
Exact Controllability to the Trajectories for
Parabolic PDEs with Nonlocal Nonlinearities
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Abstract

This paper deals with the analysis of the internal control of a parabolic
PDE with nonlinear diffusion, nonlocal in space. In our main result, we
prove the local exact controllability to the trajectories with distributed con-
trols, locally supported in space. The main ingredients of the proof are a
compactness-uniqueness argument and Kakutani’s Fixed-Point Theorem
in a suitable functional setting. Some possible extensions and open prob-
lems concerning other nonlocal systems are presented.
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1 Introduction

We analyze the problem of exact controllability to the trajectories with dis-
tributed controls for a parabolic system with nonlocal in space and nonlinear
diffusion.

Let Ω ⊂ RN be a non-empty bounded connected open set, with regular
boundary ∂Ω (N ≥ 1 is an integer). We fix T > 0 and set Q := Ω × (0, T )
and Σ := ∂Ω × (0, T ). In the sequel, we denote by (· , ·) and ‖ · ‖ respectively
the L2 scalar product and norm in Ω; the symbol C is used to design a generic
positive constant.

Let ω ⊂ Ω be a non-empty open set. We deal with the exact controllability
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to the trajectories for the nonlinear system
yt − a

(∫
Ω

y dx′
)

∆y = v1ω in Q,

y(x, t) = 0 on Σ,
y(x, 0) = y0(x) in Ω,

(1.1)

where v is a control and y is an associated state. Here, it will be assumed that
the real function a = a(r) satisfies

a ∈ C2(R), 0 < a0 ≤ a(r) ≤ a1 and |a′(r)|+ |a′′(r)| ≤M ∀r ∈ R. (1.2)

Note that, if y0 ∈ H2(Ω)∩H1
0 (Ω), v ∈ L2(ω× (0, T )) and vt ∈ L2(ω× (0, T )),

then (1.1) possesses exactly one strong solution among other things satisfying

y, yt ∈ L∞(0, T ;H1
0 (Ω)) and ytt ∈ L2(0, T ;H−1(Ω));

see for instance [3].
Let us consider a trajectory ȳ = ȳ(x, t), that is, a solution to

yt − a
(∫

Ω

y dx′
)

∆y = 0 in Q,

y(x, t) = 0 on Σ,
y(x, 0) = y0(x) in Ω,

(1.3)

where
y0 ∈ H2(Ω) ∩H1

0 (Ω). (1.4)

Definition 1.1. It will be said that (1.1) is locally exactly-controllable to the trajec-
tory ȳ at time T if there exists ε > 0 with the following property: if y0 ∈ H2(Ω) ∩
H1

0 (Ω) and
‖y0 − y0‖H2 ≤ ε,

then there exist controls v ∈ L2(ω × (0, T )) and associated states y such that

y(x, T ) = y(x, T ) in Ω. (1.5)

The nonlocal term in (1.1) has important motivations in physics and biology.
To this respect, let us recall several examples of real world models where it
appears naturally:

• In the case of migration of populations, for instance the bacteria in a con-
tainer, we may have a diffusion coefficient at time t that depends on the
total population.

• In the context of reaction-diffusion systems, it is also frequent to find
terms of this kind; the particular case

a(〈`, y(· , t)〉)

where a = a(s) is as above and ` is a continuous linear form on L2(Ω),
has been investigated for instance by Chang and Chipot [2]. We refer to
this paper for more details.
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Recently, important progress has been made in the controllability analy-
sis of linear and semi-linear parabolic equations and systems. We refer to the
works [4, 5, 6, 9, 13] and the references therein. In particular, the null control-
lability of linear parabolic (and hyperbolic) PDEs containing nonlocal in space
terms has been the objective of [6]. In the present paper, the main novelty is
that we deal with the exact controllability to regular trajectories for systems of the
kind (1.1).

Our main result is the following:

Theorem 1.1. Under the assumptions (1.2), (1.3) and (1.4), the nonlinear sys-
tem (1.1) is locally exactly controllable to the trajectory ȳ at any time T > 0.

Note that, if we set y = z + y and y0 = z0 + y0, we obtain
zt − a

(∫
Ω

(z + y) dx′
)

∆z −m(z)∆y = v1ω in Q,

z(x, t) = 0 on Σ,
z(x, 0) = z0(x) in Ω,

(1.6)

where
m(z) := a

(∫
Ω

(z + ȳ) dx′
)
− a
(∫

Ω

ȳ dx′
)
.

Thus, the local exact controllability of the solution to (1.1) to ȳ is equivalent
to the null controllability of the solution to (1.6).

The null controllability problem for (1.6) can be formulated as a fixed-point
inclusion in the Banach space Z. Consequently, a good strategy for the proof of
Theorem 1.1 seems to be to check that, if z0 is small enough, Kakutani’s Fixed-
Point Theorem can be applied. However, this does not seem easy: it is not clear
whether the closed-graph assumption is satisfied in this context.

For this reason, we will first see that (1.6) is locally approximately control-
lable to zero. In other words, we will prove that there exists ε > 0 such that, if
z0 ∈ H2(Ω) ∩H1

0 (Ω) and
‖z0‖H2 ≤ ε,

then for all small δ > 0 there exist controls vδ uniformly bounded in L2(ω ×
(0, T )) and associated states zδ satisfying

‖zδ(·, T )‖ ≤ δ.

To this purpose, we will apply Kakutani’s Fixed-Point Theorem to an appro-
priate formulation of the approximate null controllability problem for (1.6).

More precisely, in a first step, we will consider for eachw ∈ L2(Q) withwt ∈
L∞(0, T, L2(Ω)) the linearized system

zt − αw(t)∆z + βw(t)

(∫
Ω

z dx′
)

∆y = v1ω in Q,

z(x, t) = 0 on Σ,
z(x, 0) = z0(x) in Ω,

(1.7)
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where
αw(t) := a

(∫
Ω

(w + y) dx′
)

and

βw(t) :=


−
a
(∫

Ω

(w + y) dx′
)
− a
(∫

Ω

y dx′
)

∫
Ω

w dx′
if
∫

Ω

w dx′ 6= 0,

−a′
(∫

Ω

y dx′
)

otherwise.

The adjoint of (1.7) is
−ϕt − αw(t)∆ϕ+ βw(t)

∫
Ω

∆y(x′, t)ϕ(x′, t) dx′ = 0 in Q,

ϕ(x, t) = 0 on Σ,
ϕ(x, T ) = ϕT (x) in Ω,

(1.8)

where ϕT ∈ L2(Ω).
We will prove an observability estimate for the solutions to (1.8) whence

we will immediately deduce the approximate controllability of (1.7). To this
end, we will argue as in [6], employing a compactness-uniqueness technique.
Then, a classical fixed point argument will ensure the same property for (1.6).
It is important to observe that the occurrence of the nonlocal term in the PDE
in (1.8) is a serious obstacle to the obtention of Carleman estimates. Here, as in
[6], we have to present a more subtle proof of observability.

After this, in a final step, we will take limit as δ → 0 and the desired local
null controllability of (1.6) will be obtained.

The paper is organized as follows.
Section 2 is devoted to prove the observability inequality for the solutions

to (1.8) and then the approximate null controllability of (1.7).
In Section 3, we prove Theorem 1.1.
Section 4 deals with some additional comments and results.

2 Some Technical Results

2.1 Preliminar lemmas

We will need some (well known) results from Fursikov and Imanuvilov [9];
see also [10]. Also, it will be convenient to introduce a new non-empty open
set ω0, with ω0 b ω. The following technical result, due to Fursikov and
Imanuvilov [9], is fundamental:

Lemma 2.1. There exists a function σ0 ∈ C2(Ω) satisfying:{
σ0(x) > 0 ∀x ∈ Ω, σ0(x) = 0 ∀x ∈ ∂Ω and
|∇σ0(x)| > 0 ∀x ∈ Ω\ω0.
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Let us introduce the functions

σ(x, t) =
e4λ‖σ0‖∞ − eλ(2‖σ0‖∞+σ0(x))

`(t)
, ξ(x, t) =

eλ(2‖σ0‖∞+σ0(x))

`(t)
,

where

`(t) =


T 2

4
, 0 ≤ t ≤ T/2,

t(T − t), T/2 ≤ t ≤ T,
and λ > 0.

We will denote by λ1, λ2, ..., (respectively φ1, φ2, ...) the eigenvalues (respec-
tively the unit L2 norm eigenfunctions) of the Dirichlet Laplacian in Ω. Recall
that 0 < λ1 < λ2 ≤ λ3 ≤ . . . , λm ∼ m2/N as m→ +∞ and φ1 > 0 in Ω.

In the sequel, we will need the Banach space

Z := {w ∈ L2(Q) : wt ∈ L∞(0, T, L2(Ω))}.

Lemma 2.2. Let the assumptions (1.2) be satisfied. Let w ∈ Z be given and let us set
b(s) := a(

∫
Ω
w(x′, s) dx′). There exist R0 and C0, depending on Ω, ω, T , a0, a1, M

and ‖w‖Z , such that, for all f ∈ L2(Ω), one has:∑
j≥1

e−2R0

√
λj |(f, φj)|2

≤ C0

∫∫
ω×(0,T )

e−2sσξ3|
∑
j≥1

(f, φj)e
−λj

∫ T
t
b(s) dsφj(x)|2 dx dt.

(2.9)

The proof uses arguments close to those in [6]. For completeness, it is given
in the Appendix (see Section 5).

2.2 Some Observability Inequalities

For further use, we introduce the following notation:

I(ϕ) :=

∫∫
Q

e−2sσ
[
(sξ)−1(|ϕt|2 + |∆ϕ|2) + (sξ)|∇ϕ|2 + (sξ)3|ϕ|2

]
dx dt.

In the next result, we present some observability estimates for the solutions
to the adjoint systems (1.8) that play a crucial role in the proof of Theorem 1.1.

Proposition 2.1. Let the assumptions (1.2) be satisfied. There exist s and C > 0,
only depending on Ω, ω, T , a0, a1, M and K, such that, for any ϕT ∈ L2(Ω) and any
w ∈ Z with ||w||Z ≤ K, the corresponding solution to (1.8) satisfies

‖ϕ(· , 0)‖2 ≤ C
∫∫

ω×(0,T )

e−2sσξ3|ϕ|2 dx dt (2.10)

and
I(ϕ) ≤ C

∫∫
ω×(0,T )

e−2sσξ3|ϕ|2 dx dt. (2.11)
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Proof. Let us first prove (2.10). To this end, we will argue as in the proof of
Theorem 3 in [6].

For any ϕT ∈ L2(Ω), let us denote by ϕ the corresponding solution to (1.8)
and let us write

ϕ = p+ ζ,

where p is the unique solution to −pt − αw(t)∆p = 0 in Q,
p(x, t) = 0 on Σ,
p(x, T ) = ϕT (x), in Ω.

(2.12)

Obviously, one has: −ζt − αw(t)∆ζ + βw(t)B(ζ)(t) = −βw(t)B(p)(t) in Q,
ζ(x, t) = 0 on Σ,
ζ(x, T ) = 0, in Ω,

(2.13)

where we have introduced the notation

B(ζ)(t) :=

∫
Ω

∆ȳ(x′, t)ζ(x′, t) dx′.

It is well known that, for any s > 0 such that the mapping

ϕT 7→ ‖ϕT ‖ω :=

(∫∫
ω×(0,T )

e−2sσξ3|p|2 dx dt

)1/2

is a norm in L2(Ω). Also, using standard global Carleman estimates in (2.12), it
can be deduced that there exists s(Ω, ω, T, a0, a1,M, ||w||Z) andC(Ω, ω, a0, a1,M, ||w||Z)
such that

I(p) ≤ C‖ϕT ‖2ω (2.14)

for all ϕT ∈ L2(Ω); see [9]. On the other hand, since

p(x, t) =
∑
j≥1

e−λj

∫ T
t
αw(s) ds(ϕT , φj)φj(x),

we see from Lemma 2.2 that∑
j≥1

e−2R0

√
λj |(ϕT , φj)|2 ≤ C0‖ϕT ‖2ω. (2.15)

The inequality (2.10) will be a consequence of the following two estimates,
that must hold for any ϕT ∈ L2(Ω) and any w ∈ Z with ||w||Z ≤ K :

‖ϕT ‖2ω ≤ C
∫∫

ω×(0,T )

e−2sσξ3|ϕ|2 dx dt ∀ϕT ∈ L2(Ω) (2.16)
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and
‖ϕ(· , 0)‖2 ≤ C‖ϕT ‖2ω ∀ϕT ∈ L2(Ω) (2.17)

(here, C can depend on Ω, ω, T, a0, a1,M and K).
Let us give their proofs.

Proof of (2.16). Here, we argue by contradiction and we employ a compactness-
unique method.

Let us assume that (2.16) does not hold. Then, for every n ≥ 1, we can find
functions ϕTn ∈ L2(Ω) and wn ∈ Z such that ||wn||Z ≤ K and

1 = ‖ϕTn‖2ω > n

∫∫
ω×(0,T )

e−2sσξ3|ϕn|2 dx dt, (2.18)

where ϕn is the solution to (1.8) associated to ϕTn and wn.
Let us denote by pn (resp. ζn) the solution to (2.12) corresponding to ϕT =

ϕTn and w = wn (resp. the solution to (2.13) for p = pn and w = wn). Let us see
that, at least for a subsequence, one must have

ζn → 0 strongly in L2(Q). (2.19)

This will lead to a contradiction, since we will then have

1 = ‖ϕTn‖2ω ≤ 2

∫∫
ω×(0,T )

e−2sσξ3|ϕn|2 dx dt+ 2

∫∫
ω×(0,T )

e−2sσξ3|ζn|2 dx dt

and both terms in the right-hand side go to zero.
In order to prove (2.19), let us first check that

‖βwn
(·)
∫

Ω

∆y(x′, · )pn(x′, · ) dx′‖2L2(0,T ) ≤ C, ∀n ≥ 1. (2.20)

This is implied by (2.15) and the fact that

y(x′, t) =
∑
j≥1

e−λj

∫ t
0
a(

∫
Ω
y(ξ,s)dξ) ds(y0, φj)φj(x

′),

and
pn(x′, t) =

∑
j≥1

e−λj

∫ T
t
αwn (s) ds(ϕTn , φj)φj(x

′).
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Indeed, one has

‖βwn
(·)
∫

Ω

∆y(x′, ·)pn(x′, ·) dx′‖2L2(0,T )

=

∫ T

0

|βwn
(t)|2

∣∣∣∣∫
Ω

∆y(x′, t)pn(x′, t) dx′
∣∣∣∣2 dt

≤ C
∫ T

0

∣∣∣∣∣∣
∑
j≥1

λje
−λj

∫ t
0
a(

∫
Ω
y dx′) ds(y0, φj)e

−λj

∫ T
t
αwn (s) ds(ϕTn , φj)

∣∣∣∣∣∣
2

dt

≤ C
∫ T

0

∑
j≥1

λ2
je
−2λja0te−2λja0(T−t)e2R0

√
λj |(y0, φj)|2

 dt ‖ϕTn‖2ω

≤ CT‖y0‖2
∑
j≥1

λ2
je
−2λja0T e2R0

√
λj

 ‖ϕTn‖2ω

≤ CT‖y0‖2 < +∞.

Thanks to (2.20), it can be assumed that wn converges weakly in L2(Q) to a

function w, (wn)t converges weakly-∗ in L∞(0, T ;L2(Ω)),

∫
Ω

wn dx converges

strongly in L2(0, T ) and ζn converges strongly in L2(Q) to the solution to (2.13)
Now, let us see that, at least for a subsequence, one has

ϕn → ϕ weakly in L2(Ω× (0, T − δ)) ∀δ > 0 (2.21)

with
βw(t)

∫
Ω

∆y(x′, t)ϕ(x′, t) dx′ = 0 in (0, T ). (2.22)

Indeed, the sequence {ϕn} can be assumed to converge to some ϕ weakly
in L2(Ω× (0, T − δ)) for all δ > 0, since we have the estimates∫∫

Ω×(0,T−δ)
|ϕn|2 dx dt ≤ 2

∫∫
Ω×(0,T−δ)

|pn|2 dx dt+ 2

∫∫
Ω×(0,T−δ)

|ζn|2 dx dt

≤ Cδ
∫∫

Q

e−2sσξ3|pn|2 dx dt+ C

≤ CδC‖ϕTn‖2ω + C

= CδC + C.

Here, we have used (2.14). Obviously, ϕ solves in Q the PDE

−ϕt − αw(t)∆ϕ+ βw(t)

∫
Ω

∆ȳ(x′, t)ϕ(x′, t) dx′ = 0

and ϕ(x, t) = 0 in ω × (0, T ). In particular, writing this equation in ω × (0, T ),
we deduce that (2.22) holds. An additional consequence is that ϕ vanishes
identically.
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From (2.20)-(2.22) and the fact that ζn is bounded in L2(Q), we see that

βwn(·)
∫

Ω

∆y(x′, ·)ϕn(x′, ·) dx′ → 0 weakly in L2(0, T ;H−1(Ω))

and, taking into account that ζn solves (2.13) for p = pn and w = wn, we see
that (2.19) holds.

Proof of (2.17). At this point, we will use the energy and observability estimates
satisfied by p and the energy estimates satisfied by ζ.

From (2.12) and (2.14), we find that

‖p(· , 0)‖2 ≤ C
∫ 3T/4

T/4

‖p(· , t)‖2 dt ≤ C‖ϕT ‖2ω. (2.23)

On the other hand, from (2.13) we have that

‖ζ(· , 0)‖2 ≤ C‖βw(·)
∫

Ω

∆y(x′, · )p(x′, · ) dx′‖2L2(0,T ;H−1(Ω))

and, arguing as in (2.20), the following is found:

‖ζ(· , 0)‖2 ≤ C‖ϕT ‖2ω. (2.24)

Finally, noting that ϕ = p + ζ and putting together (2.23) and (2.24), we
get (2.10).

Now, let us prove the estimate (2.11). Taking into account the Carleman
estimates satisfied by p and arguing as in the proof of (2.20), we find:

I(ϕ) ≤ 2I(p) + 2I(ζ)

≤ 2I(p) + C(‖ζ‖2L2(0,T ;H2(Ω)) + ‖ζt‖2L2(Q))

≤ C‖ϕT ‖2ω + C‖βw(·)
∫

Ω

∆ȳ(x′, · )p(x′, · ) dx′‖2L2(0,T )

≤ C‖ϕT ‖2ω

Hence, using (2.16), we deduce (2.11).

2.3 Approximate Null Controllability of (1.7) with Controls
Uniformly Bounded in H1(0, T ;L2(ω))

The following holds:

Proposition 2.2. Let the assumptions (1.2) be satisfied and let us assume that w ∈ Z
and ||w||Z ≤ K. For any δ > 0 and any z0 ∈ L2(Ω), there exists a control vδ ∈
H1(0, T ;L2(ω) such that the corresponding solution z to (1.7) satisfies

‖zδ(·, T )‖ ≤ δ. (2.25)
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Moreover, the controls vδ can be chosen such that

‖vδ‖H1(0,T ;L2(ω)) ≤ C‖z0‖, (2.26)

with C only depending on Ω, ω, T , a0, a1, M and K.

Proof. For each δ > 0, let us consider the following functional on L2(Ω):

Fδ(ϕ
T ) :=

1

2

∫∫
ω×(0,T )

e−2sσξ3|ϕ|2 dx dt+ δ‖ϕT ‖+ (z0, ϕ(· , 0)).

Here, for each ϕT ∈ L2(Ω), ϕ is the corresponding solution of (1.7).
It is then clear that Fδ : L2(Ω) 7→ R is continuous and strictly convex.

From (2.10), we also have that Fδ is coercive. Then, let ϕTδ be the unique mini-
mizer of Fδ and let us denote by ϕδ the associated solution to (1.7). Obviously,
either ϕTδ = 0 or 〈

F ′δ(ϕ
T
δ ), ϕT

〉
= 0 ∀ϕT ∈ L2(Ω). (2.27)

Suppose that ϕTδ 6= 0. Then, taking in (1.7)

v = vδ := e−2sσξ3ϕδ|ω×(0,T ),

denoting by zδ the associated state and using (2.27), we get

(zδ(· , T ) +
δ

‖ϕTδ ‖
ϕTδ , ϕ

T ) = 0 ∀ϕT ∈ L2(Ω),

which implies
‖zδ(·, T )‖ = δ. (2.28)

In view of (2.10), we also have∫∫
ω×(0,T )

e2sσξ−3|vδ|2 dx dt ≤ C‖z0‖2 (2.29)

for some C = C(Ω, T, a0, a1,M,K). This shows that, if ϕTδ 6= 0, we can find
controls for which (2.25) and (2.29) hold. Obviously, this is also true if ϕTδ = 0.

Next, we prove that the vδ,t are uniformly bounded in L2(ω× (0, T )). From
the definition of vδ , we have vδ,t = (e−2sσξ3)tϕδ + e−2sσξ3ϕδ,t in ω × (0, T )
and vδ,t = 0 elsewhere. Hence, it is immediate that

‖vδ,t‖2L2(ω×(0,T )) ≤ C
(∫∫

Q

e−2sσξ3|ϕδ|2 dx dt+

∫∫
Q

e−2sσξ−1|ϕδ,t|2 dx dt
)
.

Recalling the estimates (2.11) and (2.29), we deduce that

‖vδ,t‖L2(ω×(0,T )) ≤ C‖z0‖, (2.30)

as desired.
This ends the proof.
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3 Proof of Theorem 1.1

This section is devoted to prove the local exact controllability to the trajec-
tories result in Theorem 1.1.

3.1 Local Approximate Null Controllability of (1.1) with Con-
trols Uniformly Bounded in L2(ω × (0, T ))

We will prove that (1.1) is locally approximately null-controllable, with con-
trols uniformly bounded in L2(ω × (0, T )). Thus, let us introduce the Banach
spaces G and W , with

G := {(v, w) : v, vt ∈ L2(0, T ;L2(ω)), w, wt ∈ L∞(0, T ;H1
0 (Ω)),

wtt ∈ L2(0, T ;H−1(Ω))},
W := {w : w,wt ∈ L∞(0, T ;H1

0 (Ω)), wtt ∈ L2(0, T ;H−1(Ω))}.

Let K > 0 and w ∈ Z be given, with ||w||Z ≤ K. For each δ > 0, let us
consider a control vδ furnished by Proposition 2.2 and let us denote by zδ the
solution to (1.7) associated to vδ . From (2.25) and (2.26), one has:

‖vδ‖H1(0,T ;L2(ω)) ≤ C(K)‖z0‖, (3.31)

‖zδ‖Z ≤ C(K)‖z0‖, ‖zδ(· , T )‖ ≤ δ (3.32)

and

‖zδ‖W ≤ Cδ(K)‖z0‖H2 , (3.33)

where we have omitted the dependence of the constants on Ω, ω, T , a0, a1 and
M .

Let us introduce the mapping Λδ : BZ(K) 7→ 2Z , where BZ(K) is the
closed ball in Z of radius K centered at 0 and

Λδ(w) = {zδ ∈ Z : (vδ, zδ) is a control-state pair in G,
(1.7) and (3.31)− (3.33) hold}.

Then, if ‖z0‖H2(Ω) is sufficiently small, the multi-valued mapping Λδ satisfies
the hypotheses of Kakutani’s Fixed-Point Theorem. Indeed, the following holds:

• Λδ is well defined; also for each w ∈ Z, Λδ(w) is non-empty and convex
(a consequence of Proposition 2.2).

• There exists ε > 0 (depending on Ω, ω, T , a0, a1, M and K, but inde-
pendent of δ) such that, if ‖z0‖H2 ≤ ε, one has Λδ(w) ⊂ BZ(K) for all
w ∈ BZ(K). This is a consequence of (3.32).

• There exist a compact set Wδ ⊂ BZ(K) such that, whenever ‖z0‖H2 ≤ ε
and w ∈ BZ(K), one has Λδ(w) ⊂ Wδ . This is a consequence of the fact
that W ↪→ Z with a compact embedding.
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• Λδ has a closed graph inZ. This is not difficult to check. Indeed, let thewn
be given, with wn → w strongly in Z, let us assume that the zn ∈ Λδ(wn)
and zn → z strongly in Z. Then, there exist controls vn,δ such that, for
all n ≥ 1, the couple (vn,δ, zn) belongs to G and satisfies (1.7) and (3.31)–
(3.33) for all n ≥ 1.

We can take limits in (1.7) and get
zt − αw(t)∆z + βw(t)

(∫
Ω

z(x′, t) dx′
)

∆y = v1ω in Q,

z(x, t) = 0 on Σ,
z(x, 0) = z0(x) in Ω.

Consequently, one has z ∈ Λδ(w).

Therefore, if ‖z0‖H2 ≤ ε(Ω, ω, T, a0, a1,M,K), Λδ possesses at least one
fixed point zδ . Obviously, zδ is a solution to (1.1) associated to a control vδ
such that (3.31)–(3.33) holds.

This ends the proof.

3.2 Passage to the limit

We know that, for any small δ > 0, there exist couples (zδ, vδ) with zδ ∈
BZ(K) and vδ ∈ H1(0, T ;L2(ω)), that satisfy the state equation

zδ,t − a(

∫
Ω

(zδ + y) dx′)∆zδ −m(zδ)∆ȳ = vδ1ω in Q,

zδ(x, t) = 0 on Σ,

zδ(x, 0) = z0(x) in Ω,

(3.34)

where
m(zδ) = a

(∫
Ω

(zδ + ȳ)(x′, t) dx′
)
− a
(∫

Ω

ȳ(x′, t) dx′
)

and also (3.31)–(3.32).
We can take limits in the nonlinear system (3.34) as δ → 0. Indeed, there

exist subsequences of {zδ} and {vδ}, again indexed by δ, such that
zδ → z weakly in L2(0, T ;H2(Ω)),

zδ,t → zt weakly in L2(Q),

zδ,t → zt strongly in L2(0, T ;H1
0 (Ω)),

vδ → v weakly in L2(ω × (0, T ))

(3.35)

and
zδ(· , T )→ z(· , T ) strongly in L2(Ω). (3.36)

Therefore, it is clear that the functions z and v satisfy (1.6) and, moreover,

z(x, T ) = 0 in Ω.

The proof of Theorem 1.1 is thus complete.

12



4 Some Additional Comments and Questions

4.1 Boundary Controllability

In this subsection, we deal with the boundary local exact controllability to
the trajectories of nonlinear system (1.1). We assume that Ω is an interval (0, L),
which we will denote by I and the controls act on the whole boundary. If we
set y = z + y and y0 = z0 + y0, we obtain

zt − a(

∫
I

(z + y) dx′)zxx −m(z)yxx = 0 in I × (0, T ),

z(0, t) = v0(t), z(L, t) = v1(t) on (0, T ),
z(x, 0) = z0(x) in I.

(4.37)

Thus, the boundary local exact controllability to the trajectories to ȳ is equiva-
lent to the boundary local null controllability of the solution to (4.37). For the
proof of this property, we proceed by steps:

STEP 1: Let us set Z̃ := C1,1(Q). Then, for any w ∈ Z̃, we prove boundary
observability estimates for the solutions to (1.8), similar to (2.10) and (2.11).

The proof is as in Proposition 2.1. The crucial point is to prove that, if the
adjoint states ϕn satisfy ϕn → ϕ weakly in L2(I × (0, T − δ)) and ϕx(0, t) =
ϕx(L, t) = 0 for all t ∈ (0, T − δ), then ϕ = 0 in I × (0, T − δ) (here, δ > 0 is
arbitrarily small).

STEP 2: Using these inequalities and following the ideas in [13], we can get
controls v0 and v1 belonging to C1,1/4([0, T ]) such that

‖v0‖C1,1/4[0,T ] + ‖v1‖C1,1/4[0,T ] ≤ C‖z0‖ (4.38)

and, furthermore, the solution z to the associated linearized system satisfies:

z(·, T ) = 0 in I. (4.39)

where C only depend of I , a0, a1 and ‖w‖Z̃ .

STEP 3: As a consequence, the boundary local null controllability of (4.37)
can be established. Again, the argument relies on a previous result concerning
local approximate controllability with uniform estimates. We omit the details,
in view of the similarity to the distributed control case.

Remark 4.1. At present, we have not been able to establish a result of this
kind in higher dimensions. Some (maybe technical) difficulties are found in
the proof of the required boundary observability estimates.

4.2 Other Nonlinear Control Problems

The controllability to the trajectories of the system
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
yt − a

(∫
Ω

y(x′, t) dx′
)

∆y + b(x, t)y = v1ω in Q,

y(x, t) = 0 on Σ,

y(x, 0) = y0(x) in Ω,

(4.40)

is an open question.
If we try to apply the same techniques, a difficulty is found in the proof of

the needed observability inequality.
More precisely, if we argue as in the proof of the Proposition 2.1, we must

set
ϕ = p+ ζ

with p and ζ respectively satisfying (2.12) and
−ζt − αw(t)∆ζ + βw(t)B(ζ)(t) + b(x, t)ζ

= −βw(t)B(p)(t)− b(x, t)p in Q,

ζ(x, t) = 0 on Σ,

ζ(x, T ) = 0 in Ω.

(4.41)

Unfortunately, it is not clear whether (2.16) holds in this case; indeed, in
view of the presence of the term−b(x, t)p in (4.41), it seems difficult to establish
(2.19) in the related contradiction argument.

In fact, we are able to prove a result similar to Proposition 2.1 only when
b = b(x) or b = b(t). In other words:

• If b := b(x), working with Az = (αw(t)∆ − b(x))z instead of ∆z in (1.7)
and (1.8), we can get result similar to Proposition 2.1 and then Theorem
1.1.

• If b := b(t), we can introduce the change of variables ỹ = e
∫ t
0
b(s) dsy and,

then, deduce the results in Section 2 and Section 3.

5 Appendix: Proof of Lemma 2.2

Let w ∈ Z be given and let us set

α(t) := a
(∫

Ω

w(x′, t) dx′
)
.

Let us assume that ϕ satisfies
−ϕt − α(t)∆ϕ = 0 in Q,

ϕ = 0 on Σ,

ϕ(x, T ) = f(x) in Ω.
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From the standard Carleman estimates for ϕ, one has∫∫
Q

e−C0/(T−t)|ϕ|2 dx dt ≤ C̃0

∫∫
ω×(0,T )

e−2sσξ3|ϕ|2 dx dt, (5.42)

where C0 only depends on Ω, ω, T , a0, a1. M and ‖w‖Z and C̃0 only depends
on Ω, ω, a0, a1, M and ‖w‖Z , see [9] and [7]. Taking into account that

ϕ(x, t) =
∑
j≥1

e−λj

∫ T
t
α(s) ds(f, φj)φj

and
‖ϕ‖2 =

∑
j≥1

e−2λj

∫ T
t
α(s) ds|(f, φj)|2,

we see from (5.42) that∫ T

0

∑
j≥1

e−2λj

∫ T
t
α(s) ds−C0/(T−t)|(f, φj)|2 dt ≤ C̃0

∫∫
ω×(0,T )

e−2sσξ3|ϕ|2 dx dt

and, consequently,

∑
j≥1

(∫ T

0

e−2λja1(T−t)−C0/(T−t) dt

)
|(f, φj)|2 ≤ C̃0

∫∫
ω×(0,T )

e−2sσξ3|ϕ|2 dx dt.

The asymptotic behavior of the integrals in the left hand side is well known.
Indeed, one has∫ T

0

e−2λa1(T−t)−C0/(T−t)dt ∼
(

π2C0

4(λa1)3

)1/4

e−4
√
C0a1λ, as λa1 →∞

(see for instance [8]). Thus, there exists C̃1, again depending on Ω, ω, a0, a1, M
and ‖w‖Z , such that∫ T

0

e−2λja1(T−t)−C0/(T−t) dt ≥ C̃1e
−2R0

√
λj ∀ j ≥ 1.

Obviously, this leads to (2.9) and ends the proof.
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