
1. Introduction 

Damage to human bone tissue is highly influenced by the age and gender of the 

patient, pathologies (genetic, dietary and acquired infections), and injuries due to 

accidents, among others. In addition, the trend towards increased life expectancy 

increases the probability of bone fracture, wear, loss of density, etc., which involves the 

necessity to use implants for total or partial bone replacements [1-4]. In this context, the 

clinical use of commercially pure titanium (Ti c.p.) and TiAl6V4 alloy are the bio-

metallic materials more widely employed. However, problems associated with the bone 

resorption phenomenon, due to the stiffness mismatch between the cortical bone (20-25 

GPa) and the implant of titanium (100-110 GPa), have been reported [5,6]. The use of 

porous implants to solve the stress-shielding problem has been widely addressed by the 

scientific community. In this context, the authors of this work present in the Table 2 a 

new classification of up to 34 different techniques to produce porous metallic materials 

(also named foams or cell materials) [10-125], classifying these processing routes by the 

raw material presentation: liquid metal, metal powder, metal preform and, metal powder 

suspension. On the other hand, other great goal is to replicate the hierarchical structure 

of bone tissues. Moreover, radial graded porosity materials are also needed in a great 

many applications, such as self-lubricated parts, CO2 capture systems, substrates for 

catalysis, high efficiency heat sinks and surrogate materials to simulate irradiated 

nuclear fuel, among others. 



Table 2. Classification of the different techniques to develop porous metallic materials. 

State of the starting 

material 

Name of the Technique At what stage are the pores generated? Heat source Gradient 

Porosity (G ) 

Monolithic (M) 

 

 

Liquid Metal 

Space-Holder Granular particles [10-21] During pouring into the mould. It requires subsequent 

removal by a leaching or thermal process. 

Cooling of liquid G, M 

Replica of polymeric skeletons [22-

24] 

Direct injection of gas into liquid [25-31] During the generation of the gas bubbles,  by trapping M 

Foaming agent (H2) [7,9,32-36] M 

Eutectic Hydrogen GASARs [37] M 

P
o
w

d
er

 M
et

a
l 

Different particle diffusion coefficients [38-42] During sintering Furnace M 

Different sized particles [43,44] During compaction 

 

G 

Compacting at low pressures [8,45-47] M 

Loose Sintering [48-53] During non-compaction 

 

M 

Loose Sintering and different sized particles [48-52] G 

Injection moulding of metallic powder (MIM) [54] During powder injection M 

Space-Holder Granular 

particles 

Similar proportions and / or 

sizes [55-66] 

During compaction.  

Requires subsequent removal of the spacer by a leaching or 

thermal process 

M 

Different proportions  

and /or sizes 
G 

 

Isostatic Hot Pressure 

[67,68] 
M 

Replica of polymeric skeletons G, M 

Ar gas trapped in powder [69-74] During compaction bubbles are generated by gas trapped or 

by expansion 

M 

Foaming agent mixed in powder M 

Foaming agent mixed in powder and subsequent compaction [75-82] M 

Rapid prototyping [83-86] During manufacture of the green by stratification of layers 

according to previous model 

G, M 

Self-propagation high temperature synthesis (SHS) [87-90] During propagation of heat wave added after compaction and 

preheating 

M 



Superimposition of different sheets 

[91,92] 

Porous sheet on solid cores During compaction using spacers. Subsequent removal of the 

spacer by leaching or a thermal process 

G 

Sheet metal foams During compaction bubbles are generated by expansion of  

the foaming agent 

G 

Selective laser sintering (SLS) [93-98] During sintering layer by layer by the laser beam Laser G, M 

Selective laser melting (SLM) [99] G, M 

Direct metal laser sintering (DMLS) During sintering of a single layer by the laser beam M 

Electric current assisted sintering (ECAS) [100-105] During powder compaction and electric field application at 

the same time 

 Electric Field  

M 

Electro-discharge capacitors [104-106] During powder compaction with electro-discharge 

Electron beam melting (Arcam) [107] During manufacture of green and sintering layer by layer Electron Beam G, M 

Combined electron beam melting [108] In the manufacture of green by use of a polymeric foam 

scaffold 

G, M 

Preform  Hollow metal spheres [109-110] During the manufacture of the metal preform and the 

compaction. 

Furnace or 

Electric Field 

G, M 

Powder Metal 

Suspension 

Polymer scaffold immersion [83,111,112] During the scaffold coating Furnace G, M 

Directional freezing [113,114,118] During the dendritic growth of conductive liquid of the 

process 

G 

Electro deposition of metal on polymeric substrate [119-124] During deposition of metal ions on the foam scaffold G, M 
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Some available works show the limitations in controlling the quantity, size, distribution 

and morphology of the pores by conventional routes. Other works indicate the high cost, 

and the great difficulty in obtaining reproducibility and versatility of the new processing 

routes (laser sintering, ion beam milling, field assisted sintering technology, etc.). In this 

work, the authors develop the optimisation and validation of a novel sequential uniaxial 

compaction device, to produce cylinders of radial graded porous materials.  

 

Figure 1. Components of the compaction device: a) die, b) set of compaction punches, c) set of 

extraction punches and d) centring tools. 

Table 1. Radial graded porosity designs developed, and their corresponding manufacturing 

conditions 

 Conventional Powder 

Metallurgy (PM) 

Different compaction pressures 

125-250-500MPa; No spacer 

Space-holder Technique (SHT) 

Compaction pressure 800MPa; Different contents of 

spacer 

P
o

ro
si

ty
 d

is
tr

ib
u

ti
o

n
  

 

Increasing 

Gradient (IG) 

 

Decreasing 

Gradient (DG) 

 

Hard Gradient 

(HS) 

 

Soft Gradient (SG) 

S
p

ac
er

 

si
ze

  

0 µm 

 

NaCl NH4(HCO3) 

D[4,3]= 445µm [4,3]= 206µm D[4,3]= 265µm 

L
u

b
ri

ca
n

t 

re
m

o
v

al
  

100ºC (2h), 300ºC (4h) and 500ºC (4h) 

 

- 

S
p

ac
er

 

re
m

o
v

al
  

- 

Immersion in water at rest, at 45-

55ºC: 4 cycles of 4h, and finally 

drying at 100ºC (1.5h) 

60ºC (10h), 

110ºC (12h), 

both stages at 

10-2 bar 
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S
in

te
ri

n
g

  

 

1250ºC during 2h; high vacuum ≈10-5 bar 

 

 

 

Figure 2.  Diagram of the methodology used. 
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Figure 3. Images of defective pieces, due to the pressing stage and elimination of the lubricant 

and the spacer, and an image of a correct piece produced with the application of the optimised 

conditions for the sequential compaction process (three concentric zones designed with a radial 

graded porosity structure). Titanium cylinders with: a) displaced core; b) break in the 

intermediate layer in the green body; c) lack of adhesion between layers after sintering; d), e) 

and f) with loss of material after removal of both lubricant (EBS) and the spacer from the green 

body (ammonium bicarbonate or NaCl); and, g) optimal structural integrity and concentricity of 

the layers. 

Table 3. Lubricant (EBS), NH4(HCO3) and NaCl space-holder removal protocols used. 

 Incorrect Removal Protocol Correct Removal Protocol 

EBS 500ºC (1h) 100ºC (2h), 300ºC (4h) and 500ºC (4h) 

NH4(HCO3) 110ºC (2h) 60ºC (10h), 110ºC (12h), both stages 

at 10-2 bar 

NaCl Immersion in water with moderate 

agitation, at room temperature (2h). 

Immersion in water at rest, at 45-55ºC: 

4 cycles of 4h, and finally dried at 

100ºC (1.5h) 

 

 

Figure 4. Macro- and micrographs of the longitudinal section in the designs manufactured by 

conventional PM with increasing and decreasing gradients. 



7 
 

 

 

Figure 5. Micrographs of the longitudinal section made in each transition zone in the increasing 

and decreasing designs manufactured by conventional PM: IG and DG, respectively. 
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Figure 6. Macro- and micrographs of longitudinal sections made at the interfaces in the IG 

design and homogeneous porosity cylinders manufactured in similar conditions [128]. 

 

 

Figure 7. Macro- and micrographs of longitudinal sections of Ti cylinders with radial graded 

porosity obtained by SHT: HG design obtained by NaCl (D [4,3] = 445 μm), and SG designs 

obtained by NaCl (D [4,3] = 206 µm] and NH4 (HCO3) (D [4,3] = 265 μm). 
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Figure 8. Macro- and micrographs of the Ti cylinder with radial graded porosity obtained by 

SHT: a) upper base of the HG design obtained by NaCl (D [4,3] = 445 μm)), b) longitudinal 

section of the SG design obtained by NaCl (D [4,3] = 206 μm). 

 

Table 4. Density, total porosity, interconnected porosity and equivalent pore diameter, by 

Archimedes’ method and image analysis of Ti cylinders with radially graded porosity fabricated 

according to the SG design by space-holder technique (SHT). 

 

Table 5. Young's modulus and yield strength obtained by uniaxial compression testing and 

ultrasound technique of Ti cylinders with radial graded porosity fabricated according to the SG 

design by space-holder technique. 

 Ti cylinders, SG design (SHT with 20/40/60 vol. %) 

Ultrasound Uniaxial compression test 

Ed (GPa) Ed (GPa) Ec (GPa) - includes 

machine rigidity 

σy (MPa) 
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NaCl NH4(HCO3) NaCl NH4(HCO3) NaCl NH4(HCO3) NaCl NH4(HCO3) 
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Figure 10. Stress-strain curves of the Ti cylinder with the SG design: influence of the type of 

spacer [NaCl vs NH4 (HCO3)]. 
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