Y θ̂
∗(p)T

U

]
, Dp =

[
θ̂
∗(p)T

Ū
0ny ,(p+1−p)nu

]
.
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The maximum amplitude of each of the components w̄i is identified based on the prediction
error bound τ̂ (p)

j (·) suitably employed, with arguments similar to those presented in [103],
with special attention to the multivariable nature of the system. In particular, we obtain
w̄ = [w̄1, . . . , w̄ny ]T as a solution to optimization program (6.25) stated below. Specifically,
∀p = 1, . . . , p̄, Θ̂∗(1,p) represents the 1 step nominal model iterated p times according to

(6.2), c ∈ R1,ny is a weighting vector, and E =
[

Iony

0(o−1)nu,ony

]
is a selection matrix.

w̄ = arg min
wi∈R+

cTw (6.25)

s.t.

p−1∑
i=0

ny∑
h=1

∣∣Cj•AiM•h∣∣wh+

+
ony∑
i=1
|Cj•ApE•i|d̄rem∗(i/ny) ≥ τ̂

(p)
j (Θ̂∗(1,p))

∀j = 1, . . . , ny, ∀p = 1, . . . , p̄

6.4 Numerical example
In this section we test the proposed approach on a quadruple-tank system. First, the
method developed in the previous sections is applied to a linearized model of the system.
Then, after a short discussion on the issues arising in the application of the proposed
approach to a nonlinear system, we show the results obtained with a nonlinear simulator.

6.4.1 The quad-tanks case study

We consider the system showed in Figure 5.5.1. The inputs to the system are flowrates
qa and qb, generated by two pumps. Tanks 1 and 4 are filled with flowrates γaqa and
(1−γa)qa, respectively, where γa ∈ [0, 1]. On the other hand, tanks 2 and 3 have, as input
flowrates, γbqb and (1 − γb)qb, respectively, where γb ∈ [0, 1]. Tanks 3 and 4 discharge
water into tanks 1 and 2, respectively.

The corresponding dynamical model is

Sḣ1(t) = −a1
√

2gh1(t) + a3
√

2gh3(t) + γaqa(t),
Sḣ2(t) = −a2

√
2gh2(t) + a4

√
2gh4 + γbqb(t),

Sḣ3(t) = −a3
√

2gh3(t) + (1− γb)qb(t),
Sḣ4(t) = −a4

√
2gh4(t) + (1− γa)qa(t),

(6.26)

hi is water level of the i-th tank (with i = 1, . . . , 4), ai is the discharge constant of the i-th
tank, S is the cross section of the tanks, qa and qb denote the flowrates of pumps 1 and
2, respectively, and γa and γb are the aperture ratio of the three-way valve after pumps 1
and 2, respectively. g is the gravitational acceleration. The parameters of the plant are
given in Table 5.1. Finally, the measurement noise is such that |di(k)| ≤ d̄i = 0.005 for
i = 1, 2.

We define x = [h1, h2, h3, h4]T , u = [qa, qb]T , y = [h1, h2]T . Note that each of h1 and h2
is the output of a second order system. A linearized discrete-time model is obtained with
sample time Ts = 60 s around the steady-state condition
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xop = [0.6016, 0.6097, 0.5950, 0.6343]T

uop = [1.6, 1.9]T

yop = [0.6016 0.6097]T .

The input constraints are qa ∈ [0.1, 2.6] m3/h and qb ∈ [0.4, 2.9] m3/h, while the outputs
must lie within the intervals h1 ∈ [0.1016, 1.1016] m and h2 ∈ [0.1097, 1.1097] m.

6.4.2 Control of the linearized model

Using data collected from the linearized model we applied the learning procedure described
in Section 6.3, setting o = 2. In order to learn the uncertainty bound vector w̄, the one-
step predictor Θ̂∗(1) is iterated according to (6.2), the related guaranteed error bound
τ̂ (p)(Θ̂∗(1,p)) is computed and problem (6.25) is solved. A plot depicting the evolution of
the bounds’ amplitude as a function of the prediction horizon is shown in Figure 6.4.1.
In this figure lines with marker “x" refer to output 2, while lines without a marker refer
to output 1. Dashed lines represent term

∑ony

i=1 |Cj•ApE•i|d̄rem∗(i/ny) accounting for the
wrong initialization of the state containing y samples instead of z ones, dotted lines are
the term

∑p−1
i=0

∑ny

h=1
∣∣Cj•AiM•h∣∣ w̄h accounting for the disturbance w̄ integrated over time,

line with circles refer to τ̂ (p)
j (Θ̂∗(1,p)), j = 1, 2 and solid lines are the overall error bound∑p−1

i=0
∑ny

h=1
∣∣Cj•AiM•h∣∣ w̄h+

∑ony

i=1 |Cj•ApE•i|d̄rem∗(i/ny). Note that rem∗(m/n) is the least
positive remainder of the division m/n with m,n ∈ N, however if m is multiple of n,
rem∗(m/n) = n will be considered rather than 0.

step p

1 2 3 4 5 6 7 8 9 10
0

0.005

0.01

0.015

0.02

0.025

0.03

Figure 6.4.1: Trends of the bounds for linearised case.
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The MPC controller has a control horizon p̄ = 5. The Luenberger observer gain L is
selected as the Kalman filter stationary gain while the auxiliary control law gain K is
selected as a LQ gain, both of them obtained solving the discrete-time algebraic Riccati
equations of optimal control theory and with diagonal matrices:

Q =
[

γxIony 0ony ,(o−1)nu

0(o−1)nu,ony
γuI(o−1)nu

]
, R = γuIny

where γx = 0.25 and γu = 0.1 for the observer and γx = 1 and γu = 0.1 for the auxiliary
control law.

Two piece-wise constant output reference signals are used. Specifically, the one for h1
takes values {0.6016, 0.7, 0.4, 0.95, 1.3}, while the set-point for h2 takes values {0.6097,
0.8, 0.4, 0.9, 1.3}. The closed-loop trajectories and the corresponding control actions are
shown in Figure 6.4.2 and Figure 6.4.3, respectively.
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Figure 6.4.2: Outputs from the closed-loop simulation with linearized model.

The original (black dashed) and the tightened (red dashed-dotted) constraints are depicted
in both figures. The inputs and their references are showed in solid black and grey,
respectively. It can be observed that the reference zgoal (dashed) is successfully tracked
by the outputs z(k) (solid black).

6.4.3 Application to nonlinear MIMO systems

The method discussed in the previous sections has been applied also on the original nonlin-
ear system, using linear models identified from data generated by the nonlinear simulator
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Figure 6.4.3: Control actions from the closed-loop simulation with linearized model.

(6.26). Since the control algorithm has been conceived with a focus on linear systems, a
short discussion is due before to show the numerical results.

Identification and control issues in case of nonlinear systems

Using data generated by the nonlinear simulator (6.26), we have identified linear pre-
diction models (6.2) and (6.3), together with the corresponding perturbation bounds w̄i,
i = 1, 2. However, the main assumptions guaranteeing the soundness of the learning phase
(see [103]) require that the used model class includes the model of the system generating
the data: this assumption is clearly impossible to be verified in this setting. In fact, the
set of regressors used in (6.21) does not include nonlinear functions of input and state
variables. In our opinion, however, this has not caused any significant problem in the
considered case study which, remarkably, does not display a complex nonlinear dynamics
(e.g. multiple equilibria, limit cycles, chaotic behaviour). The mismatch between the
linear model and the nonlinear system has indeed been accurately included thanks to the
disturbance term w(k), leading to satisfactory simulation results, especially as far as the
constraints fulfillment is regarded.
However, in the control design phase a different problem has arised from the fact that
the nonlinear static gain is not constant, contrarily to the linear case. This problem
has been here addressed by modifying the cost function (6.11), and in particular the fi-
nal additive term σ‖zref(k) − zgoal‖2. The idea used here consists of replacing zgoal with
µ̂µNL(zgoal)−1zgoal, where µNL(zgoal) is the nonlinear system input-output static gain, com-
puted on the working conditions defined by zgoal.
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Numerical results

For the sake of completeness, Figure 6.4.4 shows the trends of the bounds against the
prediction horizon for the nonlinear case. Similar to figure 6.4.1, lines with marker
“x" refer to output 2, while lines without a marker refer to output 1. In addition,
dashed lines represent term

∑ony

i=1 |Cj•ApE•i|d̄rem∗(i/ny) accounting for the wrong initial-
ization of the state containing y samples instead of z ones, dotted lines are the term∑p−1
i=0

∑ny

h=1
∣∣Cj•AiM•h∣∣ w̄h accounting for the disturbance w̄ integrated over time, line

with circles refer to τ̂
(p)
j (Θ̂∗(1,p)), j = 1, 2 and solid lines are the overall error bound∑p−1

i=0
∑ny

h=1
∣∣Cj•AiM•h∣∣ w̄h +

∑ony

i=1 |Cj•ApE•i|d̄rem∗(i/ny).
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Figure 6.4.4: Trend of the bounds for nonlinear case.

Figure 6.4.5 and Figure 6.4.6 shows the closed-loop trajectories and inputs with the non-
linear model. Recall that the data are collected on the nonlinear plant, and thus the
tightened constraints, used to enforce robustness, result to be more restrictive compared
to the ones obtained with the linearized simulator. This is visible in Figure 6.4.5. Thanks
to the modification of the final goal in the terminal cost, as described in this Section, the
output signals are able to track the desired references, reducing the steady state error,
without harming the guaranteed theoretical properties of the controller. This fact can be
appreciated thanks to Figure 6.4.7, which shows a detailed comparison between the con-
trol scheme including (solid black) or not including (dashed-dotted red) such modification,
using the same disturbance signals.
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Figure 6.4.5: Outputs from the closed-loop simulation with the nonlinear simulation.
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Figure 6.4.6: Control actions from the closed-loop simulation with the nonlinear simula-
tion.



110 CHAPTER 6. LEARNING-BASED PREDICTIVE CONTROL

time [s]

6000 7000 8000 9000 10000 11000 12000

le
v
e
l 
[m

]

0.65

0.7

0.75

z
1
(k)

time [s]

6000 7000 8000 9000 10000 11000 12000

le
v
e
l 
[m

]

0.7

0.75

0.8

0.85

z
2
(k)

Figure 6.4.7: Outputs from the closed loop-simulation with the nonlinear simulation: focus
on a steady state period



Chapter 7

Conclusions and future lines

This thesis has proposed new data based predictive control schemes which use past his-
torian process data of the systems that have to be controlled. Large scale complex in-
frastructures motivate this research because while it is difficult to obtain accurate models
appropriate for control, they offer in general large amounts of historic data. Most of the
proposed data based predictive control approaches are based on direct weight optimization
techniques which provide model free control laws with different goals. This class of infer-
ence methods are based on linear combinations of the available data and are appropriate
for control as shown by the results presented in this thesis. In addition, binary quadratic
programming problems that arise because on-off actuators (or, in a more general context,
discrete actuators) and robust control problems due to disturbances and uncertainties,
both associated with water distribution networks, are also treated in this thesis.

It is worthwhile to highlight that a great effort has been made to develop control approaches
with a low computational burden that able to cope with complex control objectives. For
this reason, besides the applications presented in previous chapters, it could be possible
to apply these strategies, which are defined by different objectives, to a large variety of
industrial control problems with potentially favourable results.

An important goal of the controllers designed is the capacity to deal with real systems.
Although the data based predictive controllers proposed in this thesis are supported the-
oretically for linear systems, nonlinearities present in all real complex plants have been
treated successfully in the examples of this thesis through implicit local linearisation.
Another important issue is that these controllers have also been able to cope with uncer-
tainties learning and inferring an underlying control law with integral effect from data or
using robust MPC theory combined with data inference techniques.

Finally, it is important to remark that all the provided controllers has been tested in
different simulated systems, realistic benchmarks and real applications. In the following,
the conclusions of each chapter are presented:

In chapter 2, motivated by industrial large complex systems, we focused on predictive
control problems with binary inputs and an efficient heuristic algorithm to solve them
was presented. This algorithm constructs iteratively a candidate solutions set and relies
on a reduction criterion able to keep the size of this set manageable under the available
computing power and storage. In consequence, the proposed algorithm allows to solve

111
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in real time problems that cannot be solved otherwise. Moreover, the class of systems
to which this algorithm can be applied is rather wide, as stable systems with dominant
dynamics and control applications with on-off actuators are quite common in the industry.

In chapter 3, after we realized the difficulty of estimating the optimal cost-to-go for tech-
niques such as the one presented in chapter 2 and the data availability of the class of
systems considered, we proposed a heuristic data based predictive controller focused on
optimizing an estimation of the performance over a convex combination of past trajecto-
ries. This approach, supported by DWO techniques, can be used in complex systems in
which models or enough data for identification are not available. The proposed approach
was applied to a water distribution network demonstrating that it is able to consider
different issues such as periodic level references and pressure constraints explicitly in its
formulation.

In chapter 4, motivated by possible steady state errors of data based approaches, caused by
disturbances and uncertainties, we presented an efficient strategy to solve a tracking control
problem that it is tailored for systems with an unknown model function and databases
generated with control laws with integral effect. The proposed method solves the problem
using past closed-loop offset free trajectories and control actions stored in a database
while minimizing the variance of the tracking error. To this end, the proposed controller,
based on DWO methods, infers and recovers the underlying control law. Moreover, the
optimization problem can be solved efficiently which fits with fast dynamic process control
problems. The proposed strategy has obtained offset free tracking with a real scaled
laboratory process with fast dynamics which shows its effectiveness, even when the actual
process dynamics are nonlinear.

In chapter 5, the last approach of this thesis based on DWO was presented. The goal of
this approach was to implement data-based predictive controllers which provide a trade-
off between different performance objectives, in particular, to reduce identification errors
while optimizing the closed-loop performance. With this goal, the provided controllers use
the information stored in a database of input and state trajectories. For unconstrained sys-
tems, a piecewise linear explicit controller can be obtained by following a multi-parametric
approach to solve the dynamic programming problem. When constraints are taken into ac-
count, we proposed a single-step predictive controller based on the solution of a quadratic
programming problem.

In chapter 6, disturbances and uncertainties were dealt with a learning-based approach
for robust MPC. This predictive control approach focused on MIMO systems and allow
us to control plants affected by noise, disturbances or discrepancies between real systems
and their identified models. The identification algorithm and the resulting controller are
endowed with theoretical properties in the linear case, however they proved to be effective
also on a nonlinear simulator. Preliminary extensions to address the system nonlinearities
have been introduced, improving the static performance of the scheme. The provided
controller has been successfully tested on a simulator of the quadruple tank system.

7.1 Future works
In recent years, data based approaches have become an important research topic of the
control community. There are a huge number of open future lines of research in this field.
In this section, some future works related with the results of this thesis are presented.
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In the context of the control strategies presented in this thesis one of the most promising
future research lines is the combination of PFMSA and data based approaches, in partic-
ular, the use of DWO techniques to estimate the cost-to-go functions. This would allow
to tackle large scale complex problems in an efficient manner.

Regarding data based control strategies, it is possible to enumerate different future research
topics such as:

• The development of stabilizing designs and estimation error bounds.

• Taking into account issues such as periodic changing set-points (taken into account
only in some of the approaches proposed) or large process delays.

• Study of the theoretical properties in the nonlinear framework and study of identi-
fication algorithms with models that are nonlinear in the regressors.

• Online maintenance of the database in which over-parametrization versus data re-
usability would have to be considered, specially when few data are available.

• Design of tuning procedures that take into account a trade-off between estimation
and performance using MOO techniques.

• Design of ad-hoc optimization techniques for large prediction horizons.

• Extension of the multi-step prediction models to nonlinear MIMO systems.
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BQP Binary Quadratic Programming. 29

CPU Central Processing Unit. 30, 34

CUDA Compute Unified Device Architecture. 30
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EPANET is a public domain, water distribution system modeling software package devel-
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iii
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IP Integer Programming. 5

LP Linear Programming. 5, 7, 37, 40, 44

LQG Linear-Quadratic-Gaussian. 9

LTI Linear Time-Invariant. 10

Matlab MAThematical LABoratory software. 74

MILP Mixed-Integer Linear Programming. 15

MIMO Multiple Input Multiple Output (system). 10, 12, 13, 97, 98, 102, 112, 113

MIP Mixed-Integer Programming. 5, 15

MIQP Mixed-Integer Quadratic Programming. 15

MOO Multi-objective Optimization. 81, 113

MPC Model Predictive Control. 1–7, 9–11, 15, 20, 25, 28, 29, 34, 37, 38, 40, 41, 81, 97,
98, 106, 111, 112, 115

P Proportional controller. 34, 72

PFM Pulse Frecquency Modulation. 30, 34
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PFMS Partial Fading Memory System. v, 16, 20, 24, 25, 28, 32

PFMSA PFMS Algorithm. 33–35, 113, 115, 119

PI Proportional-Integral controller. 55, 71, 74, 75, 77, 80, 116, 119

PID Proportional-Integral-Derivative controller. 1, 41, 55

QP Quadratic Programming. 5, 37, 48, 51

RPI Robust Positively Invariant (set). 100, 101

SCIP Solving Constraint Integer Programs. 32

SISO Single Input Single Output (system). 97

SoPlex Sequential object-oriented simPlex: Optimization package for solving LP prob-
lems. 32

WDN Water Distribution Network. 2, 5, 6, 11, 37, 55, 81


