
ON THE SELECTION AND ANALYSIS
OF SOFTWARE PRODUCT LINE

IMPLEMENTATION COMPONENTS
USING INTELLIGENT TECHNIQUES

JORGE LUIS RODAS SILVA

ADVISED BY:
PHD. DAVID BENAVIDES AND PHD. JOSÉ A. GALINDO

INTERNATIONAL DOCTORAL DISSERTATION

First published in July 2019 by
The Department of Computer Languages and Systems
ETSI Informática
Avda. de la Reina Mercedes s/n
Sevilla, 41012. SPAIN

Copyright c©MMXIX Jorge Luis Rodas Silva
jrodass@unemi.edu.ec

Classification (ACM 2012):

Categories and subject descriptors:
[100] - Software and its engineering: Software development process management.
[100] - Software and its engineering: Software product lines.
[500] - Information systems: Recommender systems.

General Terms: Design, Theory, Algorithms, Performance

Additional Key Words and Phrases: software product lines, feature models, auto-
mated analysis, recommender systems, implementation components.

Support: This work has been partially supported by University of Milagro (UNEMI)
with its scholarship program. It has also been partially funded by the EU FEDER pro-
gram, the MINECO project OPHELIA (RTI2018-101204-B-C22); the Juan de la Cierva
postdoctoral program; the TASOVA network (MCIU-AEI TIN2017-90644-REDT); and
the Junta de Andalucia METAMORFOSIS project.

3

Don David Benavides, profesor titular del Área de Lenguajes y Sistemas
Informáticos de la Universidad de Sevilla y Don José A. Galindo, investigador
Juan de la Cierva.

HACEN CONSTAR

que Don Jorge Luis Rodas Silva , Ingeniero en Sistemas Computacionales por
la Universidad Estatal de Milagro, Ecuador; ha realizado bajo nuestra super-
visión el trabajo de investigación titulado

On the Selection and Analysis of Software
Product Line Implementation Components

using Intelligent Techniques

Una vez revisado, autorizamos el comienzo de los trámites para su pre-
sentación como tesis doctoral al tribunal que ha de juzgarlo.

Fdo. PhD. David Benavides y PhD. José A. Galindo
Área de Lenguajes y Sistemas Informáticos

Universidad de Sevilla,
Sevilla, julio de 2019

4

5

Yo, Jorge Luis Rodas Silva, con número de DNI 0921633988,

DECLARO

Ser el autor del trabajo que se presenta en la memoria de esta tesis doctoral
que tiene por tı́tulo:

On the Selection and Analysis of Software
Product Line Implementation Components

using Intelligent Techniques

Lo cual firmo en Sevilla, julio de 2019.

Fdo. Jorge Luis Rodas Silva

6

7

In addition to the committee in charge of evaluating this dissertation and
the two supervisors of the thesis, it has been reviewed by the following re-
searchers:

• PhD. Edward Mauricio Alferez Salinas (Université du Luxembourg,
Luxembourg)

• PhD. Jaime Chavarriaga (Universidad de los Andes, Colombia)

8

A mis padres

10

Contents

Acknowledgements . 19

Abstract . 21

Resumen . 25

I Preface

1 Introduction . 31
1.1 Overview . 32
1.2 Research method . 35
1.3 Contributions . 35

1.3.1 Summary of contributions . 35
1.3.2 Publications in chronological order 37
1.3.3 Tools . 40

1.4 Research internships and collaborations . 41
1.5 Structure of this dissertation . 42

II Background information

2 Software product lines . 47
2.1 Introduction . 48
2.2 Feature models . 48
2.3 Automated analysis of feature models . 52
2.4 Constraint satisfaction problems . 53
2.5 Application engineering . 55
2.6 Summary . 56

3 Recommender systems . 57

12 Contents

3.1 Introduction . 58
3.2 Classification of recommender systems . 59

3.2.1 Collaborative-based recommender systems 60
3.2.2 Content-based recommender systems 64
3.2.3 Hybrid approaches . 65

3.3 Evaluation metrics for recommender systems 66
3.4 Summary . 68

III Contributions

4 Motivation . 71
4.1 Introduction . 72
4.2 Analysis of current solutions . 72

4.2.1 Product line engineering . 73
4.2.2 Feature interaction . 73
4.2.3 Model-driven architecture . 74
4.2.4 Customization techniques in software product lines 74

4.3 Discussion . 75
4.3.1 Automated analysis of two-layered feature models 75
4.3.2 Recommender systems in SPL . 77

4.4 Summary . 81

5 Automated analysis of two-layered feature models 83

6 Implementation components selection using recommender
systems . 85

IV Validation

7 MAYA: Putting variability at the application and systems
level. 89

8 RESDEC: Using recommender systems for SPL components
selection . 91

V Final Remarks

Contents 13

9 Conclusions and future work . 95
9.1 Conclusions . 95
9.2 Future work . 97

9.2.1 Two-layered feature models . 98
9.2.2 Implementation components selection 99

VI Appendix

A RESDEC: Online Management Tool for Implementation
Components Selection . 105
A.1 Introduction . 106
A.2 RESDEC Tool Suite . 106

A.2.1 Architecture . 107
A.2.2 Web Application . 108

Bibliography . 117

14 Contents

List of Figures

1.1 Websites mass-customization . 33
1.2 Overview of this thesis scope . 34
1.3 Chronological order of conferences and publications 38
1.4 Stays to cope with the PhD objectives . 41

2.1 Customization of an SPL in the mobile phone industry (from [94]) . . 48
2.2 Feature model inspired by the web development industry (from [80]) 50
2.3 Features model that describes a list of components for an e-commerce

website . 51
2.4 Mapping from feature model to CSP (from [15]) 54
2.5 SPL engineering process . 55

3.1 General classification of recommender systems 60
3.2 Scheme for the design and evaluation of recommender systems(from

[27]) . 66

A.1 RESDEC architecture . 107
A.2 RESDEC web application . 108
A.3 RESDEC login . 109
A.4 RESDEC main screen . 110
A.5 Cold start scenario . 111
A.6 Recommendations of implementation components based on ratings 112
A.7 Recommendations of implementation components based on features 113
A.8 Case Study applied to e-commerce Website . 114
A.9 Screen “You may also like” that show recommendation alternatives 115
A.10 Screen of RESDEC tool demo . 116

16 List of Figures

List of Tables

3.1 Metrics and methods for evaluating the performance of recommender
systems (from [27]) . 68

4.1 MAYA vs. other proposals . 75
4.2 RESDEC vs. others proposals . 77

18 List of Tables

Acknowledgements

I remember my mother telling me since I was little “Everything you pro-
pose in life you will achieve: persevere and resist

these words marked my life and became my encouragement voice to cope
with the hard facets that appeared along the way and to be able to culminate
this long process.

When arriving this stage, many things cross my mind, it has been years of
ups and downs, but at the same time of a lot of learning both academically and
personally. Undoubtedly, perseverance and steadiness have been fundamental
pillars to make it.

First I want to thank God for having been my light and my guide; then,
to the people who accompanied me during this journey and who were an
important part of this puzzle. I would like to express immense gratitude to
my parents and brothers for having always been there even when thousands
of miles away separated us, at the beginning it was hard, but I can tell that
it was worth it. To my friends of studies, of long days, with whom we have
shared experiences (good and bad) but that in the end allowed us to enjoy the
landscape while we were advancing in this adventure that ends today.

Then, I want to thank the institution that has trusted me since always, my
second family, the place where I was formed and which I am part of now, my
beloved State University of Milagro. Thanks to its authorities for giving me
the opportunity to fulfill one of my great wishes, to be able to study abroad. I
have not disappointed them. Also, to INRIA and Professor Benoit Baudry, for
opening the doors of this research center to me and having welcomed me in
their DIVERSE working group for approximately sevent months.

How can I leave aside Mike, Jorge, Juliana and Mathieu, people I met du-
ring this doctoral process and whose contributions supported the fulfillment
of the objectives outlined in this thesis. To my friends from the development
clan, Robert and Samuel, thank you for being there and holding out my hand.

Finally, special thanks to my supervisors David and José, to the first for the
patience and for teaching me to overcome each challenge I assumed; to the

20 List of Tables

second, for having been a counselor and support all the time.

Abstract

In recent years and with increasing technological advancement companies
are no longer focused exclusively on designing a product for a customer (e.g.
designing a website for Decameron Hotel), but on producing for a domain
(e.g. designing websites for hotels.); that is, designing a product that can easily
adapt to the different variations that may exist for the same product and that
fits the individual tastes of customers.

In software engineering, this can be achieved through the management
of Software Product Lines (SPL). A software product line is defined as a set
of systems that share a common set of features that satisfy the demand of a
specific market. SPL intends to reduce the effort and cost to implement and
maintain a set of similar software products over time. However, managing va-
riability in these systems is a difficult task, the greater the number of products,
the more complex it is to manage them.

Feature models (FMs) are used to represent the common and variable parts
of an SPL. Given the high number of products that can be derived from an fea-
ture model (FM), the management of feature models become a challenge task.
The Automated Analysis of Feature Models (AAFM) is about the use of auto-
mated tools to extract information from feature models. The AAFM deals with
feature model complexity. However, with current solutions, there are certain
scenarios where the configuration of a product becomes a complex activity gi-
ven the number of components that could exist to implement a certain feature
and that feature models can be more complex in terms of layers, features or
implementation components.

In this thesis, we explore intelligent techniques to solve two problems that
arise when managing an SPL:

i. On the one hand, we have identified the problems that arise when a de-
veloper wants to keep up their applications with the latest advances in
technology. The close relationship between application features and plat-
form components that realize these features is hard to track. Developers
need to be aware of the consequences on existing applications when the
hardware where it will run changes, e.g., when an application shall be

22 List of Tables

ported from a smartphone to a tablet computer or more generally, when
a platform shall be upgraded to a new version. The different screen sizes
and resolutions, the possible absence of a cellular radio or the increa-
sed amount of memory may all have positive or negative impacts on
an application. In this context, since the features of the application and
platform are conceptually separated, their features can be modeled in
two separate models. Consequently the traceability between these two
layers and the changes that certain features of one layer may affect the
other is a problem to be addressed.

ii. On the other hand, we have found how complicated it is for the appli-
cation developer to configure a product when there are variety of imple-
mentation components for each feature. For example, a web developer
in WordPress manually searches for those components (plugins) that are
feasible and most optimal for each web site. This task takes time and
does not always guarantee that the selected components are the most
suitable (in terms of quality) for the required application. Two scena-
rios could arise during this configuration: first, the empirical selection
of a component, in practice, may not provide the expected results. Furt-
hermore, not having criteria based on other users’ experience regarding
these components, could induce a bad selection and achieve a bad ex-
perience for the end user. In this context, managing the relationship bet-
ween implementation components and their features is another problem
to be solved.

Specifically, the contributions of this thesis are detailed below;

Multi-layer feature models: In this area we introduce a framework for the
analysis of multi-layer feature models called MAYA. The objectives we
pursue with this solution are: i) modeling the variability of software sys-
tems in two layers, i.e. a dependency mapping between two feature mo-
dels to enable automated analysis application features of a system on a
top layer and platform features on a bottom layer; ii) a definition of a
set of operations that can be used on such models; iii) a reference imple-
mentation for multi-layer analysis based on an Android case study and,
finally; iv) two empirical evaluations that demonstrate the feasibility of
our proposal in practice.

Implementation Components: A product configuration is one of the most
error-prone activities, even more so when for each feature there is more
than one component that implements it. To manage these configurations,
we introduced a component-based recommender system called RESDEC

List of Tables 23

that facilitates the selection of implementation components when crea-
ting products in an SPL. Specifically, the contributions presented with
this proposal are: i) modeling of the implementation component selec-
tion problem as a recommendation task using collaborative-based and
content-based filtering algorithms; ii) design of a prototype component-
based recommender system tool ready to be used and extended to other
environments from the selection of implementation components and,
finally; iii) an empirical evaluation based on e-commerce websites in
WordPress.

24 List of Tables

Resumen

En los últimos años y con el creciente avance tecnológico, las empresas
ya no se centran exclusivamente en diseñar un producto para un cliente (por
ejemplo, el diseño de un sitio web para el Hotel Decameron), sino en producir
para un dominio (por ejemplo, el diseño de sitios web para hoteles); es decir,
el diseño de un producto que pueda adaptarse fácilmente a las diferentes va-
riaciones que puedan existir para un mismo producto y que se adapte a los
gustos individuales de los clientes.

En la ingenierı́a de software, esto puede lograrse a través de la gestión de
lı́neas de productos de software (SPL). Una SPL se define como un conjunto de
sistemas que comparten un conjunto común de caracterı́sticas que satisfacen
la demanda de un mercado especı́fico. Una SPL intenta reducir el esfuerzo y
el costo de implementar y mantener en el tiempo un conjunto de productos de
software similares; sin embargo, manejar la variabilidad en estos sistemas es
una tarea difı́cil, a mayor número de productos más complejo se hace mane-
jarlos.

Los modelos de caracterı́sticas (FMs) se emplean para representar gráfica-
mente las partes comunes y variables de una SPL. Dada la gran cantidad de
caracterı́sticas que se pueden derivar de un modelo de caracterı́stica (FM), re-
sulta difı́cil de gestionarlos. Para hacer frente a estos problemas se ha propues-
to el Análisis Automático de Modelos de Caracterı́sticas (AAFM) que median-
te el uso de herramientas asistidas por ordenador, se ocupa de la extracción
de información de los modelos de caracterı́sticas. No obstante, existen cier-
tos escenarios en los que la configuración de un producto se convierte en una
actividad compleja dado el número de componentes que existen para imple-
mentar una determinada caracterı́stica.

En esta tesis, exploramos técnicas inteligentes para resolver dos problemas
que surgen al manejar una SPL:

i. Por un lado, hemos identificado los problemas que surgen cuando un
desarrollador desea mantener sus aplicaciones al dı́a con los últimos
avances tecnológicos. La estrecha relación entre las caracterı́sticas de
aplicación y los componentes de plataforma es difı́cil de rastrear. Los

26 List of Tables

desarrolladores deben ser conscientes de las consecuencias que podrı́an
traer a las aplicaciones existentes cuando cambia el hardware donde
se va a ejecutar; por ejemplo, cuando una aplicación se traslada de un
smartphone a una computadora/tablet, o cuando una plataforma se ac-
tualiza a una nueva versión. Los diferentes tamaños y resoluciones de
pantalla, la posible ausencia de un radio celular o el aumento de la can-
tidad de memoria pueden tener impactos positivos o negativos en una
aplicación. En este contexto, dado que las caracterı́sticas de aplicación y
de plataforma están conceptualmente separadas, sus caracterı́sticas pue-
den modelarse en dos modelos distintos. Por consiguiente, manejar la
trazabilidad entre estas dos capas y cómo los posibles cambios en ciertas
caracterı́sticas puedan afectar a la otra capa, es un problema que está por
resolver.

ii. Por otro lado, hemos encontrado lo complicado que es para el desarro-
llador de aplicaciones configurar un producto cuando hay una variedad
de componentes de implementación para cada caracterı́stica. Por ejem-
plo, un desarrollador web en WordPress busca manualmente aquellos
componentes (plugins) que son factibles y más óptimos para cada sitio
web. Esta tarea lleva tiempo y no siempre garantiza que los componen-
tes seleccionados sean los más adecuados (en términos de calidad) pa-
ra la aplicación requerida. Dos escenarios podrı́an surgir durante esta
configuración: primero, la selección empı́rica de un componente, en la
práctica, puede no proporcionar los resultados esperados; además, no
tener criterios basados en la experiencia de otros usuarios con respecto a
estos componentes, podrı́a inducir una mala selección y lograr una mala
experiencia para el usuario final. En este contexto, el manejo de la rela-
ción entre los componentes de implementación y sus caracterı́sticas es
otro problema a resolver.

Concretamente, las contribuciones de esta tesis se detallan a continuación;

Modelos de caracterı́sticas en múltiples capas: En esta área introducimos un
framework para el análisis de modelos de caracterı́sticas de múltiples
capas, llamado MAYA. Los objetivos que perseguimos con esta solución
son: i) modelar la variabilidad de los sistemas software en dos capas, in-
cluyendo sus respectivas interdependencias; ii) definir un conjunto de
operaciones que puedan imponerse a dichos modelos; iii) una imple-
mentación de referencia para el análisis de múltiples capas basado en un
caso de estudio en Android, y finalmente; iv) dos evaluaciones empı́ricas
que demuestran la viabilidad de nuestra propuesta en la práctica.

Componentes de implementación: La configuración de un producto es una

List of Tables 27

de las actividades más propensas a errores, más aún cuando para ca-
da caracterı́stica hay más de un componente que la implemente. Para
gestionar estas configuraciones, introducimos un sistema de recomenda-
ción basado en componentes llamado RESDEC que facilita la selección
de componentes de implementación al crear productos en una SPL. Con-
cretamente las contribuciones que se presentan con esta propuesta son:
i) modelado del problema de selección de componentes de implementa-
ción como una tarea de recomendación utilizando algoritmos de filtrado
colaborativo y por contenido; ii) diseño de un prototipo de herramien-
ta de sistema de recomendación basada en componentes lista para ser
utilizada y extendida a otros entornos a partir de la selección de com-
ponentes de implementación y, finalmente; iii) una evaluación empı́rica
basado en sitios web de comercio electrónico en WordPress.

28 List of Tables

Part I

Preface

Chapter 1

Introduction

You’ve got to have an idea, or a problem or a wrong that you want to right that you’re passionate
about, otherwise you’re not going to have the perseverance to stick it through. I think that’s half
the battle right there.

Steve Jobs

I n this dissertation, we report our work on the use of two-layered feature
models and selection of implementation components in a software prod-

uct line. In this chapter, we give an overview of the contributions, the research
method and publications related to this document.

32 Chapter 1. Introduction

1.1 Overview

After the industrial revolution at the end of the 1980s, and with the ap-
pearance of the machines in industry, the production of goods and services
completely changed the way of manufacturing a product; introducing a new
production paradigm known as “mass production”. According to Zipkin [102]
mass production had, as main objective, the production of a large quantity of
the same product using standardized processes in a reduced commercializa-
tion time.

This type of production mechanism, despite of guaranteeing production
in large volumes of products to meet with high demand and immediate de-
livery, does not completely satisfy the customers since it does not allow the
personalization of products according to their particular needs.

In a highly competitive market with constant changes, mass production
becomes insufficient, transforming its approach to a “mass customization”.
According to McCarthy [57], mass customization consists in the production
of (massive) products quantities and services in a personalized way to each
client, maintaining quality and delivery time.

The main advantage of this production system is the immediate response
to the specific needs of each client without affecting the cost, achieving to
maintain prices equivalent to the production in large quantities and comply-
ing with the efficiency of mass production. Figure §1.1 shows a motivating
scenario of mass customization, where a website designed for an airline can
be implemented in different airlines (e.g. KLM, Avianca and American air-
lines).

Nowadays, with the great technological advances, the industry of the soft-
ware engineering is not far from this mass customization. In software pro-
duction, researchers and engineers worked hard to apply techniques of mass
customization in software engineering to rise a new development paradigm
known as “Software Product Lines (SPL)”. An SPL allows managing of cre-
ating reusable software artifacts, as well as to describe variability points and
ensure they are reused properly.

Clements and Northrop [28] define an SPL as a set of highly variable sys-
tems that share a set of common characteristics that meet the specific needs of a
market segment. Managing variability in a product line is a difficult and com-
plex task given the large number of possible software variants that could be
derived. Generally, variability is represented through feature models (FMs).
An FM [42] is a diagram that graphically describes the features of an SPL and

1.1. Overview 33

Massive website customization
for airlines

Airline website

Let’s go �ying

Web programmer
designing a website for airlines

Figure 1.1: Websites mass-customization

its relationships, as well as the possible restrictions that may arise. The fea-
tures selection with their respective attribute values defines a configuration
[9] (a.k.a. software product) that capture a personalization possibility that the
system allows and that are used within the ecosystem where the SPL is devel-
oped.

The number of configurations resulting from a feature model can grow
when adding new features. To manage variability, the literature presents the
automated analysis of feature models (AAFM) [15] that is about extracting
information from feature models using computer-assisted mechanisms .

In spite of the efforts made by researchers in the field of AAFM, there is still
a need for solutions that reduce the inconvenience of managing configurations
in order to prevent a time-consuming and costly process.

One of the common difficulties is how to link the features that are defined
at the application level with the platform level features components. In this
context, we have identified two problems:

i. What happens when we have two feature models and need to connect
them to manage the dependencies of the application level with the plat-
form level?

ii. How to guarantee the optimal selection of components to implement
features during the configuration of a product in an SPL?

Figure §1.2 describes the motivation and the main research core presented

34 Chapter 1. Introduction

in this document.

Software Product Lines

PlatformFeatures

Radios Input

Cellular NonCellular

GSM GPRS Wifi BluetoothUMTS

Communication

Text Voice

SMS Call VoIP

Data

InternetAccess

AppFeatures

Multi-layer feature model Implementation components

Application

Platform

MAYA
Framework towards the analysis
of multi-layered feature models

Communication

Text Voice

SMS Call VoIP

Data

InternetAccess

AppFeatures

C1 C3C2 C5C4

Implementation components repository

RESDEC
Recommender systems for
impementation components selection

Traceability

1

Components
selection

2

Figure 1.2: Overview of this thesis scope

Specifically, in this thesis we have addressed the following areas:

Multi-layers feature models There are well-established approaches in the lit-
erature to analyze variability intensive systems using feature models.
However, there is a lack of approaches to analyze the application and
platform features in multiple layers. In this first contribution, we present
a framework for the analysis of multilayer feature models that is evalu-
ated with an empirical implementation on Android that demonstrate the
viability of the approach in real-world scenarios.

Implementation components Given the variety of implementation compo-
nents that can be used to configure product, identifying the best com-
ponents set is a challenging task due to the high number of combina-
tions and options that can be selected. In this contribution, we present
a proposal that, through information associated with the components,
introduces a recommender system that is later exploited in three usage
scenarios. An empirical evaluation using WordPress information vali-
dates the capacity of our approach to guide users in the implementation
components selection.

1.2. Research method 35

1.2 Research method

In this work we have used the research method proposed by Ida and Ketil
[39]. This method, in addition to solving a problem in a particular context,
proposes the design and development of new software or the improvement of
existing ones. The main focus is to meet all the requirements from the require-
ments engineering point of view. Note that this research method is focused on
technological research.

The main steps of the technological research are:

i Problem statement: It is focused on identifying the necessary conditions
for the new artifacts creation. In other words, the researcher is responsi-
ble for seeking the needs for the new technologies development.

ii Contribution: The focus of this step is the solution development through
the creation of the artifacts.

iii Validation: In this last step, the artifacts designed to ensure they meet
the necessary requirements to solve the problem initially identified are
verified and validated.

1.3 Contributions

In this section we summarize the main contributions of our work, which
have been published in different conferences and journals.

1.3.1 Summary of contributions

In this thesis we address two problems that originates when managing an
SPL. First, we analyze the problem that arises when trying to link features that
are defined at the platform level with application level features in multiple lay-
ers. To solve this, we introduce a framework called MAYA for the analysis of
multi-layered feature models (i.e application layer and platform layer) using
features attributes information. Then, we analyze the implementation compo-
nents selection to configure a product of an SPL at the application level, using
recommender systems. For this purpose, we designed a prototype of a tool
called RESDEC (REcommender System that from selecteD fEatures suggest

36 Chapter 1. Introduction

implementation Components) that allows implementation components selec-
tion using different recommendation techniques. Finally, we show real cases
from the industry that allowed us to validate our contributions.

The main objective of this thesis is to provide intelligent techniques that
help the software engineer when selecting products that adjust to certain user
requirements. That is, when working with multiple layers and when it is nec-
essary to configure features from the implementation components selection.

The main contributions of this thesis are summarized below along with the
objective pursued in each one of them:

i) Automated analysis of two-layered feature models with feature at-
tributes
Our first contribution proposes a mechanism to manage the dependen-
cies between two feature models (application and platform) through the
link of both models.

– Problem statement: The proliferation of features and platforms in
variability intensive systems, coupled with substantial technological
progress, imposes several challenges for software developers and equip-
ment manufacturers. Typically, the features of the application and plat-
form are conceptually separated and can be modeled in two separated
models organized in layers. The problem is the difficulty of tracking one
layer features to the second features. This requires a means to model
each set of features separately to reflect the possible independent evolu-
tion of each layer.

– Contribution: We introduce MAYA, a two-layered feature model frame-
work that includes application features of a system on a top layer and
platform features on a bottom layer. In addition, a detailed dependency
mapping between these two layers using features attributes to enable
automated analysis is provided.

– Validation: To validate our approach, two real-world empirical evalua-
tions are presented regarding application handling and platform evolu-
tion in the application development domain for mobile phones. In this
case, we demonstrate the applicability and need for working with two-
layer models.

See Chapter §5 for more details about this contribution.

ii) Selection of software product line implementation components using
recommender systems

1.3. Contributions 37

Once we were able to link two feature models, it was necessary to pro-
pose a technique to configure a product features from the selection of
implementation components.

– Problem statement: Selecting the best set of components to implement
features in the product configuration of an SPL is a challenging task. In
certain scenarios, given the high number of combinations and compo-
nent options that can be selected, inappropriate selection could result in
bad experience when configuring a product.

– Contribution: We propose a component-based recommender system,
called RESDEC. RESDEC aims to take advantage from a repository of
information generated by users to efficiently search for appropriate com-
ponents to implement features in a specific context. To do this, we adapt
a set of algorithms commonly used by recommender systems.

– Validation: We demonstrate the effectiveness of our approach through
an empirical evaluation in an e-commerce website scenario using Word-
Press. The evaluation is based on data from 116,000 users, 680 plugins,
and 187,000 ratings.

See Chapter §6 for more details about this contribution.

1.3.2 Publications in chronological order

Results of our research work have been published in different congresses
and journals. In Figure §1.3 we shown a complete list of these publications in
chronological order.

[2015] In this year, we made a stay at the INRIA research center (Rennes-
France) with the DIVERSE research group, which allowed us to carry out for-
mal investigations in a full time schedule. During this period, we began to
work on the preliminary core of the dissertation. From the beginning, we
were motivated by the advantages of the recommender systems techniques
to personalize the user experience in different scenarios; which allowed us to
analyze the applicability of these techniques in the configuration of software
product lines through user reports. Preliminary results of this work were pre-
sented in the conference that is detailed below.

• 10CCC’15. Jorge Rodas-Silva, José A. Galindo, David Méndez, and
David Benavides. Towards testing variability intensive systems using

38 Chapter 1. Introduction

2015

2017

2019

2016

2018

Conferences and Journals

TIMELINEConference
10CCC
Bogotá - Colombia

Conference
JISBD’16
Salamanca - Spain

Conference
ICITS'18
Santa Elena - Ecuador

Journal
RISTI - Revista Ibérica de
Sistemas e Tecnologias de
Informaçã

Conference
JISBD'18
Sevilla - Spain

Journal
 Journal of Visual Languages
 and Computing

 IEEE Access

Conference
SPLC'19
París - France

Figure 1.3: Chronological order of conferences and publications

user reviews. Proceedings of the 10CCC - Congreso Colombiano de
Computación, Bogotá, Colombia.

[2016] In this year, we continued with the stay in the INRIA research cen-
ter. In this period, we went deeper into the different techniques and algo-
rithms that a recommender system uses and its application in common prob-
lems faced by the software engineer when configuring or deploying a product
of SPL. Specifically, we analyzed how these algorithms could help in the selec-
tion of configurations for the testing and deployment of applications. Results
of this approach are published in the conference described below.

• JISBD’16 Jorge Rodas-Silva, Javier Olivaro, José A. Galindo, and David
Benavides. Hacia el uso de sistemas de recomendación en sistemas de
alta variabilidad. XXI Jornadas de Ingenierı́a del Software y Bases de
Datos (JISBD 2016), Salamanca, España.

1.3. Contributions 39

[2017] In this year, our research was resumed at the University of Seville.
In this period, the main research focus was the selection of deployment config-
urations to implement an SPL product using recommender systems. Parallel
to this research, we began to collaborate on the proposal to manage the vari-
ability in a two-layer model and the traceability operations to connect these
models. Some of the work done in this year, is published in the conference
described below.

• ICITS’17 Jorge Rodas-Silva, José A. Galindo, David Benavides and
Robert Soriano. Selección de configuraciones usando sistemas de re-
comendación en Android. The 2018 International Conference on Infor-
mation Technology & Systems (ICITS), Santa Elena, Ecuador.

[2018] In this year, the main contribution for the dissertation of this the-
sis was the publication of the results obtained when applying recommender
systems in the selection of deployment configurations. Later, we designed a
prototype tool called RESDEC based on collaborative filtering recommender
systems that was implemented using a knowledge base built from Android
data. Results of this work are published in the journal and conference de-
scribed below.

•

RISTI’18 Jorge Rodas-Silva, José A. Galindo, David Bena-
vides, Robert Soriano. Selection of deployment configura-
tions using recommender systems on Android. RISTI - Re-
vista Ibérica de Sistemas e Tecnologias de Informaçã.

• JISBD’18 Jorge Rodas-Silva, José A. Galindo and David Benavides.
RESDEC: Un prototipo de herramienta para la selección de configura-
ciones de despliegue basado en Sistemas de Recomendación. XXIII Jor-
nadas de Ingenierı́a del Software y Bases de Datos (JISBD 2018), Sevilla,
España.

[2019] In this year, results were obtained which contributed to the devel-
opment and culmination of the doctoral work. In this context, the proposal
to connect layers of the application level with the level of platform that be-
gan to work in 2017 was published in a journal. Also, the proposals for rec-
ommender systems shown above were reinforced, this time focusing on the
selection of implementation components to configure features. For this pur-
pose, an improved version of RESDEC was designed in which new algorithms

40 Chapter 1. Introduction

of recommender systems collaborative-based and content-based filtering were
incorporated. In addition, the proposal was validated using real-world data
from WordPress, which allowed us to validate the scope of our approach in
the development of a product line based on websites built in this platform.
Results of this work are published in the following report and conference.

•

JCL’19 Michael Letter, Jorge Rodas-Silva, José A. Galindo,
David Benavides. Automated analysis of two-layered fea-
ture models with feature attributes. Journal of Computer
Languages; 0.971 Impact Factor (Q3).

•

IEEE’19 Jorge Rodas-Silva, José A. Galindo, Jorge Garcı́a-
Gutiérrez, David Benavides. Selection of software product
line implementation components using recommender sys-
tems: An application to WordPress. IEEE Access; 3.557 Im-
pact Factor (Q1)

• SPLC’19 Jorge Rodas-Silva, José A. Galindo, Jorge Garcı́a-Gutiérrez and
David Benavides. RESDEC: Online Management Tool for implementa-
tion components selection in a Software Product Lines using Recom-
mender Systems. Software Product Lines - 23rd International Confer-
ence, SPLC, Parı́s, France.

1.3.3 Tools

During this PhD, two prototype tools were developed:

• MAYA†1 a framework towards the analysis of multi-layered feature mod-
els (see Chapter §7 for more details about this tool); and

• RESDEC†2 a component-based recommender system designed to select
implementation components to configure features in an SPL (see Ap-
pendix §A for more details about this tool).

†1https://github.com/FaMaFW/FaMA/tree/branches/fama-two-layers
†2http://resdec.com

1.4. Research internships and collaborations 41

1.4 Research internships and collaborations

The research results presented in this document and which are part of the
contributions developed in the course of the doctorate, were carried out in
three different countries under the supervision of different people. Figure §1.4
shows the universities and institutes in which they carried out research, along
with each institution hosts and advisors in each country.

Ecuador

Francia

Spain

University of Seville
David Benavides
José A. Galindo
PhD. student

University of Milagro
David Benavides
PhD. student

INRIA
José A. Galindo
PhD. student

Research

VISITS

Figure 1.4: Stays to cope with the PhD objectives

During the development of this thesis, we worked on stays in France (IN-
RIA), complementing the work done in Sevilla (University of Seville) and
Ecuador (University of Milagro).

In France, the research stays was at the Institut National de Recherche en
Informatique et en Automatique (INRIA). This research center is located in
the city of Rennes and is considered one of the most important centers in the
field of science and technology development in Brittany. In this center we
stayed for a period of seven months between 2015 and 2016, the hosts were
PhD. José A. Galindo and PhD. Benoit Baudry, this last Senior Researcher of
INRIA DIVERSE, department of which I was part. DIVERSE is a group of
researchers focused on research in four areas: modeling and languages engi-
neering, advanced testing, DevOps for distributed and heterogeneous system
and variability engineering.

During this period, the main research topic was the application of recom-
mender systems in the context of software product lines. The results of this

42 Chapter 1. Introduction

visit were materialized with the writing of two articles that presented prelim-
inary advances of our research in two congresses, one international [81] and
one national [82] as stated previously.

At the end of this stay, in 2016 we returned to University of Seville to re-
inforce the work carried out at INRIA and to continue improving the research
proposal. In Seville, I was under the supervision and direction of PhD. José A.
Galindo and PhD. David Benavides.

Finally, we returned to Ecuador to design and build the RESDEC tool that
we introduced in this thesis.

1.5 Structure of this dissertation

This document is organized as follows:

Part I: Preface. In the first part of this thesis, Chapter §1 is presented, which
addresses the background that have driven this work. Also, the main
contributions of this research.

Part II: Background information. In the second part of the thesis we present
basic information necessary to understand the objectives of this work,
it is organized in two chapters. In Chapter §2, we explore the concepts
related to software product lines and examine feature models through
some examples. Then, we present a brief review on application engi-
neering. Later, in Chapter §3, we address the field of recommender sys-
tems and review the types of systems, their classification and finally we
review the evaluation techniques used to validate them.

Part III: Our contribution This part constitutes the core of our thesis, it con-
sists of three chapters and is organized as follows. In Chapter §5, we
introduce as the first proposal MAYA, which incorporates the concept
of multilayers from a traceability approach between two feature mod-
els studying the consequences of the changes of one layer on the other
layer. Subsequently, in Chapter §6 we present RESDEC, our approach
to configuring product features through the optimal selection of imple-
mentation components using recommender systems.

Part V: Validation. In this part we present two chapters that describe the eval-
uation for our contributions presented in this thesis. For this purpose,
we shown empirical evaluations that were carried out to justify the va-
lidity of the contributions. In Chapter §7, we validate MAYA through a

1.5. Structure of this dissertation 43

case study on Android, in which we model two feature models and an-
alyze the consequences of the changes that may occur in the application
layer, and how these could affect the platform layer. In Chapter §8, we
present the validation made to RESDEC using a case study in WordPress.
In this case, we use WordPress historical information (plugins, tags and
ratings) to test the recommendation algorithms that were implemented
to select implementation components in the configuration of a software
products line. The results obtained using different evaluation metrics
showed promising data that corroborated the validity of our proposal.

Part IV: Final remarks. In this part, we show the conclusions and propose fu-
ture work to address the new research problems arising from the contri-
butions made in this thesis.

Part V: Appendixes. A brief description of the RESDEC web application
work environment based on an example is described in Appendix §A.

44 Chapter 1. Introduction

Part II

Background information

Chapter 2

Software product lines

The way get started is to quit talking and begin doing.

Walt Disney

A software product line (SPL) is defined as a type of variability inten-
sive systems in which a set of common features can be customized

according to the specific needs of the stakeholders in a particular context. For
the management of an SPL, models that allow to represent all the possible
products that can be derived from it are used. The most popular models used
for this purpose are called feature models [42]. In this chapter we present the
definitions of these models as well as examples that describe their applicabil-
ity in software engineering. In addition, we define the process of automated
analysis and the current techniques for extracting information.

48 Chapter 2. Software product lines

2.1 Introduction

Software product lines (SPL) have become a new important paradigm in
software development [31]. In software engineering, it represents a new and
intensive area [85]. An SPL is a set of variability intensive systems that share
a common, manageable set of features that meet the specific needs of a partic-
ular market segment [9, 31, 63, 85]. Its engineering is based on families that
produce similar systems instead of the production of individual systems [15].

An SPL aim to reduce the time of commercialization of products and in-
crease software quality through planned reuse of artifacts to meet customer
needs and decrease customization effort [12, 34]. In addition, SPL seek to pro-
vide a common platform that allows the derivation of particular systems that
are capable of adapting to the different needs required [76].

Specifically, an SPL aligns engineering resources with business objectives
to ensure that efforts are focused on the most cost-effective features and func-
tions of a product. The most characteristic element of an SPL is its variability,
and its management is fundamental to define it; therefore, SPL paradigm is a
solution for managing variability in a family of products [11].

Figure §2.1 shows an example of how the customization of a software prod-
uct line is offered to mobile telephones consumers through web configurators
in which users can select the functions that best adapt to their needs.

Browse phones

Compare phones >>

Figure 2.1: Customization of an SPL in the mobile phone industry (from [94])

2.2 Feature models

One of the main artefacts of software product lines are features models
(FMs) used to represent or model the common and variable features and the

2.2. Feature models 49

relationship between them [34, 42, 85]. In industry, FMs have been widely
adopted to capture, organize and reuse the requirements of a set of similar
applications in a software domain [100].

Since the first proposal of Kang et al. [42] FMs have become the de facto
standard to represent variability and are used to model SPL in terms of fea-
tures and relations among them [16, 81]. A feature represents a functionality
operation in a system to meet a product requirement and provides a potential
configuration element to enrichment an SPL [7]. Also, it is an increment in
the product functionality [14]. An FM is a compact representation of the set of
products in an SPL in terms of features and relations between them [87].

In general, FMs are tree-shaped hierarchical structures that describe the
successive refinement of variability in a product line [40]; and where, restric-
tions between trees can be used to connect features [33].

FM can be seen as a “general landscape” of the functionalities of a software
system, and their integration plays a fundamental role in software engineer-
ing tasks [22]. To use FMs, first is to build them, which generally involves
a systematic analysis of common features and variability with the software
domains in focus [100].

A feature can be abstract or concrete [97]. A feature is abstract, if it is
not mapped to any implementation artifact, and is non-abstract or concrete,
when at least one implementation artifact is assigned. The combinatorial fea-
tures derived from the model are known as configurations and can be used to
generate a product.

An example used to illustrate a feature model is the one inspired by the
web development industry, presented by Rodas et al. [80]. In the feature
diagram, the features are represented by boxes and relationships by lines. As
shown in Figure §2.2, the model illustrates how the features are related to
create an e-commerce website.

There are different proposals to represent FMs. For the most part, they
have the common elements of Czarnecki et al. [30], the most used. Czarnecki’s
notation for FM, represented in Figure §2.2 for the case of e-commerce website,
proposes four types of relationships: mandatory, optional, alternative and or-
relation.

Relations.- Batory et al. [13] classifies the relationships into three groups:
“and-group”, “or-group”, and “alternative-group”. And-group can be
mandatory or optional. A relationship is mandatory when a child feature has
a mandatory relationship with its father and is included in all the products in
which its parent characteristic appears; and it is optional, when a child feature

50 Chapter 2. Software product lines

e-Shop

Payment SecuritySearchCatalogue

High StandardPayPalCredit CardBank Transfer

Legend:

Mandatory
Optional

Or
Alternative
Abstract
Concrete
Requires
Excludes

Figure 2.2: Feature model inspired by the web development industry
(from [80])

has an optional relationship with its parent and can optionally be included in
all the products in which its parent characteristic appears.

Following the model presented in Figure §2.2 an e-commerce website
should implement a product catalog, a payment module, security policies and
could optionally include a search tool.

In addition to the parental relationships between features, a feature model
may also contain constraints between unconnected features. These restrictions
can be of two types: requires and excludes. A restriction is requires when an A
feature requires a B feature, that is, the inclusion of A also implies the inclusion
of B within the configuration of a product. For example, for the e-commerce
website in Figure §2.2, the implementation of the credit card payment func-
tion requires high security policies. On the other hand, it is excludes when
a feature A excludes a feature B, that is, both features cannot be part of the
same product. In the case of the e-commerce website, high security policies
and payments by bank transfer are incompatible, since the activation of high
security policies requires the use of a payment via credit card or PayPal.

Configurations.- A configuration specifies a particular instantiation of the
product line. It is characterized by specifying a set of selected and eliminated
features.

The configurations can be classified into different categories, for example,
a valid configuration adheres to the defined relationships and constraints. A
complete configuration contains all the features of the selected or deleted lists.
When not all the features are contained in the selected/removed sets, it is
called partial configuration. A complete configuration that only contains the
set of selected features, while all other characteristics are implicitly eliminated,
is known as product [15]. In the context of extended feature models, config-

2.2. Feature models 51

urations can also include the configuration of attributes (that is, determine a
value for each attribute).

Finally, for a product to be properly configured, a set of necessary compo-
nents is required to implement each feature. This set of components is known
as implementation components [61].

e-Shop

Payment SecuritySearchCatalogue

High StandardPayPalCredit CardBank Transfer

Legend:

Mandatory
Optional

Or
Alternative
Abstract
Concrete

PayPal Credit Car Payment, WooCommerce Stripe Payment Gateway, Authorize.Net Payment Gateway

Wordfence Security, WordPress Security by CleanTalk, Lana Security

WooCommerce Ajax Search, Advanced Woo Search, Search Manager Lite

WooCommerce Catalog, Product Catalog, eCommerce Product Catalog

1 2 3 4

1

2

3

4

Im
pl

em
en

ta
tio

n
Co

m
po

ne
nt

s
Fe

at
ur

e
M

od
el

Figure 2.3: Features model that describes a list of components for an e-
commerce website

As an example, the catalog, search, payment and security features on the
e-commerce website presented in Figure §2.3 can be implemented using the
list of components shown at the bottom of the figure to comply with the func-
tionality required on the website. Keep in mind that different features can
implement the same component. For instance, if we want to implement the
catalog feature (identified with 1 in the graph), we could have more than one
selection alternative to implement it. In Figure §2.3 we present a list of three
components from which the user can choose one. In practice, we can find a
wide variety of components available for selection and that could implement
the catalog feature.

Types of Extended Feature Models.- In addition to the basic feature mod-
els described above, a couple of extensions has been proposed. Schobbens [91]
summarizes the general semantics of common feature diagrams in the litera-
ture.

For example, an extended feature model is characterized by features that
may contain attributes. This allows to model specific properties of a feature,
such as costs or information in the version. At the same time, it allows complex
constraints between trees that depend on the value of a given attribute, for

52 Chapter 2. Software product lines

example, if the resolution of the camera is greater than a certain threshold
X, then we need to have a high screen resolution. The alternative terms for
extended feature models are “attributed” or “advanced” feature models [16].

2.3 Automated analysis of feature models

The Automated Analysis of Feature Models (AAFM) is a research topic
that has attracted the researchers and professionals’ attention over the past
two decades, time in which, the amount of tools and techniques that allow the
analysis of feature models has increased and also its complexity [93]. The re-
search carried out so far proposes the use of AAFM to cope with the variability
management in software product lines [81].

The AAFM has recently been identified as one of the most important areas
in the development of software product lines [34]. The AAFM consists of the
computer-assisted extraction of information from models [15] and can be sum-
marized in three steps. First, FMs are translated into a logical representation.
Secondly, a specific algorithm or solution is used to perform a certain analysis
operation (e.g. counting the number of products or verifying the consistency
of an FM). Finally, the result is obtained and used in a specific domain such as
the configuration or product derivation [34].

Recently, Galindo et al. [34], identify six different facets of variability
where the AAFM is being applied:

i. Product configuration and derivation. It is the most widely used auto-
mated analysis mechanism and is used to support the derivation and
product configuration process.

ii. Testing and evolution. It consists of using automation mechanisms that
guide the process of selecting configurations for testing purposes.

iii. Reverse engineering. The AAFM in this area from descriptive informa-
tion of products and using logical formulas is in charge of the extraction
of feature models.

iv. Multi-model variability analysis. In certain scenarios it is necessary to
analyze more than one model, in this case, AAFM has proposed analysis
operations to manage the multilayer configuration process.

v. Variability modeling. The analysis of models using basic constructions,
in some cases are not enough. For this reason, it is necessary to use

2.4. Constraint satisfaction problems 53

additional information from the models for a improvements in analysis.
For example, AAFM uses attributes to model different situations that
help decision-making during the product configuration process.

vi. Variability intensive systems. AAFM is not directly associated with SPL,
its field of application has been extended and it is possible to use it in
other areas of application.

Among the activities that are carried out automatically using different ap-
proaches are: Discovering whether a product is valid, obtaining all the prod-
ucts, calculating the number of products, detecting errors, explaining errors,
among other operations [34]. As specified by Benavides et al. [17], using oper-
ations, different aspects of the models are analyzed. More than thirty different
operations can be found in the literature to date. For example, a Valid prod-
uct operation will check if a specific product represents a valid combination
of features belonging to a given feature model. Also, the Number of prod-
ucts operation determines the number of valid products. Other operations are
aimed at comparing feature models, for example, in terms of similarity.

Feature models analysis is a tedious and error-prone task. In order to help
feature modeling professionals extract information, different computer-aided
mechanisms have been proposed that allow different analysis of SPL in differ-
ent contexts and domains. There are proposals based on specific algorithms,
Binary Diagrams (BDD), SAT and CSP. Some available tools are FaMa [19],
FaMiLiAr [3] and FeatureIDE [98], among others.

Currently, there are efficient solutions for errors diagnosis in automated
analysis of feature models, such as the proposal of Segura et al. [93], where
they propose BeTTy, a framework that supports random feature models gener-
ation and its set of products allows, among other things, to generate expected
inputs and outputs for a series of analysis operations in feature models that
accelerate failure detection. On the other hand, Galindo et al. [36], propose
to use automated analysis of feature models to automate the configuration se-
lection and prioritization for testing in a products line; to this end, TESALIA
(TESting vAriAbiLity Intensive Systems) is introduced, a method that seeks
to analyze the set of coded products and the information associated with the
features (costs) to prioritize the products that will be used for testing.

2.4 Constraint satisfaction problems

As mentioned in the previous section, there is a great variety of tools that
can be used in the AAFM as backends. One of them are CSPs (Constraint

54 Chapter 2. Software product lines

Satisfaction Problems)

A CSP [15] allows to create models formed by a set of variables in which
it should indicated which possible values could be taken and the constraints
that should be fulfilled between those variables. Given the model, the system
is able to find those solutions that comply with the specifications established in
the constraints [18]. Unlike propositional formulas that use binary values (true
or false), a CSP solver also uses numeric values (e.g. integers or intervals).

Figure 2.4: Mapping from feature model to CSP (from [15])

Figure §2.4 shows the process to map a feature model to a CSP using a
CSP solver. According to Benavides et. al [15, 16] the steps to carry out this
mapping process are the following:

i. According to the type of variable the solver supports, a CSP is mapped
to each feature model with values between 0...1 or TRUE - FALSE, as the
case may be.

ii. Depending on the type of relationship, restrictions are established for
each relationship of the model giving rise to possible auxiliary variables.

2.5. Application engineering 55

iii. Finally, CSP is composed of the result of steps i and ii, that is, with values
of the variables and the set of restrictions for each relation of the model.
Also, an additional constraint is assigned for the root variable (i.e root⇐⇒ true or root == 1) according to the variables domain.

In the literature there are several proposals that propose the use of con-
straints programming for the AAFM. Some of these proposals can be found in
[16, 18, 19].

2.5 Application engineering

The set of features and dependencies defined in an FM in the domain en-
gineering phase specifies the complete set of valid features combinations of
an SPL. Each resulting combination defines a different product that is part of
the application engineering phase [8]. Application engineering is a system-
atic process for creating a product member from the main assets created at the
domain engineering stage [41].

User needs

Requirements Model
(features, use cases)

Analysis Model
(Content, Navigation,

Presentation)
Design Model
(Architecture)

Feature &
component

selection

Architecture
selection

Code
Generation

Domain Engineering1

Application Engineering2

Code

Figure 2.5: SPL engineering process

Thus, there are two distinct phases in the definition of SPL: domain en-
gineering and application engineering as illustrated in Figure §2.5. The pro-
cess begins by identifying the user’s needs. The domain engineering phase
includes determining model requirements, model analysis and design; appli-
cation engineering includes, features and components selection, architecture
selection and codes generation.

The domain engineering phase begins with domain analysis, where knowl-
edge of the domain is used to identify common and variable features, and
these are made during the design and implementation of the domain, while,
applications engineering focuses on the products creation, first identifying the

56 Chapter 2. Software product lines

needs of the client, which are then used to guide the derivation of the product
[54].

The application engineering is responsible for selecting a set of features ac-
cording to the requirements of stakeholders to obtain a software product that
meets their needs [45]. To carry out this process, the application engineering
phase meets the requirements for a product, sets out the features that meet
those requirements and finally obtains a product configuration with the im-
plemented features [75].

The selection of features of an FM and its possible combinations define a
product configuration which must comply with the restrictions derived from
the model and the requirements for the definition of the product [8].

Specifically, domain engineering ensures that the activities of analysis, de-
sign and implementation of a products family are carried out thoroughly for
all members of the product, while application engineering ensures reuse of
the main components of the product family for the product members creation
[41].

2.6 Summary

In this chapter the theoretical aspects supporting the doctoral thesis were
presented. First, we have introduced the paradigm of SPL, their definition,
objective, benefits, and importance in software engineering. Given the impor-
tance of the concept of feature models, another section expanded on this key
concept in the software product lines development; we also introduced auto-
mated feature model analysis, recently identified as one of the most important
areas of software engineering.

Domain engineering and application engineering represent the main
phases of the development life cycle of SPL engineering; the first, focused on
establishing a reuse platform, while the second is related to the effective reuse
of assets in different products. In this review, a section outlining application
engineering is included, given its application in this doctoral thesis.

Chapter 3

Recommender systems

We generate fears while we sit. We overcome them by action.

Dr. Henry Link

A recommender system is defined as a system that provides users with
a series of suggestions in a personalized way according to their tastes

or preferences. In this chapter, the recommender systems are presented as a
strategy for the information management by users in software engineering.

58 Chapter 3. Recommender systems

3.1 Introduction

Today, a great deal of information (e.g., data, images, videos and docu-
ments) is shared in social media. This considerable growth gives rise to infor-
mation overload making the search for products or services by users complex.
This problem for users with the growing evolution of the Internet is present
in several areas, becoming a challenge both for researchers and software de-
velopers [99]. To mitigate this problem, websites have chosen to use recom-
mender systems (RS) to suggest specific information to users based on their
interests [6].

The study of the RS is at the crossroads of scientific and socioeconomic life
and its great potential was observed for the first time on the web during of
the information revolution. Although, originally it was a field dominated by
informatics scientists, recommendations requires contributions from diferents
areas and is now of interest also for mathematicians, physicists and psycholo-
gists [53].

Recommender systems are a set of tools and techniques to provide useful
and relevant recommendations to users to help them in the decision-making
process. Thus to choose the right products or services [4, 99]; they seek to
forecast the “qualification” or “choice” that a user would grant to an element
[79].

Historically, RS was part of the data mining and information filtering.
Later, in the 1990s, it was recognized as a full-fledged research area due to
a variety of practical applications and complex problems to solve [20]. The
term now has a broader approach and groups together any system that pro-
duces recommendations or has the effect of guiding the user in a personalized
way towards useful products or services within a variety of possible selection
options [26].

The purpose of the RS is to provide customized models by collecting user
activities to display results in accordance with their expressed preferences,
explicitly or implicitly [20]. Also, RS uses the input data to predict possible
additional tastes and interests of its users [62].

Recommender systems suggest to each user in a personalized manner
through previous preferences, current interests or a combination of methods
[74]. RS has become the background application of many electronic commerce
applications and information service providers; they help to resolve informa-
tion overload and provide adequate information in the era of today’s infor-
mation explosion. In its simple form, a RS adopts a unique approach and

3.2. Classification of recommender systems 59

recommends elements that have the greatest global significance.

The investigation of RS is increasingly important in e-commerce envi-
ronments. Currently, companies such as Amazon, Netflix, Launch, Google,
YouTube and Facebook are using and relying on RS to sell their products and
services through the recommendation of articles to users to obtain an increase
in revenue in short, medium and long term[20]. In a different context, RS is
also used in other application areas; for example, for the classification of med-
ical images into diseases. This scenario highlights the importance of RS by
opening up opportunities for the development of tools in new fields of appli-
cation.

The main basis for the RS operation are the algorithms implemented. The
algorithms for the RS have attracted the attention of the researchers due to
their practical application, most of these algorithms are based on the symme-
try measurement to filter information and recommendations for users. An-
other new trend is the use of statistical implications analysis in the RS, which
addresses the asymmetric influence of the user the problem, and solves the
evaluating occurrence or the functional relation the problem. The libraries
of known recommendation algorithms include: Apache Mahout†1, LensKit†2,
MyMediaLite†3 and RecSys†4.

Finally, among the most recent literature reviews that have had the RS,
applications on microblogs [96], television [99], and mobile telephony [74],
stand out among others. In [24, 25] several applications that use recommender
systems are described in detail.

3.2 Classification of recommender systems

The most common types of algorithms for the RS are those based on con-
tent and collaborative filtering [8]. Figure §3.1 illustrates the two main groups
of RS.

In addition to those mentioned above; other classifications include hybrid
approaches in the classification [4, 27, 53, 101]; while others, include, in addi-
tion, the approaches based on demographic data [25]. The choice of the model
depends on the explicit use of data for a “memory-based” recommendation,

†1Apache Mahout WebSite: https://mahout.apache.org/
†2LensKit WebSite: https://lenskit.org/
†3MyMediaLite WebSite: http://www.mymedialite.net/
†4RecSys WebSite: https://pypi.org/project/recsys/

60 Chapter 3. Recommender systems

Collaborative Filtering1 Content-based Filtering2

Similar items

Bought by the user

Similar users

Recommended to userBought by her, recommended to him

Bought by both users

Figure 3.1: General classification of recommender systems

or implicit application of the data through a generative model learned from
them “based on the model” [101].

3.2.1 Collaborative-based recommender systems

The systems based on collaborative filtering techniques [46, 51], also
known as personalized recommender systems, are based on the analysis of
user profiles, where recommendations are generated according to the tastes of
users with similar preferences. For example, on Netflix, a user who has rated
a series of movies could receive recommendations from other users who have
also rated the same movies in a similar way or at least a large part of them,
which we call a group of users with similar interests.

One of the main challenges of collaborative filtering systems is how to rec-
ommend to new or inexperienced users, which means, users who have never
used the system, so there is no record of their interests. The lack of experi-
ence of these users makes it difficult to find relevant results (similar users or
items) that fit their profiles. This case is defined in RS as Cold Start. Non-
personalized recommender systems have been introduced in the literature to
solve cold-start problems [90]. This recommendation technique calculates the
average rating (r̄pj) of each item (pj) from the users who have rated it (Upj)
(see Equation §3.1). Then, the best rated items are selected from Equation §3.2

3.2. Classification of recommender systems 61

to build the recommendation of the new user.

r̄pj ←
∑

ui∈Upj
rui

|Upj |
; j = 1..n (3.1)

Puk ← maxt(r̄pj) (3.2)

A most interesting case in the collaborative filtering scenario is to make
recommendations to users who have experience in the system, which means
that have issued some kind of ratings for used items, so the system uses the
records to find other users with similar interests. Next, we will describe two
collaborative-filtering techniques used to build recommendations to experi-
enced users.

3.2.1.1 Memory-based collaborative-filtering

Memory-based collaborative filtering algorithms [89] are characterized by
employing the entire matrix of ratings to generate predictions (i.e., estimate
how a user would rate each item). In these algorithms, each user is part of a
group of people with similar interests that is known as “neighborhood”. From
the identified neighborhoods, preferences can be combined to make predic-
tions. The most commonly used approaches in this category according to the
literature are the so-called neighbourhood-based collaborative filtering (kNN-
CF). KNN-CF algorithms [58] use statistical techniques to find neighbors with
a ratings record similar to the active user ratings (i.e., user for whom recom-
mendations are done). When the nearest neighbors are found, their prefer-
ences are combined to create a list of recommendations for an active user. Two
well known KNN-CF algorithms are: user-user KNN and item-item KNN.

• User-user KNN: This algorithm [49] uses the experience of other users
to build recommendations to an active user. The input of the system is
a matrix of ratings (M). Ratings are collected in advance by measuring
the relevance of the items by users. The similarity between users is es-
tablished by the Pearson Correlation Coefficient (PCC) [78]. In Equation
§3.3, we compute the similarity between an active user uk and any other
user of the system ui.

suk,ui =

∑
pεP(ruk,pj − r̄uk)(rui,pj − r̄ui)√∑

pεP(ruk,pj − r̄uk)
2
√∑

pεP(rui,p − r̄ui)
2

(3.3)

Where:

62 Chapter 3. Recommender systems

– suk,ui represents the similarity between the user k and the user i for
k 6= i.

– P is the set of items rated by users uk and ui.

– ruk,pj and rui,pj is the rating on the item pj issued by the user uk and
ui respectively.

– r̄uk and r̄ui is the average rating on all items also rated by uk and ui.

Once the similarity between the users is established, the algorithm uses
these results in Equation §3.4 to predict the relevance that the user uk
would give to those items p not yet rated.

ruk,p = r̄uk +

∑
u∈U(rui,p − r̄ui)Suk,ui∑

u∈U Suk,ui
(3.4)

Where:

– ruk,p is the possible rating that would give uk to the item p.

– Suk,ui is the similarity between users k and i (result of Equation
§3.3).

– U is the set of users (more) similar to uk. This set of users varies
depending on the user population. In this case the top-10 of the
best ratings has been used.

• Item-item KNN: This algorithm, unlike the previous one, generates the
recommendations based on the similarities between the items [89] rated
by an active user. The similarity between items is also calculated through
the PCC (i.e., similar to Equation §3.3). Equation §3.5 describes this pro-
cess:

spi,pj =

∑
uεU(ru,pi − r̄pi)(ru,pj − r̄pj)√∑

uεU(ru,pi − r̄pi)
2

√∑
uεU(ru,pj − r̄pj)

2
(3.5)

where:

– spi,pj determines the similarity between the items pi and pj.

– U is the set of all the users who have rated both the item pi and pj.

– ru,pi is the rating of user u on the item pi.

– r̄piis the average rating on the item pi.

3.2. Classification of recommender systems 63

Once the similarity between the items is established, the algorithm pre-
dicts the rating of the user uk for an item pi not yet rated, using the
Equation §3.6.

ruk,pi =

∑
pj∈P ruk,pjSpi,pj∑
pj∈P |Spi,pj |

(3.6)

Where:

– Spi,pj is the similarity between the items pi and pj (result of Equation
§3.4).

– P represents the set of items more similar to the item pi.

3.2.1.2 Model-based collaborative filtering

The ratings matrix is often very large and sparse. For this reason, model-
based collaborative filtering algorithms [89] use knowledge base reduction
techniques which aim to decompose the matrix into smaller ones, which re-
flect the common characteristics of the original matrix. These algorithms cre-
ate a model through which matrices of smaller dimensions are built. These
matrices represent the affinity degree between users and items. Thus, they
may allow the system to recognize patterns that may be hidden in the dataset.

Unlike the algorithms based on memory, model-based collaborative filter-
ing does not use the whole set of items and users to make predictions. Pre-
viously, it performs a pre- filtering process to create groups or user segments
based on their common interests. From these segments, it establishes the rec-
ommendations.

A representative algorithm in this group is the Matrix factorization (MF)
algorithm [48], characterized by decomposing the matrix of ratings in n sub-
matrices. This algorithm, according to the literature, is designed to process
large volumes of data, achieving good scalability, more accurate predictions
and flexibility in the model. An example of this type of algorithm is SVD.

• Singular Value Decomposition (SVD) This algorithm [88] decomposes
the rating matrix (M) into three matrices (U,V, S). The first one is an
orthogonal matrix Un×n that represents the relationships between users.
The second one is an orthogonal matrix Vtm×m that determines the rela-
tionships between the features. The third one is a diagonal matrix Sn×M
that establishes the relationship between both matrices.

64 Chapter 3. Recommender systems

To improve efficiency, the algorithm applies the Eckart-Young theo-
rem [21] that obtains an approximation with only k factors (k < n), so
that the matrices would remain as Un×k, Sk×k and Vtk×m, as it is shown in
Equation §3.7.

SVD(M1m×n) ' Um×k × Sk×k × VTk×n (3.7)

After this process, calculating the prediction of the user uk on the item p

is reduced by multiplying the k-th row vector of the matrixU (i.e.,U(uk))
with the matrix S and the p− th vector column of the matrix Vt, (Vt(p))
as shown in the Equation §3.8.

ruk, p = r̄uk +U(uk)× S× VT(p) (3.8)

Finally, although the collaborative filtering algorithms described use dif-
ferent equations to estimate the ratings (ruk,p) of an active user in a set of tar-
get items (see Equations §3.1, §3.4, §3.6, and §3.8), in all cases the best-rated k
components are selected to build the list of recommendations.

3.2.2 Content-based recommender systems

Content-based recommender systems [66] make recommendations based
on the characteristics of the items. Without the need to use information from
other users. They are generally used for information retrieval, such as search
engines. In this thesis, we use TF-IDF (Term frequency – Inverse document
frequency) algorithm to the SPL configuration domain.

• TF-IDF: This algorithm [67] is commonly used to perform customized
searches by internet search engines. It is characterized by being able to
find the local weight and the global weight in a collection of documents
that are being analyzed. The local weight is known as TF (Term Fre-
quency) and specifies the number of times a word is repeated within a
document; while the global weight, known as IDF (Inverse Document
Frequency), indicates the number of documents in which that word ap-
pears at least once. The number of TF and IDF occurrences for each
document determines the elements to recommend.

This algorithm use a user rating matrix M and a binary matrix N that
relates the items with their features. The vector vu describes the ratings
of each user and a binary vector vp determines the profile of each item p.
The vector vu represents the frequency in which each feature appears in

3.2. Classification of recommender systems 65

the item rated by the user u, and the vector vp determines the presence
or not of each characteristic in the items p (obtained by each row of the
matrix N). Vectors vu and vp have the same dimension, determined by
the number of features f in the matrix N.

Once we attributed the values to the vectors, the algorithm uses the TF-
IDF strategy to obtain a weight for each characteristic, penalizing those
that are not very similar and rewarding the most distinctive ones. Equa-
tion §3.9 presents the way to calculate the weighting of each feature fi.

wfi = F(fi, uk).log

(
n

IF(fi)

)
(3.9)

Where F(fi, uk) represents the frequency which the characteristic fi ap-
pears in the items rated by the user uk and represents IF(fi) the inverse
frequency or number of times the same characteristic appears but in the
items that have not yet been rated by uk.

Then, to recommend items to the user uk, the algorithm calculates the co-
sine similarity (see Equation§3.10) between the user profile (vuk) and the
profile of the items not rated by the user (vp, p ∈ P). In this computation,
we use the weight vector calculated according to Equation §3.9.

Scos(vuk , vp, w) =

∑t
i=1 vuk(i) ∗ vp(i) ∗w(i)√∑t

i=1(vuk(i))
2 ∗
√∑t

i=1(vp(i))
2

(3.10)

Finally, the algorithm recommends the k items with higher similarity with the
user.

3.2.3 Hybrid approaches

This type of algorithm combines collaboration methods with those based
on the content or with different variants of other collaboration methods. Hy-
brid filtering is commonly used in combination with demographic filtering or
content-based filtering to exploit of each of these techniques; specifically, it is
based on probabilistic methods such as genetic algorithms, diffuse genetics,
neural networks, Bayesian networks, clustering and latent characteristics [25].

66 Chapter 3. Recommender systems

3.2.3.1 Approach based on demographic data

This algorithm is characterized by establishing recommendations based on
the criterion that people with certain common personal attributes (e.g. sex,
age, country, among others.) will also have common preferences [25].

3.3 Evaluation metrics for recommender systems

To assess the performance of the recommendations, there are many indica-
tors and their choice depends on the system objectives, and it is determined by
the judgment of their users [53]. Initially, most of the RS have been evaluated
and classified according to their predictive power, their ability to accurately
predict the user’s options; however, it is now widely accepted that, precise
predictions are crucial but insufficient to implement a good recommender en-
gine [95]. Figure §3.2, shows the importance of the evaluation process within
the RS.

Collect user's behaviors Recommender systems
model/algorithm

Sorting and
recommendation of items

Context

Evaluating of
Recommender Systems

Users

Figure 3.2: Scheme for the design and evaluation of recommender sys-
tems(from [27])

Although the core aspect of the RS is the algorithm, the evaluation of the
performance of said algorithm is basic for its selection. In general, a new rec-
ommender system must complete the performance evaluation of three stages
before its final release: off-line analysis, user study and online experiment [27].

To determine RS performance and compare results, commonly used indi-
cators, metrics, or statistics used in other contexts are used that are useful in
software engineering. These indicators include the following: Mean Abso-
lute Error (MAE), and Root Mean Squared Error (RMSE), precision metrics
that measure the closeness of predicted ratings to actual ratings; the Pear-
son product-moment correlation (PCC), the Spearman Correlation Coefficient

3.3. Evaluation metrics for recommender systems 67

(SCC), the Kendall’s Tau coefficient, the Normalized distance-based perfor-
mance measure (NDPM), the Area Under ROC Curve (AUC), among others.

Root Mean Squared Error (RMSE), is a very used indicator to qualify an
algorithm (Rating accuracy metrics). RMSE is ideal for the prediction task be-
cause it measures inaccuracies in all grades whether positive or negative. Low
values of RMSE correspond to better predictions in precision. Other metrics
derived from this group are: Mean Square Error (MSE), Mean Average Error
(MAE), and Normalized Mean Error (NMAE). Unlike NMAE that normalizes
the MAE according to the range of ratings to facilitate comparison of errors
between domains, RMSE penalizes errors much more than other evaluation
metrics.

Another way to assess precision of recommendations is to calculate the
correlation between true ratings and system predictions (Rating and rank-
ing correlations). For this purpose, Pearson’s product-moment correlation
(PCC), Spearman’s correlation coefficient (SCC), and Kendall’s Tau coefficient
are used, which measure the degree to which a linear relationship is present
between the two sets of qualifications.

Metrics have also been proposed for cases where only implicit ratings are
available. In this case, the (Classification accuracy metrics) specially created
for tasks such as “Finding good objects” appear. A well-known metric for
evaluating this type of system is Area Under the Curve (AUC), which aims
to measure the ability of an RS to distinguish relevant objects or objects of
interest to users from irrelevant ones.

For the RS performance evaluation, the metrics can also be classified ac-
cording to different perspectives [27]:

i. Perspective of machine learning, which includes MAE, MSE and RMSE.

ii. Perspective of information retrieval, which includes the Precision mea-
surements, the average precision (Mean Average Precision, MAP), the
ROC curve (Receiver Operating Characteristic), the average Reciprocal
Range (Mean Reciprocal Rank, MRR), the Spearman rank correlation co-
efficient (SRCC), the standardized discounted cumulative gain (nDCG),
and, the Coverage.

iii. Perspective of human-computer interaction and user experiences, which
includes Diversity, Confidence, Novelty, and, Euphoria (Serendipity).

iv. Perspective of software engineering, which includes Real Time, Robust-
ness and Scalability.

68 Chapter 3. Recommender systems

Perspectives Indicators Evaluation Content Methods

Machine Learning
MAE

MSE

RMSE

Prediction Accuracy Offline analytics

Precision

Recall

F-measure

ROC

Precision of Recommendations Offline analytics

MAP

MRR

SRCC

nDCG

Ranking precision of

recommended items
Offline analytics

Information Retrieval

Coverage Coverage of users or items Offline analytics

Diversity Diversity of recommended items Offline analytic or

User study

Trust User trust on the recommender

systems

Novelty Novelty of recommended items

Human-computer interaction
and user experience

Serendipity Serendipity of recommended items

User study

Real-time Real-time performance of

recommender systems

User study or online

experiment

Robustness Robustness of recommender

systemsSoftware Engineering

Scalability Scalability of recommender

systems

Online experiment

Table 3.1: Metrics and methods for evaluating the performance of recom-
mender systems (from [27])

Table §3.1 presents a summary of the perspectives, metrics and methods to
evaluate the recommender systems performance.

3.4 Summary

In this chapter we have presented the main concepts and classifications of
the RS deepened in this thesis. Specifically, we explore the techniques em-
ployed by collaborative-based and content-based RS. In addition, the metrics
used to evaluate the validity of the recommendations.

Part III

Contributions

Chapter 4

Motivation

Difficult and meaningful will always bring more satisfaction than easy and meaningless.

Maxime Lagacé

R ecently, products configuration using automation mechanisms has been
one of the most relevant research areas software products line field.

However, current solutions are not practical enough to deal with the common
problems the software engineer faces when models grow exponentially.

In this chapter, we present some of the problems that motivate the search
for new solutions and sustain our contributions. Section §4.1 describes the
problems that develop around the configuration of products in an SPL; later
in Section §4.2 we analyze the current proposals in the automated analysis of
features models field based on two layers and the recommender systems ap-
plied to an SPL. Then, in Section §4.3, we summarize all the proposals and
compare them with our contributions, emphasizing the advantages they pro-
vide and the need to implement them. Finally, we summarize the chapter in
Section §4.4.

72 Chapter 4. Motivation

4.1 Introduction

Software product lines has had a strong impact in recent years, which has
led to different investigations and practical experiences from the industry.

One of the main challenges the software product lines is the AAFM, where
there is an important weakness that has not yet been completely resolved. For
example, we find few solutions that allow linking two feature models and
cover the problems that arise when working with models in multiple layers;
that is, when we have features that interrelate with more than one model.
Also, we find the lack of automation techniques for the selection of implemen-
tation components for the correct products configuration given the variability
of components that may exist in an ecosystem to implement a certain feature.

In this context, as we mentioned in Chapter §2, there are several proposals
aimed at supporting automation processes with different approaches; how-
ever, none of them seems to be adequate enough to solve the automation prob-
lems described above, due to the following reasons:

i. None of the proposals analyzes the features interaction through layers
of different granularity (platform layer and application layer).

ii. There are no tools that facilitate interaction in multilayer models to pre-
vent the changes of certain features from affecting the related layer.

iii. So far, none of the proposals have presented an approach to facilitate the
implementation of features given the amount of components that may
exist to implement them.

iv. None of the proposals present configurators for the implementation
components selection in an SPL.

Therefore, we focused on developing new proposals and automation tools
that cover the demand in this field of the SPL and which constitute the main
motivation of this thesis. In the literature we review some of the proposals that
motivate this work and support the contributions that presented in Chapters
§5, §6.

4.2 Analysis of current solutions

In this section we present different approaches and analyze the research
gaps.

4.2. Analysis of current solutions 73

4.2.1 Product line engineering

Back in 1990, the FODA (Feature-Oriented Domain Analysis) feasibility
study by Kang et al. [42] introduced the feature modeling concept, which re-
mained as one of the major research areas in product line engineering since
then.

Feature models were used in a variety of scenarios [15], including model-
driven development, feature-oriented programming, software factories or
generative programming [29]. However, there are no proposals to explicitly
model the interrelationships between the features in different layers, and to
draw conclusions from top to bottom and from bottom to top (for example,
what is the impact of a change of platform in an existing application).

An extended work by Kang et al. was the Feature-Oriented Reuse Method
(FORM) [43], which already recognized the importance of different granular-
ity levels. Each feature therein pertains to one of four layers (capability layer,
operating environment layer, domain technology layer, implementation tech-
nique layer), and features across layers could be connected using implemented
by relations.

The contribution we present in Chapter §5 is similar to this categorization
given its different layers of FMs and focuses mainly on the relationships be-
tween the platform and implementation layers, to the point that, the useful
consequences analysis of the features selection of the application layer or the
platform (in both directions) is possible.

Galindo et al. [35] propose a framework to configure multi product lines
(i.e., multiple product lines from possibly different suppliers and potentially
different notations). To connect these models, they define similar inter-model
dependencies. While this highlights the importance of dependencies across
models, their focus is quite different as the goal is to support the end-user
product configuration (spanning multiple product lines), while our approach
aims at analyzing the feature interaction across layers of different granularity
(which for instance requires sophisticated relations for meaningful results).

4.2.2 Feature interaction

In the early 1990s, feature interaction was acknowledged as a problem
in the telecommunication domain, characterizing positive and, more impor-
tantly, negative side effects when introducing new features into an existing
base system. It was then discovered that the basic problem of feature interac-

74 Chapter 4. Motivation

tion spans across a lot more disciplines, including software engineering [23].

Previous work has studied this problem in mobile phones. A case study
on Nokia phones [52] tried to model feature interaction using Coloured Petri
Nets, but focused on interactions with the user interface of the phones. Op-
posed to that, including the platform layer is central in our contribution.

A simple feature model of a mobile phone was depicted in [15]—although
it demonstrated an example of feature interaction (a camera requiring a high
resolution screen), its sole purpose (unlike ours) was to illustrate a sample
feature model, but not to investigate the dependencies of the mobile phone’s
features.

4.2.3 Model-driven architecture

Lack of portability due to technical revolution and changing requirements
is one of the main problems of software development for consumer devices.
MDA [64] has been proposed by OMG as a means to tackle these issues. MDA
relates to our work in a way that our proposed two-layered models from
Chapter §5 show a certain similarity to MDA’s separation of concerns—note
the resemblance of our top layer for application functionality to the concept of
Platform-independent models (PIM) in MDA. Analogously, the bottom layer
for platform components resembles a Platform-specific model (PSM). While
the aim of applying MDA is often to generate code, we want to reason about
software and platform evolution impacts on both layers—which could be ben-
eficial knowledge when it comes to targeting platforms in MDA.

To analyze problems from a bottom-up perspective (e.g., what is the impact
on application features due to a platform change), Architecture-Driven Mod-
ernization (ADM) is a related field [65], as it is concerned with modernization
of existing software solutions.

4.2.4 Customization techniques in software product lines

There are several works in the literature that uses recommender techniques
to support the SPL configuration process. These studies address configura-
tion from different perspectives and contexts, such as, feature model structural
properties [8, 37, 68, 70, 86] in which the use of recommendation techniques
and variability testing techniques for the selection and prioritization of con-
figurations are proposed, and also could be used on different use cases in a
particular scenario; and quality attributes [36, 69, 72, 73] that aim to use con-

4.3. Discussion 75

textual information of the features to select optimal configurations and offer a
more personalized product to the user.

These studies do not investigate the components selection specific scenario
to implement features in an SPL, as shown in our second contribution in Chap-
ter §6. As a consequence, it can be concluded that, in product configuration
environments, there are no effective solutions to efficiently assist in the task of
finding suitable components to implement features using recommender sys-
tems.

4.3 Discussion

In this section, we summarize some proposals that relate directly to the
problems presented in the previous section and motivate the contributions
presented in this thesis.

4.3.1 Automated analysis of two-layered feature models

To complement this chapter, we present some related proposals our first
contribution called MAYA shown in Chapter §5. Table §4.2 summarizes some
of the main characteristics of our two-layered FMs proposal and compare
them with others.

Papers Models Layers Attributes O1 O2 O3 O4 Other operations Tool Evaluation

VFD+[59] FM/OVM

Feature Trees[77] FM

CVM[1] FM

VELVET[83] FM

SPL Workflow[2] FM

FAMILIAR[3] FM

VeAnalyzer[92] FM

Invar[35] FM

Clafer[10] FM/CM

SPLAnE [61] FM

MAYA FM

Table 4.1: MAYA vs. other proposals

The Papers column in Table §4.2 shows some of the works that are directly
related to our first proposal.

76 Chapter 4. Motivation

The Models column in Table §4.2 indicates the type of model used by the
proposals, unlike [59] that uses FMs together with orthogonal variability mod-
els, and [10] that unifies FMs with class models; all of the proposals use FMs
as the main basis of the work.

The Layers column in Table §4.2 indicates the if the proposal support layers
or not. Only [3] and [2] propose an architecture that, although it is not formally
defined in the work, we have considered as two layers as it clearly distinguish
two levels: the upper level destined to the requirements of the users and the
lower level corresponding to the logic of operations. In any case, only MAYA
uses a well-defined architecture based on two layers (see Section §??).

The Attributes column in Table §4.2 indicates whether the proposal uses
quality attributes. We note that in addition to MAYA, [77], [3] and [10] ful-
fill this characteristic. Although it is true that the aforementioned proposals
use attributes at a certain moment, only MAYA takes full advantage of the
attributes to perform the integration of feature models between the layers.

Columns [O1 - O4] of Table §4.2 show the analysis operations implemented
in our proposal for managing twolayersfeaturemodels.

The column O1 refers to the “Platform Capability Analysis” operation in-
cluded in MAYA. Analyzing each of the proposals, we can say that all of them
make use of analysis operations that, in addition to allowing the integration of
large-scale models. This enables new variability management operations not
previously defined.

The column O2 refers to the operation of MAYA “Platform Compatibility
Analysis”. Here, we find that the proposal presented in [35] allows easy adap-
tation with modeling techniques and notations of other existing tools. On the
other hand, in the proposal [61], an analysis is done on the models to ensure
that they are compatible with all the specifications given by the user, with
which we would say that both proposals include analysis operations for plat-
form compatibility. The other proposals do not include operations that allow
this analysis process.

The column O3 and the column O4 refer to the operations of MAYA “Ap-
plication Functionality Potential Analysis” and “Platform Migration Analy-
sis” respectively. In this group, none of the proposals include analysis op-
erations that allow easy integration of models or the ability to cope with the
changes that a feature may have without affecting the related models. On
the other hand, it is also not evident that the proposals presented include op-
erations that allow the handling of conflicts that arise due to changes in the
configurations of the models, and how to control that the change of one does

4.3. Discussion 77

not affect the other or vice versa. In this sense, MAYA is a pioneer in including
this type of analysis operations.

The Tool column in Table §4.2 indicates whether the proposal implements a
tool as part of the contribution. All the proposals present a tool for the analysis
of feature models in different layers. However, MAYA is the only tool that was
implemented using a well-defined and structured scheme based on layers.

Finally, the Evaluation column in Table §4.2 indicates whether the proposal
has been validated using case studies. Almost all the proposals include an
evaluation, some of them carried out in the business sector such as [3], [2], [60],
[77] and [1]. Although it is true that the proposals mentioned took real data
provided by companies, none had direct participation during the evaluation
process. MAYA, on the other hand, was evaluated in a real environment as
one of the authors worked directly on projects with the companies where the
case studies were carried out.

4.3.2 Recommender systems in SPL

In this section we compare our second proposal called RESDEC shown in
Chapter §6, with existing literature. In Table §4.2 we summarize the main
characteristics of our contribution and compare them with other proposals

Papers Features Implementation Components Collaborative Content Algorithms Tool

Galindo et al. [36] 3

Al-Hajjaji et al. [5] 3

Mazo et al. [56] 6

Martinez et al. [55] 1

Pereira et al. [8] 3

Pereira et al. [73] 4

Pereira et al. [69] 4

Pereira et al. [72] 1

RESDEC 5

Table 4.2: RESDEC vs. others proposals

The column Papers of Table §4.2 shows some works directly related to our
proposal. First, we will review in the literature proposals based on the selec-
tion of configurations, then, address works related to recommender systems
applied in an SPL. All proposals presented use feature models.

The Features and Implementation Components columns in Table §4.2 in-
dicate whether the cited works employ features and implementation compo-

78 Chapter 4. Motivation

nents in their proposals. As it is observed, only the proposals presented by
Galindo et al. [36], Al-Hajjaji et al. [5] and Pereira et al. [8, 69, 72, 73] make
use of features. On the other hand, none of the proposals use implementation
components.

In the Collaborative and Content columns of Table §4.2 we refer to the rec-
ommendation algorithms we have used in RESDEC, with which we determine
whether the proposals presented use some of them in the configuration selec-
tion process; while the Algorithms column indicates the number of algorithms
implemented.

To learn more about the proposals presented in this section, we briefly an-
alyze each one of them.

In the work presented by Galindo et al. [36] the authors present a solution
to prioritize configurations for testing based on value attributes, in this case
the cost of testing. The proposal incorporates a prototype tool that processes a
set of configuration rules for an SPL, given by the developer, through the use
of cost and value functions. The proposal does not use any recommendation
technique nor does it have a dataset with historical data, since the information
it processes is generated manually and is not constantly updated.

Al-Hajjaji et al. [5] presents a proposal to prioritize configurations based on
the similarity between one or more configurations. The hypothesis handled
by the proposal supposes that, if a configuration presents some failure, it is
probable that the similar ones also have it, having as a result more possibilities
to quickly detect errors.

The techniques used to prioritize configurations according to similarity are
not based on algorithms commonly used in recommender systems. On the
other hand, the data used in the solution is derived from a model that is pre-
viously generated manually; that is to say, like the previous proposal, there is
no mechanism that generates and automatically updates the information that
is processed.

The work of Mazo et al. [56] presents a proposal that through a collection
of heuristics and using programming with restrictions, seeks to improve the
process of configuring a product to reduce the number of steps and the time
to prove the validity of the product line. This work is the first one that intro-
duces short-term recommendation techniques since it uses six algorithms to
solve each of the presented heuristics. However, it is not determined whether
the information shown to the user for the configuration of a product is actually
known or useful, or based on the experience of other users in similar configu-
ration processes, for example, which questions whether the final configuration

4.3. Discussion 79

of the product will satisfy the user’s requirements.

In the proposal of Martinez et al. [55] the authors propose the use of an
interactive genetic algorithm for the selection of a relevant set of configura-
tions for users. The proposal uses a dataset with information of configura-
tions valued by users that is exploited by data mining techniques. Although it
is true that the proposal contains all the elements that a recommendation sys-
tem needs (users, items and ratings), the way how the algorithm operates in its
entirety is not presented in detail. By the use of the genetic algorithm and the
information that is used we could say that we are employing recommendation
techniques based on collaborative filtering.

In the work of Pereira et al. [8] the authors present the first proposal in
which a well-structured recommender system is used to configure products in
an SPL. The proposed solution involves the user throughout the product con-
figuration stage guiding the selection of features that best suit their require-
ments. However, the information presented to users for the configuration of
the product does not come directly from criteria given by users in the past;
that is, the features shown for the configuration do not have an indicator that
determines if those features have been evaluated positively or negatively by
the users, which makes it difficult to determine if a selected feature has been
implemented successfully in past configurations.

Following the same approach as in the previous proposal, Pereira et al. [69]
show an extension of the work presented in [70] in which it is present a tool
that improves the visualization aspects for the configuration of products in an
SPL by means of a recommender system based on non- functional properties
(NFPs) of the features. The objective of the proposal is to ensure the consis-
tency of the configured products and reduce the effort of those responsible for
the configuration thereof.

The same authors in the work [73] present a solution that uses a recom-
mender system to predict the features during the configuration of products
using contextual information of the users, specifically, the requirements that
the users define for a product. In the first proposal the user defines the re-
quirements of the product to be configured, then the system performs a search
to include historical data based on the specified requirements. Later, it cre-
ates a list of features that help the user to identify those features relevant for
the configuration of the product and finally, the system checks the integrity of
the configuration verifying if there are some undefined features. In case the
system finds a partial configuration, it predicts the features for said configura-
tion, complements it and shows them to the user, thus improving the general
quality of the recommendation.

80 Chapter 4. Motivation

Finally, in the work [72] a new proposal for the configuration of products is
presented based on a recommender system that uses contextual information
of the users. In this case, new analysis dimensions are introduced, which go
beyond the two typical dimensions, users and items, which are usually used
by a recommender system. For this purpose, the authors introduce the tech-
nique of collaborative filtering Tensor Factorization (TF) [44] to automatically
prioritize the features and auto-configure the SPL at execution time accord-
ing to the contextual information that it originates around users and improve
performance in the process of configuring a product.

All the proposals of Pereira et al. which have been mentioned above, em-
ploy a well-structured recommender system whose main elements are users,
items and ratings. In addition, they make use of a historical knowledge base
that is constantly updated. However, it can be perceived that the obtained
ratings do not come from opinions that common users would give to a con-
figuration of a product (such as errors during operation, poor design, among
others). On the contrary, the information that is used is probably collected
from the opinions of expert users, since common users could not accurately
evaluate technical aspects related to the configuration of a product. On the
other hand, the proposals only use collaborative-based recommender systems
and focus exclusively on the configuration of products, leaving aside the com-
ponents that implement the features during the configuration of an SPL.

Comparing the works described above with RESDEC, based on the char-
acteristics of columns [4-7] of Table §4.2, we can say that one of the main ad-
vantages of our proposal is the use of a knowledge base that feeds of informa-
tion that comes from the experience that ordinary users have had when using
products in an SPL domain. Specifically, in our proposal this information is
represented by the ratings that users have made about the components used
to implement features in the configuration of a product. We believe that it
is more feasible and real, to obtain user evaluations about the implementa-
tion components, rather than the features of the product; since as mentioned
before, a common user would not have the experience to evaluate technical
aspects related to a product.

The column “Tool” in Table §4.2 indicates whether the proposals include
some prototype tool as part of contributions. All the proposals, except those
presented by Pereira et al. [72, 73], propose a tool for configuring products in
an SPL. However, RESDEC is the only tool that has been implemented using
a well-defined scheme of recommender systems; and besides, it is the only
one that incorporates a set of algorithms that are executed in three different
scenarios that validate the platform’s capacity in terms of operationalization
and scalability.

4.4. Summary 81

Finally, all proposals include an evaluation with information obtained from
various business sectors.

4.4 Summary

In this chapter we have reviewed some of the proposals that address the
problems during the products configuration in an SPL. According to the re-
sults of analysis carried out in Section §4.3.1, we conclude that our first contri-
bution is the only one that incorporates a set of options that validate analysis
capacity in terms of operationalization, and considers aspects such as migra-
tion, support and the potential to solve problems when there are changes in
the definition of models of two-layered features.

In addition, from the analysis results we have presented in Section §4.3.2
about the automation of configuration processes in an SPL, we conclude that
our second contribution is the first to introduce the concept of component-
based recommender systems, in the features configuration of a product
based on the selection of optimal components, using collaborative-based and
content-based filtering techniques.

As seen, none of the proposals found in the literature manages to address
all the problems at once. This justifies the originality of our contributions and
contributes with the state of the art for future research.

82 Chapter 4. Motivation

Chapter 5

Automated analysis of two-layered
feature models

If I don’t know one thing, I’ll look into it.

Louis Pasteur

T he proliferation of features and platforms in variability intensive sys-
tems, coupled with substantial technological progress, imposes several

challenges for software developers and equipment manufacturers—in some
cases referred as technical sustainability. For instance, in the mobile applica-
tion domain, developers often need to know the requirements and limitations
of their applications to be supported on a specific platform. Conversely, an
equipment manufacturer is interested in knowing what additional features
become accessible on the application layer when the hardware or platform
is being upgraded. To date, analyzing such interdependencies between spe-
cific feature and platform combinations is a tough problem, but important
to solve. There are well-established approaches in the literature to analyze
variability–intensive systems using feature models. However, there is a lack
of approaches to analyze application and platform features in multiple lay-
ers.†1

†1Part of this chapter is published in the Journal of Visual Languages and Computing [50].
We have the agreement of all the authors to include the corresponding text as part of this
manuscript.

84 Chapter 5. Automated analysis of two-layered feature models

Chapter 6

Implementation components
selection using recommender

systems

Everything seems impossible until it’s done.

Nelson Mandela

I n a Software Products Line (SPL) there may be features that can be im-
plemented by different components, which means, that we have different

implementations for the same feature. In this context, the selection of the best
set of components to implement a given configuration is a challenging task
given the high number of combinations and options that could be selected. In
certain scenarios, it is possible to find information associated with the com-
ponents that could help in this selection task, such as user ratings and perfor-
mance. We introduce a component-based recommender system, called RES-
DEC (REcommender System that from selecteD fEatures suggest implementa-
tion Components), that uses information associated with the implementation
components to make recommendations in the domain of SPL configuration. †1

†1Part of this chapter is in press in the IEEE Access Journal [80]. We have the agreement of
all the authors to include the corresponding text as part of this manuscript.

86 Chapter 6. Implementation components selection using recommender
systems

Part IV

Validation

Chapter 7

MAYA: Putting variability at the
application and systems level.

The greater the effort, the greater the glory.

Pierre Corneille

I n a world where hardware frequently outpaces software in terms of in-
novation and speed up (which holds especially true for mobile phones

and consumer electronics in general), a mechanism to understand the impact
of these frequent technology changes on existing software is desirable. At the
same time, new types of applications are enabled due to new or improved
hardware components. It is equally interesting to see whether certain types
of applications can be implemented on existing hardware, and to understand
the limitations why some applications may not be realizable (e.g., the platform
version in use doesn’t support a feature yet). In this chapter, we present an
empirical evaluation of MAYA approach using case studies on two real world
subjects. Finally, we show how MAYA could improve the state of the art in
managing the evolution of applications and platforms in the field of mobile
phone application development.†1

†1Part of this chapter is in press in the Journal of Visual Languages and Computing [50].
We have the agreement of all the authors to include the corresponding text as part of this
manuscript.

90 Chapter 7. MAYA: Putting variability at the application and systems level.

Chapter 8

RESDEC: Using recommender
systems for SPL components

selection

We may encounter many defeats but we must not be defeated.

Maya Angelou

D evelopers and configurators that creates WordPress sites face the
challenge of choosing the plugins that are best suites for their needs.

In this chapter, we present an empirical evaluation of RESDEC approach
in an scenario of e-commerce website using WordPress. The evaluation is
based on data from 116,000 users, 680 plugins, and 187,000 ratings, with
a total of n independent runs of the experiment. Our experiments show
that a content-based recommender algorithm produces more accurate predic-
tions than collaborative-based recommender algorithms to support the SPL
component-based configuration. Results show promising values with a mar-
gin of error of less than 15% according to our evaluation.

In addition, we introduced a prototype of a component-based recom-
mender system tool ready to use and extend to other environments where
it is necessary to configure the features of a product from the selection of im-
plementation components.†1

†1This chapter is based in [80] and part of this material is published in IEEE Access journal.
We have the agreement of all the authors to include the corresponding text as part of this
manuscript.

92 Chapter 8. RESDEC: Using recommender systems for SPL components
selection

Part V

Final Remarks

Chapter 9

Conclusions and future work

You get your wind back, remember the finish line, and keep going.

Steve Jobs

9.1 Conclusions

In this dissertation, we have presented a set of algorithms, techniques and
tools to support products configuration in an SPL. These contributions are the
result of the application of intelligent techniques explored in new implemen-
tation scenarios, such as in two-layer feature model to study the dependence
of both; and, in the selection of implementation components to configure the
features of a product.

Our main results were the development of two prototypes of tools to ad-
dress the contributions described above. MAYA that through a set of oper-
ations allows to manage the dependence and the changes that can arise in
the features of a two-layer model (application layer and platform layer), and
RESDEC that was designed to help the software engineer in the selection of
components.

Specifically, in this dissertation we have shown that:

Connecting two-layer feature models for the top layer (comprising ap-
plication functionality) and bottom layer (including platform components)
using relationships between trees allows to study the consequences of
changes in one layer on the other and determine possible problems that
may occur when working with different SPL products.

96 Chapter 9. Conclusions and future work

When it comes to platform and design decisions, both developers and
handset manufacturers could profit from such a model, because potential
problems and incompatibilities can be identified at a very early development
stage. Furthermore, such an instrument can be used to discuss design deci-
sions with marketing and other involved stakeholders who might not have
detailed technical knowledge.

The first objective of this dissertation was to provide two complex feature
models for the respective layers, as a prerequisite for further research. We
identified the required type of inter-tree relationships and how they are com-
pared to well-known cross-tree relationships.

Specifically the operations: (O1) platform capability analysis, that focus on
identifies the minimally required platform features; (O2) platform compati-
bility analysis, that is focus on compare the required platform features for a
specific application and determine their (in-)compatibility level; (O3) appli-
cation functionality potential analysis, that focus on find the corresponding
application features that are enabled by a certain platform, and; (O4) platform
migration analysis potential, that focus on conflicts of a platform migration
and how are existing application features affected by exchanging the underly-
ing platform; set the stage for further analysis.

A prototype implementation in Section §?? on Chapter §7 was used to
demonstrate the validity of the proposed approach.

The selection of optimal implementation components for the configura-
tion of an SPL through the use of recommender systems will help the soft-
ware engineer to make decisions in a more timely manner, saving time and
available resources.

Normally, a software developer searches manually those components that
are feasible and most suitable to a certain application. This task takes time and
does not always guarantee that the selected components are the most adequate
(in terms of quality) for the required application. To the best of our knowledge
in configurable development environments, there are no effective solutions to
efficiently assist the developer in the task of finding suitable implementation
components for its application.

Consequently, the impact of implementation components selection in an
SPL configuration is a costly and error-prone activity due to the large number
possible components that could be selected to implement a feature.

The second objective of this dissertation was the use of explicit user-
generated information about implementation components, specifically ratings
made to the components according to their experience of use. For this pur-

9.2. Future work 97

pose, we have used collaborative-based and content-based recommender sys-
tems, which are executed in three scenarios where the software engineer usu-
ally faces problems when products configuration.

The first scenario called Cold start that recommends components when
there is no information associated with the user profile, that is, when the user
has not had experience and for the first time is going to configure a product.
The second scenario called Recommendations of implementation components
based on ratings, which, based on the components linked to the user pro-
file, recommends components that other users have used in past configura-
tions. Finally, the scenario Recommendations of implementation components
based on features, which recommends implementation components based on
the features of the components associated with the user profile, that is, in the
descriptive information of the components.

The modeling of the problem for the implementation components selec-
tion using collaborative-based and content-based recommender systems algo-
rithms and the design of a prototype tool for RESDEC are the new contribu-
tions of this dissertation. The results obtained in the evaluation (see Chap-
ter §8) carried out using a WordPress dataset show that RESDEC is capable
of making recommendations on implementation components with an error
lower than 13%.

This dissertation present results to support the configuration of implemen-
tation components in the domain of SPL. Moreover, this contribution could
be also applied to other environments that face similar problems, such as, the
selection of deployment environments for mobile applications.

9.2 Future work

In this section we show the future work that arises from the contributions
presented in this dissertation and that are necessary to cover all the research
related to the current trends in automated analysis applied to the configura-
tion of an SPL. It is divided into two areas: first shows the future work derived
from the use of multiple layers in feature models; and the second, in the im-
plementation components selection to configure an SPL.

98 Chapter 9. Conclusions and future work

9.2.1 Two-layered feature models

In this dissertation we have addressed the use of two-layered feature mod-
els through the use of computer-assisted mechanisms to manage them. How-
ever, there are some unresolved problems that we intend to address in the
future. Here are some of the proposed challenges:

Extending the operation catalogue.- While we propose four operations in
the contributions shown in Chapter §5 of this dissertation, there are others
open for extension. For instance, a possible new operation would be to ask for
the minimally required platform version to support a particular application.
However, this would require to take into account model versioning that is a
feature not supported in our current proposal. Also, we can imagine opera-
tions that instead of retrieving a configuration work over the inter-tree rela-
tionships and analyze them looking for inconstancies or errors.

Graphical frontend for analysis input/output.- As mentioned in Chapter
§7 of this dissertation, for our prototypical implementation we do not employ
tool support for product configuration of the input, nor is there a graphical
representation of the analysis output. There is ongoing work†1 to integrate
FaMa toolsuite with various modeling tools (e.g., MOSKitt, pure::variants).
While these tools help to model each layer individually, we plan an exten-
sion that supports configuration on both layers concurrently, e.g. by combin-
ing them in a graphical frontend. Providing support for the complex task of
defining mappings is very important [38]. At the same time, such assistance
also ensures the integrity of the inter-tree relations, as only valid features and
relation types can be selected.

Presenting the output in a visual format, similar to the figures in Section
§??, will be another beneficial extension. The different colors to reflect the
meanings of the different output categories (e.g., a conflicting feature), will
help the user to easily understand the impact of his operation. It is envisioned
to be implemented in a way that by just hovering over single features, the
respective feature(s) on the connected layer can be highlighted, giving the user
a real-time feedback upon (de-)selection of a feature.

Analysis with a unified feature model.- As mentioned in Section §??, pro-
posal shown in Chapter §5 of this dissertation was designed to work exclu-
sively with two-layer models since in a real environment there are different
practitioners that make hardware and software, where each layer evolves in
a different way[35]. Having the platform and application layers separate en-
ables us to control the changes that may occur in the applications when they

†1http://www.isa.us.es/fama/?FaMa Current Projects

9.2. Future work 99

update or when they migrate to different platforms without affecting their
performance.

However, in the future we could evaluate the integration of the two layers
in a single feature model where the hardware and software layers would be
represented by two mandatory sub-features. In this way, we would show how
a change in one feature in the software can affect the hardware or vice versa
and how these variations could be managed in both scenarios to determine
which responds better to the transitions that feature models can experience.

More-than-two layers.- In this dissertation we have proposed a framework
relying on two levels abstraction. However, we envision that there might be
scenarios where having more than two levels is interesting. In future work,
we plan to extend this framework to support as many levels of feature models
required in the same spirit as in other domains such as in DSLs [84].

Operation formalization.- In the past, we have already formalized several
FMs operations [32] for single model scenarios. We plan to perform the same
formalization for the operations shown in Chapter §5 considering more than
one model in future work.

9.2.2 Implementation components selection

In this dissertation we have approached computer-assisted automation
techniques based on recommender algorithms for implementation compo-
nents selection that help the customization and optimization of SPL products.
However, there are still some challenges to be solved:

Recommendations using implicit information.- In the contribution pre-
sented in Chapter §6 shown in this dissertation, we have only considered rec-
ommender techniques that take into account explicit information of the users
(i.e., ratings). As future work, we aim to include implicit information from
events defined indirectly by the user, such as, number of clicks, number of
views, etc.

For example, in addition to including user ratings on the plugins, we could
also include implicit information as the number of downloads, number of
views and versions of the plugins. Information that would allow the recom-
mender system to work in a more personalized way. In the literature, there
are several recommender algorithms that use implicit information to make
the recommendations [47, 79]. Our future aim is to adapt this algorithms to
enrich the recommendations of implementation components in the domain of
SPL configuration.

100 Chapter 9. Conclusions and future work

Recommendations using of contextual information.- We aim at recom-
mending components based on contextual information derived from the
users, features and configurations by adapting the algorithms proposed in
Pereira et al. [71] and which can be processed according to the RESDEC com-
ponents presented in Figure §?? of Chapter §6.

The objective that we seek with the implementation of this scenario is to
guide the user during the process of configuring a product. This way, as the
user progresses in the configuration of a product, RESDEC is able to automat-
ically suggest which feature can be selected to complement the partial config-
uration based on associated descriptive information to the features, users and
configurations.

To face the handling of contextual information and offer a personalized
product to the user of better quality, we intend to extend the benefits offered
by the techniques of Factoring Matrix by introducing the technique of collab-
orative filtering Tensor Factorization (TF) [72] that allows an integration of
contextual data that does not focus only on information from matrices of user
and items. In our case, this technique will allow us to explore beyond the con-
textual information of the components of implementation of the features, and
will facilitate us to involve other dimensions of study such as, for example,
contextual information of the features and configurations not considered in
this dissertation.

An approximation to this type of recommendation could be the following,
suppose that the user who set up a website for tourism promotion also set up
a website for travel ; when new users set up a tourism promotion website, it is
likely for the system to recommend the configuration of the website for travel.
Note that in this case we make use of contextual information that is developed
around a valid configuration of a product.

Recommendation of configurations for testing.- The RESDEC objective,
shown in Chapter §6, is to be able to recommend configurations more suscep-
tible to errors and therefore could be candidates for testing. The aim is to pro-
vide to the person in charge of supervising the quality of the SPL an automated
mechanism that allows him to select the configurations more error-prone. For
this, we are based the hypothesis that, the configurations with the lowest rat-
ing by the users are those which tend to contain more errors. For example,
if we have designed a mobile application for tourist promotion, the system
should be able to recommend which configurations of mobile devices testing
should be performed. For this purpose, mobile devices in which similar ap-
plications have had unfavorable ratings will be recommended for testing. To
make this type of recommendations, we will use the RESDEC recommenda-
tion elements and algorithms shown in Figure §?? of Chapter §6.

9.2. Future work 101

As mentioned above, results obtained provide a solid basis for our doctoral
thesis and leaves the way open for future research contributing to the progress
of software engineering in software product lines area.

102 Chapter 9. Conclusions and future work

Part VI

Appendix

Appendix A

RESDEC: Online Management Tool
for Implementation Components

Selection

I n this appendix we describe a prototype component-based recommender
system called RESDEC (REcommender System that suggest implemen-

tation Components from selecteD fEatures) designed to generate implementa-
tion component recommendations in the configuration of a product line based
on WordPress e-commerce websites. In addition, we present demo video pub-
lish on YouTube, that introduce RESDEC tool.

106 Appendix A. RESDEC: Online Management Tool for Implementation
Components Selection

A.1 Introduction

Software product lines (SPL) management is one of the most important
activities for the software engineer and it represents one of the key pieces of
software product line engineering. When a software system grow fast, config-
uring a product becomes a costly and error-prone activity due to the amount
of features available for configuration. This process becomes more complex
when for each feature, there is more than one component that implements it.
Currently the tools available for configuration management do not have au-
tomated mechanisms to facilitate the optimal components selection that meet
the functions required by a given product. In this appendix, we introduce
a prototype component-based recommender system called RESDEC (REcom-
mender System that suggest implementation Components from selecteD fEa-
tures) designed to manage the best implementation components alternatives.
Our tool is validated using WordPress-based websites where the implemen-
tation components are represented by plugins and the recommendations gen-
erated by RESDEC help interested parties in the search and efficient plugins
selection to configure websites.

A.2 RESDEC Tool Suite

RESDEC offers two main functionalities: component repository manage-
ment and automated analysis in the implementation components selection
through recommender systems. The following are some advantages of RES-
DEC:

– It is easy adapt to any SPL configuration environment. To do this, the
knowledge base has been designed based on three attributes commonly
used by a recommender system (i.e users, items and ratings). This al-
lowed us, that algorithms implemented in RESDEC receive these pa-
rameters as input and run without problems in any SPL scenario, for
example: WordPress, Android, Mozilla, among others.

– It offers information about the implementation components and the rat-
ings history made by the user.

– It provides a set of recommender algorithms that can be extended to
provide better recommendation results in the three scenarios presented
in this paper.

A.2. RESDEC Tool Suite 107

– It offers on screen, an updated history of the last components of imple-
mentation that have been of interest to the user.

– It allows obtaining recommendations, in execution time, of the most ap-
propriate implementation components according to the feature selected
by the user.

– It incorporates a case study based on a website software product lines
that validates the scope of our tool.

A.2.1 Architecture

RESDEC Tool has three components: a repository manager, a recom-
mender manager and an output manager. The repository manager responds

http://resdec.com/index.xhtml

View

Python

 Recommender Manager Output Manager Repository Manager

Stakeholder

csv
Read

Cold Start
Recommendations
based on ratings

Recommendations
based on features

Surprise Scikit-learn Popularity

Operations

Writing recomendations

Running algorithms

RequestResponse

Figure A.1: RESDEC architecture

to the requests of the stakeholders and structures the matrices M1 and M2 of
the Knowledge base presented in Section §?? through CSV’s.

The recommender manager is in charge of processing the recommenda-
tions based on the three scenarios presented in Section §??. It is developed in
Python with a package of libraries that contain the algorithms that the recom-
mender manager runs according to the scenario selected by the stakeholder.

For the Cold Start scenario presented in Section §?? RESDEC uses a clas-
sical popularity algorithm. While for the algorithms that run in the scenario
Recommendation of implementation components based on ratings presented
in Section §??, employs the Scikit-surprise library†1; and for the Recommenda-

†1Surprise website: http://surprise.readthedocs.io/en/stable/

108 Appendix A. RESDEC: Online Management Tool for Implementation
Components Selection

tion of implementation components based on features scenario presented in
Section §??, it uses the Scikit-learn library†2.

The recommender manager is scalable and offers the possibility of imple-
menting new similarity metrics and recommender algorithms in any of the
three scenarios presented in this thesis.

The output manager interacts directly with the stakeholder using the
repository manager and the recommender manager to generate the list of sug-
gestions for the implementation components. It is designed in HTML5 and
JavaScript, supported by the Semantic UI framework†3 used for the design of
the interfaces. The interaction between the stakeholder and RESDEC is done
through a web browser.

In general, the output manager is responsible for receiving the requests
of the stakeholders and informing the recommender manager of the require-
ments so the appropriate algorithm is run with the information that the repos-
itory manager responds, it finally displays the generated recommendations
on the screen.

A.2.2 Web Application

Figure A.2: RESDEC web application

†2Scikit-learn website: http://scikit-learn.org/stable/index.html
†3Semantic website: https://semantic-ui.com/

A.2. RESDEC Tool Suite 109

To make our work accessible to the community, we present a RESDEC web
application that eases the generation of recommendations to stakeholders that
require guided assistance in the selection of plugins to configure a products
line based on WordPress websites (see Figure §A.2).

RESDEC is available at www.resdec.com and uses a dataset from infor-
mation extracted from Wordpress. Specifically plugins, tags and ratings that
users do about them. To enter RESDEC app, press the Login button and then
enter the login credentials. To access as a guest, we have created a test user
profile User: admin - Password: admin123 (see Figure §A.3).

Figure A.3: RESDEC login

The main screen of RESDEC presents a menu with three recommendation
scenarios where stakeholders or users can configure an SPL, additionally in-
corporates a case study about e-commerce websites developed in WordPress
(see Figure §A.4). Next, we describe the different functionalities of our tool
through an example based on the configuration of a tourism website in Word-
Press.

i. The Cold Start option recommends components when there is no in-

110 Appendix A. RESDEC: Online Management Tool for Implementation
Components Selection

Figure A.4: RESDEC main screen

formation associated with the user profile, i.e., when the user has no
experience and is setting up a website for the first time. Suppose we
are going to set up a new tourism website and we need to implement
the Social Media function. In this case, the user selects the tag or tags
associated with Social Media and specifies the number of desired rec-
ommendations. With the information provided by the user, RESDEC
sets the recommendations based on the popularity of WordPress plugins
and does not use the information associated with the user’s profile (see
Figure §A.5).

ii. The second option, Recommendations of implementation components

A.2. RESDEC Tool Suite 111

Figure A.5: Cold start scenario

based on ratings, from a component used by the user in previous config-
urations, recommends those components that users with similar profiles
have used in the configuration of a product. Suppose that we are going
to configure a tourism website that has already been implemented and
in which we need new recommendation alternatives for Social Media
function. In this case, the user selects the implemented plugin, social-
media-widget, then specifies the number of desired recommendations
and selects the algorithm to execute (SVD, item-item KNN or user-user
KNN). With the information provided by the user, RESDEC establishes
the recommendations based on the ratings that plugins similar to the one
selected have been used by other users. In this scenario, RESDEC uses
the information associated with the user’s profile (see Figure §A.6).

iii. The third option, Recommendations of implementation components
based on features, recommends implementation components based on
the features of a component used by the user in previous configurations.
That is, the list of recommendations is established based on the descrip-
tive information of the components associated with the user profile. Sup-

112 Appendix A. RESDEC: Online Management Tool for Implementation
Components Selection

Figure A.6: Recommendations of implementation components based on rat-
ings

pose that we are going to configure a tourism website that has already
been implemented and we need to replace or complement the feature
Social Media, in this case, first the user selects the plugin implemented,
social-media-widget, then the system will display the list of tags associ-
ated with the plugin through which it will establish recommendations.
Then, we specify the number of desired recommendations and select the
execution algorithm (TF-IDF). In this case, RESDEC establishes the rec-
ommendations based on the features, that is, on the similarity of the tags
associated to the selected plugin with other plugins that use one or more
of these tags. In this scenario, RESDEC also uses the information associ-
ated to the user’s profile (see Figure §A.7).

iv. The option Case Study applied to e-commerce website, shows a Fea-
ture Model that was built from information about websites designed in
WordPress that are available on the Internet. This Feature Model has
been implemented in an interactive way and describes the relations be-

A.2. RESDEC Tool Suite 113

Figure A.7: Recommendations of implementation components based on fea-
tures

tween features, the same ones that can appear when configuring an e-
commerce website on this platform.

In the Feature Model, for example, by clicking on the Shopping Cart fea-
ture, the lower part of the model is configured for each scenario, showing
only information associated with the selected feature. Thus, for scenario
1 it will show only the list of tags associated to that feature, in the same
way in scenarios 2 and 3, it will display only the plugins that implement
that feature. The recommendations in each scenario are executed in a
similar way as described above (see Figure §A.8).

All recommendations presented in the different scenarios, show for each
plugin a brief description and a button called “View More” that links to the
WordPress website to learn more about it. Additionally, there is an additional
list called “You may also like” that shows other plugin options similar to those
recommended and that may be of interest to the user (see Figure §A.9).

114 Appendix A. RESDEC: Online Management Tool for Implementation
Components Selection

Figure A.8: Case Study applied to e-commerce Website

Finally, there is an option called “About this case study”, when you click
on this option, it shows in detail the process that was carried out to build the
feature model. In addition, We present a video demonstration of the RESDEC
web tool that is available on YouTube at https://youtu.be/iz bpj0rJLE (see Fig-

A.2. RESDEC Tool Suite 115

Figure A.9: Screen “You may also like” that show recommendation alterna-
tives

ure §A.10).

Figure A.10: Screen of RESDEC tool demo

Bibliography

[1] A. Abele, Y. Papadopoulos, D. Servat, M. Törngren, and M. Weber. The
cvm framework-a prototype tool for compositional variability manage-
ment. VaMoS, 10:101–105, 2010

[2] M. Acher, P. Collet, A. Gaignard, P. Lahire, J. Montagnat, and R. B.
France. Composing multiple variability artifacts to assemble coherent
workflows. Software Quality Journal, 20(3-4):689–734, 2012

[3] M. Acher, P. Collet, P. Lahire, and R. B. France. Familiar: A domain-
specific language for large scale management of feature models. Science
of Computer Programming, 78(6):657–681, 2013

[4] G. Adomavicius and A. Tuzhilin. Toward the next generation of recom-
mender systems: a survey of the state-of-the-art and possible extensions.
IEEE Transactions on Knowledge and Data Engineering, 17(6):734–749,
June 2005

[5] M. Al-Hajjaji, T. Thüm, J. Meinicke, M. Lochau, and G. Saake. Similarity-
based prioritization in software product-line testing. In Proceedings
of the 18th International Software Product Line Conference-Volume 1,
pages 197–206. ACM, 2014

[6] A. Anandhan, L. Shuib, M. A. Ismail, and G. Mujtaba. Social media
recommender systems: Review and open research issues. IEEE Access,
6:15608–15628, 2018

[7] S. Apel and C. Kästner. An overview of feature-oriented software de-
velopment. Journal of Object Technology, 8(5):49–84, 2009

[8] J. Arriel. Personalized recommender systems for software product line
configurations. PhD thesis, Otto von Guericke Universität Magdeburg,
2018

[9] M. A. Babar, L. Chen, and F. Shull. Managing variability in software
product lines. Software, IEEE, 27(3):89–91, 2010

118 Bibliography

[10] K. Bak, Z. Diskin, M. Antkiewicz, K. Czarnecki, and A. Wkasowski.
Clafer: unifying class and feature modeling. Software & Systems Mod-
eling, 15(3):811–845, 2016

[11] M. Bashari, E. Bagheri, and W. Du. Dynamic software product line en-
gineering: a reference framework. International Journal of Software En-
gineering and Knowledge Engineering, 27(02):191–234, 2017

[12] R. Bashroush, M. Garba, R. Rabiser, I. Groher, and G. Botterweck. Case
tool support for variability management in software product lines. ACM
Comput. Surv., 50(1):14:1–14:45, March 2017

[13] D. Batory. Feature models, grammars, and propositional formulas. In In-
ternational Conference on Software Product Lines, pages 7–20. Springer,
2005

[14] D. Batory, D. Benavides, and A. Ruiz-Cortes. Automated analysis of
feature models: challenges ahead. Communications of the ACM, 49(12):
45–47, 2006

[15] D. Benavides, S. Segura, and A. Ruiz-Cortés. Automated analysis of
feature models 20 years later: A literature review. Information Systems,
35(6):615–636, 2010

[16] D. Benavides, P. Trinidad, and A. Ruiz-Cortés. Automated reasoning on
feature models. In Advanced Information Systems Engineering, pages
381–390. Springer, 2005

[17] D. Benavides and J. A. Galindo. Automated analysis of feature models:
Current state and practices. In Proceedings of the 22Nd International
Systems and Software Product Line Conference - Volume 1, SPLC ’18,
pages 298–298, New York, NY, USA, 2018. ACM

[18] D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-Cortés. A first step to-
wards a framework for the automated analysis of feature models. Proc.
Managing Variability for Software Product Lines: Working With Vari-
ability Mechanisms, pages 39–47, 2006

[19] D. Benavides, P. Trinidad, A. Ruiz-Cortés, and S. Segura. Fama. In Sys-
tems and Software Variability Management, pages 163–171. Springer,
2013

[20] J. Bentahar, M. Taghavi, K. Bakhtiyari, and C. Hanachi. New Insights
Towards Developing Recommender Systems. The Computer Journal,
61(3):319–348, 06 2017

Bibliography 119

[21] M. W. Berry, S. T. Dumais, and G. W. O’Brien. Using linear algebra for
intelligent information retrieval. SIAM review, 37(4):573–595, 1995

[22] V. Bischoff, K. Farias, and L. Gonçales. Evaluating the effort of integrat-
ing feature models: A controlled experiment. 07 2018

[23] L. Blair, G. S. Blair, J. Pang, and C. Efstratiou. Feature interactions out-
side a telecom domain. In FICS, pages 15–20, 2001

[24] J. Bobadilla, A. Hernando, F. Ortega, and J. Bernal. A framework for
collaborative filtering recommender systems. Expert Systems with Ap-
plications, 38(12):14609 – 14623, 2011

[25] J. Bobadilla, F. Ortega, A. Hernando, and A. Gutiérrez. Recommender
systems survey. Knowledge-Based Systems, 46:109–132, 2013

[26] R. Burke. Hybrid recommender systems: Survey and experiments. User
modeling and user-adapted interaction, 12(4):331–370, 2002

[27] M. Chen and P. Liu. Performance evaluation of recommender systems.
International Journal of Performability Engineering, 13(8), 2017

[28] P. Clements and L. Northrop. Software Product Lines: Practices and Pat-
terns. The SEI series in software engineering. Addison-Wesley, Boston
and Mass. and London, 2001

[29] K. Czarnecki and U. Eisenecker. Generative programming: Methods,
tools, and applications. Addison Wesley, Boston, 2000

[30] K. Czarnecki and S. Helsen. Feature modeling. Generative Program-
ming, pages 82–130, 1998

[31] P. Donohoe. Introduction to software product lines. In 2011 15th Inter-
national Software Product Line Conference, pages 350–350, Aug 2011

[32] A. Durán, D. Benavides, S. Segura, P. Trinidad, and A. R. Cortés.
FLAME: a formal framework for the automated analysis of software
product lines validated by automated specification testing. Software
and System Modeling, 16(4):1049–1082, 2017

[33] J. A. Galindo, D. Benavides, and S. Segura. Debian packages reposi-
tories as software product line models. towards automated analysis. In
International Workshop on automated configuration and tailoring of ap-
plications (ACoTA), pages 29–34, 2010

120 Bibliography

[34] J. A. Galindo, D. Benavides, P. Trinidad, A.-M. Gutiérrez-Fernández,
and A. Ruiz-Cortés. Automated analysis of feature models: Quo vadis?
Computing, pages 1–47, 2018

[35] J. A. Galindo, D. Dhungana, R. Rabiser, D. Benavides, G. Botterweck,
and P. Grünbacher. Supporting distributed product configuration by in-
tegrating heterogeneous variability modeling approaches. Information
and Software Technology, 62:78–100, 2015

[36] J. A. Galindo, H. Turner, D. Benavides, and J. White. Testing variability-
intensive systems using automated analysis: an application to android.
Software Quality Journal, 24(2):365–405, 2016

[37] Y. Gonzalez-Fernandez, S. Hamidi, S. Chen, and S. Liaskos. Efficient
elicitation of software configurations using crowd preferences and do-
main knowledge. Automated Software Engineering, pages 1–37, 2018

[38] F. Heidenreich, J. Kopcsek, and C. Wende. Featuremapper: Mapping
features to models. In Companion of the 30th International Conference
on Software Engineering, ICSE Companion ’08, pages 943–944. ACM,
New York, NY, USA, 2008

[39] S. Ida and S. Ketil. Technology research explained. Technical report,
2007

[40] M. Javed, M. Naeem, and H. A. Wahab. Towards the maturity model for
feature oriented domain analysis. Computational Ecology and Software,
4(3):170–183, 2014

[41] W. Jirapanthong. Experience on re-engineering applying with software
product line. arXiv preprint arXiv:1206.4120, 2012

[42] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson.
Feature-oriented domain analysis (FODA) feasibility study. Technical
report, DTIC Document, 1990

[43] K. C. Kang, S. Kim, J. Lee, K. Kim, G. J. Kim, and E. Shin. Form: A
feature-oriented reuse method with domain-specific reference architec-
tures. Annals of Software Engineering, 5:143–168, 1998

[44] A. Karatzoglou, X. Amatriain, L. Baltrunas, and N. Oliver. Multiverse
recommendation: n-dimensional tensor factorization for context-aware
collaborative filtering. In Proceedings of the fourth ACM conference on
Recommender systems, pages 79–86. ACM, 2010

Bibliography 121

[45] A. Knüppel, T. Thüm, S. Mennicke, J. Meinicke, and I. Schaefer. Is
there a mismatch between real-world feature models and product-line
research? In Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering, pages 291–302. ACM, 2017

[46] J. A. Konstan, B. N. Miller, D. Maltz, J. L. Herlocker, L. R. Gordon, and
J. Riedl. Grouplens: applying collaborative filtering to usenet news.
Communications of the ACM, 40(3):77–87, 1997

[47] Y. Koren. Factorization meets the neighborhood: a multifaceted collab-
orative filtering model. In Proceedings of the 14th ACM SIGKDD in-
ternational conference on Knowledge discovery and data mining, pages
426–434. ACM, 2008

[48] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for
recommender systems. Computer, 42(8), 2009

[49] S. K. Lam and J. Riedl. Shilling recommender systems for fun and profit.
In Proceedings of the 13th international conference on World Wide Web,
pages 393–402. ACM, 2004

[50] M. Lettner, J. Rodas-Silva, J. A. Galindo, and D. Benavides. Automated
analysis of two-layered feature models with feature attributes. Journal
of Computer Languages, 2019

[51] G. Linden, B. Smith, and J. York. Amazon. com recommendations: Item-
to-item collaborative filtering. Internet Computing, IEEE, 7(1):76–80,
2003

[52] L. Lorentsen, A.-P. Tuovinen, and J. Xu. Modelling feature interactions
in mobile phones. In FICS, pages 7–13, 2001

[53] L. Lü, M. Medo, C. H. Yeung, Y.-C. Zhang, Z.-K. Zhang, and T. Zhou.
Recommender systems. Physics reports, 519(1):1–49, 2012

[54] M. Marques, J. Simmonds, P. O. Rossel, and M. C. Bastarrica. Software
product line evolution: A systematic literature review. Information and
Software Technology, 105:190 – 208, 2019

[55] J. Martinez, G. Rossi, T. Ziadi, T. F. D. A. Bissyandé, J. Klein, and
Y. Le Traon. Estimating and predicting average likability on computer-
generated artwork variants. In Proceedings of the Companion Publica-
tion of the 2015 Annual Conference on Genetic and Evolutionary Com-
putation, pages 1431–1432. ACM, 2015

122 Bibliography

[56] R. Mazo, C. Dumitrescu, C. Salinesi, and D. Diaz. Recommenda-
tion heuristics for improving product line configuration processes. In
Recommendation Systems in Software Engineering, pages 511–537.
Springer, 2014

[57] I. P. McCarthy. Special issue editorial: the what, why and how of mass
customization. Production Planning & Control, 15(4):347–351, 2004

[58] P. Melville and V. Sindhwani. Recommender systems. In Encyclopedia
of machine learning, pages 829–838. Springer, 2011

[59] A. Metzger and K. Pohl. Variability management in software product
line engineering. In Software Engineering - Companion, 2007. ICSE 2007
Companion. 29th International Conference on, pages 186–187, 2007

[60] A. Metzger, K. Pohl, P. Heymans, P.-Y. Schobbens, and G. Saval. Dis-
ambiguating the documentation of variability in software product lines:
A separation of concerns, formalization and automated analysis. In
Requirements Engineering Conference, 2007. RE’07. 15th IEEE Interna-
tional, pages 243–253. IEEE, 2007

[61] G. K. Narwane, J. A. Galindo, S. N. Krishna, D. Benavides, J.-V. Millo,
and S. Ramesh. Traceability analyses between features and assets in
software product lines. Entropy, 18(8):269, 2016

[62] H. Nguyen-Tan, H. Huynh-Huu, and H. Huynh-Xuan. Collaborative
filtering recommendation in the implication field. International Journal
of Machine Learning and Computing, 8(3), 2018

[63] L. Northrop. Software Product Lines: Practices and Patterns. Addison-
Wesley, 2002

[64] OMG. Mda guide version 1.0.1, 2003

[65] OMG. Adm whitepaper: Transforming the enterprise, 2007

[66] M. Pazzani and D. Billsus. Learning and revising user profiles: The
identification of interesting web sites. Machine learning, 27(3):313–331,
1997

[67] M. J. Pazzani and D. Billsus. Content-based recommendation systems.
In The adaptive web, pages 325–341. Springer, 2007

[68] J. A. Pereira. A collaborative-based recommender system for configura-
tion of extended product lines. In Proceedings of the 39th International
Conference on Software Engineering Companion, pages 445–448. IEEE
Press, 2017

Bibliography 123

[69] J. A. Pereira, J. Martinez, H. K. Gurudu, S. Krieter, and G. Saake. Vi-
sual guidance for product line configuration using recommendations
and non-functional properties. 2018

[70] J. A. Pereira, P. Matuszyk, S. Krieter, M. Spiliopoulou, and G. Saake. A
feature-based personalized recommender system for product-line con-
figuration. In Proceedings of the 2016 ACM SIGPLAN International
Conference on Generative Programming: Concepts and Experiences,
pages 120–131. ACM, 2016

[71] J. A. Pereira, P. Matuszyk, S. Krieter, M. Spiliopoulou, and G. Saake.
Personalized recommender systems for product-line configuration pro-
cesses. Computer Languages, Systems & Structures, 2018

[72] J. A. Pereira, S. Schulze, E. Figueiredo, and G. Saake. N-dimensional
tensor factorization for self-configuration of software product lines at
runtime. In Proceedings of the 22Nd International Systems and Soft-
ware Product Line Conference - Volume 1, SPLC ’18, pages 87–97, New
York, NY, USA, 2018. ACM

[73] J. A. Pereira, S. Schulze, S. Krieter, M. Ribeiro, and G. Saake. A context-
aware recommender system for extended software product line config-
urations. In Proceedings of the 12th International Workshop on Variabil-
ity Modelling of Software-Intensive Systems, pages 97–104. ACM, 2018

[74] E. Pimenidis, N. Polatidis, and H. Mouratidis. Mobile recommender
systems: Identifying the major concepts. Journal of Information Science,
45(3):387–397, 2019

[75] K. Pohl, G. Bockle, and F. Van Der Linden. Software product line engi-
neering: Foundations, principles, and techniques. Springer-Verlag New
York Inc, 2005

[76] M. Pol’la, A. Buccella, A. Cechich, and M. Arias. Un modelo de
metadatos para la gestión de la variabilidad en lı́neas de productos de
software. In XLIII Jornadas Argentinas de Informática e Investigación
Operativa (43JAIIO)-XV Simposio Argentino de Ingenierı́a de Software
(Buenos Aires, 2014), 2014

[77] M.-O. Reiser and M. Weber. Multi-level feature trees. Requirements
Engineering, 12(2):57–75, 2007

[78] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl. Grouplens:
an open architecture for collaborative filtering of netnews. In Proceed-
ings of the 1994 ACM conference on Computer supported cooperative
work, pages 175–186. ACM, 1994

124 Bibliography

[79] F. Ricci, L. Rokach, and B. Shapira. Introduction to recommender
systems handbook. In Recommender systems handbook, pages 1–35.
Springer, 2011

[80] J. Rodas-Silva, J. A. Galindo, J. Garcı́a-Gutiérrez, and D. Benavides. Se-
lection of software product line implementation components using rec-
ommender systems: An application to wordpress. IEEE Access, pages
1–1, 2019

[81] J. Rodas-Silva, D. Méndez-Acuña, J. A. Galindo, D. Benavides, and
J. Cárdenas. Towards testing variability intensive systems using user re-
views. In 2015 10th Computing Colombian Conference (10CCC), pages
39–46. IEEE, 2015

[82] J. Rodas-Silva, J. Olivares, J. A. G. Duarte, and D. Benavides. Hacia el
uso de sistemas de recomendación en sistemas de alta variabilidad. In
CEDI 2016, 2016

[83] M. Rosenmüller, N. Siegmund, T. Thüm, and G. Saake. Multi-
dimensional variability modeling. In Proceedings of the 5th Workshop
on Variability Modeling of Software-Intensive Systems, pages 11–20.
ACM, 2011

[84] A. Rossini, J. de Lara, E. Guerra, A. Rutle, and U. Wolter. A formalisation
of deep metamodelling. Formal Aspects of Computing, 26(6):1115–1152,
Nov 2014

[85] A. Saini and S. Rajkumar. Software product line configurations genera-
tion using different types of tools–a comparison. 2017

[86] A. B. Sánchez, S. Segura, and A. Ruiz-Cortés. The drupal framework:
A case study to evaluate variability testing techniques. In Proceed-
ings of the Eighth International Workshop on Variability Modelling of
Software-Intensive Systems (VAMOS 2014), number 11, Nice, France,
01/2014 2014. ACM, ACM

[87] L. E. Sánchez, J. A. Diaz-Pace, and A. Zunino. A family of heuristic
search algorithms for feature model optimization. Science of Computer
Programming, 172:264–293, 2019

[88] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Application of dimen-
sionality reduction in recommender system-a case study. Technical re-
port, Minnesota Univ Minneapolis Dept of Computer Science, 2000

Bibliography 125

[89] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based collaborative
filtering recommendation algorithms. In Proceedings of the 10th inter-
national conference on World Wide Web, pages 285–295. ACM, 2001

[90] J. B. Schafer, J. Konstan, and J. Riedl. Recommender systems in e-
commerce. In Proceedings of the 1st ACM conference on Electronic
commerce, pages 158–166. ACM, 1999

[91] P.-Y. Schobbens, P. Heymans, J.-C. Trigaux, and Y. Bontemps. Generic
semantics of feature diagrams. Computer Networks, 51(2):456–479, 2007

[92] R. Schröter, T. Thüm, N. Siegmund, and G. Saake. Automated analy-
sis of dependent feature models. In Proceedings of the Seventh Inter-
national Workshop on Variability Modelling of Software-intensive Sys-
tems, page 9. ACM, 2013

[93] S. Segura, J. A. Galindo, D. Benavides, J. A. Parejo, and A. Ruiz-Cortés.
Betty: Benchmarking and testing on the automated analysis of feature
models. In Proceedings of the Sixth International Workshop on Variabil-
ity Modeling of Software-Intensive Systems, VaMoS ’12, pages 63–71,
New York, NY, USA, 2012. ACM

[94] S. Segura Rueda. Functional and performance testing of feature model
analysis tools extending the fama ecosystem. 2010

[95] G. Shani and A. Gunawardana. Evaluating recommendation systems.
In Recommender systems handbook, pages 257–297. Springer, 2011

[96] L. Terán, A. O. Mensah, and A. Estorelli. A literature review for recom-
mender systems techniques used in microblogs. Expert Systems with
Applications, 103:63–73, 2018

[97] T. Thum, C. Kastner, S. Erdweg, and N. Siegmund. Abstract features
in feature modeling. In Software Product Line Conference (SPLC), 2011
15th International, pages 191–200. IEEE, 2011

[98] T. Thüm, C. Kästner, F. Benduhn, J. Meinicke, G. Saake, and T. Leich.
Featureide: An extensible framework for feature-oriented software de-
velopment. Science of Computer Programming, 79:70 – 85, 2014

[99] D. Véras, T. Prota, A. Bispo, R. Prudêncio, and C. Ferraz. A literature re-
view of recommender systems in the television domain. Expert Systems
with Applications, 42(22):9046 – 9076, 2015

126 Bibliography

[100] B. Wang, W. Zhang, H. Zhao, Z. Jin, and H. Mei. A use case based ap-
proach to feature models’ construction. In 2009 17th IEEE International
Requirements Engineering Conference, pages 121–130, Aug 2009

[101] H. Zare, M. A. N. Pour, and P. Moradi. Enhanced recommender system
using predictive network approach. Physica A: Statistical Mechanics
and its Applications, 520:322 – 337, 2019

[102] P. Zipkin. Mass customization. MIT Sloan management review, 2001

This document was typeset on // using RC–BOOK α. for LATEX2ε.
Should you want to use this document class, please send mail to

contact@tdg-seville.info.

