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Abstract— Multisensory integration is commonly 

used in various robotic areas to collect more 
environmental information using different and 
complementary types of sensors. Neuromorphic 
engineers mimics biological systems behavior to 
improve systems performance in solving engineering 
problems with low power consumption. This work 
presents a neuromorphic sensory integration scenario 
for measuring the rotation frequency of a motor using 
an AER DVS128 retina chip (Dynamic Vision Sensor) 
and a stereo auditory system on a FPGA completely 
event-based. Both of them transmit information with 
Address-Event-Representation (AER). This 
integration system uses a new AER monitor hardware 
interface, based on a Spartan-6 FPGA that allows two 
operational modes: real-time (up to 5 Mevps through 
USB2.0) and data logger mode (up to 20Mevps for 
33.5Mev stored in onboard DDR RAM). The sensory 
integration allows reducing prediction error of the 
rotation speed of the motor since audio processing 
offers a concrete range of rpm, while DVS can be 
much more accurate. 

Keywords— Address-Event-Representation; spike-
based filters; neuromorphic enginnering; event-based 
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I.  INTRODUCTION 

Neuromorphic Engineering tries to solve or improve 
engineering problems taking inspiration from biology. 
Central Nervous Systems (CNS) present in many species 
are able to solve easily many problems that have been very 
difficult for engineers to be solved through the history. For 
example, the way how artificial vision has evolved in a 
completely different way as any CNS solve it. The use of 
digital cameras and computers and how they work have 
provoked the design and implementation of many 

algorithms to process visual information around a non-
efficient principle: a sequence of static and big size frames 
with small differences between two of them that are 
consecutives on time. Biological retinas do not work with 
frames, they sense in a continuous way the visual 
information, and only when one of the pixels is detecting 
a change in the information, it informs about that change 
by itself to the CNS in the simplest way: by sending a 
spike; or an event, that signalizes not only the change but 
also the kind of change (like positive or negative change).  

Many artificial systems that implement bio-inspired 
software models use biological-like processing that 
outperform more conventionally engineered 
machines[1][2][3]. However, these systems generally run 
several orders of magnitude under real-time, because the 
models are implemented as software programs. Therefore, 
direct hardware implementations are required. 
Neuromorphic research groups around the world are 
implementing these principles onto real-time spiking and 
event-based hardware through the development and 
exploitation of the so-called AER (Address Event 
Representation) technology, proposed by the Mead lab in 
1991 [4] and able to communicate spikes/events between 
neuromorphic chips using digital words that represent a 
code or address for each pixel that is transmitting a spike 
together with extra bits that types a spike to convert it into 
an event.  

In this paper a sensory integration of AER DVS128 
silicon retina [5] and an audio frequencies decomposer for 
FPGA [6][7] is presented integrating both sensors output. 

This paper is structured as follows: in section II, both 
spike based neuromorphic sensory systems (visual and 
audio) architecture are explained. In section III the sensory 
integration method is described. Experimental results are 
shown in section IV and finally, in section V the 
conclusion are presented. 
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II. HARDWARE COMPONENTS 

Data acquisition of the working environment is made 
through the DVS silicon retina and a spike-based audio 
frequencies decomposer that converts a stereo audio signal 
into two streams of spikes [8] and divides each stream into 
a set of streams that correspond to different frequencies 
channels. 

A. AER DVS128 silicon retina 
The AER DVS128 (silicon retina) contains an array of 

autonomous pixels with real-time response to relative 
changes in light intensity by placing the address of that 
pixel in an arbitrated asynchronous bus. It is called event 
when an address and its polarity is transmitted. Pixels that 
are not stimulated by any change of lighting are not 
altered, so they do not produce any event. Thus scenes 
without motion should not generate any output. Some 
parasite currents at pixel levels make them to fire spikes at 
very low frequencies when the pixel is inactive. This 
particular behavior can be removed by applying some 
basic post-processing to the sensor output [9]. This 
address, called AE (Address Event), contains the (x,y) 
coordinates of the pixel that generated the event. The AER 
DVS128 sensor used considers an array of 128×128 
pixels, so 7 bits are needed to encode each dimension of 
the array of pixels. It also generates a polarity bit 
indicating the sign of contrast change, whether positive 
(light increment) or negative (light decrement) [5]. The 
DVS128 sensor is placed on the PAER [10] interface that 
allows biases configuration through a USB 
microcontroller and parallel AER output through the 
CAVIAR connector [11]. 

B. Spike-based audio frequencies decomposer 
This circuit processes audio signal using classical 

Digital Signal Processing techniques but in the spikes 
domain. It processes in the frequency domain the audio 
information directly encoded as a stream of spikes (Pulse 
Frequency Modulation - PFM), and it provides the output 
through an AER interface. 

The general system is formed by two digitalized audio 
streams, which represent the left and right ear's audio 
signals. A spike transformation step converts the aural 
information into spikes streams with two Synthetic Spike 
Generators [12]. 

The spiking information received from each generator 
is filtered by two banks of 64 spike-based low-pass filters 
(SLPF) [6] connected in cascade. Each one of these banks 
is composed by a set of SLPFs connected in cascade, as 
many as the number of channels that are implemented for 
a particular application. In this case 128 SLPFs, 64 by each 
banks, have been used. Fig. 1 shows part of the 
architecture. Each stage of the bank represents a channel, 
and it is formed by a time domain SLPF and a concrete 

module capable of subtracting two spike-coded signals; 
the Spikes Hold & Fire (SH&F) [13].  

 

Fig. 1. Spike-based audio filters bank with cascade topology. 

The SH&F block is producing a stream of spikes which 
frequency is the difference between the two input signals 
frequencies. This is done concretely by holding last input 
spike coming from any of the two inputs, until next spike 
arrives from any of the two inputs. When the second spike 
arrives the subtraction operation is obtained by cancelling 
both events if they have different polarities, or sending one 
spike out with the right polarity in the other case. This 
SH&F block and other spike-based building blocks are 
explained with details in [14]. 

Each stream of spikes coming out from SH&F blocks 
are codified with different addresses and arbitrated 
together in an AER output bus. So each address in the bus 
represents the activity of one frequency channel of the 
audio information. 

Fig. 2 shows the spiking output over time of these two 
audio filters banks in the presence of a rotating motor. In 
this figure, the x-axis represents time and the y-axis 
represents the AER address. Every time a concrete event 
appears, it is represented in this figure by a dot. The bottom 
values of y-axis (addresses from 0 to 127) shows the left 
audio source activity and the top values (addresses from 
128 to 255) shows the right one. Each bank filter has 128 
address because positive and negative spikes can be fired 
by each channel. In general, both banks outputs present an 
incremental delay in the output of bigger addresses due to 
the cascade architecture [15]. This system has been 
implemented in a Xilinx Virtex 5 FXT FPGA 
(XC5VFX70T) ML507 for real-time working. 

 
0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

Real Time(Sec.)

A
E

R
 e

ve
n

t 
a

d
dr

es
s



Fig. 2. Output information of two 64-channels banks for audio frequencies 
decomposition. 

All the elements required for designing the two filters 
banks (i.e. SLPF, SH&F) have been simulated with Xilinx 
System Generator under Simulink and then implemented 
in VHDL and designed as small spike-based building 
blocks. Each of these blocks performs a specific operation 
on spike streams and can be combined with others in order 
to build complex spike processing systems. These kinds of 
systems have been used before, for example, in closed-
loop spike-based PID controllers [16] and neuro-inspired 
SVITE motor controller [17].  

C. Sensors integration 
The sensors information is joined by an AER-Merge 

module which add a new most significant bit to the address 
and assigns a different value to it to signalize each of the 
two sources to merge. When an event is captured by a 
sensor, it is sent the next stage (processing, filtering or 
learning) without any temporal distortion, thus the inter-
spike-intervals are respected in the after the two sensors 
signal merging in the same AER bus.  

The merged data stream is the input to both, monitor or 
logger module, depending on the selected operation mode. 
Then this data stream is sent to a computer through USB 
2.0 interface. Each of this two operation modes has its pros 
and cons. In monitor mode, the AER data stream from the 
AER Merge module is time-stamped and sent to a 
computer directly through USB 2.0 high-speed interface. 
But in logger mode, the AER data stream is time-stamped 
and stored immediately in on-board DDR2 memory. After 
the data logging, the on-board sequence of events stored 
in DDR are sent to the computer. The main difference 
between the modes is the AER bandwidth while capturing. 
In monitor mode the bandwidth is limited by bottleneck of 
USB 2.0 interface. The maximum signaling rate of USB 
2.0, in theory, is 480Mbit/s but the effective throughput is 
limited to 280Mbit/s or 35 MB/s. In this case 4 bytes are 
used to represent an event (sensor data), thus 8Mev/s could 
be theoretically achieved, but up 6Mev/s are really 
achieved. In the other hand, in logger mode, the maximum 
bandwidth of information captured by the system is higher 
(about 20Mev/s) because the FPGA-DDR2 memory 
interface is faster than USB 2.0 interface; so it can be 
stored with a higher event rate. The on-board DDR2 
memory has a maximum capacity of 33.5Mevents, 
therefore several seconds of typical activity could be 
captured. 

The global architecture of presented hardware system 
is shown in Fig. 3, where all of descripted modules have 
been implemented on Spartan 6 FPGA XC6SLX150-
FGG484. 

Once the sensors data stream are captured and sent to a 
computer, a jAER [18] software filter is used to estimate 
rpm motor frequency. The global idea is that while an 
audio filter will estimate a range of rpm for the motor, the 
vision filter will offer a more accurate rpm estimation of 
the motor frequency. The visual stimulus placed on the 
motor must be clean enough.  
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Fig. 3. Completed block diagram of sensory integration hardware 

system. 

The used filter to estimate rpm motor frequency has an 
easy functioning principle. In this filter a R.O.I (region of 
interest) is defined in order to detect the figure painted on 
the surface of a metal disc which has been added to the 
motor shaft. Each time the figure passes through the R.O.I 
(one for each spin) the timestamp difference between two 
sets of events corresponding to two consecutive spins is 
calculated. Fig. 4 shows the rpm approaches from DVS 
sensor (green) compared to rpm calculated from an optical 
encoder (blue) located on the structure holding the motor. 
This optical encoder represents the ground truth of the disc 
rotating speed.  

 
Fig. 4. Calculated rpm from DVS information compared to rpm from 

encoder. 

Moreover, Spike-based audio frequencies decomposer 
filter defines some ranges of rpm which limit the 
calculated approaches by DVS filter. In order to calculate 
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that ranges, a pattern recognition approach based on AER 
convolution is used. Each pattern corresponds with each 
range of rpm to be calculated, so as many neurons as 
desirable patterns are implemented. Every time an event is 
received by the filter, a one-dimensional convolution 
kernel is applied to that event and the state of the neurons 
are updated. When a neuron reaches its threshold, it 
generates an event and the neuron is reset. Each neuron of 
the one-dimensional convolution is defined 
mathematically by the equation (1), being t an instant time, 
W the kernel of convolutions, S the output of each channel 
of the audio frequencies decomposer, (input of the 
recognition system) and Y the convolved output. The 
equation (2) shows the output produced by generated 
events. In equation (1), the M length is determined by the 
number of channels. In this case, M length is 128, because 
of the two banks of 64-channels each. 

Y t 1 Y t 	∑ W m 	*	S t  (1) 

→ 0  (2) 

The kernel values (W(m)) have been obtained from the 
normalized frequency value of each channel output during 
a test playback. The values are normalized, in range [0,1], 
in order to get a volume-independent recognition system. 
Fig. 5 shows the values of the kernel obtained after the 
playback for five rpm ranges of the motor. The x-axis 
represents channels of the left Spike-based audio 
frequencies decomposer and the y-axis represents the 
channel normalized rate from each rpm range. Then, the 
threshold values ( ) have been calculated with the result 
of (1). The system has been implemented by a two-layer 
neural network, composed by a one-dimensional 
convolution layer and a Winner-Take-All (WTA) step in 
the second layer. Fig. 6 shows the architecture of a single 
neuron of the system. 

 
Fig. 5. Values of kernel for different rpm ranges. 

When both sensors are integrated, only the values from 
vision part that are in-between calculated rpm range by 
auditory filter are taken into account. 

 
Fig. 6. Architecture of simple neuron of the CNN. 

III. THE EXPERIMENT 

As described previously, both sensors information are 
used to estimate rpm motor frequency. Fig. 7 shows the 
completed testing scenario where a motor is rotating on a 
platform in front of two neuromorphic sensory systems. 
The motor velocity can be changed by a microcontroller 
and its rotation speed is measured also through an optical 
encoder, used as ground truth. 

  

Fig. 7. Photograph of the testing scenario. Left side is the motor and a 
microphone that captures the motor noise. Middle side is the DVS 
retina focusing to a disc attached to the motor. Right side is the 
hardware composed by a Virtex 5 evaluation board for the spike-
based audio frequencies decomposition and an Opal Kelly PCB 
(Spartan 6) where resides the two sensors integration and new 
AER monitoring circuits. 

While motor is rotating, both sensor are capturing 
event from scene and sending them to the new AER 
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monitor, presented in this paper. Two operation modes 
have been described for this system: monitor mode that 
takes the sensors information and sends it directly to a 
computer; and logger mode that stores the sensor 
information on a DDR2 memory in a higher bandwidth, 
and then it transmits this information to a computer. 

Whatever the used mode, the information obtained is 
processed on software (jAER) through two filters which 
functionality has been described previously. 

IV. RESULTS 

The performed experiment consists of increasing the 
motor speed to different values which are estimated by the 
proposed system. Both algorithms that calculate the rpm, 
have been implemented like filters under the open source 
project jAER.  

Fig. 8 shows how the outputs of AER DVS128 retina 
filter are bounded by the range of the Convolution + WTA 
audio output. The green line is the final system output that 
matches with the AER DVS128 retina filter output, but 
taking into account the ranges that have been obtained by 
the audio classifier. This audio system output is 
represented in red and brown lines. 

As can be seen in the Fig. 8, the system output is very 
close to the estimated speed measured by an optical 
encoder. That speed has been considered as the real motor 
speed, represented in blue line on the same figure. 

It can be observed some discrepancies between the real 
speed values and the estimated ones. When the motor 
speed changes, the system output suffers sometimes a 
short delay. This effect is occasioned by the noise 
produced in the abrupt speed changes of the motor. Due to 
those circumstances, the AER DVS128 retina filter output 
gives values very far from the threshold values estimated 
by the audio system. Those values are not taken into 
account to obtain the final system output, they are 
discarded. 

 
Fig. 8. System output for different motor speeds. 

The optical encoder output has been defined as ground 
truth. Using the equation (3) it is decided whether the 
system estimation is considered as failure or success, 
being t an instant of time, Vr the speed calculated by the 
encoder, Ve the speed calculated by the proposed system 
and ∆  the support tolerance. 

∆ 	 ∆    (3) 

Considering that rpm ranges obtained by the audio 
system have a speed difference of 40% between the center 
of the range and its limits, the tolerance has been set to 
10%. Thus the accuracy of system has been calculated to 
be 94.33%. 

V. CONCLUSIONS 

An event-based visual and spike-based auditory 
sensory integration system has been presented in this 
paper. The whole system has been implemented by 
combining hardware (FPGA) and software (jAER) in a 
live-demonstration. 

In order to validate the system, a testing scenario has 
been developed that consists in calculating the rotational 
speed of a direct-current motor using information obtained 
by an AER DVS128 silicon retina and a bio-inspired 
digital auditory system. 

As future work, we propose to implement on FPGA all 
jAER algorithms that have been implemented on software 
for filtering and rpm estimation, in order to obtain a 
completed hardware system. 

The sensory integration system proposed in this work 
can be used in automotive industry to test the engine under 
quality revision. For example, when the outputs from both 
stage are very different and the global output is illogical, 
or to signalizing a fault in the rotation of the motor as quick 
as it is produced to facilitate the localization of the 
problem in the engine. 
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