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Abstract

A Neurofuzzy model of a mixing chamber pres-
sure has been proposed. The process is a part of
a copper smelter plant. The principal component
analysis (PCA) method has been used to reduce
the inputs space for a recurrent fuzzy model. The
coupling among variables and their mutual influ-
ence between themselves, are taken into account
by the projection into the PCA axis. The model
have been validated with real data from the fac-
tory. The validation result shows that the model
is suitable for simulation.

Keywords: Neurofuzzy modeling, Industrial
process, Principal Component Analysis.

1 Introduction

The process studied in this work is a part of Atlantic Copper
Smelter facilities in Huelva (Spain), whose anual produc-
tion is around three hundred thousand tons of copper [1].
This plant includes a Flash Furnace and four Pierce-Smith
converters, two of them blowing simultaneously. The three
currents of gases generated in these processes are mixed in
the mixing chamber and sent to three acid plants operating
in parallel (see figure 2). It is very important to maintain the
gas pressure in the mixing chamber at a desired value, al-
ways bellow ambient pressure in order to avoid gas losses
to the atmosphere. That pressure depends on other vari-
ables of the production line and it is very difficult to get an
accurate prediction of it. On the one hand, the causes of
the pressure oscillations are hard to detect. Moreover, due
that there are different control system in the copper smelter
and the acid plant, no clocks synchronization is possible,
so there are considerable uncertainties when trying to mea-
sure cause-effect delays. A suitable model for prediction
one step ahead, has been developed in [1]. Other models

Figure 1: General view of the copper smelter [1]

have been made in [5] and [6]. All of them are predic-
tion models, because the actual pressure value at time k
PMC(k) is used to predict PMC(k+ 1). Taking into account
that the converters operate on a batch mode, while those of
the flash furnace and acid plants are continuous, extremely
high disturbances both in flow and SO2 concentration oc-
cur at the acid plants inlet due to the converters’ operating
schedule. The existing control strategy, based on indepen-
dent single loop PID controllers, is not able to cope with
those disturbances [1]. Advanced control schemes should
be applied, but it would be interesting to have a model suit-
able for simulation. In this case, it is difficult to derive a
precise mathematical model, based on first principles. Be-
sides, the computation of the solution of models obtained
through this methodology may require a large computa-
tional effort making them useless for real time tasks like
control or optimization. Neurofuzzy modeling, which per-
mits an easy way to derive successful models, is a good
alternative which can be employed to overcome such limi-
tations [2],[3],[7] and [9]. Fuzzy Neural Networks (FNN)
combine the capability of uncertainty handling in informa-
tion with learning skill. Recurrent Fuzzy Neural Network
(RFNN) have proven to be an excellent choice in order to
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Figure 2: gas mixing. Acid plants

get the dynamics of nonlinear and complex systems. They
are systems which have the same advantages than recurrent
neural networks [10]. RFNN are also known as Fuzzy Dy-
namical Systems (see figure 3) and extend the application
domain of FNN to temporal problems. Feedback allows to
capture dynamics and change. Principal Component Anal-
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Figure 3: Dynamical Neurofuzzy System

ysis is a well know technique in the field of multivariate
methods [8]. The use of PCA reduces the space of input
variables and obtain new uncorrelated variables in order to
simplify the Fuzzy system. This paper is organized as fol-
lows. In section 2, a formulation for dynamic neurofuzzy
model is shown. An introduction to Principal Components
Analysis is given in section 3. In section 4, the neurofuzzy
model for the mixing chamber pressure is presented, giving
the validation results. Conclusions are given in section 5.

2 Dynamic Neurofuzzy Model formulation

In the neurofuzzy model proposed by Takagi-Sugeno
(TS)[12], the structure of antecedent describes fuzzy re-
gions in the inputs space, and the one of consequent
presents non-fuzzy functions of the model inputs. We can
use recurrent functions with NARMAX structure (Non-
linear Auto Regressive Moving Average with eXogenous in-
put), of the kind:

ŷ(k+1) = f (y(k), ...,y(k−m),u(k), ...,u(k−n)) (1)

Where u,y are respectively the inputs and outputs of the
system, the Neurofuzzy system may be described, for each
rule, in the following way:

R j :
IF x1 is F1 j, ..., and xn is Fn j,
THEN:

y j = g j1x1 +g j2x2 + ...+g jnxn + c j (2)

Where g ji and c j are constant terms, X =[
x1 x2 ... xn

]T is the input vector of the neuro-
fuzzy system, Fi j is the fuzzy set respective to xi on the
rule j, y j is the output of the model respective to the
operating region associated to the rule. xi can represent a
real input to the system or any other variable, for instance
the previous values of inputs or outputs. Thus, we could
formulate the consequent (2) like

y j(k) = a j(z−1)y(k−1)+b j(z−1)u(k−d)+ c j (3)

Where a j(z−1) = a1 j + a2 jz−1 + ... + any jz−(ny−1) and
b j(z−1) = b0 j +b1 jz−1 +b2 jz−2 + ...+bnu jz−nu

d is the dead time. If µi j(k) is the membership degree of
x j(k) in the fuzzy set Fi j and the number of implications or
rules is L, the RFNN complete model is described by

y(k) =
L

∑
j=1

w j(k)
[
a j(z−1)y(k−1)+b j(z−1)u(k−d)

]
+ξ (k) (4)

Where

w j(k) =
µ̄ j(k)

∑L
j=1 µ̄ j(k)

, µ̄ j(k) =
n

∏
i=1

µi j(k)

and

ξ (k) =
L

∑
j=1

w j(k)c j

Rewriting equation (4) as

ā(z−1)y(k) = b̄(z−1)u(k−d)+ξ (k) (5)

Where

ā(z−1) = 1− ā1z−1 − ā2z−2 − ...− ānyz−ny (6)

b̄(z−1) = 1− b̄1z−1 − b̄2z−2 − ...− b̄nu z−nu (7)

āi =
L

∑
j=1

w j(k)ai jz−i (8)

b̄i =
L

∑
j=1

w j(k)bi jz−i (9)

In [4] a dynamic Neurofuzzy Model is used for simulation.
We propose an improvement of that model, using a major
number of inputs, including squares of variables, to provide
also a non linear dependence for each rule. A PCA has been
used both in a model used in [4] as the one proposed here.
In the first, the analysis is directed just to get uncorrelated
variables, in the second also much more simplification is
achieved in the FIS.



3 Principal Components Analysis

Due to coupling between variables and the difficulty to
make experimental tests, the use of PCA provides two char-
acteristics: to achieve new uncorrelated variables and con-
densation of all the information in a smaller space, provid-
ing a simpler Adaptive Neural Fuzzy Model (ANFIS). It
will permit the addition of others input variables, without
complexity increasing. The aim of PCA is to reduce system
dimension, minimizing missing information. The idea be-
hind PCA is to form a minimum number of new variables
to describe the variation of the original data by using linear
combinations of the original variables.

Let α be a vector of p variables, α =
[
α1 α2 ... αp

]
And A ∈ Rn×p a data matrix generated by the p variables,
where n is the number of data. The aim of PCA is to find
a base δ =

[
δ1 δ2 ... δk

]
where k < p, which defines

a new subspace retaining the maximum information of the
original data.

δ1 = w11α1 +w12α2 ... +w1pαp
δ2 = w21α1 +w22α2 ... +w2pαp

....................
δk = wk1α1 +wk2α2 ... +wkpαp

Then the data matrix will be D ∈Rn×k.
It is demonstrated that

µD = E(D) = E(W T A) =W T E(A) (10)

And the covariance matrix of D is equal to

ΣD = E{(D−µD)(D−µD)
T}=W T ΣAW (11)

The goal is to get the maximum data variance in the new
axes, that is maximum ΣD, imposing the orthonormality
constraint on it:

W TW = I (12)

We have to maximize:

W T ΣAW −λ (W TW − I) (13)

deriving and making it equal to zero, we have

(ΣA −λ I)W = 0 (14)

The problem is just one of calculation of eigenvectors of
ΣA. The associated components to greater eigenvalues of
ΣA are the most meaningful to build the data space. They
are named Principal Components of the system. In order to
choose how many principal components to use, a criterium
based on the weight of each eigenvalue with respect to the
other, can be used:

∑l
i=1 λi

∑n
i=1 λi

≥ n (15)

being n a measurement of desired information.
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Figure 4: Principal Components

Table 1: List of variables

Description Units Type
Pressure in mixing chamber mbar Output

Flow to plant 1 KNm3/h Manipulated
Flow to plant 2 KNm3/h Manipulated
Flow to plant 3 KNm3/h Manipulated

Dilution flow to plant 1 Nm3/h Manipulated
Dilution flow to plant 2 Nm3/h Manipulated
Dilution flow to plant 3 Nm3/h Manipulated

Reference for flash furnace feeding Tons/h Disturbance
Flow control valve for flash furnace % Disturbance

Fan speed in flash furnace rmp Disturbance
Reference for fan speed line 1 rpm Disturbance
Reference for fan speed line 2 rpm Disturbance

4 Neurofuzzy Model of Mixing Chamber

After a preliminary study based on some experiments with
steps on the variables[1], the evolution of the pressure in
the mixing chamber (PMC), is influenced by others that are
divided into two groups: control signals and disturbances.
In table 1 a brief description of the considered variables is
given, whereas in figure 5 a scheme with the situation of
each of them is presented.

In [4], the inputs are the current samples of the variables
of Table 1 and the previous samples of them, forming a
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Figure 6: Neurofuzzy scheme proposed
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Figure 7: Validation of the model used in [4]
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Figure 8: Validation of the proposed model

number of 24 inputs. After a PCA using all the nonzero
eigenvalues, 21 components are obtained. As mentioned at
the end of the introduction, the addition of entries does not
complicate the model when using PCA. For this work, we
have taken into account the input variables listed in Table 1
and their squares, to give to the model, quadratic elements
of the input variables of the system. Figure 6 presents the
scheme followed to obtain the neurofuzzy model. The in-
puts are the variables presented in table 1, including Pres-
sure in mixing chamber, their squares and the previous
samples of all of them. To carry out the PCA, data have
been used for nearly three hours of operation, sampled ev-
ery 2 seconds. With a loss of information from 1%, the
new principal components are 7. Using these new uncorre-
lated variables as inputs to the fuzzy system, and the next
sampling pressure as output, an ANFIS is designed, using
Subtractive clustering technique [3]. The performance of
the models can be seen in figures 7 and 8, where it is vali-
dated using a real data set from the process. It is important
to note that PMC(t − 1) is generated by the models output
in the previous sampling. Looking at the figures we see
that the error does not grow indefinitely, this fact makes
the models, appropriate to simulate the process. In figure
7, the mean error is 0.4099◦C, while the new model pro-
posed in this work, the mean error is 0.1469◦C, obtaining
an improvement.

5 Conclusions

A Neurofuzzy model, suitable for simulation, of a mixing
chamber pressure has been designed. The PCA method has
been used to reduce the inputs space for a recurrent fuzzy
model. Using this technique, a previous increment of input
has been added, including quadratic elements and previous
samplings. The coupling among variables and their mutual
influence between themselves is taken into account by the
projection into the PCA axis. The model have been vali-
dated with real data from the factory. The validation result
shows that the model is suitable for simulation. In com-
parison with other simulation models of the same plant, an
improvement has been got.
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