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Abstract: We show that, generically, finding the k-th root of a braid is very fast. More precisely, we provide
an algorithm which, given a braid x on n strands and canonical length l, and an integer k > 1, computes
a k-th root of x, if it exists, or guarantees that such a root does not exist. The generic-case complexity
of this algorithm is O(l(l + n)n3 log n). The non-generic cases are treated using a previously known
algorithm by Sang-Jin Lee. This algorithm uses the fact that the ultra summit set of a braid is, generically,
very small and symmetric (through conjugation by the Garside element ∆), consisting of either a single
orbit conjugated to itself by ∆ or two orbits conjugated to each other by ∆.

Keywords: braid groups; algorithms in groups; group-based cryptography

1. Introduction

Group theory is ‘the language of symmetry’, as it is beautifully explained by Marcus du Sautoy in his
book Symmetry. In this paper we will deal with a fascinating family of groups discovered by Emil Artin:
Braid groups.

There are several computational problems in braid groups that have been proposed for their potential
applications in cryptography [1]. Initially, the conjugacy problem in the braid group Bn was proposed
as a non-commutative alternative to the discrete logarithm problem [2,3]. Later, some other problems
were proposed, including the k-th root extraction problem: given x ∈ Bn and an integer k > 1, find a ∈ Bn

such that ak = x.
The interest of braid groups for cryptography has decreased considerably, mainly due to the

appearance of algorithms which solve the conjugacy problem extremely fast in the generic case [4–6].
The main problem with the proposed cryptographic protocols turns out to be the key generation. Public
and secret keys are chosen ‘at random’, and this implies that the protocols are insecure against algorithms
which have a fast generic-case complexity.

While the future of braid-cryptography depends on finding a good key-generation procedure, there
are some other problems in braid groups whose generic-case complexity is still to be studied. This is the
case of the k-th root (extraction) problem.

A priori, the study of the generic case for the k-th root problem could be though to be nonsense as,
generically, the k-th root of a braid x does not exist. But we should think of the braid x as the k-th power of
a generic braid: in protocols based on this problem, a secret braid a is chosen at random, and the braid
x = ak is made public. Hence we are dealing with braids for which a k-th root is known to exist. In any
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case, the algorithm in this paper not only shows that root extraction in braid groups is generically very
fast, but can also be used by those mathematicians needing a simple algorithm for finding a k-th root of
a braid (or proving that it does not exist), which works in most cases.

There are already known algorithms to solve the k-th root problem in braid groups and, more
generally, in Garside groups [7,8]. But these algorithms can be simplified a lot in the generic case, as we
will show in this paper.

The plan of this paper is as follows. In Section 2 we provide the necessary tools to describe the
situation and attack the problem. Then in Section 3, we prove the theoretical results needed for our
proposed algorithm, which is given in Section 4, together with the study of its generic-case complexity.

This generic-case complexity turns out to be quadratic on the canonical length l of the braid, if the
number n of strands is fixed. More precisely, the generic-case complexity is O(l(l + n)n3 log n) (Theorem 6).

2. Preliminaries

2.1. Garside Structure of Bn

A group G is said to be a Garside group [9] if it admits a submonoid P (whose elements are called
positive) such that P ∩ P−1 = {1}, and a special element ∆ ∈ P , called Garside element, satisfying the
following properties:

• The partial order 4 in G defined by a 4 b if a−1b ∈ P is a lattice order. If a 4 b we say that a is a prefix
of b. The lattice structure implies that for all a, b ∈ G there exists a unique meet a ∧ b and a unique
join a ∨ b with respect to 4. Notice that this partial order is invariant under left-multiplication.

• The set of simple elements S := {s ∈ G | 1 4 s 4 ∆} is finite and generates G.
• Conjugation by ∆ preserves P , that is, ∆−1P∆ = P .
• P is atomic: the atoms are the indivisible elements of P (elements a ∈ P for which there is no

decomposition a = bc with non-trivial elements b, c ∈ P). Then, for every x ∈ P there is an upper
bound on the number of atoms in a decomposition of the form x = a1a2 · · · an, where each ai is
an atom.

One of the main examples of Garside groups is the braid group on n strands, denoted by Bn.
This group has a standard presentation due to Artin [10]:

Bn =

〈
σ1, σ2, ..., σn−1

∣∣∣∣∣ σiσjσi = σjσiσj if |i− j| = 1
σiσj = σjσi if |i− j| > 1

〉
.

Attending to the above presentation, a braid is said to be positive if it can be written as a product of
positive powers of the generators {σi}n

i=1. The set of positive braids forms the monoid P corresponding to
the classical Garside structure of Bn. We will denote this monoid by B+

n .
The usual Garside element in B+

n , which we denote ∆n, is defined recursively setting ∆2 = σ1 and

∆n = ∆n−1σn−1σn−2 · · · σ1,

for all n > 2. We will often write ∆ and omit the subindex n when there is no ambiguity.
Consider now the inner automorphism τ : Bn → Bn determined by ∆. That is, τ(x) = ∆−1x∆.

One can easily show from the presentation of Bn that τ(σi) = σn−i for 1 ≤ i ≤ n− 1. Hence τ has order 2
and ∆2 is central. In fact, the center of Bn is cyclic, generated by ∆2 [11].

The set S of simple elements and the automorphism τ will be very important in the sequel.
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2.2. Normal Forms, Cyclings and Decyclings

It is well-known that Garside groups have solvable word problem, as one can compute a normal form
for each element.

Let us first define the right complement of a simple element s ∈ S as ∂(s) = s−1∆. That is, ∂(s) is
the only element t ∈ P such that st = ∆. Let us see that ∂(s) = t is also a simple element. Recall that
the simple elements are the positive prefixes of ∆. Since τ preserves P (by definition of Garside group),
we have that τ(s) is positive. Now

stτ(s) = ∆τ(s) = s∆,

hence tτ(s) = ∆, which implies that t is a positive prefix of ∆, that is, t ∈ S . It follows that we have a map
∂ : S → S . Notice that, by definition, ∂2 ≡ τ.

Given two simple elements s, t ∈ S , we say that the decomposition st is left weighted if s is the biggest
possible simple element (with respect to 4) in any decomposition of the element st as a product of two
simple elements. This condition can be restated as ∂(s) ∧ t = 1, i.e., ∂(s) and t have no non-trivial prefixes
in common.

Definition 1 ([12,13]). The left normal form of an element x ∈ Bn is the unique decomposition x = ∆px1 · · · xl so
that p ∈ Z, l ≥ 0, xi ∈ S \ {1, ∆} for i = 1, . . . , l, and xixi+1 is a left weighted decomposition, for i = 1, . . . , l− 1.

Given such a decomposition, we define the infimum, supremum and canonical length of x as inf(x) = p,
sup(x) = p + l and `(x) = l, respectively. Equivalently, the infimum and supremum of x can be defined
as the maximum and minimum integers p and s so that ∆p 4 x 4 ∆s (see [12]).

It is important to notice that conjugation by ∆ preserves the Garside structure of Bn. Hence, if the
left normal form of a braid x is ∆px1 · · · xl , then the left normal form of τ(x) is ∆pτ(x1) · · · τ(xl). We will
make use of this property later.

Garside groups also have solvable conjugacy problem. One of the main tools to solve problems
related to conjugacy in braid groups are the summit sets, which are subsets of the conjugacy class of
a braid. Throughout this article we are going to use two of them: the super summit set [12] and the ultra
summit set [4]. Let us first introduce some concepts:

Definition 2. Let x = ∆px1 · · · xl be in left normal form, with l > 0. Notice that we can write:

x = τ−p(x1)∆px2 · · · xl .

We define the initial factor of x as ι(x) = τ−p(x1), and the final factor of x as ϕ(x) = xl . We can then write:

x = ι(x)∆px2 · · · xl and x = ∆px1 · · · xl−1 ϕ(x).

If l = 0, we set ι(x) = 1 and ϕ(x) = ∆.

Notice that, as τ2 is the identity, we actually have either ι(x) = x1 if p is even, or ι(x) = τ(x1) if p is
odd. This happens in braid groups, but not in other Garside groups in which the order of τ is bigger.

Definition 3 ([12]). Let x = ∆px1 · · · xl be in left normal form, with l > 0. The cycling and decycling of x are the
conjugates of x defined, respectively, as

c(x) = ∆px2 · · · xl ι(x) and d(x) = ϕ(x)∆px1 · · · xl−1.
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Thus c(x) is the conjugate of x by ι(x), and that d(x) is the conjugate of x by ϕ(x)−1.
Cyclings and decyclings were defined in [12] in order to try to simplify the braid x by conjugations.

Usually, if l ≥ 2, the decomposition ∆px2 · · · xl ι(x) is not the left normal form of c(x). So c(x) could
a priori have a shorter normal form (with less factors). A similar situation happens for d(x).

If ∆px2 · · · xl ι(x) is actually the left normal form of c(x) (when l ≥ 2), we say that the braid x is rigid.
This happens if and only if xl ι(x) (that is, ϕ(x)ι(x)) is a left weighted decomposition. We can extend this
definition to every case, when l ≥ 0:

Definition 4. We say that x ∈ Bn is rigid if ϕ(x)ι(x) is a left weighted decomposition.

If x is rigid, neither cycling nor decycling can simplify its normal form x = ∆px1 · · · xl . Actually, the
normal forms of the iterated cyclings of x are, if p is even:

c(x) = ∆px2 · · · xl x1, c2(x) = ∆px3 · · · xl x1x2, . . .

so cl(x) = x in this case. In the case when p is odd we have:

c(x) = ∆px2 · · · xlτ(x1), c2(x) = ∆px3 · · · xlτ(x1)τ(x2), . . .

so c2l(x) = x in this case.
In the same way, if x is rigid we have, for p even:

d(x) = ∆pxl x1 · · · xl−1, d2(x) = ∆pxl−1xl x1 · · · xl−2, . . .

so dl(x) = x in this case. If p is odd we get:

d(x) = ∆pτ(xl)x1 · · · xl−1, d2(x) = ∆pτ(xl−1)τ(xl)x1 · · · xl−2, . . .

so d2l(x) = x in this case. We then see that, if x is rigid, iterated cyclings and decyclings correspond to
cyclic permutations of the factors in the normal form of x (possibly conjugated by ∆, if p is odd); moreover,
when applied to rigid braids, c and d are inverses of each other.

2.3. Summit Sets

Let now x ∈ Bn be an arbitrary braid (not necessarily rigid). Consider the conjugacy class of x,
denoted xBn , and write infs(x) (resp. sups(x)) for the maximal infimum (resp. the minimal supremum)
of an element in xBn . These numbers are known to exist [12], and are called the summit infimum and the
summit supremum of x, respectively. Set `s(x) = sups(x)− infs(x), the summit length of x. It is shown
in [12] that the elements in xBn having the shortest possible normal form are those whose canonical length
is precisely `s(x), and they coincide with the elements whose infimum and supremum are equal to infs(x)
and sups(x), respectively. The set formed by these elements is called the supper summit set of the braid x:

SSS(x) =
{

y ∈ xBn | `(y) = `s(x)
}
=
{

y ∈ xBn | inf(y) = infs(x), sup(y) = sups(x)
}

.

Starting from x, it is possible to obtain an element in SSS(x) by applying cyclings and decyclings
iteratively. It is known [12] that if inf(x) < infs(x) then the infimum of x can be increased by iterated
cycling. Actually, in this case inf(x) < inf(ck(x)) for some k < n(n−1)

2 (see [14]). Hence, every n(n−1)
2

iterations either the infimum has increased, or one is sure to have an element whose infimum is the
summit infimum.
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In the same way, if sup(x) > sups(x), then the supremum of x can be decreased by iterated
decycling [12], and in that case sup(x) > sup(dk(x)) for some k < n(n−1)

2 [14]. Hence, every n(n−1)
2

iterations either the supremum has decreased, or we are sure to have an element whose supremum is the
summit supremum. Since decycling can never decrease the infimum of an element, it follows that starting
with any x ∈ Bn and applying iterated cycling (until summit infimum is obtained) followed by iterated
decycling (until summit supremum is obtained) yields an element y ∈ SSS(x).

The super summit set SSS(x) is a finite set, but it is usually huge, so smaller subsets of the conjugacy
class of x were defined in order to solve the conjugacy problem of x more efficiently. Namely, the ultra
summit set of x, denoted by USS(x), is a subset of SSS(x) defined as follows [4]:

USS(x) = {y ∈ SSS(x) | cm(y) = y for some m > 0}.

Since SSS(x) is finite, the subset USS(x) is also finite. It is then clear that one obtains an element
is USS(x) by iterated application of cycling, starting from an element in SSS(x), when a repeated element
is obtained. Actually, the whole orbit under cycling of an element in USS(x) belongs to USS(x). So USS(x)
is a finite set of orbits under cycling.

Notice that every rigid braid belongs to its ultra summit set, as cylings and decyclings are basically
cyclic permutations of its factors. It is shown in [15] that, if x is conjugate to a rigid braid and `s(x) > 1,
then USS(x) coincides with the set of rigid conjugates of x.

There is actually a simpler way, in the general case, to obtain an element in USS(x) starting from x.
Instead of using cyclings and decyclings, one can use the following single type of conjugation:

Definition 5 ([5]). Given x ∈ Bn, the cyclic sliding of x is defined as s(x) = p(x)−1x p(x), where p(x) =

ι(x) ∧ ∂(ϕ(x)).

Theorem 1 ([5]). Given x ∈ Bn, there are integers 0 ≤ k < t such that sk(x) = st(x). For every such pair of
integers, one has sk(x) ∈ USS(x).

By the above result, one can obtain an element in USS(x) by iterated cyclic sliding starting form x.
Furthermore, if x is conjugate to a rigid element (this will be the generic situation, as we will see in
Section 2.4), iterated cyclic sliding yields the shortest positive conjugating element from x to a rigid element.

Theorem 2 ([5]). Let x ∈ Bn and suppose that x is conjugate to a rigid braid. Then there is an integer k > 0 such
that sk(x) is rigid. Moreover, the conjugating element α from x to sk(x), that is,

α = p(x) p(s(x)) p(s2(x)) · · · p(sk−1(x))

is the smallest positive element (with respect to 4) conjugating x to a rigid element, meaning that for every positive
element β such that β−1xβ is rigid, one has α 4 β.

After obtaining one element in USS(x), it is possible to compute all elements in USS(x) together
with conjugating elements connecting them. In this way, one solves the conjugacy problem in Bn, as two
elements x and y are conjugate if and only if USS(x) = USS(y) or, equivalently, if USS(x) ∩USS(y) 6= ∅.
Then, in order to check whether x and y are conjugate, one can compute the whole set USS(x), and one
element ỹ ∈ USS(y). Then, x and y are conjugate if and only if ỹ ∈ USS(x). By construction, one can even
compute a conjugating element from x to y.

In order to understand the forthcoming proofs in this paper, we will need to describe some conjugating
elements connecting the elements of USS(x).
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Definition 6 ([4]). Let x ∈ Bn and y ∈ USS(x). A simple non-trivial element s ∈ S is said to be a minimal
simple element for y if ys ∈ USS(x) and yt /∈ USS(x), for every 1 ≺ t ≺ s.

In [4], Gebhardt showed that for any two elements y, z ∈ USS(x) there exists a sequence

y = y1
c1−→ y2

c2−→ · · · → yt
ct−→ yt+1 = z,

where ci is a minimal simple element for yi, and yi+1 = c−1
i yici, for i = 1, . . . , t. Moreover, he introduced

an algorithm to compute all minimal simple elements for a given y ∈ USS(x). This allows to construct
a directed graph Γx, whose vertices correspond to elements of USS(x), and whose arrows correspond to
minimal simple elements, in such a way that for every minimal simple element s for y, there is an edge
with label s from y to ys = s−1ys. By the above discussion, it follows that Γx is a connected graph, and this
is why USS(x) can be computed starting with a single vertex, iteratively computing the minimal simple
elements corresponding to each known vertex, until all vertices are obtained.

We will later see that, generically, ultra summit sets are really small. Actually, they usually have
a very simple structure, that we explain now.

Lemma 1 ([16]). Let y ∈ USS(x) with `(y) > 0 and let s be a minimal simple element for y. Then, s is a prefix of
either ι(y) or ∂(ϕ(y)), or both.

The above lemma allows us to classify the arrows in Γx into two groups: a directed edge labelled
by s starting at y ∈ USS(x) is black (resp. grey), if s is a prefix of ι(x) (resp. of ∂(ϕ(y))). In principle,
an edge could be of both colors at the same time (a bi-colored arrow, whose label is a prefix of both ι(x)
and ∂(ϕ(x))), but not in the case of rigid braids, as ι(x) ∧ ∂(ϕ(x)) = 1 if x is rigid. Actually, this is
a necessary and sufficient condition:

Lemma 2 ([16]). A braid y ∈ USS(x) with `(y) > 0 is rigid if and only if none of the edges starting at y is
bi-colored.

Definition 7. Given a braid x ∈ Bn, its associated USS(x) is minimal if `s(x) > 1 and, for every vertex y in the
graph Γx, there are exactly two directed edges starting at y, a black one labeled ι(y) and a grey one labeled ∂(ϕ(y)).

Notice that, as a consequence of Lemma 2, if USS(x) is minimal then all elements in USS(x) are
rigid. Moreover, the arrow labeled ι(y) corresponds to a cycling of y, and the arrow labeled ∂(ϕ(y))
corresponds to a twisted decycling of y, meaning a decycling followed by the automorphism τ. This implies
that, if USS(x) is minimal, the elements of USS(x) are obtained from y by applying c and τ ◦ d in every
possible way. Since y is rigid, cyclings and decyclings basically correspond to cyclic permutations of the
factors. Therefore, if USS(x) is minimal, it consists of either two orbits under cycling (conjugate to each
other by ∆), or one orbit under cycling (conjugate to itself by ∆). If the infimum of y is even, the orbit of y
has at most `(y) = `s(x) ≤ `(x) elements, so the size of USS(x) is at most 2`(x). If the infimum of y is
odd, the orbit of y has at most 2`(y) ≤ 2`(x) elements, and it is conjugate to itself by ∆, so it is the only
orbit. Therefore, in any case, if USS(x) is minimal it has at most 2`(x) elements.

Remark 1. In order to see whether USS(x) is minimal, one should a priori check the condition in Definition 7 for
every element in USS(x). But it is actually shown in ([17], Theorem 4.6) that, given y ∈ USS(x), the set USS(x)
is minimal if and only if `(y) > 1 and the minimal simple elements for y are precisely ι(y) and ∂(ϕ(y)). Hence, one
just needs to compute the minimal elements for a single arbitrary element y ∈ USS(x).
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Let us see that this case, in which USS(x) is so small and has such a simple structure, is generic.

2.4. Generic Braids

Since Bn is an infinite set, it is necessary to explain what we mean by ‘picking a random braid’ or by
saying that a braid is ‘generic’. Even if we fix the subset of braids of a given length, we must specify if we
choose braids from the subset with a uniform distribution, or if we pick braids by choosing a random walk
in the Cayley graph, which are the two usual situations.

We will consider the Cayley graph of the braid group Bn, taking as generators the simple braids, and
assume that each edge of the Cayley graph has length 1, so it becomes a metric space. Let us point out that
left normal forms of braids are closely related to geodesics in this Cayley graph [18].

Now let B(r) denote the ball of radius r centered at the trivial braid 1. As the number of simple braids
is finite, the set B(r) is a finite subset of Bn. We will consider the uniform distribution within this set.
It turns out that ‘most’ elements in B(r) have a very simple ultra summit set:

Theorem 3 ([17]). The proportion of braids in B(r) whose ultra summit set is minimal tends to 1 exponentially
fast, as r tends to infinity.

This is why we can say that the ultra summit set of a ‘generic braid’ is minimal. Moreover, the above
result was obtained by refining the following theorem, which gives some important information concerning
the elements in B(r). We have simplified the statement to adapt it to our situation:

Theorem 4 ([19]). The proportion of braids x in B(r) which are conjugate to a rigid braid y = α−1xα, in such a
way that α is a positive braid with `(α) < `(x), tends to 1 exponentially fast, as r tends to infinity.

Therefore, not only generic braids have minimal ultra summit sets (made of rigid braids), but one
can also obtain a rigid conjugate of a generic braid x very fast, applying iterated cyclic sliding to x.
By Theorem 2, the obtained conjugating element will be the smallest possible positive conjugator, so its
canonical length will be smaller than `(x). Once that a rigid conjugate y (which belongs to USS(x)) is
obtained, one can compute the whole USS(x) very fast, as it consists of at most 2`(x) elements, connected
by cyclings and twisted decyclings. This is why solving the conjugacy problem in braid groups is
generically very fast.

We will also be interested in the centralizer Z(x) of a braid x. Notice that if y = α−1xα, then
Z(y) = α−1Z(x)α. Therefore, knowing Z(y) is equivalent to knowing Z(x), via α. We will then be
interested in Z(y) for y ∈ USS(x).

Definition 8. Let x ∈ Bn and y ∈ USS(x), and let t be the smallest positive integer such that ct(y) = y. Denote
pi := ι(ci−1(y)) the positive element conjugating ci−1(y) to ci(y), for i = 1, . . . , t. Then the preferred cycling
conjugator of y is defined as

PC(y) = p1 p2 · · · pt.

In other words, PC(y) corresponds to the conjugating element along the whole cycling orbit of y. By construction,
PC(y) commutes with y.

In the generic case (when USS(x) is minimal), it turns out that Z(x) is isomorphic to Z2, and one can
describe the generators of Z(y) for any y ∈ USS(x) (and thus of Z(x)) in a very explicit way:
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Theorem 5 ([17]). Let x ∈ Bn and y ∈ USS(x). Let PC(y) = p1 · · · pt as above. If USS(x) is minimal, then all
elements in USS(x) are rigid, Z(x) ' Z(y) ' Z2, and one of the following conditions holds:

(i) USS(x) has two orbits under cycling, conjugate to each other by ∆, and Z(y) = 〈∆2, PC(y)〉.
(ii) USS(x) has one orbit under cycling, conjugate to itself by ∆, and:

– If τ(y) = y, then Z(y) = 〈∆, PC(y)〉.
– If τ(y) 6= y, then t is even and Z(y) = 〈∆2, p1 · · · p t

2
∆−1〉.

3. k-th Root Problem

Now we come to the central problem in this paper: given x ∈ Bn and an integer k > 1, find a k-th
root of x. In other words, we want to either find a ∈ Bn such that ak = x, or show that such a braid does
not exist.

Notice that if ak = x then a belongs to Z(x), the centralizer of x. It is interesting to know that finding
a single solution a to the k-th root equation is basically the same as finding all possible solutions, as the
complete set of solutions coincides with the conjugacy class of a in Z(x):

Proposition 1. Let a, x ∈ Bn be such that ak = x for some integer k > 1. Then the set k
√

x of k-th roots of x is
precisely

k
√

x = aZ(x) =
{

b ∈ Bn | b = u−1au, u ∈ Z(x)
}

.

Proof. In [20], the second author proved that the k-th root of a braid is unique, up to conjugacy. That is,
if a, b ∈ Bn satisfy ak = bk = x, then a = u−1bu for some u ∈ Bn. Then one has x = bk = u−1aku = u−1xu,
and hence u ∈ Z(x). This proves that k

√
x ⊂ aZ(x).

On the other hand, if b = aZ(x) and we write b = u−1au for some u ∈ Z(x), we have bk = u−1aku =

u−1xu = x, so b ∈ k
√

x.

Observe that ak = x if and only if (α−1aα)k = α−1xα for any α ∈ Bn. Hence, given x, it suffices to
solve the k-th root problem for any conjugate of x, for instance for some y ∈ USS(x).

We will focus our attention in the generic case in which USS(x) is minimal. Recall from Theorem 5
that in this case Z(x) ' Z(y) ' Z2. If we express the centralizer of y as Z(y) = 〈v, w〉, where v and w
commute, we know that y has the form y = vcwd, for some c, d ∈ Z (and that this expression is unique,
as any other expression would yield a different element of Z(y)). If we are able to express y in this way,
then the k-th root problem is trivially solved:

Proposition 2. Let x ∈ Bn. Let y ∈ USS(x) and suppose that USS(x) is minimal. Let Z(y) = 〈v, w〉 and let
c, d ∈ Z be such that y = vcwd. Then y admits a k-th root if and only if both c and d are multiples of k, and in this
case the only k-th root of y is:

a = v
c
k w

d
k .

Proof. We know from Theorem 5 that Z(y) ' Z2, so it is abelian. Hence, by Proposition 1, if a k-th root a
of y exists then k

√
y = aZ(y) = {a}. Therefore, if a k-th root exists, it is unique.
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Suppose that the k-th root problem for y has a solution a ∈ Bn. Then a ∈ Z(y), and hence a = vrws

for some r, s ∈ Z. But since v and w commute, we have:

vcwd = y = ak = (vrws)k = vrkwsk.

This implies that c and d are multiples of k, and that a = vrws = v
c
k w

d
k .

Conversely, if c and d are multiples of k, we write c = rk and d = sk for some integers r, s, and we
consider the element a = vrws. Since v and w commute, it follows that ak = y.

By the above result, it follows that the only difficulty in solving the k-th root problem, in the generic
case in which USS(x) is minimal, is to express some y ∈ USS(x) in terms of the generators of Z(y).
We know from Theorem 5 that there are three possible cases, depending on whether USS(x) has two orbits
under cycling, or has one orbit with τ(y) = y, or has one orbit with τ(y) 6= y. The three following results
address each case:

Proposition 3. Let x ∈ Bn, and let y = ∆py1 · · · yl ∈ USS(x), written in left normal form. Suppose that USS(x)
is minimal. Suppose also that USS(x) has two orbits under cycling, conjugate to each other by ∆. Let v = ∆2 and
w = PC(y) = p1 · · · pt, so:

Z(y) = 〈v, w〉 = 〈∆2, PC(y)〉.

If we write c = p/2 and d = l/t, then c and d are integers and we have: y = vcwd.

Proof. We know that, since USS(x) is minimal, it consists of rigid elements. Hence iterated cycling
corresponds to a cyclic permutation of the factors in the normal form of y (with possible conjugations by ∆,
if p is odd).

Suppose that p is odd. Then cl(y) is obtained from y by cyclically permuting all its l factors,
conjugating all of them by ∆. Hence cl(y) = τ(y). This implies that τ(y) = ∆−1y∆ is in the same
orbit of y under cycling, but this is a contradiction with the hypotheses, as USS(x) has two distinct orbits
(the one containing y and the one containing τ(y)). Therefore p is even.

Since p is even, iterated cyclings of y correspond exactly to cyclic permutations of the factors of y.
By definition, t is the smallest positive integer such that ct(y) = y, and it is then clear that cm(y) = y
for some positive integer m if and only if m is a multiple of t. Since cl(y) = y, we finally obtain that l is
a multiple of t. Then the normal form of y is as follows:

y = ∆py1 · · · yl = ∆p(y1 · · · yt)(y1 · · · yt) · · · (y1 · · · yt),

where PC(y) = y1 · · · yt, and there are l/t parenthesized factors.
Now, if we write c = p/2 and d = l/t, these numbers are integers and we have:

vcwd = (∆2)c(PC(y))d = ∆2c(y1 · · · yt)
d = ∆py1 · · · yl = y.
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Proposition 4. Let x ∈ Bn, and let y = ∆py1 · · · yl ∈ USS(x), written in left normal form. Suppose that USS(x)
is minimal. Suppose also that USS(x) has one orbit under cycling, conjugate to itself by ∆, and that τ(y) = y.
Let v = ∆ and w = PC(y) = p1 · · · pt, so:

Z(y) = 〈v, w〉 = 〈∆, PC(y)〉.

If we write c = p and d = l/t, then c and d are integers and we have: y = vcwd.

Proof. We know that the left normal form of τ(y) is ∆pτ(y1) · · · τ(yl). Since τ(y) = y, the normal forms
of y and τ(y) must coincide, hence τ(yi) = yi for i = 1, . . . , l.

This implies that iterated cyclings correspond to cyclic permutations of the factors of y. We do not
care about the parity of p, as every factor of y is invariant under τ. It then follows that PC(y) = y1 · · · yt,
that t divides l and that the normal form of y is:

y = ∆py1 · · · yl = ∆p(y1 · · · yt)(y1 · · · yt) · · · (y1 · · · yt),

where there are l/t parenthesized factors.
Now, if we write c = p and d = l/t, these numbers are integers and we have:

vcwd = ∆c(PC(y))d = ∆c(y1 · · · yt)
d = ∆py1 · · · yl = y.

Proposition 5. Let x ∈ Bn, and let y = ∆py1 · · · yl ∈ USS(x), written in left normal form. Suppose that USS(x)
is minimal. Suppose also that USS(x) has one orbit under cycling, conjugate to itself by ∆, and that τ(y) 6= y.
Let v = ∆2, PC(y) = p1 · · · pt and w = p1 · · · p t

2
∆−1 (recall from Theorem 5 that t is even), so:

Z(y) = 〈v, w〉 = 〈∆, p1 · · · p t
2
∆−1〉.

If we write c = pt+2l
2t and d = 2l

t , then c and d are integers and we have: y = vcwd.

Proof. We know from Theorem 5 that t is even, but let us see why this holds. We know that there exists
some m > 0 so that τ(y) = cm(y); we take m as small as possible, and this implies that cr(y) 6= y for
0 < r < m. Now, it follows from their own definitions that τ and c commute, and therefore y = τ2(y) =
τ(cm(y)) = cm(τ(y)) = c2m(y). This implies that the length of the cycling orbit of y is a divisor of 2m.
It cannot be m (as cm(y) = τ(y) 6= y), and it cannot be smaller than m (as cr(y) 6= y for every r < m).
Therefore, the length of the orbit is precisely t = 2m. The generators of Z(y) are then v = ∆2 and
w = p1 · · · pm∆−1.

We consider now two cases, depending on the parity of p. If p is even, since the first m cyclings
transform y into τ(y), it follows that the left normal form of y is:

y = ∆p (y1 · · · ym) (τ(y1) · · · τ(ym)) · · · (y1 · · · ym) (τ(y1) · · · τ(ym)) .

Then l = 2rm for some positive integer r.
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Recall that PC(y) is the product of the first t = 2m conjugating elements for cycling. The first
m conjugating elements are y1, . . . , ym, so pi = yi for i = 1, . . . , m. The following m conjugating elements
are τ(y1), . . . , τ(ym). Hence, we have that

PC(y) = p1 · · · pt

= y1 · · · ymτ(y1) · · · τ(ym)

= y1 · · · ym τ(y1 · · · ym)

= p1 · · · pm∆−1 p1 · · · pm∆

=
(

p1 · · · pm∆−1
) (

p1 · · · pm∆−1
)

∆2

= w2v.

Therefore, if p is even:

y = ∆pPC(y)r = v
p
2

(
w2v

)r
= v

p
2 +rw2r = vcwd,

where c = pt+2l
2t and d = 2l

t (recall that l = 2rm = rt).
Consider now the case when p is odd. In this case, the left normal form of y is:

y = ∆p (y1 · · · ym) (τ(y1) · · · τ(ym)) · · · (y1 · · · ym) (τ(y1) · · · τ(ym)) (y1 · · · ym) .

Then l = (2r + 1)m for some positive integer r.
As before, PC(y) is the product of the first t = 2m conjugating elements for cycling, but this time

the first m conjugating elements for cycling are τ(y1), . . . , τ(ym), and therefore pi = τ(yi) for i = 1, . . . , m.
The following m conjugating elements are y1, . . . , ym, so we have:

PC(y) = p1 · · · pt

= τ(y1) · · · τ(ym)y1 · · · ym

= p1 · · · pm τ(p1 · · · pm)

= p1 · · · pm∆−1 p1 · · · pm∆

=
(

p1 · · · pm∆−1
) (

p1 · · · pm∆−1
)

∆2

= w2v.

Hence PC(y) = w2v also when p is odd. Finally, we have:

y = ∆p(y1 · · · ym)(τ(y1) · · · τ(ym)) · · · (y1 · · · ym)(τ(y1) · · · τ(ym))(y1 · · · ym)

= (τ(y1) · · · τ(ym))(y1 · · · ym) · · · (τ(y1) · · · τ(ym))(y1 · · · ym)∆p(y1 · · · ym)

= PC(y)r∆p(y1 · · · ym)

= PC(y)r∆p+1∆−1(y1 · · · ym)

= PC(y)r∆p+1(p1 · · · pm)∆−1

= (w2v)rv
p+1

2 w

= v
2r+1+p

2 w2r+1

= vcwd,
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where c = pt+2l
2t and d = 2l

t (recall that 2l = 2(2r + 1)m = (2r + 1)t in this case).

4. An Algorithm to Find the k-th Root of a Braid

We end this paper by providing a detailed algorithm that summarizes the results from the previous
section, together with a study of its complexity.

The results of the previous section are valid when USS(x) is minimal (which is the generic case).
In order to have an algorithm which always succeeds in finding the k-th root of a braid x, we need to
include instructions on what to do if USS(x) is not minimal. In those cases, one can use the algorithm
in [7], which finds the k-th root of x in any case, considering the Garside group G = Zn (Bn)

k, where
Z = 〈δ〉 acts on (Bn)

k by cyclic permutation of the coordinates. S. J. Lee shows that the braid x has a k-th
root if and only if the ultra summit set of δ(x, 1, . . . , 1) in G has an element of the form δ(h, . . . , h). Hence,
computing an ultra summit set in such a group also solves the root extraction problem in Bn. It is not clear
to us how big these ultra summit sets are in generic cases, while the algorithm presented in this paper is
very simple, and generically very fast.

If one is not interested in programming the algorithm in [7], one could tell our algorithm to return
‘fail’ when USS(x) is not minimal, obtaining an algorithm which will succeed only in the generic case.
In any case, we present now the main result:

Theorem 6. There is an algorithm that takes as input a braid x = ∆px1 . . . , xl ∈ Bn written in left normal form,
and a positive integer k > 1, and finds a braid a ∈ Bn such that ak = x, or guarantees that such a braid does not
exist, whose generic-case complexity is O(l(l + n)n3 log n).

Proof. Algorithm 1, which uses the results from the previous section, constitutes a proof of the theorem.
Let us describe it in detail.

The input is a braid x = ∆px1 · · · xl ∈ Bn in left normal form and an integer k > 1. First (lines 2–5),
the algorithm applies iterated cyclic sliding to x, checking at each iteration whether the resulting braid y is
rigid. As we will now see, if the algorithm applies cyclic sliding l

(
n(n−1)

2 − 1
)

times and no rigid braid is
obtained, then we are not in the generic case stated in Theorem 4, hence the algorithm in [7] is applied.
The number l

(
n(n−1)

2 − 1
)

is precisely l times the length of ∆ minus one. Recall from Theorem 4 that in
the generic case there is a positive element α conjugating x to a rigid braid, such that `(α) < `(x) = l. If α

is the smallest possible one, there is no ∆ in its normal form. Hence, the length of α in terms of atoms
(σi’s) is at most l

(
n(n−1)

2 − 1
)

. Now, from Theorem 2 we know that the smallest positive conjugator to
a rigid braid is obtained by iterated cyclic sliding. Since at every iteration the conjugating element gets
bigger, if we are in the generic case we must obtain a rigid element in at most l

(
n(n−1)

2 − 1
)

iterations,
as we claimed.

If the braid y obtained after the loop in lines 2-5 is rigid, as the algorithms stores the conjugating
elements for cyclic sliding at each iteration, we will have a braid α such that α−1xα = y.

Now the algorithm checks whether USS(y) is minimal (the generic case we are interested in),
as explained in Remark 1, checking whether the minimal simple elements for y are precisely ι(y)
and ∂(ϕ(y)).

In general, it is not known how fast it is to compute the minimal simple elements for a given arbitrary
braid y. But if y is rigid, one can easily find the minimal simple elements for y. We know that every such
element must be a prefix of either ι(y) or ∂(ϕ(y)). For every generator σi, one can consider σ−1

i yσi and
apply iterated cyclic sliding to it, until it becomes rigid. The obtained conjugating element is the smallest
conjugating element from y to a rigid braid, having σi as a prefix. We do this for all σi which are prefixes
of ι(y), and either we find a conjugating element which is a proper prefix of ι(y) (in which case ι(y) is
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not minimal), or we have shown that ι(y) is minimal. Then we do the same for all generators which are
prefixes of ∂(ϕ(y)). The number of iterations in each case is bounded by the length of ι(y) (resp. ∂(ϕ(y))),
which are simple elements, while the total number of generators is n− 1. So the total number of cyclic
slidings used to check whether ι(y) and ∂(ϕ(y)) are minimal (and hence whether USS(y) is minimal)
is O(n3).

If USS(y) is not minimal, we are not in the generic case stated in Theorem 4, hence the algorithm
in [7] is applied. Otherwise, we are in one of the situations described in Propositions 3–5. The rest of the
algorithm just applies these propositions together with Proposition 2: after decomposing y in the form
y = vcwd, it checks whether both c and d are multiples of k. If this is the case, then v

c
k w

d
k is the (unique)

k-th root of y, and since x = αyα−1, it follows that αv
c
k w

d
k α−1 is the desired k-th root of x; otherwise,

the algorithm returns the sentence “A k-th root does not exist”.
We study now the complexity of our algorithm, assuming that we are in the generic case in which

USS(x) is minimal, and we can quickly conjugate x to a rigid braid. Computing the complement
or applying τ to a simple element is O(n), and computing s ∧ t for two simple elements s and t
is O(n log n) ([13], Proposition 9.5.1). Starting with an element y in left normal form, computing s(y)
consists of computing a complement (∂(ϕ(y))), a meet (ι(x) ∧ ∂(ϕ(x))) and the normal form of the
conjugate of y by a simple element of length at most l (which is O(ln log n)). Hence the total complexity of
applying a cyclic sliding is O(ln log n).

The first loop (lines 2–5) is repeated O(ln2) times, checking the condition takes O(n log n) and the
body of the loop takes O(ln log n). Hence the total complexity of the loop in lines 2–5 is O(l2n3 log n).

The “If” statement in lines 6–7 is negligible compared with the previous “while” loop.
Next, in lines 8–9 the algorithm checks whether ι(y) and ∂(ϕ(y)) are minimal, for the rigid element y.

By the arguments above, this applies O(n3) cyclic slidings, hence the total complexity of this step
is O(ln4 log n).

In line 11 and in the loop in lines 12–15, some cyclings are applied. Since the involved braids are
rigid of canonical length at most l, and cycling is just a cyclic permutation of the factors with a possible
application of τ to a simple element, this final part of the algorithm is negligible with respect to the
previous one.

Therefore, the generic-case complexity of Algorithm 1 is O(l(l + n)n3 log n).

Remark 2. Although the integers p and k are part of the input, the computed complexity does not involve them,
as treating with these integers is usually negligible, in reasonable examples, with respect to the calculated complexity.
If p is really big, one should take into account the number log p. The case of k is somehow different, as one would
have a positive answer only if k is a divisor of the integers c and d (with d 6= 0), which are O(p + l), so it makes no
sense to ask for a k-th root of x, in the generic case, if k is too big compared with p and l.
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Algorithm 1: Find a k-th root of a braid x.
Input :A braid x ∈ Bn given in left normal form, and an integer k > 1.
Output : A braid a ∈ Bn such that ak = x, or the message “A k-th root does not exist.”.

1 y := x; l = `(x); α = 1 ∈ Bn; r = 0 ∈ Z;

2 while ι(y) ∧ ∂(ϕ(y)) 6= 1 and r < l
(

n(n−1)
2 − 1

)
do

3 α := α p(y);
4 y := s(y);
5 r := r + 1;

6 if ι(y) ∧ ∂(ϕ(y)) 6= 1 then
7 y is not rigid. Apply the algorithm in [7];

8 else if {Minimal simple elements for y} 6= {ι(y), ∂(ϕ(y))} then
9 USS(y) is not minimal. Apply the algorithm in [7];

10 else
11 y′ := τ(y); z := c(y); PC := ι(y) ∈ Bn; t := 1 ∈ Z; p := inf(y); l := `(y); selfConjugateOrbit := 0;
12 while z 6= y and z 6= y′ do
13 PC := PC ι(z);
14 z := c(z);
15 t := t + 1;

16 if z = y′ then
17 selfConjugateOrbit := 1;

18 if selfConjugateOrbit = 0 then
19 c := p/2;
20 d := l/t;
21 if k|c and k|d then
22 v := ∆2;
23 w := PC;

24 return αv
c
k w

d
k α−1;

25 else
26 return “A k-th root does not exist.”;

27 else if selfConjugateOrbit = 1 and y = y′ then
28 c := p;
29 d := l/t;
30 if k|c and k|d then
31 v := ∆;
32 w := PC;

33 return αv
c
k w

d
k α−1;

34 else
35 return “A k-th root does not exist.”;

36 else if selfConjugateOrbit = 1 and y 6= y′ then
37 t := 2t;

38 c := pt+2l
2t ;

39 d := 2l
t ;

40 if k|c and k|d then
41 v := ∆;
42 w := PC ∆−1;

43 return αv
c
k w

d
k α−1;

44 else
45 return “A k-th root does not exist.”;
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