
Real-time neuro-inspired sound source localization and tracking

architecture applied to a robotic platform

Elena Cerezuela Escudero 

a, , Fernando Pérez Peña 

b,  Rafael Paz Vicente 

a, 

Angel Jimenez-Fernandez 

a,  Gabriel Jimenez Moreno 

a,  Arturo Morgado-Estevez 

b 

a Robotics and Computer Technology Lab (RTC), Universidad de Sevilla, ETSI Informática, Avd. Reina Mercedes s/n, Seville 41012, Spain
b Applied Robotics Research Lab, Universidad de Cádiz, Faculty of Engineering, Avda. Universidad, 10, Puerto Real, Cadiz 11519, Spain

Keywords:
Sound localization

Interaural intensity difference 
Spike signal processing 
Neuromorphic auditory sensor 
Neurorobotics

FPGA

a b s t r a c t 

This paper proposes a real-time sound source localization and tracking architecture based on the ability

of the mammalian auditory system using the interaural intensity difference. We used an innovative bin- 

aural Neuromorphic Auditory Sensor to obtain spike rates similar to those generated by the inner hair

cells of the human auditory system. The design of the component that obtains the interaural intensity

difference is inspired by the lateral superior olive. The spike stream that represents the IID is used to

turn a robotic platform towards the sound source direction. The architecture was implemented on FPGA

devices using general purpose FPGA resources and was tested with pure tones (1-kHz, 2.5-kHz and 5-kHz

sounds) with an average error of 2.32 °. Our architecture demonstrates a potential practical application of 

sound localization for robots, and can be used to test paradigms for sound localization in the mammalian

brain.
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. Introduction

Sound localization is a function that the ears, auditory path- 

ays and auditory cortex of the brain perform together to deter- 

ine the source of a sound. It is a powerful feature of mammalian

erception that allows the animal to be aware of the environment

nd to locate prey and predators. This has inspired researchers

o develop new computational models of the auditory pathways

nd biological mechanisms that underlie sound localization in the

rain. 
The ability to model the ways in which mammals locate a 

ound source can improve the perception and navigation of mo

ile robots, allow the development of better virtual realities, im

rove teleconferencing, provide surveillance systems with omnidi

ectional sensitivity, and enhance hearing aids. 

During the last decades, the structure and function of path

ways in the auditory brainstem for sound localization have been
extensively studied [1–4].  The direction of a sound in the horizon- 

tal plane is determined by a combination of binaural cues derived 

from the incident acoustic waves arriving at the ear from different 

angles: interaural time difference (ITD) and interaural intensity, or 

f  

1  

l  

h

evel, difference (IID or ILD, respectively). Sounds that do not gen-

rate directly in front of or behind the receptor arrive earlier at

ne ear than at the other, creating an ITD. For wavelengths roughly

qual to, or shorter than, the diameter of the head, a shadowing

ffect is produced at the ear that is further away from the source,

reating an IID [1,2] . 

For example, in general terms, if a pure tone sound source is

ositioned on the left side, the sound signal at the left ear is rep-

esented by the equation: 

e f t signal = a × sin ( 2 π f t ) (1) 

here a is the sound amplitude, f the sound frequency and t the

ime. The sound at the right ear is represented by the equation: 

igh t signal = ( a/ �a ) × sin ( 2 π f ( t − �t ) ) (2) 

here �a and �t are related to, respectively, the intensity differ-

nce (IID) caused by the shadowing effect of the head, and the ad-

itional time (ITD) required for the sound wave to travel the fur-

her distance to the right ear. 

Due to the head size, the ITD cue in humans is effective for

ocating low frequency sounds (20 Hz - 1 kHz). However, the in-

ormation it provides becomes ambiguous for frequencies above

 kHz. In contrast, the IID cue is not useful for locating sounds be-

ow 1 kHz, but it is more efficient than the ITD cue for mid-and

igh-frequency ( < 1 kHz) sound localization. 
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Fig. 1. Tracking Sound system architecture.
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The ITD and IID cues are extracted in the medial and lateral su-

perior olive, respectively (MSO and LSO) which are located within

an area of the auditory system called the superior olivary complex

[2] . The LSO has a tonotopical organization: high frequencies are

represented in the middle of the LSO and continually decreasing

frequencies to both sides [5] . LSO neurons are inhibited by sounds

to the contralateral ear and excited by sounds to the ipsilateral ear,

resulting in a neural form of subtraction [2] .

There is an increasing demand for the development of real-time

and low-power sound localization techniques in the industry of

hearing aid [6–8] and robotic applications [9–11] . Currently, vari-

ous digital processing techniques based on Fast Fourier Transform

(FFT) have been proposed to determine the source of a sound sig-

nal [12,13] . However, these techniques require high power consum-

ing devices, such as Digital Signal Processors (DSP), and memory to

perform such complex signal processing. Traditional Digital Signal

Processing (DSP) techniques commonly apply Multiply-Accumulate

(MAC) operations over a collection of discrete samples codified as

fixed or floating point representations. MAC operations often re-

quire dedicated and complex resources, i.e. float-point multipliers,

which are available in FPGAs as dedicated expensive resources in

relatively small quantities. Therefore, applying a sequence of MAC

operations over a dataset with these units requires multiplexing

them in time. So they are reused with different input data and

output results, which are stored in a global memory. It often re-

quires high frequency clock signals to achieve a competitive data

throughput. Furthermore, large memory depths to store interme-

diate data and results are needed. These facts are reflected in the

power consumption and circuitry complexity. On the other hand,

Spike Signal Processing (SSP) implements the basic operations that

commonly are performed in DSP, but over spike rate coded signals

[14] . Thus, operations are performed directly over spike streams,

being equivalent to simply adding or removing spikes at the right

moment (although it is not evident which). The circuits that imple-

ment SSP operations use general purpose FPGA resources, as coun-

ters, comparators and logic gates. This allows the building of large

scale dedicated systems in hardware, which process spike coded

signals in real time using low frequency clocks in a fully parallel

way for (low cost) FPGAs, for example, the auditory sensor used in

this work demands 29.7 mW for 64 channels in stereo operation

[15] .

The ability to replicate the ways in which mammals locate a

sound source could allow the development of better virtual real-

ities. In addition, the performance of robotics with lower power

consumption will be increased. Furthermore, hearing aids could be

enhanced by improving the localization of individual sounds. These

improvements, which are enabled by the ability to understand and

mimic mammalian sound localization, are the main reasons for the

research carried out in this paper. 
The aim of this research involves the development of a spike-

ased system that processes and extracts the binaural cue of IID

ith a topology inspired by the mammalian auditory pathways,

pecifically the LSO. Using the IID cue, the system performs the

ask of tracking a sound in real time, in a biologically inspired way.

In this paper, to obtain spike rates similar to those generated

y the inner hair cells of the human auditory system, we used

n innovative binaural Neuromorphic Auditory Sensor (NAS). This

ecomposes an audio signal into different frequency bands where

he audio information is encoded in the spike rates [15] . Using the

ut coming spike rates from the NAS as the stimulus to the LSO

odel we propose, the whole architecture deals with biologically

nspired data . The NAS, the LSO model and the actuation system

ave been implemented on FPGA devices using general purpose

PGA resources. These models are developed using SSP techniques

14] .

There are previous works that propose audio localization sys-

ems inspired by the mammalian auditory system: the papers by

8] and [11] reported that a neuromorphic silicon cochlea can be

sed for spatial audition and auditory scene analysis; both papers

ere based on ITD. In [8] , the sound localization circuit was de-

ised by mimicking the neuronal organization of barn owl’s audi-

ory pathway to obtain ITD. 

The works of [16] and [17] proposed a Spiking Neural Network

SNN) to partially simulate the superior olivary complex, but they

id not use a neuromorphic device to obtain the spike streams that

epresent sound. In the system proposed in [16] , the input sound

asses through a Gammatone filterbank and is then encoded into

hase-locked spikes using a model of the half-wave rectified re-

eptor potential of inner hair cells. ITD processing uses a series

f delays and a leaky integrate-and-fire neuron model; the ITD is

alculated for all frequency channels to form a full map of ITD

rocessing. IID processing does not use a neuron model; instead,

 logarithmic ratio computes the intensity difference. The model

lassifies the sound source between 7 discrete azimuthal angles

from −90 ° to 90 ° in steps of 30 °). The model was tested using

 robotic head on broadband sounds, both noise and speech, and

t achieved overall localization accuracies of 80%. The paper by

17] presented a SNN architecture to simulate the sound localiza-

ion ability of the mammalian auditory pathways using the IID. To

rain and validate the localization ability of the architecture, ex-

erimentally derived head-related transfer function acoustical data

rom adult domestic cats were employed; the supervised learning

lgorithm known as “remote supervision method” was used for the

raining to determine the azimuthal angles. The SNN classified the

ound source between 13 discrete azimuthal angles (from −60 °
o 60 ° in steps of 10 °). The experimental results using the same

ound frequency used for the training were 52% for 5-kHz sounds,

3% for 15-kHz sounds and 40% for 25-kHz sounds. Reference [18]
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Fig. 2. NAS Architecture.
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roposed an FPGA implementation of a sound localization, based

n pulsed neural network. The pulsed neural network extracts the

TD to classify between 7 angle classes with a resolution of 30 °. In
eference [19] , the authors obtain the ILD from the energy levels

f multiple microphone pairs and propose an algorithm to extract

he bearing angle. 

The present work is structured as follows. Section 2 presents

he global architecture of the sound localization and tracking sys-

em. In this section, the LSO model that obtains the IID cue and the

rocessing system that implements that model to track a sound are

escribed in detail. In Section 3 , the experimental results are pre-

ented to show the feasibility and performance of the sound lo-

alization and tracking system. Finally, a conclusion section is pre-

ented in section 4 . 

. Architecture of real-time sound localization and tracking

ystem

In this work we present a neuromorphic real-time sound track-

ng system which consists of a neuromorphic auditory system. The

im is to model the functionality of the LSO to locate and track

igh-frequency sounds in a biologically inspired way. The system

roposed obtains the IID auditory cue in the same way the LSO

oes. Then, the IID auditory cue is used as the input for the spike-

ased processing system that tracks the sound. Fig. 1 shows the

xperimental setup to locate and track the sound source using the

AS, and a Processing System based on LSO and Actuation compo-

ents. The experimental setup consists of a robotic platform based

n a cork porexpan head with one microphone on each side of the

ead. The sound signals from the microphones are sent to the NAS

here they are decomposed into different frequency bands. Then,

he NAS produces spikes that represent the spectral information

f the original audio signal; the final output of the NAS are the

inaural spiking stream flows. These binaural cues are sent to the

SO system, which extracts the IID. Finally, the IID spiking streams

re used by the calibration system and actuation system to track

he sound source. 

This section briefly describes the NAS, the LSO model and the

rocessing system. 

.1. Neuromorphic auditory system 

To generate the spike streams inspired by the human audi-

ory system, a neuromorphic device proposed in a previous work

15] was used, which decomposes an audio signal into different

requency bands of spiking information, in the same way a bio-

ogical cochlea sends the audio information to the brain. The bi-

logical cochlea performs the transduction between the pressure
ignal representing the acoustic input and the neural signals that

arry information to the brain. Due to the physical characteristics

f a part of the cochlea, the basilar membrane, the cochlea divides

n input signal into its frequency components. Thousands of hair

ells on the membrane generate action potentials, or spikes, that

ravel along nerve fibres to higher-order auditory brain areas. 

The architecture of the NAS is shown in Fig. 2 . The system’s

nputs are the digitalized audio streams (the left and right audio

ignals), which represent the audio signals of a binaural system.

 Synthetic Spike Generator [14,20] converts these digital audio

ources into two spike streams. Then, the cascade band pass filter

ank splits the spike streams into 64 frequency bands using 64 dif-

erent spiking outputs. These outputs are combined by a monitor

lock which encodes each spike according to Address-Event Rep-

esentation (AER) and transmits this information to the classifica-

ion layers [21] . All the elements required for designing the NAS

omponents (Synthetic Spike Generators, cascade filter bank and

he AER monitor) have been implemented in VHDL and designed

s spike-based building blocks [14] . The L -Cascade Filter bank and

-Cascade Filter bank have identical architecture. Table 1 shows

he NAS features. The NAS has been used before in [22] to mea-

ure the speed of DC motor and in [23–25] for audio sound clas-

ification. In [26] a software tool (NAVIS) to develop the first post-

rocessing layer using the NAS information is proposed. 

.2. Lateral superior olive model 

We present a LSO model which decodes the IID from the bin-

ural spiking streams generated by the NAS. 

For sound waves that have similar or smaller wavelengths than

he diameter of the human head, a shadowing effect is produced

t the ear further from the source, creating an IID [1] . Processing

n the LSO involves taking as input the two sound signals in the

orm of a neural stimulus from each ear. The ipsilateral stimulus

akes an excitatory form and the contralateral is inhibitory, after



Table 1

NAS characteristics.

Number of bands Frequency range Dynamic range Max. Event rate Clock frequency Hardware resources

64 × 2 9.6 Hz – 14.06kHz 75dB 2.19Mevents/s 27 MHz 11,141 slices

Fig. 4. ILD (encoded as an event-rate) measured over time obtained from the input data that generates the left and right NAS when the sound source is placed at 45 ° from

the head.
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passing through the medial nucleus trapezoid body (MNTB). The

convergence of excitatory inputs from the ipsilateral ear and in-

hibitory inputs from the opposite ear resembles a relatively simple

subtraction process that creates the well-described IID sensitivity

of LSO neurons. These neurons produce an output related to the

IID [2] . 

The architecture of the system is shown in Fig. 3 . It is based

on the Spike Hold & Fire (SH&F) block that transforms two input

spike rates into two output spike rates. The outputs are propor-

tional to the subtraction between the two input rates. Subtracting

a spike-based input signal from another will yield a new spike sig-

nal whose spike rate will be proportional to the difference between

both input spike rates. If that subtraction is positive, the spike is

fired by output port A, and if the subtraction is negative, the spike

is fired by output port B [27,28] . This block was successfully used

in previous works for spike filtering design [14,15,29] and for im-

plementing a spike-based closed-loop robotic controller [28] . 

The function of the SH&F is to hold incoming spikes for a fixed

period of time while monitoring the input evolution to determine

output spikes. Fig. 3 shows the SH&F block, which has two inputs:

A (Excitation input) and B (Inhibition input). If a spike is received

at input port A, an “A” state is held internally. In the case that no

spikes are received, nothing is done. When a new spike arrives, it

behaves in one way or another, according to the spike input port. If

SH&F receives an excitatory spike (port A), the held spike is fired,

and a new “A” state is held internally. If a spike is received in

port B, the held spike is cancelled and no output spike is fired at

any output port. Similar SH&F behavior can be extended to input

spikes in port B using the same logic: hold, cancel, and fire spikes

according to input spikes ports. With this implementation of LSO,

the MNTB function, in order to obtain inhibitory input, is carried

out by input B of the SH&F block. The output Spikes A firing rate

is proportional to the ILD corresponding to the sound originating

to the left of the head and the output Spikes B firing rate is pro-

portional to the ILD corresponding to the sound originating to the

right. Fig. 4 shows an example of how the SH&F works: the two in-

puts and output along time are shown to better explain the model
unctioning, in order to exhibit how the inhibition/excitation prin-

iple influences the output. 

This model considers the SH&F block to be akin to the subset of

iological neurons of the LSO that deal with the narrow frequency

ands of sound to track. 

.3. Processing system 

The architecture of the processing system is shown in Fig. 5 .

his system interfaces the NAS system, processes the data from the

AS generating the IID cue and produces the commands to drive

he motor. 

The NAS will send the events from the 64 bands for both the

ight and left microphone-ear. To characterize our system, the pro-

essing system only samples the bands (left and right) responding

o the fundamental frequency of the sound to track. 

The architecture consists of a calibration stage where the base-

ine is established (i.e. ILD = 0 dB), three SH&F blocks where the

LD and the error are computed, two spike generators [20] to gen-

rate the reference, a serial communication component and a spike

engthening mechanism. 

The behavior of this layer is divided into two steps: initial cali-

ration and normal behavior. 

Initial calibration 

1. The calibration process is the first step that takes place. There is

an initial five second countdown to let us prepare the scenario,

i.e. to place the speaker in front of the head (0 °) and play a

sound with the same fundamental frequency as the sound to

track. The rest of the components of the actuation layer will be

disabled during this entire calibration phase.

2. After the five second countdown, two components are

launched: a four second countdown and the baseline rate com-

ponent ( Fig. 5 ). This last component receives the addresses

from the AER bus interfacing the NAS system. It includes two

registers where the events received from each ear are counted

(only the channels of interest). Then, at the end of the four
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“calibration_done” signal, is used to select which component is sending the ACK out of the FPGA. Also, this “calibration_done” signal will enable the rest of the components

that are not involved in the calibration stage.
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second countdown, we will have the total number of events

received from the right and left ear. Then, both registers are

shifted two positions to the right (division by four) so the re-

sult in the registers are the events per second received by each

ear considering the reference condition: the head facing the di-

rection of the sound source. Therefore, these rates will play the

role of reference for our control system. 

3. The way to generate the rate computed only in the previous

stage is to use the spikes generator presented in [20] . There are

two of these modules used in our architecture: right reference

generator and left reference generator; each will receive the in-

put data from the baseline rate component.

The rate generated by this block is defined according to the fol-

lowing equation: 

F iring rate = f clk / 2 

( N−1 ) × input = gain × input

Since we have calculated the desired output rate (firing rate in

the above equation) we need to know the input we have to

supply to this module to generate such a rate. Then, if the

gain of the generator is a power of two values, it is easy

to right-shift the computed rate again, in order to have the

correct input value for the generators. 

If we consider a clock frequency of 100 MHz and then this data

is introduced into the equation, it is not possible to reach a

power of two gain by the generator. To achieve it, we have

divided the clock frequency by three and used 24 bits to im-

plement the generator, resulting in a gain of 1.98 ∼ 2. 

Implementing the generator in this way allows us to right-shift

the reference rate calculated in the baseline rate component

and supply the result as the input for the spike generators. 

4. The output spiking rates of both generators will be subtracted

using the reference Hold & Fire component shown in Fig. 5 . The

resulting rate of spikes is the reference for our design when the

normal tracking behavior is taking place.

Normal behavior

During the normal phase, the NAS interface block is receiving

he addresses from the AER bus and detecting the channels of in-

erest, which depend on the frequency of the sound to track/locate.

nce an event on any of these channels is received, it is propa-

ated to the Ears SH&F component in the architecture where the

ates are subtracted (the channels tuned for the same frequency

f each ear are cancelled) to compute the ILD ( Fig. 6 ). This SH&F

lock implements the LSO model to obtain a spike rate that repre-

ents the IID cue of a narrow frequency band of sound. To remove
he error caused by gain difference between the microphones, the

esulting rate is compared with the reference computed previously

uring the calibration process (in Ref.-Ears SH&F). The final rate

error if we compare with a conventional control system) is sent

o the module responsible for lengthening the time duration of

he events. The reason for doing this, is to avoid filtering events

y the motor (with a 100 MHz clock frequency, the time length of

n event will be 10 ns and this length will be filtered out by the

otor). 

The event time length can be configured from the PC and this

ength will be the same for all the events sent to the motor. Using

ulse Frequency Modulation (PFM) removes the delay associated

ith PWM and makes the direct use of the events available [30] . 

Finally, the encoder channels are read and this information is

erially transmitted to the PC whenever the motor turns 0.7 ° in

ny direction. 

One of the differences between our architecture and the ones

roposed in [16] and [17] is: they did not use a neuromorphic

evice to obtain the spike streams that represent sound. Instead

f this, in [17] , they used an experimentally derived, head-related,

ransfer function acoustical data for each ear and, in [16] , a second-

rder Gammatone filterbank was used. This means that the sys-

em in [17] has a high computational cost to be implemented

31,32] and the system proposed in [16] needs high power-hungry

evices to be implemented [33] . The SSN architecture presented in

17] is different, depending on if the sound arrives from the left or

he right side of the head and it needs a MNTB node to obtain the

nhibitory input. The architecture presented in this paper is able

o receive the sound from left or right and does not need an in-

ibitory node because the SH&F is able to subtract signed spikes.

he SNN of [17] needs a receptive field layer and an output layer

o determine the angle (each angle corresponds to a SNN class).

owever, in this work we do not need these layers because the IID

ue obtained by the processing layer is used to control the motor.

ll neurons in the architecture presented in [17] used a LIF model

nd they have been trained by the supervised learning algorithm

nown as “remote supervision method” . Our architecture does not

eed training stage but it does need a calibration stage that takes

 s. 

. Experimental results

The experimental setup is shown in Fig. 1 . The distance be-

ween the speaker and the head is 40 cm at different azimuthal

ngles (0 ° to 90 ° in steps of 15 °). The microphones are on each side

f the head (omnidirectional pick-up pattern). The head is placed



Fig. 6. ILD (encoded as an event-rate) measured over time. The sound source is placed at 0, 15, 30, 45, 60, 75 and 90 ° from the motionless head during a second for each

angle.

Table 2

Data obtained for the first experiment: 1 kHz stimulus.

Target angle (degrees) Mean angle reached (degrees) Standard deviation (degrees) Max. angle (degrees) Min. angle (degrees)

0 1.97 0.61 2.81 0.70

15 14.16 2.60 16.87 6.33

30 30.67 0.56 31.64 29.53

45 42.83 0.60 44.30 42.19

60 56.25 0.65 58.36 55.55

75 75.84 0.50 76.64 75.23

90 93.21 1.06 94.92 91.41
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on top of a platform driven by a DC motor with an encoder (Mi-

cromotor Ref. 2224R006SR plus gearhead Ref. 20/1112:1 and en-

coder Ref. IE2-512 from Faulhaber). The NAS is implemented using

a Virtex5 FPGA (XC5VFX70T) and it uses up to 99% of the total

slices available (11,141). The FPGA is in a Xilinx development board

(ML507), which, among other components, includes the AC’ 97 au-

dio codec. The NAS output is connected to the processing system

using the AER protocol. The processing system is also implemented

using a Virtex5 FPGA (XC5VFX30T), which uses up to 4% of the to-

tal slices available on the device (5120). Using the Xilinx XPower

tool, the estimated power consumption for the processing system

is 28.63 mW and 29.7 mW for the NAS [15] . The test scenario is

placed at the center of a classroom with a RT 60 of 3.06 s. The

specifications of the microphone are: transducer principle based on

back electret condenser element, the frequency response range is

between 20 and 16,0 0 0 Hz, the sensitive is −64 dB ±3 dB and the

impedance is 10 0 0 Ohm. 

Fig. 6 shows the IID measured at the output of the SH&F which

models the LSO (Ears H&F shown in Fig. 5 ). The experiment con-

sists of measuring the SH&F output rate when the sound source

is placed at 7 azimuthal angles, [0–90] degrees within progressive

stages of 15 °. The robotic platform is not moving to obtain the IID.

The sound played is a pure tone of 1 KHz and it lasted one second

at each angle. Then, to obtain the event rate, the spike output was
ampled at a frequency of 10 Hz (100 ms period). It can be seen

ow the event rate is higher as the angle increases. This rate is

quivalent to the perceived IID when listening to a sound of 1 kHz

34] .

The system was tested using three different pure tones: 1 kHz

channel 19 of the NAS), 2.5 kHz (channel 13 of the NAS) and 5 kHz

channel 7 of the NAS). For the three tests, the following identical

equence was followed: first, we placed the head in front of the

peaker where the calibration phase takes place (4 s); then, we

oved the speaker to each target angle (0 ° to 90 ° in steps of 15 °)
nd recorded the angle reached by the robotic platform (10 s each

arget). The real angle reached by the head is measured by the

agnetic encoder included within the motor. The encoder chan-

els are sent to the FPGA where they are processed and, finally,

he FPGA serially transmits to the PC whenever the motor turns

.7 ° in any direction. This let us measure the real angle reached

y the head. We then compared this measurement with the target

ngle (where the speaker was positioned). We repeated each test

0 times. The tests can be extended to a wider range without any

ecalibration. 1 

Fig. 7 shows the behavior of the system when the stimulus is a

ure tone of 1 kHz and the measurements are taken every 15 °. The
1 Video with the full range operation: https://youtu.be/xUGVNpbodf8 .

https://youtu.be/xUGVNpbodf8


Table 3

Data obtained for the first experiment: 2.5 kHz stimulus.

Target angle (degrees) Mean angle reached (degrees) Standard deviation (degrees) Max. angle (degrees) Min. angle (degrees)

0 2.77 0.56 4.21 1.40

15 14.54 1.23 16.87 11.95

30 30.22 0.48 30.93 28.82

45 45.72 1.31 49.92 44.29

60 59.79 0.80 61.87 58.35

75 84.46 0.75 86.48 82.96

90 94.96 0.42 95.62 94.21

Fig. 7. The system is tested with a pure tone of 1 KHz as the stimulus. The target

angles are 0, 15, 30, 45, 60, 75 and 90 °, represented in the graph with a blue cross.

In red, the mean, maximum and minimum angles reached by the platform. (For

interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)

Fig. 8. The system is tested with a pure tone of 2.5 KHz as the stimulus. The target

angles are 0, 15, 30, 45, 60, 75 and 90 °, represented in the graph with a blue cross.

In red, the mean, maximum and minimum angles reached by the platform. (For

interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)
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Fig. 9. The system is tested with a pure tone of 5 kHz as the stimulus. The target

angles are 0, 15, 30, 45, 60, 75 and 90 °, represented in the graph with a blue cross.

In red, the mean, maximum and minimum angles reached by the platform. (For

interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)
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gure shows the mean angle reached, the maximum and minimum

alues reached (absolute error from the mean achieved) in red and,

ith a blue cross, the ideal behavior is represented. Table 2 shows

he data for this first experiment. 

Fig. 8 shows the behavior of the system when the stimulus

s a pure tone of 2.5 kHz and the measurements are taken ev-

ry 15 °. The figure shows the mean angle reached, the maxi-
um and minimum values reached (absolute error from the mean

chieved) in red and, with a blue cross, the ideal behavior is rep-

esented. Table 3 shows the data for this second experiment. 

Fig. 9 shows the behavior of the system when the stimulus is a

ure tone of 5 kHz and the measurements are taken every 15 °. The

gure shows the mean angle reached, the maximum and minimum

alues reached (absolute error from the mean achieved) in red and,

ith a blue cross, the ideal behavior is represented. Table 4 shows

he data for this third experiment. 

The average error of the system is 1.92 ° for the 1 kHz stimulus

est, 2.49 ° for the 2.5 kHz test and 2.57 ° for the 5 kHz test. There-

ore, it results on an average error of 2.32 °. 
The average error is very low when the stimulus is a pure tone

f 1 kHz: 1.92 °. This error is higher when the frequency of the tone

s increased. It goes up to 2.49 ° for the 2.5 kHz test and 2.57 ° for

he 5 kHz test. This is most likely due to the fact that the NAS is

esigned in a way that it generates larger spike rates when the

requency of the stimulus targets low bands of the system, due to

he interference of the filters. Therefore, higher rates arrive at the

ctuation layer. Then, since we are using PFM, there is a trade-off

etween the spike rate and the time length of a single spike. The

igher spike rate produces a mismatch in that relation, creating a

arger error. 

Considering that the environmental SNR of these experiments

s 73 dB, we checked the behavior of the system when higher level

f noise is present. We have tested it when a set of SNR is ap-

lied: ( −5 dB, 0 dB, 4 dB, 14 dB, 28 dB). The SNR is measured when

he sound sourced is positioned at azimuthal angle of 0 ° and the

hite noise source is equidistantly located between two micro-

hones and above the head. Figs. 10 –12 shows the performance



Table 4

Data obtained for the first experiment: 5 kHz stimulus.

Target angle (degrees) Mean angle reached (degrees) Standard deviation (degrees) Max. angle (degrees) Min. angle (degrees)

0 0.32 0.36 0.70 0.00

15 9.00 0.38 9.84 8.44

30 26.97 0.34 27.42 26.72

45 42.16 0.47 42.89 41.48

60 57.33 0.36 57.66 56.95

75 73.07 0.19 73.12 72.42

90 88.13 0.34 88.59 87.89

Fig. 10. Angle reached by the robotic platform when the stimulus is a pure tone of 1 KHz and a set of SNR was applied: ( −5 dB, 0 dB, 4 dB, 14 dB and 28 dB). 

Fig. 11. Angle reached by the robotic platform when the stimulus is a pure tone of 2.5 KHz and a set of SNR was applied: ( −5 dB, 0 dB, 4 dB, 14 dB and 28 dB). 



Fig. 12. Angle reached by the robotic platform when the stimulus is a pure tone of 5 KHz and a set of SNR was applied: ( −5 dB, 0 dB, 4 dB, 14 dB and 28 dB). 

Fig. 13. Trajectory followed by the head when the sound source is moving. The

tracking of the sound is accurate. A new target is supplied according to the red

arrows on the plot. The real trajectory of the head is shown by the blue trace. The

mean error is 4.37 ° and the time to reach a new supplied target is 125 ms. (For

interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)

Table 5

Mean error (in degrees) obtained for the experiments where the

noise is present.

1 KHz 2.5 KHz 5 KHz

−5 dB 9.61 2.86 4.42

0 dB 8.80 2.66 4.28

4 dB 8.22 2.68 3.09

14 dB 5.22 2.60 2.58

28 dB 5.20 2.63 2.39

o  

2

 

e  

r  

d  

t

 

w  

t  

t  

−  

i

o  

t  

t  

t  

t

4

 

o  

m  

b  

p  

c  

b  

c  

t

 

t  

e  

l  

c  

5  

s  

t  

o  

a  

a

 

c  
f the system when three different pure tones are applied: 1 KHz,

.5 KHz and 5 KHz as the stimulus. 

Table 5 shows the mean error when the noise is present in the

xperiments. It can be seen how when the SNR is higher the er-
or is lower. However, the mean error is very low (less than ten

egrees in the worst case), therefore the system has a high noise

olerance. 

Fig. 13 shows the tracking of the sound source by the head

hen a pure tone of 1 kHz is used. The experiment lasts 61 s and

he target to track changes according to the red arrows shown on

he figure. The set of targets supplied is (0, 30, 60, 90, −30, −60,

90, 0) and the set of positions reached by the head, on average,

s (0, 28, 68, 94, −28, −55, −82, 0) resulting in an error of 3.625 °
n average. The targets are reached by the head within 125 ms af-

er delivering a new one. From that time, we have to consider that

he NAS takes an average of 20 μs to process the digital sound,

o generate a spiking output activity and that the processing layer

akes 50 ns to process each spike received. 

. Conclusion

This paper describes the design and hardware implementation

f a sound localization and tracking system inspired by the mam-

alian auditory system. The NAS sensor [14] is used to produce a

iological cochlea-like output. This output is the stimulus for the

rocessing system where the LSO model is implemented. The ar-

hitecture proposed for the LSO which performs the subtraction

etween two input spike rates produces the IID. The IID auditory

ue is used as the input for the spike-based actuation stage that

racks the sound. 

The model was tested using 1 kHz, 2.5 kHz and 5 kHz pure

ones, obtaining a maximum error of less than five degrees, a lower

rror than those obtained in previous works that proposed a bio-

ogically inspired architecture of the LSO, [16] and [17] , since the

lassification accuracy of the SNN architecture proposed by [17] is

2% for 5 kHz sounds, 83% for 15 kHz sounds and 40% for 25 kHz

ounds in steps of 10 °, and the classification accuracy obtained by

he model proposed in [16] , using both noise and speech in steps

f 30 °, is 80%. Furthermore, our system shows a high noise toler-

nce level when white noise is applied: in the worst condition, the

verage error is lower than ten degrees. 

In comparison to the related work, this paper provides signifi-

ant novelty and advances in this domain by using topologies that
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are faithful to the architecture of the mammalian auditory path-

ways implemented in hardware to track sound in real time with

very high accuracy. Furthermore, the architecture presented in this

work can be implemented by using low-cost commercial hardware

devices and have a low power consumption because the hard-

ware implementation uses general purpose FPGA resources, such

as counters, comparators, logic gates and low clock frequencies.

Specifically, the power consumption goes up to 58.33 mW in oper-

ation (29.7 mW from the NAS and 28.63 mW from the processing

layer). 

For these reasons, the proposed system is suitable for the sound

localization task in robotics. In addition, the work presented in this

paper is a significant step forward in biologically inspired sound

localization modeling, because it obtains the IID cue simulating a

part of the mammalian auditory system, LSO. 
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