
Neuro-inspired system for real-time vision sensor tilt

correction

A. Jimenez-Fernandez, J.L. Fuentes-del-Bosh, R. Paz-Vicente, A. Linares-Barranco, G. Jiménez

Dpto. Arquitectura y Tecnología de Computadores. Universidad de Sevilla. Av. Reina Mercedes s/n, 41012-Sevilla, SPAIN
ajimenez@atc.us.es

Abstract— Neuromorphic engineering tries to mimic biological

information processing. Address-Event-Representation (AER)

is an asynchronous protocol for transferring the information of

spiking neuro-inspired systems. Currently AER systems are able

sense visual and auditory stimulus, to process information, to

learn, to control robots, etc. In this paper we present an AER

based layer able to correct in real time the tilt of an AER vision

sensor, using a high speed algorithmic mapping layer. A co-

design platform (the AER-Robot platform), with a Xilinx

Spartan 3 FPGA and an 8051 USB microcontroller, has been

used to implement the system. Testing it with the help of the

USBAERmini2 board and the jAER software.

I. INTRODUCTION

In this paper we face a common problem in robot related
to vision system. Some robots don’t have usually a horizontal
vision (like mobile robots, unmanned aerial vehicles), so
vision systems need to correct its tilt to ensure a correct image
processing. Thinking in ourselves, if we look to a horizontal
line, and tilt horizontally our head, we don’t lose the
horizontal references, watching the line always horizontal.
That is thanks to the sense of balance, which sensors can be
found in the inner ear. In this paper we present a hardware
layer able to correct a neuro-inspired vision sensor [1]
information tilt in real time, taking advantage of how this kind
of sensor represents visual information.

Bio-Inspired and Neuro-Inspired systems or circuits are
approaches to solve real problems by mimicking the biology
in its efficient solutions. Spiking systems is one of the neuro-
inspired alternatives of mimicking the neurons layers of the
brain for processing purposes. Vision spiking systems process
the information into a continuous way, without discretization
of the visual information into frames. Hardware
implementations of these spiking systems are usually
composed by several steps: sensors [1][2], filters [3],
convolutions [4][5][6], actuators[11], etc… Each of these
steps consists in one or several chips that has to process the
information like in the brain: they establishes point to point
connections between neurons from one layer or chip to other
or other neurons of the next layer or chip. Engineers found a
great problem at this point because they need to communicate
thousands of neurons from one chip to the next chip, but they
have a limitation in the number of pins. Address-Event-
Representation solves this problem [7].

AER was proposed by the Mead lab in 1991 [7] for
communicating between neuromorphic chips with spikes (Fig.
1). Each time a cell on a sender device generates a spike, it
communicates with the array periphery and a digital word
representing a code or address for that pixel is placed on the
external inter-chip digital bus (the AER bus). Additional
handshaking lines (Acknowledge and Request) are used for
completing the asynchronous communication. In the receiver
chip the spikes are directed to the pixels whose code or
address was on the bus. In this way, cells with the same
address in the emitter and receiver chips are virtually
connected by streams of spikes. Cells that are more active
access the bus more frequently than those less active.
Arbitration circuits usually ensure that cells do not
simultaneously access the bus. Usually these AER circuits are
built using self-timed asynchronous logic [8].

There is a growing community of AER developers for bio-
inspired applications in vision, audition systems, robot control,
etc. As demonstrated by the success in the last years of the
AER group at the Neuromorphic Engineering Workshop
series [9], and most recently the Capo Caccia Cognitive
Neuromorphic Engineering Workshop [10]. The goal of this
community is to build large multichip and multi-layer
hierarchically structured systems capable of performing
massively-parallel data-driven processing in real time. The
success of these systems will strongly depend on the
availability of robust and efficient development, debugging
and interfacing AER-tools [15].

Figure 1. Rate-Coded AER inter-chip communication scheme.

In the following sections we present and describe the AER
system developed. In section II we focus on the problems of
vision sensors regarding to tilt variations and we propose

mechanism for correcting them. Section III presents full
system implementation. Finally section IV describes test
scenario and experimental results.

II. AER PROCESSING ARCHITECTURES

AER vision sensors output is composed by a stream of a
parallel number of bits, called AER events, where each event
address represent a pixel coordinate (x, y). Its frequency is a
function of pixel activity. One example is the Dynamic Vision
Sensor (DVS128) [1] designed by the Institute of Neuro
Informatics (INI) at Zurich. DVS128 provides an AER output
stream where each event frequency is proportional to the
derivate of the luminosity in time. So for these feature it needs
to add event polarity (p), because events can be positive (pixel
luminosity changing from brighter to darker), or negative
otherwise. DVS128 have a resolution of 128x128 pixels, and
its AER output event is codified as showed in Figure 2.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

N.C. Y X P

Figure 2. DVS128 output events structure

One advantage of transmitting the pixels addresses is that
we can perform extra operations on the events while they
travel from one chip to another. For example the output of the
DVS128 can be translated, scaled, or rotated by mapping
operations on the emitted addresses, only modifying them
with the desired operation. Unlike traditional vision system,
those need to store a complete digital video frame, to process
information pixel by pixel, and after that send processed frame
sequentially.

When this sensor is used in mobile robots applications
(wheeled or planes), the sensor suffers variations due to the
gravity. In that case the output provided is representing not
only changes in visual field, but else these changes due to
changes in sensor position or vibrations.

For DVS128 tilt correction, we need to focus our attention
in image rotation operation. As is well known, we can rotate a
2-D image around a coordinate according next rotation matrix:൬ݔԢݕԢ൰ ൌ ቀcos ߙ െsin sinߙ ߙ cos ߙ ቁ ቆቀݕݔቁ െ ቀݔ௖ݕ௖ቁቇ

Where x and y are original coordinates, xc and yc
represents the rotation center, x’ and y’ the rotated
coordinates, and Į is the rotation angle.

Our tilt correction layer must receive events from retina
(original coordinates, x and y) and retina tilts (rotation angle,
Į). The retinal tilt can be measured by commercial sensors like
accelerometers or gyroscopes. Then this layer has to process
event coordinates according to rotation matrix, and generate a
new event address tilt corrected (rotated coordinates, x’ and
y’). Finally the mapped events must represent the rotation
angle applied to the input event. This process can be
implemented by simple mapping operations [12] based on
look-up tables (LUT) or algorithmic mappings.

Using a LUT based solution would need important
quantities of memory (e.g. 8Mbytes for the DVS128 with 128
different tilt degrees), and several system clock cycles for
memory access. To avoid these problems, leveraging the

power of modern programmable logic devices (like FPGA),
we can perform a parallel algorithmic event processing. This
means that we are not going to have in a memory every
rotation coordinates. We need to calculate in real time each
output event address every time an event arrives, according to
the tilt degree. For this task we are going to design a digital
circuit (written in VHLD) that perform this operation,
applying the rotation matrix to incoming events coordinates in
real-time and parallelizing every operation. Next section
explains this mechanism implementation.

III. AER TILT CORRECTION LAYER

In this section we present the AER Tilt Correction Layer
(ATCL). We have implemented the ATCL for the AER-Robot
platform [11], which can be seen at the bottom of Figure 6.
The AER-Robot platform was originally designed to control
robots, as a bridge between AER buses and robots actuators,
however it is enough versatile and powerful to be used as
vision processor. This platform is a co-design platform with
FPGA and microcontroller architecture. It includes a Xilinx
Spartan 3 FPGA (XC3S400) and an 8051 microcontroller
(C8051F320). FPGA allows high speed AER event
processing, while the microcontroller is slower, but has analog
to digital converters (ADC) and USB port, extending the
capabilities of the FPGA.

This layer has been conceptually divided in two different
main blocks, one for measure DVS128 tilt, and other for
process the AER visual information according to the DVS128
tilt. We have distributed these blocks along the AER-Robot
microcontroller and FPGA. Showed in Figure 3. where in top
is the tilt measuring block, and in bottom the AER events
processing block.

Figure 3. AER tilt correction layer main blocks

A. Titl meassuring block

The block for tilt measuring is located inside the 8051
microcontroller, who measures the DVS128 tilt from an
accelerometer, and sends tilt information to the FPGA using
the Serial Peripheral Interface (SPI) [15] for communication.
It can be seen if the top of Figure 3.

Tilt is measured from an analog accelerometer
(ADXL311). These kinds of sensors are able to measure
gravity acceleration, being their output proportional to sensor
tilt. ADXL311 output is connected to one of the 8051
microcontroller ADC inputs, converting it to a 8 bits digital

value. For image rotation we need the sine and cosine value of
the tilt angle, so instead to transfer the tilt angle to the FPGA,
we have stored inside the microcontroller a LUT with sine and
cosine values for each angle, sending to the FPGA directly
these values. This solution is faster because sine and cosine
calculation can heavily load the FPGA, and because it’s
enough a precision of 128 different tilt angles, so it only
needed 256 bytes of 8051 memory. We can see how
microcontroller stores sine and cosine LUT in Figure 4, Figure
4. where tilt angle is in the top, and LUT positions in the
bottom. To avoid using floating point operations, sine and
cosine has been stored scaled by 128; it means that these
values have a range between ±127. Every time an ADC
conversion is done, we take sine and cosine values from
conversion value memory position, and finally are sent though
the SPI port to the FPGA.

Figure 4. Sine and Cosine lookup table inside the microcontroller.

B. AER events processing block

This block has to be able to receive AER events, to
compute the rotation, and to send new events. The AER events
processing block internal components are showed in the
bottom of Figure 3. At left input events are received by a
component that implements the AER protocol for input
events. Once an event is received, it coordinates are
transferred to the algorithmic event rotation block. Finally,
rotated event is transmitted to the next layer using an AER
output component, at right.

Algorithmic event rotation block has two inputs, the
incoming event coordinates, and rotation information (from
the SPI port). Rotation is received by an SPI slave entity,
which manage SPI communication and receives sine and
cosine values from the microcontroller. A second element is
performing the AER event coordinates rotation by accessing
to two registers with the rotation information.

At this point we have the information of an event
coordinates, x and y, and the tilt angle sine and cosine value.
The only remaining operation is to apply the rotation matrix to
get a new rotated event. For that we use asynchronous adders
and multipliers embedded inside the FPGA, performing this
computation in a single clock cycle. The circuit that
implements the rotation matrix can be seen in Figure 5. Input
values are on the top: event coordinates, x and y, rotation
center coordinates, fixed to 64, and tilt angle sine and cosine
values obtained from microcontroller LUT. A sequence of
adders and multipliers apply the rotation matrix to the
incoming AER event. Both AER event coordinates has 7 bits,
and tilt angle sine and cosine values have 8 bits, in
consequence when we multiply them we get a 15 bits value.
Remembering that tilt angle sine and cosine values have been
scaled by 128, we need to divide multiplication results by 128,

ignoring 7 less significant bits, which is the new 7 bit output
coordinate. Finally, coordinates x’ and y’ are joined in a new
AER event, that is transmitted through the AER output port.

Figure 5. Block diagram of AER rotation entity.

VHDL simulation shows that AER event rotation takes 5
clock cycles, 2 for AER input communication, only 1 to event
rotation within, and last 2 clock cycles for AER output event
transmission. VHDL synthesis report denotes that our
implementation needs 498 slices (from 3584 that haves our
Spartan 3, about 13%), and can operate at 80.14MHz.

AER event processing block performs 12 arithmetic
operations per event (5 subtractions, 1 addition, 4
multiplications, and 2 divisions). With an 80MHz clocked
system we can reach an ideal maximum of 960 Mops (Mega
operations per second). However AER communication takes 4
clock cycles, decreasing our system performance to 192 Mops,
being the AER communication the bottleneck of our system.
ATCL only introduces a latency of 62.5nS, able to process
16M events per second.

IV. SYSTEM TEST SCENARIO

For testing purposes we need to excite ATCL with an AER
video streaming, and to monitor ATCL output, while moving
the accelerometer. For this we use the USBAERmini2 board
[13] as hardware interface, and the jAER software [14] as host
interface. Complete system test scenario is shown in Figure 6.
Where the USBAERmini2 is on the top, connected to the
AER-Robot by two AER ports, on the bottom (one for AER
input and other for output), and the accelerometer, that should
be attached to a robot, in the middle.

The USBAERmini2 is a bridge between an USB port and
AER buses. It is able to monitor AER traffic trough the USB
port, and also to sequence AER information. Its features can
be found detailed in [13]. The idea is to sequence AER
information from a PC using its AER sequencer port, process
this information inside the ATCL according to accelerometer
tilt, and monitor ATCL response using the AER monitor port.

In the PC we use the jAER software [14], it is Java open
source software that manages the USBAERmini2. Allowing
us to select sequencing AER files comfortably, and visualize
ATCL rotated video streaming in the PC screen.

Experiments results are shown in Figure 7. There we can
see two screens captures from jAER, images are from an AER
sample file from jAER web site, on figure top we can see a
person juggling but rotated about 30º to the left, and on the

bottom, the same image rotate to the right. This happens
according to accelerometer tilt, correcting image tilt in real-
time and in a continuous way.

USBAERmini2

AER-Monitor

Port

AER-Sequencer

Port

AER-Robot

Accelerometer

USB Port

Figure 6. ATCL test scenario

V. CONCLUSIONS

This paper presents an AER layer for tilt correction, the
ATCL. ATCL is software / hardware co-designed system,
based on an 8051 microcontroller and a Xilinx FPGA,
describing complete system deeply in this paper. Finally a test
scenario has been designed and results showed, thanks to the
use of AER-tools from the AER community. ATCL faces a
common problem in several robotic fields, and can be easily
integrated to current robots with AER vision.

ACKNOWLEDGMENTS

This work has been supported in part by the Andalucía
Council with the BrainSystem project (P06-TIC-01417), and
by the Spanish projects: SAMANTA II (TEC2006-11730-
C03-02) and VULCANO (TEC2009-10639-C04-02)

REFERENCES

[1] P. Lichtsteiner, et al. "A 128×128 120dB 15 us Asynchronous
Temporal Contrast Vision Sensor". IEEE Journal on Solid-State
Circuits, 2008.

[2] V. Chan, et al. “AER EAR: A Matched Silicon Cochlea Pair with
Address-Event-Representation Interface”. IEEE International
Symposium on Circuits and Systems, 2007. ISCAS 2007.

[3] R. Serrano-Gotarredona, et al. “AER Building Blocks for Multi-Layer
Multi-Chip Neuromorphic Vision Systems”. NIPS 2005.

[4] R. Serrano-Gotarredona, et al.. “On Real-Time AER 2-D Convolutions
Hardware for Neuromorphic Spike-Based Cortical Processing. IEEE
Transactions on Neural Networks, Vol. 19, No 7, pp. 1196-1219. July-
2008.

[5] Oster, M et al “Quantifying Input and Output Spike Statistics of a
Winner-Take-All Network in a Vision System” IEEE International
Symposium on Circuits and Systems, 2007. ISCAS 2007.

[6] P. Hafliger. “Adaptive WTA with an Analog VLSI Neuromorphic
Learning Chip”. IEEE Transactions on Neural Networks, vol. 18, No
2,. March-2007.

[7] M. Sivilotti, Wiring Considerations in analog VLSI Systems with
Application to Field-Programmable Networks, Ph.D. Thesis, California
Institute of Technology, Pasadena CA, 1991.

[8] Kwabena A. Boahen. “Communicating Neuronal Ensembles between
Neuromorphic Chips”. Neuromorphic Systems. Kluwer Academic
Publishers, Boston 1998.

[9] Telluride Neuromorphic Engeeniering Workshop 2008:
https://neuromorphs.net/ws2008/wiki/

[10] The 2009 Capo Caccia Cognitive Neuromorphic Engineering
Workshop: http://capocaccia.ethz.ch/capo/

[11] A. Linares-Barranco et al. “AER Neuro-Inspired interface to
Anthropomorphic Robotic Hand”. IEEE World Conference on
Computational Intelligence. IJCNN. Vancouver, July-2006.

[12] A. Linares-Barranco et al. “Implementation of a time-warping AER
mapper”. IEEE International Symposium on Circuits and Systems.
ISCAS 2009.

[13] R. Berner, et al. “A 5 Meps $100 USB2.0 Address-Event Monitor-
Sequencer Interface”. IEEE International Symposium on Circuits and
Systems ISCAS 2007.

[14] jAER open-source software project. http://jaer.wiki.sourceforge.net/

[15] R. Serrano-Gotarredona, et al. “CAVIAR: A 45k-neuron, 5M-synapse
AER Hardware Sensory-Processing-Learning-Actuating System for
High-Speed Visual Object Recognition and Tracking,” IEEE Trans. on
Neural Networks, Volume 20, Issue 9, Sept. 2009.

[16] J. Catsoulis. “Designing Embedded Hardware”. O’Reilly. ISBN: 0-596-
00755-8.

Figure 7. jAER captures for two different tilt angles

