A non-local perturbation of the logistic equation in IR
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Abstract

A logistic equation in the whole space is considered. In this problem, a non-
local perturbation is included. We establish a new sub-supersolution method for
general nonlocal elliptic equations and, consequently, we obtain the existence of
positive solutions of a nonlocal logistic equation.
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1. Introduction

In this paper we are interested in studying a kind of equations whose model
is

—Au+u=K(z)u (/\ —uP +a M(x, y)g(u(y))dy) in RV, (1)

RN
where N > 1, ,a € R, p>0and g : R — R is a continuous, ¢ : Ry — R4
with g(s) > 0 for s > 0. K is a regular function such that there exist 8 > 1,k > 0

satisfying

k
0<K(z) < ——, zeRM. 2
@) < T @
With respect to the kernel M, we assume that M € L' (RN x R") is positive
and
M) = [ M(zy)dy € I=(RY).
RN

Equation (1) has been extensively studied in the local case, that is, for
a = 0. In such case, and assuming also K = 1, it is known that there exists a
unique positive solution for A > 1 while no positive solution exists when A < 1.
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Moreover, in the case of existence, the solution must be a constant, see [9] and
references therein.

However, the inclusion of a non-local term has not been studied in detail
yet. In [1], the authors used suitable weighted Sobolev spaces and abstract
perturbation results to study a similar equation to (1), specifically the elliptic
nonlocal Fisher-KPP equation

—Au = (1 - /R R y)u(y)dy) in RN,

where the positive kernel ¢ € L'(RY) and [;x ¢(x)dz = 1. In this case, the
authors proved that for p € (0, o] for some pg, the only bounded non-negative
classical solutions of the problem are u = 0 and w = 1. For the parabolic Fisher-
KPP equation, some results about travelling waves and periodic nonconstant
solutions in the unidimensional case are obtained in [6] and [12].

The bifurcation method was employed in [4] to study a equation related to
(1). Indeed, in [4] the following problem was studied

Au=u (Af(x) - M(mﬂu(ymdy) in RY,

lim wu(z) =0.
|z]— o0

(3)

Under several conditions on f and M, and in the radially symmetric framework,
the authors proved the existence of an unbounded continuum of positive solu-
tions bifurcating from the trivial solution at the principal eigenvalue associated
to (3), that is,
{ —Au = Af(z)u in RV,
lim wu(z) =0.
|z] =00

Finally, the time-dependent problem associated to (1) is analyzed in [7] when
K=1,g9(s) =s,a<0and M(z,y) = m(z—y) with [py m(z)dz = 1. The au-
thors used the sub-supersolution method to prove the existence and uniqueness
of positive solution and also the global stability of the positive uniform steady-
state solution of (1) under restrictions on the parameters of the problem. We
remark that in [7] the stationary problem is not analyzed.

In this paper, we use the sub-supersolution method to study (1). Firstly, we
would like to recall that for a local equation

—Au = f(xz,u) in RV, (4)

it is well known from the paper of Ako and Kusano [3] that if there exist a
bounded supersolution @ and a bounded subsolution u of (4) such that u <@
in RY, then (4) possesses at least an entire solution u € [u,%]. In their proof,
they built a sequence of solutions ug of the problem

—Au = f(z,u) in Bp, u=¢ on JdBg,



where Br := {z € R" : |z| < R} and ¢ is a regular function such that u < ¢ <7
in RY. By means of the elliptic regularity theory and appropriate estimates,
they can pass to the limit and conclude that
u(z) = lim ug(z)
R—o00

is the required solution in R.

When we work with weak sub and supersolutions, we need to require con-
ditions on the function f. For instance, in [13] a condition of f is imposed for
any R large. Specifically, they assumed that for R large

[f (2, )] < |fr(@)] + hr(t]), nQr =N Bg,

for functions fr € L9(2g) and increasing hr. Note that the nonlocal problem
(1) can not be restricted to Bg in its current form because the integral term
needs the definition of u over RY. Moreover, in both papers ([3] and [13]), the
following fact is crucial: a solution ug in Bpg is also solution in B, for r < R.
However, these arguments do not work for equations having a non-local term in
the non-linear term.

Here, we overcome this difficulty and present a general sub-supersolution
method that is valid for general equations of the form (see [15] for a related
problem)

—div(h(z)Vu) + ¢(z)u = K(x) f(x,u, Bu) in R, (5)

where Bu is a nonlocal operator and h, ¢, f and B verify some hypotheses
detailed in Section 2. We will use the function K with the boundness condition
(2) that allows to approach an adequate functional setting with compactness in
RY, see [5] for the treatment of other problem with the same idea.

The first step to establish the method is the study of the linear problem

—div(h(z)Vu) + ¢(x)u = K(x)f(z) in R, (6)
and the eigenvalue problem
—div(h(z)Vu) + g¢(z)u = AK (z)u  in RY. (7)

We prove the existence and uniqueness of solution for the first one and the
existence of a principal eigenvalue, an eigenvalue with a positive eigenfunction
associated to it and denoted by pp, of the second one. Then, we can prove
the existence of solution of (5) if there exists a pair of sub-supersolutions and a
boundness condition for f holds (see (15)).

Once the method is established, we study in detail (1). The main results
can be summarized as follows:

1. Assume o = 0. Then, (1) possesses at least a positive solution if and only
2. Assume



(a) If &« > 0. Then, if A > p; there exists at least a positive solution of
(1).

(b) If @ < 0. Then, there exists po > p1 such that for A > pg there
exists at least a positive solution of (1). Moreover, (1) does not
possess positive solutions for A\ < puq.

An outline of the paper is as follows: In Section 2, we describe our functional
setting, we study the linear and the eigenvalue problems (6) and (7) and we
establish the sub-supersolution method. In Section 3, we apply these results to
problem (1).

2. The sub-supersolutions method

2.1. The functional setting
Definition 2.1. Let Q C RY be a domain (eventually, Q = RN ).

1. Let w a weight function, i.e, a measurable, positive and finite a.e. x € ()
function. We define the weighted Lebesgue space

LA(Qw) :={ue LE () : /Qw(a:)|u(x)|2da? < 00}

2. Let vg,v1 weight functions. We define the weighted Sobolev space
WE2(Q;v0,v1) := {u € L*(Qw) : Vu € (L*(Q01))V}.

These spaces are Hilbert spaces with the respective norms

2

ol = | [ w@lu(o)Pa]

l[ull1,2,00,00 = [/Qvo(x)IU(x)IdeJr/ 1(x)|Vu(x)l2dxr-

v
Q
The following facts are well known:
1. If w € LY(RY), then L*(RY) c L*(RY;w).
2. If wy, we are weight functions and there exits M > 0 such that w;(z) <
Muws(x) a.e. x € € then
L*(RY;wz) € L2(RY;wn).
3. (cf. [14]) If there exist positive constants, ¢, C such that
c <w(x), volz), vi(z) <C a.ex € Q,

then L%(Q;w) and W2(Q;vg,v1) are isometrically isomorphic to L?()
and WH2(Q) and hence, if Q is bounded, the classic Rellich Theorem
assures the compact embedding

Wh2(Q;v0,v1) — L2 w).
When Q = R" a number of conditions, that we will detail in our particular case,

on vy, v; and w must be fulfilled (see pag. 289 of [14]) to reach this compact
embedding.



2.2. The linear problem

We first consider the following linear problem
—div(h(z)Vu) 4+ q(z)u = K(z)f(z) in RY, (8)

where h, q are weight functions, K verifies (2) and f € L?2(R™; K). We will
suppose furthermore the following hypotheses

(H1) For some n € N,
ko = h(z) < kog(x) V|z| > n.
(H2) For some n € N, there exists a measurable function b; such that
bi(z) < h(y) Viz|>n, Vy:ly—a| <1,

and
lim sup L =0
n=0 415y (14 (Jz] = 1)P)bi(2)

(H3) There exists C' > 0 such that

K(z) < Cq(z) a.e. z € RN, 9)
The hypotheses (H1) and (H2) are those obtained by putting

k

w(z) = K(z), vo(z) = q(z), vi(z) = h(z), r(z) =1, bo(z) = 1+ (2| —1)?

to apply Theorem 18.7 of [14], see also page 289, and they assure the compact
embedding
WLERY; ¢, h) — L*(RY; K). (10)

Observe that these hypotheses are verified in particular if & and g are constant.

Definition 2.2. We say that u € WLY2(RY;q, h) is a weak solution of (8) if
Yo e WH2(RN; g, h),

/ h(z)Vu(z)-Vo(zx) der/ q(z)u(z)v(zr) de = K(z)f(x)v(x)dz. (11)
Note that v € L2(R"Y;q) and (H3) imply
L*(R";q) C L*(RY; K)

and hence the right hand of the equality (11) is well defined.

We study the linear problem (8). The following result provides us the exis-
tence and uniqueness of solution of (8) as well as the compactness of the solution
operator.



Lemma 2.3. Assume that f € L*(R™; K), (H1), (H2) and (H3). Then, there
exists a unique weak solution u of (8). Moreover, if we define the map

T:L*RY;K)— L*(RY;K), fw—T(f):=u,
where u is the unique solution of (8), then T is a linear and compact operator.
PROOF. Define the bilinear map a : W2(RY;q,h) x WH2(RN;q,h) — R as
a(u,v) ::/ h(x)Vu(z) - Vv(x)dx—l—/ q(z)u(x)v(z)de,
RN RN
and F: WH2(RN;q,h) = R
F(v):= K(x)f(z)v(x)dz.

RN
It is clear that a is coercive and continuous. Moreover, F' is continuous because

[F(v)] S/RN K2 (@)|f (2)| K ()2 o(x)| de

< f@)ll2x [[o(@)ll2,x < [ (2)]

and then the existence and uniqueness of solution of (8) follow by Lax-Milgram
Theorem.
Hence, T' is well-defined and is compact by (10). O

2.k ||[v][1,2,4.n

Now, we analyze the following eigenvalue problem
—div(h(z)Vu) + ¢(z)u = AK (z)u in RY. (12)
Proposition 2.4.

1. There exists the principal eigenvalue of (12), u1 € R, p1 > 0, which has
associated a unique positive, up to multiplicative constants, eigenfunction
@1 € WH2(RN; g, h).

2. If there exist positive constants, A, A such that

h(z) > A, q(z) <A, Vo eRY, (13)
then, o1 € L>=(RN).

PROOF. Observe that A is an eigenvalue of (12) if and only if 1/) is an eigenvalue
of T'. Now, the first result follows because T is compact, self-adjoint and positive.
It remains to prove that ¢; € L>(R”) in the second case. For that, we employ
the apriori estimates of Theorem 8.17 in [11]. Observe that ¢ verifies

—div(h(z)Vp1) + (q(z) — p K(z))p1 =0 in RV,

By (13), we have that g(z) — u1 K(x) € L°(R") and the operator is strictly
elliptic, and hence we get

p1(x) < 5113112 )|<P1(y)| < CllerllL2(Bo@)) < Clleillpemyy < C
yebBi(x

where B;(7) is the ball of RY centered on z with radius i and C' depends on
the data of the problem. This concludes the proof. O



2.3. The nonlinear problem. The sub-supersolution method
We consider the problem

—div(h(z)Vu) + ¢(z)u = K(x) f(z,u, Bu) in RY, (14)

where h, q are weight functions, K verifies (2) and f : R¥ x R x R+ R is a
Carathéodory function, B defined by

B(u)(z) =: «a . M (z,y)g(u(y))dy, a =0,
with g : R+ R a continuous and positive function and M € L'(RY x RY) is
positive and
M(z) = M (z,y)dy € L=®(RN).
RN
Definition 2.5. We say that u € W12(RY; q, h) is a weak solution of (14) if
Yo € WH2(RN; g, h),

/ h(z)Vu(z) - Vo(x) dz —|—/ q(z)u(z)v(z) dx
RN

RN

= Jon K(2)f(z, u(z), (Bu)(x))v(z) dz.
Definition 2.6. We say thatu,u € WY2(RY; q, h) is a pair of sub-supersolution
of (14) if

1. u <@ in RV,

QVverz(RN,q,) >0,Vw : u(r) < w(z) <u(r) ae. v € RY
/RN h(z)Vu(z) dx+/ () dz
> o K(z)f(z,u(x), B(w)(z))v(x) dz,
and

/ h(x)Vu(z) - Vo(x) dx + / q(x)u(z)v(z) de

< [ K@) u@), B de

The main result in this section reads as follows:
Theorem 2.7. Suppose that the hypotheses (H1), (H2) and (H3) are verified.

Assume that there exist a couple of sub-supersolution u,w of (14) and a positive
function m € L>(RN; K) such that

|f (8, B(w)(x))] < m(z), (15)

ae. © € RN, t € [u(z),u(z)] and w € [u,u]. Then, there exists at least a
solution u of (14) such that
u € [u, ).



PROOF. Define the truncation operator T : L2(RY; K) — L?>(R"; K) by

w(z) if wz) < ulx

),
Tw(z) = w(zr) if u(z) <w(z) <u(x),
u(z) if w(z) > u(x).

8

Consider now the operator S : L2(R™; K) — L*(RY; K) defined by S(w) :=u
where u is the unique solution of

—div(h(z)Vu) + q¢(z)u = K(x) f(z, T(w), B(T(w))) in RY. (16)
Observe that T(w) € [u,u] and hence by (15) we get
flz,T(w), B(T(w))) € L*(R"; K).

Thus, it is clear that S is well defined, and compact by Lemma 2.3. Moreover,
thanks to (15) there exists R > 0 such that

S(Bramn;i)(0,R)) C Brarn k) (0, R),

where B2~k (0, R) is the ball of L?(RY; K) centered on 0 with radius R,
and then by Schauder Theorem, there exists a fixed point u of S, that is

—div(h(z)Vu) + q¢(z)u = K(z) f(z,T(u), B(T(u))) in RM.

Now, we show that u € [u,@]. Indeed, by Definition 2.6 with w = T'(u) we get
in weak sense that

—div(h(2)Vu) + q(x)u > K(z)f(z,u, B(T(u))) in RN.
If we denote w =u — u,
—div(h(z)Vw) + q(@)w = K(z)[f(z, 7, B(T(uv))) — f(2,T(u), B(T(u)))],

taking as test function w~, where w~ = min{w, 0}, and taking into account
that w™ < 0, we obtain

| @ @r+ [ @l @F <

RN

. K(z)[f(z,u(z), B(T(u))(x)) — f(z,T(u)(z), B(T(u))(x))]jw™ (z) = 0.
Hence, since h and ¢ are positive functions, we conclude that w™ = 0 and then
w > 0. This yields to u < w.

In a similar way, we can show that u < u taking as test function w™ being
w = u — u. This implies that T'(v) = u and so, w is solution of (14). This
completes the proof. O



3. Application: the nonlocal logistic equation

In this Section, we study completely (1). Here h = ¢ = 1 in the general
formulation and it holds that

HYRY) :=W'(RY;1,1) — L*(RY; K). (17)
Denote by e the unique positive solution of the linear equation
—Au+u=K(x) inRY. (18)
The following result will be useful along this section.

Lemma 3.1. There exist v € (0,5) and C > 0 such that

C

N
¥ o[ reR™. (19)

e(z) <

As consequence, e € L (RYN).

PROOF. Observe that since 8 > 1, then the positive constants belong to L2(R"Y; K),
and thus there exists a unique solution e of (18) taking f =1 in Lemma 2.3.
Take now

_ C
U= —-_.
L[]y

Then, it is direct calculation that
—AT = Cyla" A+ ) TN = 2= y)fa” + N =2+ 9),
and hence, —Au + u > K(x) provided of
Ol (1 2]") 2 (N =2=7)[a]"+ N =247)+(L+]2[")7H)] = k(1+]z|”) "
Observe that for |z| &~ oco, this inequality is equivalent to
ClY(N =2 =272 + 7 (N =2+ 9[22 + [27] > k.

Since v € (0, 3), this inequality is true for |z| > R; with R; large enough.
On the other hand, for |z| = 0, the inequality is equivalent to

Clyla" (N =2 =)a]" + (N =2+ 7)) +1] > k.

Hence, taking v € (2 — N, 2) and v > 0, the inequality holds for |z| < Ry with
Ry small enough. Now, in the set Ry < |z| < R; we take C large enough. This
concludes the result. O



3.1. The local and nonlocal nonlinear problems

Our first result deals with the case o« = 0.

Theorem 3.2. Assume o = 0. Then, there exists at least a positive solution of
(1) if and only if X\ > u1. If we denote this solution by 0y, it holds that

05 < min{\/?, C(\)e}, (20)

where
(i) 1 (p+1)/p
CA\) = AP7/Pp | —— .
») i (p + 1)
Finally, given pun < v < p we can obtain v and w positive solutions of (1) for
A =7y and A = p, respectively such that
v<w inRN.

PROOF. First observe that for & = 0, (1) is a local equation. We take as
subsolution u = ep1 where ¢ is a positive eigenfunction associated to p; such
that

[P1lloc =1

and € > 0 a positive constant to be chosen. As supersolution we take uw = Me,
where M is a positive constant. Taking into account that

tA—tP) < C(N), V>0, (21)

it is easy to show that u and @ verify the inequalities of the second condition of
Definition 2.6 provided of

Pl <AN—py and C(N\) < M.

The above inequalities are true for € and M small and large enough, respectively.
Finally, observe that for € small enough, we get that

“A@ - w) + (@ u) = K@)(CO) — mep) 20,

whence u < @ in RY, the first condition of Definition 2.6. Hence u and @ is
a couple of sub-supersolutions. On the other hand, hypothesis (15) is verified
because (21) implies

m(x) = C(\) € L(RY) ¢ L*(RY; K).

Hence, there exists at least a solution, that will be denoted by ), of (1),
and thus,
ep1 <0y < C(Ne. (22)

Now, we claim that
0y < AP (23)

10



Take w = (A\'/P — 6)). Since 6y is a solution of (1) we have that

Vo - Vo + Orv = K(z)0\(x)(A — & (x))v, Yve HY(R)Y,
RN RN RN
and then
— [ VOYP—0,) Vot [ O = K ()0 (x)(A—0% (z))v, Yo € HY(R)N.
RN RN RN

Observe that by (22), there exists R > 0 such that 8y < AY/? in RN\ B(0, R).
Hence, w~ € H'(RY). Now, taking w~ as test function in (1) we obtain

[ Ve @l [ @@ = [ K@@t - @) @) 20

and we conclude (23). Hence, we have proved (20).

On the other hand, taking v = ¢, in the definition of solution of (1) we get
that A > uq.

Finally, take p11 < v < p. Consider 6, the positive solution of (1) for A =~
found in the first part of the result. Then, u = 6., and w = C(u)e is a pair of
sub-supersolution of (1) for A = u. This completes the proof. O

Remark 3.3. The uniqueness of positive solution of (1) with o = 0 is a hard
problems, see for instance [10], [9], [8] and [2].

Now, we treat the case a = 0. Our main result in this case is:

Theorem 3.4. Assume
lim L(s)
s—oo SP

=0. (24)

1. Assume that o > 0. Then, if A > py there exists at least a positive solution
of (1).

2. Assume that a < 0. Then, there exists pg > p1 such that for A > g there
exists at least a positive solution of (1). Moreover, (1) does not possess
positive solutions for A < .

PROOF. 1.- Assume that o > 0 and A > p;. It is clear that u = 6, is subsolution
of (1), where ) is a positive solution of (1) with & = 0. As supersolution, we
take @ = v, where v is a positive solution of (1) with & = 0 with A = p to be
chosen. By Theorem 3.2, we have that u <@ if 4 > A. By (24), for any € > 0
there exist sg > 0 and R > 0 such that

g(s) <es? s>s9 and g(s) <R s€]0,s0]

11



Then, take w € [u,u]. We get by (23)

Mz, )g(ww)dy <e [ M y)u?@)dy+ R / M(z, y)dy

RN w>so w< S

<e M(z,y)0;,(y)dy + R M (z,y)dy

w>sg w<so

<ep M(z,y)dy + R M (z,y)dy
w>So w<So

< (ep+ R)M(x).

Then, for ¢t € [u(z),u(z)] and w € [u,u] we get using (15)

[f(@,t, Blw)(x))] = [t(A=t" +a - M (z,y)g(w(y))dy)|

<CO)+ | M (o)
< O\ + alep + RM(x)v(z) € L2(RY; K).

Now, we show that u, @ is sub-supersolution of (1). It is clear that u = 6,
is a subsolution due to a > 0. On the other hand, @ = v is a supersolution if

Ata . M(z,y)g(w(y)dy <p  Vw € [u,Tl.

Using (25), @ is a supersolution if

A+ alep + RM(z) < p,

or equivalently,

A+ aRsup M < p(l — aesup M).
RN RN

It is enough to take p large and € small.

2.- Assume that o < 0. Now, take u = py;, with p a positive constant to be
chosen and w = 6. Since a < 0, it is clear that @ is supersolution. On the other
hand, u is subsolution if

(pp1)? <A —p1 + a/ M(z,y)g(w(y))dy  Yw € [u,].

RN
Using (25) we get that
M(z,y)g(w(y))dy < (A + R) sup M.
RN RN

Hence,

A—p1+ a/ M(z,y)g(w(y))dy > X — p1 + a(ed + R) sup M.
RV RN

12



Then, there exists po > p1 such that for A > pg we have that

Ammtaf M (z,y)g(w(y))dy > 0.
Now, it suffices to take p small so that u is subsolution of (1).
Again, taking v = 7 in the definition of solution of (1), we get that A > 4.
This concludes the proof. U
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