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Abstract

A logistic equation in the whole space is considered. In this problem, a non-
local perturbation is included. We establish a new sub-supersolution method for
general nonlocal elliptic equations and, consequently, we obtain the existence of
positive solutions of a nonlocal logistic equation.
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1. Introduction

In this paper we are interested in studying a kind of equations whose model
is

−∆u+ u = K(x)u

(
λ− up + α

∫
IRN

M(x, y)g(u(y))dy

)
in IRN , (1)

where N ≥ 1, λ, α ∈ IR, p > 0 and g : IR 7→ IR is a continuous, g : IR+ 7→ IR+

with g(s) > 0 for s > 0. K is a regular function such that there exist β > 1, k > 0
satisfying

0 < K(x) ≤ k

1 + |x|β
, x ∈ IRN . (2)

With respect to the kernel M , we assume that M ∈ L1(IRN × IRN ) is positive
and

M(x) :=

∫
IRN

M(x, y)dy ∈ L∞(IRN ).

Equation (1) has been extensively studied in the local case, that is, for
α = 0. In such case, and assuming also K ≡ 1, it is known that there exists a
unique positive solution for λ > 1 while no positive solution exists when λ ≤ 1.
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Moreover, in the case of existence, the solution must be a constant, see [9] and
references therein.

However, the inclusion of a non-local term has not been studied in detail
yet. In [1], the authors used suitable weighted Sobolev spaces and abstract
perturbation results to study a similar equation to (1), specifically the elliptic
nonlocal Fisher-KPP equation

−∆u = µu

(
1−

∫
IRN

φ(x− y)u(y)dy

)
in IRN ,

where the positive kernel φ ∈ L1(IRN ) and
∫

IRN φ(x)dx = 1. In this case, the
authors proved that for µ ∈ (0, µ0] for some µ0, the only bounded non-negative
classical solutions of the problem are u ≡ 0 and u ≡ 1. For the parabolic Fisher-
KPP equation, some results about travelling waves and periodic nonconstant
solutions in the unidimensional case are obtained in [6] and [12].

The bifurcation method was employed in [4] to study a equation related to
(1). Indeed, in [4] the following problem was studied −∆u = u

(
λf(x)−

∫
IRN

M(x, y)|u(y)|γdy
)

in IRN ,

lim
|x|→∞

u(x) = 0.
(3)

Under several conditions on f and M , and in the radially symmetric framework,
the authors proved the existence of an unbounded continuum of positive solu-
tions bifurcating from the trivial solution at the principal eigenvalue associated
to (3), that is, {

−∆u = λf(x)u in IRN ,
lim
|x|→∞

u(x) = 0.

Finally, the time-dependent problem associated to (1) is analyzed in [7] when
K ≡ 1, g(s) = s, α < 0 and M(x, y) = m(x− y) with

∫
IRN m(x)dx = 1. The au-

thors used the sub-supersolution method to prove the existence and uniqueness
of positive solution and also the global stability of the positive uniform steady-
state solution of (1) under restrictions on the parameters of the problem. We
remark that in [7] the stationary problem is not analyzed.

In this paper, we use the sub-supersolution method to study (1). Firstly, we
would like to recall that for a local equation

−∆u = f(x, u) in IRN , (4)

it is well known from the paper of Ako and Kusano [3] that if there exist a
bounded supersolution u and a bounded subsolution u of (4) such that u ≤ u
in IRN , then (4) possesses at least an entire solution u ∈ [u, u]. In their proof,
they built a sequence of solutions uR of the problem

−∆u = f(x, u) in BR, u = φ on ∂BR,
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whereBR := {x ∈ IRN : |x| < R} and φ is a regular function such that u ≤ φ ≤ u
in IRN . By means of the elliptic regularity theory and appropriate estimates,
they can pass to the limit and conclude that

u(x) = lim
R→∞

uR(x)

is the required solution in IRN .
When we work with weak sub and supersolutions, we need to require con-

ditions on the function f . For instance, in [13] a condition of f is imposed for
any R large. Specifically, they assumed that for R large

|f(x, t)| ≤ |fR(x)|+ hR(|t|), in ΩR = Ω ∩BR,

for functions fR ∈ Lq(ΩR) and increasing hR. Note that the nonlocal problem
(1) can not be restricted to BR in its current form because the integral term
needs the definition of u over IRN . Moreover, in both papers ([3] and [13]), the
following fact is crucial: a solution uR in BR is also solution in Br for r ≤ R.
However, these arguments do not work for equations having a non-local term in
the non-linear term.

Here, we overcome this difficulty and present a general sub-supersolution
method that is valid for general equations of the form (see [15] for a related
problem)

−div(h(x)∇u) + q(x)u = K(x)f(x, u,Bu) in IRN , (5)

where Bu is a nonlocal operator and h, q, f and B verify some hypotheses
detailed in Section 2. We will use the function K with the boundness condition
(2) that allows to approach an adequate functional setting with compactness in
IRN , see [5] for the treatment of other problem with the same idea.

The first step to establish the method is the study of the linear problem

−div(h(x)∇u) + q(x)u = K(x)f(x) in IRN , (6)

and the eigenvalue problem

−div(h(x)∇u) + q(x)u = λK(x)u in IRN . (7)

We prove the existence and uniqueness of solution for the first one and the
existence of a principal eigenvalue, an eigenvalue with a positive eigenfunction
associated to it and denoted by µ1, of the second one. Then, we can prove
the existence of solution of (5) if there exists a pair of sub-supersolutions and a
boundness condition for f holds (see (15)).

Once the method is established, we study in detail (1). The main results
can be summarized as follows:

1. Assume α = 0. Then, (1) possesses at least a positive solution if and only
if λ > µ1.

2. Assume

lim
s→∞

g(s)

sp
= 0.
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(a) If α > 0. Then, if λ > µ1 there exists at least a positive solution of
(1).

(b) If α < 0. Then, there exists µ0 > µ1 such that for λ > µ0 there
exists at least a positive solution of (1). Moreover, (1) does not
possess positive solutions for λ ≤ µ1.

An outline of the paper is as follows: In Section 2, we describe our functional
setting, we study the linear and the eigenvalue problems (6) and (7) and we
establish the sub-supersolution method. In Section 3, we apply these results to
problem (1).

2. The sub-supersolutions method

2.1. The functional setting

Definition 2.1. Let Ω ⊂ IRN be a domain (eventually, Ω = IRN ).

1. Let w a weight function, i.e, a measurable, positive and finite a.e. x ∈ Ω
function. We define the weighted Lebesgue space

L2(Ω;w) := {u ∈ L2
loc(Ω) :

∫
Ω

w(x)|u(x)|2dx <∞}.

2. Let v0, v1 weight functions. We define the weighted Sobolev space

W 1,2(Ω; v0, v1) := {u ∈ L2(Ω; v0) : ∇u ∈ (L2(Ω; v1))N}.

These spaces are Hilbert spaces with the respective norms

‖u‖2,w =

[∫
Ω

w(x)|u(x)|2 dx
] 1

2

,

‖u‖1,2,v0,v1 =

[∫
Ω

v0(x)|u(x)|2 dx+

∫
Ω

v1(x)|∇u(x)|2 dx
] 1

2

.

The following facts are well known:

1. If w ∈ L1(IRN ), then L∞(IRN ) ⊂ L2(IRN ;w).
2. If w1, w2 are weight functions and there exits M > 0 such that w1(x) ≤
Mw2(x) a.e. x ∈ Ω then

L2(IRN ;w2) ⊂ L2(IRN ;w1).

3. (cf. [14]) If there exist positive constants, c, C such that

c ≤ w(x), v0(x), v1(x) ≤ C a.e x ∈ Ω,

then L2(Ω;w) and W 1,2(Ω; v0, v1) are isometrically isomorphic to L2(Ω)
and W 1,2(Ω) and hence, if Ω is bounded, the classic Rellich Theorem
assures the compact embedding

W 1,2(Ω; v0, v1) ↪→ L2(Ω;w).

When Ω = IRN a number of conditions, that we will detail in our particular case,
on v0, v1 and w must be fulfilled (see pag. 289 of [14]) to reach this compact
embedding.
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2.2. The linear problem

We first consider the following linear problem

−div(h(x)∇u) + q(x)u = K(x)f(x) in IRN , (8)

where h, q are weight functions, K verifies (2) and f ∈ L2(IRN ;K). We will
suppose furthermore the following hypotheses

(H1) For some n ∈ IN,

∃k0 : h(x) ≤ k0q(x) ∀|x| > n.

(H2) For some n ∈ IN, there exists a measurable function b1 such that

b1(x) ≤ h(y) ∀|x| > n, ∀y : |y − x| < 1,

and

lim
n→∞

sup
|x|>n

1

(1 + (|x| − 1)β)b1(x)
= 0.

(H3) There exists C > 0 such that

K(x) ≤ Cq(x) a.e. x ∈ IRN . (9)

The hypotheses (H1) and (H2) are those obtained by putting

w(x) = K(x), v0(x) = q(x), v1(x) = h(x), r(x) = 1, b0(x) =
k

1 + (|x| − 1)β

to apply Theorem 18.7 of [14], see also page 289, and they assure the compact
embedding

W 1,2(IRN ; q, h) ↪→ L2(IRN ;K). (10)

Observe that these hypotheses are verified in particular if h and q are constant.

Definition 2.2. We say that u ∈ W 1,2(IRN ; q, h) is a weak solution of (8) if
∀v ∈W 1,2(IRN ; q, h),∫

IRN

h(x)∇u(x)·∇v(x) dx+

∫
IRN

q(x)u(x)v(x) dx =

∫
IRN

K(x)f(x)v(x) dx. (11)

Note that v ∈ L2(IRN ; q) and (H3) imply

L2(IRN ; q) ⊂ L2(IRN ;K)

and hence the right hand of the equality (11) is well defined.
We study the linear problem (8). The following result provides us the exis-

tence and uniqueness of solution of (8) as well as the compactness of the solution
operator.
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Lemma 2.3. Assume that f ∈ L2(IRN ;K), (H1), (H2) and (H3). Then, there
exists a unique weak solution u of (8). Moreover, if we define the map

T : L2(IRN ;K) 7→ L2(IRN ;K), f 7→ T (f) := u,

where u is the unique solution of (8), then T is a linear and compact operator.

Proof. Define the bilinear map a : W 1,2(IRN ; q, h)×W 1,2(IRN ; q, h) 7→ IR as

a(u, v) :=

∫
IRN

h(x)∇u(x) · ∇v(x)dx+

∫
IRN

q(x)u(x)v(x)dx,

and F : W 1,2(IRN ; q, h) 7→ IR

F (v) :=

∫
IRN

K(x)f(x)v(x)dx.

It is clear that a is coercive and continuous. Moreover, F is continuous because

|F (v)| ≤
∫

IRN

K1/2(x)|f(x)|K(x)1/2|v(x)| dx

≤ ‖f(x)‖2,K‖v(x)‖2,K ≤ ‖f(x)‖2,K‖v‖1,2,q,h
and then the existence and uniqueness of solution of (8) follow by Lax-Milgram
Theorem.

Hence, T is well-defined and is compact by (10). �

Now, we analyze the following eigenvalue problem

−div(h(x)∇u) + q(x)u = λK(x)u in IRN . (12)

Proposition 2.4.

1. There exists the principal eigenvalue of (12), µ1 ∈ IR, µ1 > 0, which has
associated a unique positive, up to multiplicative constants, eigenfunction
ϕ1 ∈W 1,2(IRN ; q, h).

2. If there exist positive constants, Λ, Λ such that

h(x) ≥ Λ, q(x) ≤ Λ, ∀x ∈ IRN , (13)

then, ϕ1 ∈ L∞(IRN ).

Proof. Observe that λ is an eigenvalue of (12) if and only if 1/λ is an eigenvalue
of T . Now, the first result follows because T is compact, self-adjoint and positive.
It remains to prove that ϕ1 ∈ L∞(IRN ) in the second case. For that, we employ
the apriori estimates of Theorem 8.17 in [11]. Observe that ϕ1 verifies

−div(h(x)∇ϕ1) + (q(x)− µ1K(x))ϕ1 = 0 in IRN .

By (13), we have that q(x) − µ1K(x) ∈ L∞(IRN ) and the operator is strictly
elliptic, and hence we get

ϕ1(x) ≤ sup
y∈B1(x)

|ϕ1(y)| ≤ C‖ϕ1‖L2(B2(x)) ≤ C‖ϕ1‖L2(IRN ) ≤ C

where Bi(x) is the ball of IRN centered on x with radius i and C depends on
the data of the problem. This concludes the proof. �
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2.3. The nonlinear problem. The sub-supersolution method

We consider the problem

−div(h(x)∇u) + q(x)u = K(x)f(x, u,Bu) in IRN , (14)

where h, q are weight functions, K verifies (2) and f : IRN × IR × IR 7→ IR is a
Carathéodory function, B defined by

B(u)(x) =: α

∫
IRN

M(x, y)g(u(y))dy, α ≥ 0,

with g : IR 7→ IR a continuous and positive function and M ∈ L1(IRN × IRN ) is
positive and

M(x) :=

∫
IRN

M(x, y)dy ∈ L∞(IRN ).

Definition 2.5. We say that u ∈ W 1,2(IRN ; q, h) is a weak solution of (14) if
∀v ∈W 1,2(IRN ; q, h),∫

IRN

h(x)∇u(x) · ∇v(x) dx+

∫
IRN

q(x)u(x)v(x) dx

=

∫
IRN

K(x)f(x, u(x), (Bu)(x))v(x) dx.

Definition 2.6. We say that u, u ∈W 1,2(IRN ; q, h) is a pair of sub-supersolution
of (14) if

1. u ≤ u in IRN ,
2. ∀v ∈W 1,2(IRN ; q, h), v ≥ 0,∀w : u(x) ≤ w(x) ≤ u(x) a.e. x ∈ IRN∫

IRN

h(x)∇u(x) · ∇v(x) dx+

∫
IRN

q(x)u(x)v(x) dx

≥
∫

IRN

K(x)f(x, u(x), B(w)(x))v(x) dx,

and∫
IRN

h(x)∇u(x) · ∇v(x) dx+

∫
IRN

q(x)u(x)v(x) dx

≤
∫

IRN

K(x)f(x, u(x), B(w)(x))v(x) dx.

The main result in this section reads as follows:

Theorem 2.7. Suppose that the hypotheses (H1), (H2) and (H3) are verified.
Assume that there exist a couple of sub-supersolution u, u of (14) and a positive
function m ∈ L2(IRN ;K) such that

|f(x, t, B(w)(x))| ≤ m(x), (15)

a.e. x ∈ IRN , t ∈ [u(x), u(x)] and w ∈ [u, u]. Then, there exists at least a
solution u of (14) such that

u ∈ [u, u].
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Proof. Define the truncation operator T : L2(IRN ;K) 7→ L2(IRN ;K) by

Tw(x) :=

 u(x) if w(x) < u(x),
w(x) if u(x) ≤ w(x) ≤ u(x),
u(x) if w(x) > u(x).

Consider now the operator S : L2(IRN ;K) 7→ L2(IRN ;K) defined by S(w) := u
where u is the unique solution of

−div(h(x)∇u) + q(x)u = K(x)f(x, T (w), B(T (w))) in IRN . (16)

Observe that T (w) ∈ [u, u] and hence by (15) we get

f(x, T (w), B(T (w))) ∈ L2(IRN ;K).

Thus, it is clear that S is well defined, and compact by Lemma 2.3. Moreover,
thanks to (15) there exists R > 0 such that

S(BL2(IRN ;K)(0, R)) ⊂ BL2(IRN ;K)(0, R),

where BL2(IRN ;K)(0, R) is the ball of L2(IRN ;K) centered on 0 with radius R,
and then by Schauder Theorem, there exists a fixed point u of S, that is

−div(h(x)∇u) + q(x)u = K(x)f(x, T (u), B(T (u))) in IRN .

Now, we show that u ∈ [u, u]. Indeed, by Definition 2.6 with w = T (u) we get
in weak sense that

−div(h(x)∇u) + q(x)u ≥ K(x)f(x, u,B(T (u))) in IRN .

If we denote w = u− u,

−div(h(x)∇w) + q(x)w ≥ K(x)[f(x, u,B(T (u)))− f(x, T (u), B(T (u)))],

taking as test function w−, where w− = min{w, 0}, and taking into account
that w− ≤ 0, we obtain∫

IRN

h(x)|∇w−(x)|2 +

∫
IRN

q(x)|w−(x)|2 ≤

∫
IRN

K(x)[f(x, u(x), B(T (u))(x))− f(x, T (u)(x), B(T (u))(x))]w−(x) = 0.

Hence, since h and q are positive functions, we conclude that w− ≡ 0 and then
w ≥ 0. This yields to u ≤ u.

In a similar way, we can show that u ≤ u taking as test function w− being
w = u − u. This implies that T (u) = u and so, u is solution of (14). This
completes the proof. �

8



3. Application: the nonlocal logistic equation

In this Section, we study completely (1). Here h ≡ q ≡ 1 in the general
formulation and it holds that

H1(IRN ) := W 1,2(IRN ; 1, 1) ↪→ L2(IRN ;K). (17)

Denote by e the unique positive solution of the linear equation

−∆u+ u = K(x) in IRN . (18)

The following result will be useful along this section.

Lemma 3.1. There exist γ ∈ (0, β) and C > 0 such that

e(x) ≤ C

1 + |x|γ
x ∈ IRN . (19)

As consequence, e ∈ L∞(IRN ).

Proof. Observe that since β > 1, then the positive constants belong to L2(IRN ;K),
and thus there exists a unique solution e of (18) taking f ≡ 1 in Lemma 2.3.

Take now

u :=
C

1 + |x|γ
.

Then, it is direct calculation that

−∆u = Cγ|x|γ−2(1 + |x|γ)−3((N − 2− γ)|x|γ +N − 2 + γ),

and hence, −∆u+ u ≥ K(x) provided of

C[(γ|x|γ−2(1+|x|γ)−3((N−2−γ)|x|γ+N−2+γ)+(1+|x|γ)−1)] ≥ k(1+|x|β)−1.

Observe that for |x| ≈ ∞, this inequality is equivalent to

C[γ(N − 2− γ)|x|β−γ−2 + γ(N − 2 + γ)|x|β−2γ−2 + |x|β−γ ] ≥ k.

Since γ ∈ (0, β), this inequality is true for |x| > R1 with R1 large enough.
On the other hand, for |x| ≈ 0, the inequality is equivalent to

C[γ|x|γ−2((N − 2− γ)|x|γ + (N − 2 + γ)) + 1] ≥ k.

Hence, taking γ ∈ (2−N, 2) and γ > 0, the inequality holds for |x| < R2 with
R2 small enough. Now, in the set R2 ≤ |x| ≤ R1 we take C large enough. This
concludes the result. �
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3.1. The local and nonlocal nonlinear problems

Our first result deals with the case α = 0.

Theorem 3.2. Assume α = 0. Then, there exists at least a positive solution of
(1) if and only if λ > µ1. If we denote this solution by θλ, it holds that

θλ ≤ min{λ1/p, C(λ)e}, (20)

where

C(λ) = λ(p+1)/pp

(
1

p+ 1

)(p+1)/p

.

Finally, given µ1 < γ < µ we can obtain v and w positive solutions of (1) for
λ = γ and λ = µ, respectively such that

v < w in IRN .

Proof. First observe that for α = 0, (1) is a local equation. We take as
subsolution u = εϕ1 where ϕ1 is a positive eigenfunction associated to µ1 such
that

‖ϕ1‖∞ = 1

and ε > 0 a positive constant to be chosen. As supersolution we take u = Me,
where M is a positive constant. Taking into account that

t(λ− tp) ≤ C(λ), ∀t ≥ 0, (21)

it is easy to show that u and u verify the inequalities of the second condition of
Definition 2.6 provided of

εpϕp1 ≤ λ− µ1 and C(λ) ≤M.

The above inequalities are true for ε and M small and large enough, respectively.
Finally, observe that for ε small enough, we get that

−∆(u− u) + (u− u) = K(x)(C(λ)− µ1εϕ1) ≥ 0,

whence u ≤ u in IRN , the first condition of Definition 2.6. Hence u and u is
a couple of sub-supersolutions. On the other hand, hypothesis (15) is verified
because (21) implies

m(x) = C(λ) ∈ L∞(IRN ) ⊂ L2(IRN ;K).

Hence, there exists at least a solution, that will be denoted by θλ, of (1),
and thus,

εϕ1 ≤ θλ ≤ C(λ)e. (22)

Now, we claim that
θλ ≤ λ1/p. (23)
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Take w = (λ1/p − θλ). Since θλ is a solution of (1) we have that∫
IRN

∇θλ · ∇v +

∫
IRN

θλv =

∫
IRN

K(x)θλ(x)(λ− θpλ(x))v, ∀v ∈ H1(IR)N ,

and then

−
∫

IRN

∇(λ1/p−θλ)·∇v+

∫
IRN

θλv =

∫
IRN

K(x)θλ(x)(λ−θpλ(x))v, ∀v ∈ H1(IR)N .

Observe that by (22), there exists R > 0 such that θλ < λ1/p in IRN \B(0, R).
Hence, w− ∈ H1(IRN ). Now, taking w− as test function in (1) we obtain

−
∫

IRN

|∇w−(x)|2 +

∫
IRN

θλ(x)w−(x) =

∫
IRN

K(x)θλ(x)(λ− θpλ(x))w−(x) ≥ 0,

and we conclude (23). Hence, we have proved (20).
On the other hand, taking v = ϕ1 in the definition of solution of (1) we get

that λ > µ1.
Finally, take µ1 < γ < µ. Consider θγ the positive solution of (1) for λ = γ

found in the first part of the result. Then, u = θγ and u = C(µ)e is a pair of
sub-supersolution of (1) for λ = µ. This completes the proof. �

Remark 3.3. The uniqueness of positive solution of (1) with α = 0 is a hard
problems, see for instance [10], [9], [8] and [2].

Now, we treat the case α 6= 0. Our main result in this case is:

Theorem 3.4. Assume

lim
s→∞

g(s)

sp
= 0. (24)

1. Assume that α > 0. Then, if λ > µ1 there exists at least a positive solution
of (1).

2. Assume that α < 0. Then, there exists µ0 > µ1 such that for λ > µ0 there
exists at least a positive solution of (1). Moreover, (1) does not possess
positive solutions for λ ≤ µ1.

Proof. 1.- Assume that α > 0 and λ > µ1. It is clear that u = θλ is subsolution
of (1), where θλ is a positive solution of (1) with α = 0. As supersolution, we
take u = v, where v is a positive solution of (1) with α = 0 with λ = µ to be
chosen. By Theorem 3.2, we have that u ≤ u if µ > λ. By (24), for any ε > 0
there exist s0 > 0 and R > 0 such that

g(s) ≤ εsp s ≥ s0 and g(s) ≤ R s ∈ [0, s0].
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Then, take w ∈ [u, u]. We get by (23)∫
IRN

M(x, y)g(w(y))dy ≤ ε
∫
w≥s0

M(x, y)wp(y)dy +R

∫
w<s0

M(x, y)dy

≤ ε
∫
w≥s0

M(x, y)θpµ(y)dy +R

∫
w<s0

M(x, y)dy

≤ εµ
∫
w≥s0

M(x, y)dy +R

∫
w<s0

M(x, y)dy

≤ (εµ+R)M(x).
(25)

Then, for t ∈ [u(x), u(x)] and w ∈ [u, u] we get using (15)

|f(x, t, B(w)(x))| = |t(λ− tp + α

∫
IRN

M(x, y)g(w(y))dy)|

≤ C(λ) + u(x)α

∫
IRN

M(x, y)g(w(y))dy

≤ C(λ) + α(εµ+R)M(x)v(x) ∈ L2(IRN ;K).

Now, we show that u, u is sub-supersolution of (1). It is clear that u = θλ
is a subsolution due to α > 0. On the other hand, u = v is a supersolution if

λ+ α

∫
IRN

M(x, y)g(w(y))dy ≤ µ ∀w ∈ [u, u].

Using (25), u is a supersolution if

λ+ α(εµ+R)M(x) ≤ µ,

or equivalently,
λ+ αR sup

IRN

M≤ µ(1− αε sup
IRN

M).

It is enough to take µ large and ε small.
2.- Assume that α < 0. Now, take u = ρϕ1, with ρ a positive constant to be
chosen and u = θλ. Since α < 0, it is clear that u is supersolution. On the other
hand, u is subsolution if

(ρϕ1)p ≤ λ− µ1 + α

∫
IRN

M(x, y)g(w(y))dy ∀w ∈ [u, u].

Using (25) we get that∫
IRN

M(x, y)g(w(y))dy ≤ (ελ+R) sup
IRN

M.

Hence,

λ− µ1 + α

∫
IRN

M(x, y)g(w(y))dy ≥ λ− µ1 + α(ελ+R) sup
IRN

M.
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Then, there exists µ0 > µ1 such that for λ ≥ µ0 we have that

λ− µ1 + α

∫
IRN

M(x, y)g(w(y))dy > 0.

Now, it suffices to take ρ small so that u is subsolution of (1).
Again, taking v = ϕ1 in the definition of solution of (1), we get that λ > µ1.

This concludes the proof. �
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