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Abstract—Animals combine various sensory cues with pre-
viously acquired knowledge to safely travel towards a target
destination. In close analogy to biological systems, we propose a
neuromorphic system which decides, based on auditory and vi-
sual input, how to reach a sound source without collisions. The de-
velopment of this sensory integration system, which identifies the
shortest possible path, is a key achievement towards autonomous
robotics. The proposed neuromorphic system comprises two event
based sensors (the eDVS for vision and the NAS for audition) and
the SpiNNaker processor. Open loop experiments were performed
to evaluate the system performances. In the presence of acoustic
stimulation alone, the heading direction points to the direction
of the sound source with a Pearson correlation coefficient of
0.89. When visual input is introduced into the network the
heading direction always points at the direction of null optical
flow closest to the sound source. Hence, the sensory integration
network is able to find the shortest path to the sound source
while avoiding obstacles. This work shows that a simple, task
dependent mapping of sensory information can lead to highly
complex and robust decisions.

I. INTRODUCTION

Collision free navigation in a cluttered environment requires
fast and robust decision making. Animals take decisions
in a timescale of tens of milliseconds to execute collision
avoidance [1]. Furthermore, they take more complicated de-
cisions based on multimodal sensory information combined
with previously acquired knowledge. For example, the female
budgerigar (a small Australian parrot) incorporates auditory
and visual input to track down a male. The bird uses auditory
cues, the Inter-aural Level Difference (ILD) and the Inter-aural
Time Difference (ITD), to estimate the male’s position [2].
While approaching the male, the female effectively avoids
collisions thanks to visual information. First investigations
indicate that the bird merges optical flow (OF) information
with other visual cues to avoid obstacles [3].
A few task specific Spiking Neural Networks (SNN) which
combine different sensory cues and previously acquired knowl-
edge have already been proposed. [4] and [5] increase the
localization preciseness of their sensory integration network

This research was supported by the Cluster of Excellence Cognitive
Interaction Technology CITEC (EXC 277) at Bielefeld University, which is
funded by the German Research Foundation (DFG) and by the Spanish grant
(with support from the European Regional Development Fund) COFNET
(TEC2016-77785-P). The work of D. Gutierrez-Galan was supported by a
”Formación de Personal Investigador” Scholarship from the Spanish Ministry
of Education, Culture and Sport.

by merging different sensory cues which point at the same
target. [6] combines previously acquired knowledge with one
sensory cue to reach a target direction without collision. We
present a new type of SNN which mimics the behaviour of
the budgerigar and other animals. Hence, the network is able
to identify and follow the direction of a sound source while
avoiding obstacles. The model consists of an OF encoder
(OFE) network and a sound source direction (SSD) network
which receive sensory input from the embedded Dynamic
Vision Sensor (eDVS) [7] and the Neuromorphic Auditory
Sensor (NAS) [8] respectively. The two networks feed into
the sensory integration (SI) network which chooses the agent’s
heading direction. We evaluate the network’s performance in
open loop by applying different combinations of auditory and
visual stimuli to the two sensors.

II. HARDWARE

In this section the two event-driven sensors and the neuro-
morphic computing system used are introduced.

A. Dynamic Vision Sensor (DVS)

The AER DVS128 retina chip [7] comprises pixels which
mimic the bipolar cells present in the mammalian retina.
It consists of an array of 128×128 independent pixels that
respond to relative light intensity changes in real time and are
intrinsically invariant to scene illumination. A pixel produces
an event in response to a change in luminance over time.
As soon as the event is produced, the address of the pixel
(x and y coordinates, and polarity) is written on an arbi-
trated handshaked asynchronous bus known as the Address-
Event-Representation (AER) bus. The eDVS [9] consists of
a DVS128 chip connected to an ARM microcontroller. This
device is intended for embedded robotics.

B. Neuromorphic Auditory Sensor (NAS)

The NAS [8] is a spike-based audio sensor inspired by
Lyon’s model of the biological cochlea [10], implemented
on FPGA. This sensor decomposes incoming audio signals
in their frequency components as the inner hair cells do in
the inner ear. It was implemented using a Spike-based Low-
pass Filter (SLPF) bank with a cascade topology [11]. Each
SLPF represents a frequency range, and its output consists of
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Fig. 1. eDVS and NAS feeding spikes into a SpiNN-3 board through the
SpiNNlink connectors. The eDVS can directly process visual input while the
NAS receives stereo audio input through an audio jack.

a stream of Address Events (AEs). In this work, we used a
64-channel binaural NAS generated with OpenNAS1.

C. Spiking Neural Network Architecture (SpiNNaker)

SpiNNaker [12] is a massively-parallel multicore computing
system designed for modeling very large SNNs in real time.
We used a 4-node SpiNNaker machine, which consists of 72
ARM processor cores. It has a 100 Mbps Ethernet connection
for the communication between the computer and the board
and two SpiNNaker links. The latter were used to connect the
eDVS and the NAS as input to the SNN (see Fig. 1).

III. NEURAL NETWORK

In this section the three main sub-networks are presented.

A. Optical Flow Encoder Network

The speed of an object moving in the visual field of a trans-
lationally moving agent is inversely proportional to its relative
distance. Bees, flies and some bird species use this visual cue
called optical flow (OF) to safely navigate through densely
cluttered environments [3]. Since the discovery of OF, various
OF encoding algorithms and models have been designed [13],
based on the Hassenstein-Reichardt-Detector [14]. One very
recent OF detector model is the spiking elementary motion
detector (sEMD) proposed by Milde et al. [15]. It encodes the
time difference between two spikes from adjacent pixels in
both the number of output spikes and the inter-spike-interval
(ISI). In this paper we feed filtered data from the eDVS into a
sEMD population to encode the spatial distribution of OF (see
Fig. 2). A spatio-temporal filter population between the eDVS
and the sEMDs reduces the noise and the spatial resolution
of the visual information (See [15] for further information).
The OFE network’s output provides topographically arranged
relative distance information in form of OF to the SI network.
The whole OFE network was implemented on SpiNNaker.

B. Sound Source Direction Network

Birds use the ILD and the ITD to perform the sound source
localization task [2]. While ILD achieves better accuracy
with high-frequency sounds, ITD performs better when low-
frequency sounds are present [16]. The ITD can be estimated

1https://github.com/RTC-research-group/OpenNAS

Fig. 2. Complete network. The OFE population consists of the spatio-temporal
correlation (SPTC) leaky integrate-and-fire (LIF) population and the sEMD
population. The SSD population includes coincidence detector neurons and
an additional hard WTA network. Each WTA consists of an excitatory LIF
neuron population and one global inhibitory (GI) neuron. All excitatory LIF
neurons are connected to the GI neuron. The GI neuron projects back onto
the excitatory LIF neurons.

by calculating the correlation between the input stimuli from
both ears to determine the position of a sound source. Ac-
cording to [17], the correlation can be calculated by using
an array of spike-based coincidence detector neurons. The
excitatory output spikes from the cochlear nucleus (CN) are
fed into those detectors through delay-lines. Depending on
the sound source position, the sound waves arrive earlier to
one ear than the other. Those input stimuli coincide in a
specific coincidence detector, which identifies the estimated
position. Note that the time difference is directly related with
the distance between the ears. Since the ears’ distance in
birds amounts to just a few centimetres, time differences
are in the tens of microseconds range. These fine temporal
delays are not calculable on SpiNNaker due to limitations in
temporal resolution. Because of that, a spike-based Jeffress
model was designed as a real-time VHDL module to be
added along with the NAS. However, the coincidence detector
neurons project onto a winner-take-all (WTA) network [18]
implemented on SpiNNaker to decrease the noise in the SSD
network’s output. The WTA network feeds spikes into the
lateral sound transmitter (LST) population explained in the
next section (see Fig. 2).

C. Sensory Integration Network

The OFE network’s retinotopic output map and the SSD
network’s tonotopic output map are arranged topographically.
Both networks project (directly or indirectly) onto the SI
network’s decision making winner take all (DMWTA) map
(see Fig. 2). This type of mapping seems to be quite efficient
since it has been found in different vertebrates which have
been optimized over millions of years [19]. The different
sensory maps have to be correctly aligned to each other to



Fig. 3. (a) SI network’s heading direction response to a 180 degrees sound source direction sweep. (b) Setup to record OF data used in Figure 3c. An eDVS
is mounted on top of a robotic platform which drives purely translational with a speed of ~0.8 m/s through the scene. The first obstacle is located in the
middle of the visual field, the second one on the right side and the last one on the left side. All obstacles are positioned at least 40 cm above the ground so
that the robot can drive underneath them. Heading directions for a centered sound source with OF (c) and without OF (d). (e) Heading direction mean and
heading direction standard deviation (stdd) with OF (red) and without OF (blue) for five different time periods with different visual scenarios

combine multimodal sensory cues in one network. In human
beings the spatially more reliable visual input teaches the
adaptation of the auditory input map [20]. Such an alignment
adaptation has been simulated in neuromorphic systems [4]
[5]. Given the current open loop configuration, there is no
need for an adaptive alignment of the visual and auditory
maps. Therefore, we simply map corresponding positions in
all three networks.
Besides the alignment, the importance of the different sensory
information with respect to decision making has to be taken
into account. Visual information always dominates the pro-
posed network since collision avoidance is an essential task
to guarantee the agent’s damage-free navigation. To achieve
that, the OFE network’s output (visual information) strongly
inhibits the SI network’s DMWTA population (see Fig. 2).
This guarantees that the agent never drives into the direction
of a nearby object because the DMWTA population’s output
defines the heading direction.
Whenever the visual field is object free the heading direction
equals the sound source direction created by the SSD network.
That means that the SSD network’s output could directly
be mapped onto the DMWTA population. Still, when an
object appears directly in the sound source direction the
corresponding DMWTA neuron is strongly inhibited so that
it can not win. In this condition the LST population comes
into play (see Fig. 2). The LST neuron positioned at the SSD
excites the two adjacent neurons. This lateral excitation further
spreads through the LST population until a position with zero
OF input is reached. At that position the DMWTA population
releases a spike. Since the DMWTA population consists of a
hard WTA network [18] the winning neuron inhibits all other

decision making neurons. At each instant the network can
only decide for one specific heading direction. The selected
heading direction always appears at the position of null OF
closest to the sound source direction. This is caused by the fact
that the lateral excitation wave in the LST population reaches
the closest position with null OF with the smallest delay and
with the highest excitation. The lateral excitation decreases
with increasing lateral sound source distance given that the
lateral connections are weak. This WTA structure matches
with findings in mammals supporting the hypothesis that
competing alternatives switch off each other through inhibition
[1]. When a spike is released by the DMWTA population, it
also sets back the LST population by inhibition.

IV. EXPERIMENTS AND RESULTS

Two experiments were conducted to characterize the net-
work’s performance. In the first experiment only auditory
information was fed into the network to verify that the SI
network’s heading direction follows the sound source direc-
tion. In the second experiment OF was added to investigate
the network’s behaviour when it tries to follow a sound source
in a cluttered environment.

A. Sound Source Tracking

In this experiment, a synthetic audio file was generated by
using a python script along with the Room Impulse Responses
(RIR) generator library. In this script a 500 Hz sound source
was swept from left to right at 2 meters receptor distance.
This recording was fed into the NAS in order to check the SI
network’s sound source following behaviour. For all tests in
this paper, events from one of the 64 NAS channels with a
center frequency close to the sound source frequency of 500



Hz were used. As shown in Fig. 3a, the heading direction
(identified as neuron id) follows the sound sweep from left
(high id) to right (low id). The correlation between expected
and achieved heading direction amounts to 89% (Pearson
correlation coefficient) [21].

B. Sound Source Tracking and Obstacle Avoidance

In this experiment a synthetic audio file with a centered
sound source generated similarly as in subsection IV-A was fed
into the NAS. Additionally eDVS recordings were projected
into the OFE network. These recordings were done with a
robot executing pure translational motion through the envi-
ronment shown in Figure 3b.
As long as only sound information is fed into the whole
network the mean of the heading direction lies as expected
close to neuron id zero, which corresponds to the sound source
direction (Fig. 3d,e). The same accounts for region one in
Figure 3c,e because the robot isn’t moving. In Figure 3c,
in region two, three and four a high amount of OF changes
the heading direction. In region two, the heading direction’s
standard deviation is very high. As explained in subsection
III-C, the heading direction always points to the direction
of null OF closest to the sound source direction. Since the
obstacle is located in the middle, there is no clear closest
direction with zero OF and the heading direction fluctuates
a lot between both sides. This could be seen as a problem but
in case of a closed loop experiment the first laterally located
spike will cause a turn of the robot so that the object is not
centrally located anymore. What happens in case of a laterally
positioned object can be seen in region three. The heading
direction points significantly to the left. This can be explained
by the fact that the obstacle is located at the right side. This
makes the path at the left side around the obstacle the shorter
one. In region four, the same effect can be shown but with
the obstacle on the left side. After avoiding the obstacles the
heading direction goes back to the middle. This is almost
identical to the behaviour without OF (Region 5). As expected,
the SI network always points at the direction of null OF closest
to the sound source.

V. CONCLUSIONS

The proposed sensory integration SNN shows the expected
behaviour: it adjusts its heading direction to the sound source
direction with a correlation of 89%. When OF is introduced
into the network the heading direction always points at the
direction of null OF closest to the sound source. Hence, the
sensory integration network is able to find the shortest path to
the sound source while avoiding obstacles under well defined
test conditions. These findings will be further investigated on
a closed loop robotic platform.
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