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Abstract— Neuromorphic engineering tries to mimic biological 

information processing.  Address-Event-Representation (AER) 

is an asynchronous protocol for transferring the information of 

spiking neuro-inspired systems. Currently AER systems are able 

sense visual and auditory stimulus, to process information, to 

learn, to control robots, etc.  In this paper we present an AER 

based layer able to correct in real time the tilt of an AER vision 

sensor, using a high speed algorithmic mapping layer.  A co-

design platform (the AER-Robot platform), with a Xilinx 

Spartan 3 FPGA and an 8051 USB microcontroller, has been 

used to implement the system. Testing it with the help of the 

USBAERmini2 board and the jAER software. 

I. INTRODUCTION

In this paper we face a common problem in robot related 
to vision system. Some robots don’t have usually a horizontal 
vision (like mobile robots, unmanned aerial vehicles), so 
vision systems need to correct its tilt to ensure a correct image 
processing. Thinking in ourselves, if we look to a horizontal 
line, and tilt horizontally our head, we don’t lose the 
horizontal references, watching the line always horizontal. 
That is thanks to the sense of balance, which sensors can be 
found in the inner ear. In this paper we present a hardware 
layer able to correct a neuro-inspired vision sensor [1] 
information tilt in real time, taking advantage of how this kind 
of sensor represents visual information. 

Bio-Inspired and Neuro-Inspired systems or circuits are 
approaches to solve real problems by mimicking the biology 
in its efficient solutions. Spiking systems is one of the neuro-
inspired alternatives of mimicking the neurons layers of the 
brain for processing purposes. Vision spiking systems process 
the information into a continuous way, without discretization 
of the visual information into frames. Hardware 
implementations of these spiking systems are usually 
composed by several steps: sensors [1][2], filters [3], 
convolutions [4][5][6], actuators[11], etc… Each of these 
steps consists in one or several chips that has to process the 
information like in the brain: they establishes point to point 
connections between neurons from one layer or chip to other 
or other neurons of the next layer or chip. Engineers found a 
great problem at this point because they need to communicate 
thousands of neurons from one chip to the next chip, but they 
have a limitation in the number of pins. Address-Event-
Representation solves this problem [7]. 

AER was proposed by the Mead lab in 1991 [7] for 
communicating between neuromorphic chips with spikes (Fig. 
1). Each time a cell on a sender device generates a spike, it 
communicates with the array periphery and a digital word 
representing a code or address for that pixel is placed on the 
external inter-chip digital bus (the AER bus). Additional 
handshaking lines (Acknowledge and Request) are used for 
completing the asynchronous communication. In the receiver 
chip the spikes are directed to the pixels whose code or 
address was on the bus. In this way, cells with the same 
address in the emitter and receiver chips are virtually 
connected by streams of spikes. Cells that are more active 
access the bus more frequently than those less active. 
Arbitration circuits usually ensure that cells do not 
simultaneously access the bus. Usually these AER circuits are 
built using self-timed asynchronous logic [8]. 

There is a growing community of AER developers for bio-
inspired applications in vision, audition systems, robot control, 
etc. As demonstrated by the success in the last years of the 
AER group at the Neuromorphic Engineering Workshop 
series [9], and most recently the Capo Caccia Cognitive 
Neuromorphic Engineering Workshop [10]. The goal of this 
community is to build large multichip and multi-layer 
hierarchically structured systems capable of performing 
massively-parallel data-driven processing in real time. The 
success of these systems will strongly depend on the 
availability of robust and efficient development, debugging 
and interfacing AER-tools [15]. 

Figure 1.  Rate-Coded AER inter-chip communication scheme. 

In the following sections we present and describe the AER 
system developed. In section II we focus on the problems of 
vision sensors regarding to tilt variations and we propose 



mechanism for correcting them. Section III presents full 
system implementation. Finally section IV describes test 
scenario and experimental results. 

II. AER PROCESSING ARCHITECTURES

AER vision sensors output is composed by a stream of a 
parallel number of  bits, called AER events, where each event 
address represent a pixel coordinate (x, y). Its frequency is a 
function of pixel activity. One example is the Dynamic Vision 
Sensor (DVS128) [1] designed by the Institute of Neuro 
Informatics (INI) at Zurich. DVS128 provides an AER output 
stream where each event frequency is proportional to the 
derivate of the luminosity in time. So for these feature it needs 
to add event polarity (p), because events can be positive (pixel 
luminosity changing from brighter to darker), or negative 
otherwise. DVS128 have a resolution of 128x128 pixels, and 
its AER output event is codified as showed in Figure 2.  
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Figure 2.  DVS128 output events structure 

One advantage of transmitting the pixels addresses is that 
we can perform extra operations on the events while they 
travel from one chip to another. For example the output of the 
DVS128 can be translated, scaled, or rotated by mapping 
operations on the emitted addresses, only modifying them 
with the desired operation. Unlike traditional vision system, 
those need to store a complete digital video frame, to process 
information pixel by pixel, and after that send processed frame 
sequentially. 

When this sensor is used in mobile robots applications 
(wheeled or planes), the sensor suffers variations due to the 
gravity. In that case the output provided is representing not 
only changes in visual field, but else these changes due to 
changes in sensor position or vibrations. 

For DVS128 tilt correction, we need to focus our attention 
in image rotation operation. As is well known, we can rotate a 
2-D image around a coordinate according next rotation matrix:൬ݔԢݕԢ൰ ൌ ቀcos ߙ െsin sinߙ ߙ cos ߙ ቁ ቆቀݕݔቁ െ ቀݔ௖ݕ௖ቁቇ

Where x and y are original coordinates, xc and yc 
represents the rotation center, x’ and y’ the rotated 
coordinates, and Į is the rotation angle.

Our tilt correction layer must receive events from retina 
(original coordinates, x and y) and retina tilts (rotation angle, 
Į). The retinal tilt can be measured by commercial sensors like
accelerometers or gyroscopes. Then this layer has to process 
event coordinates according to rotation matrix, and generate a 
new event address tilt corrected (rotated coordinates, x’ and 
y’). Finally the mapped events must represent the rotation 
angle applied to the input event. This process can be 
implemented by simple mapping operations [12] based on 
look-up tables (LUT) or algorithmic mappings.  

Using a LUT based solution would need important 
quantities of memory (e.g. 8Mbytes for the DVS128 with 128 
different tilt degrees), and several system clock cycles for 
memory access. To avoid these problems, leveraging the 

power of modern programmable logic devices (like FPGA), 
we can perform a parallel algorithmic event processing. This 
means that we are not going to have in a memory every 
rotation coordinates. We need to calculate in real time each 
output event address every time an event arrives, according to 
the tilt degree. For this task we are going to design a digital 
circuit (written in VHLD) that perform this operation, 
applying the rotation matrix to incoming events coordinates in 
real-time and parallelizing every operation. Next section 
explains this mechanism implementation. 

III. AER  TILT CORRECTION LAYER

In this section we present the AER Tilt Correction Layer 
(ATCL). We have implemented the ATCL for the AER-Robot 
platform [11], which can be seen at the bottom of Figure 6. 
The AER-Robot platform was originally designed to control 
robots, as a bridge between AER buses and robots actuators, 
however it is enough versatile and powerful to be used as 
vision processor. This platform is a co-design platform with 
FPGA and microcontroller architecture. It includes a Xilinx 
Spartan 3 FPGA (XC3S400) and an 8051 microcontroller 
(C8051F320). FPGA allows high speed AER event 
processing, while the microcontroller is slower, but has analog 
to digital converters (ADC) and USB port, extending the 
capabilities of the FPGA. 

This layer has been conceptually divided in two different 
main blocks, one for measure DVS128 tilt, and other for 
process the AER visual information according to the DVS128 
tilt. We have distributed these blocks along the AER-Robot 
microcontroller and FPGA. Showed in Figure 3. where in top 
is the tilt measuring block, and in bottom the AER events 
processing block. 

Figure 3.  AER tilt correction layer main blocks 

A. Titl meassuring block

The block for tilt measuring is located inside the 8051
microcontroller, who measures the DVS128 tilt from an 
accelerometer, and sends tilt information to the FPGA using 
the Serial Peripheral Interface (SPI) [15] for communication. 
It can be seen if the top of Figure 3.  

Tilt is measured from an analog accelerometer 
(ADXL311). These kinds of sensors are able to measure 
gravity acceleration, being their output proportional to sensor 
tilt. ADXL311 output is connected to one of the 8051 
microcontroller ADC inputs, converting it to a 8 bits digital 



value. For image rotation we need the sine and cosine value of 
the tilt angle, so instead to transfer the tilt angle to the FPGA, 
we have stored inside the microcontroller a LUT with sine and 
cosine values for each angle, sending to the FPGA directly 
these values. This solution is faster because sine and cosine 
calculation can heavily load the FPGA, and because it’s 
enough a precision of 128 different tilt angles, so it only 
needed 256 bytes of 8051 memory. We can see how 
microcontroller stores sine and cosine LUT in Figure 4, Figure 
4. where tilt angle is in the top, and LUT positions in the
bottom. To avoid using floating point operations, sine and
cosine has been stored scaled by 128; it means that these
values have a range between ±127. Every time an ADC
conversion is done, we take sine and cosine values from
conversion value memory position, and finally are sent though
the SPI port to the FPGA.

Figure 4.  Sine and Cosine lookup table inside the microcontroller. 

B. AER events processing block

This block has to be able to receive AER events, to
compute the rotation, and to send new events. The AER events 
processing block internal components are showed in the 
bottom of Figure 3. At left input events are received by a 
component that implements the AER protocol for input 
events. Once an event is received, it coordinates are 
transferred to the algorithmic event rotation block. Finally, 
rotated event is transmitted to the next layer using an AER 
output component, at right. 

Algorithmic event rotation block has two inputs, the 
incoming event coordinates, and rotation information (from 
the SPI port). Rotation is received by an SPI slave entity, 
which manage SPI communication and receives sine and 
cosine values from the microcontroller. A second element is 
performing the AER event coordinates rotation by accessing 
to two registers with the rotation information. 

At this point we have the information of an event 
coordinates, x and y, and the tilt angle sine and cosine value. 
The only remaining operation is to apply the rotation matrix to 
get a new rotated event. For that we use asynchronous adders 
and multipliers embedded inside the FPGA, performing this 
computation in a single clock cycle. The circuit that 
implements the rotation matrix can be seen in Figure 5. Input 
values are on the top: event coordinates, x and y, rotation 
center coordinates, fixed to 64, and tilt angle sine and cosine 
values obtained from microcontroller LUT. A sequence of 
adders and multipliers apply the rotation matrix to the 
incoming AER event. Both AER event coordinates has 7 bits, 
and tilt angle sine and cosine values have 8 bits, in 
consequence when we multiply them we get a 15 bits value. 
Remembering that tilt angle sine and cosine values have been 
scaled by 128, we need to divide multiplication results by 128, 

ignoring 7 less significant bits, which is the new 7 bit output 
coordinate. Finally, coordinates x’ and y’ are joined in a new 
AER event, that is transmitted through the AER output port.  

Figure 5.  Block diagram of AER rotation entity. 

VHDL simulation shows that AER event rotation takes 5 
clock cycles, 2 for AER input communication, only 1 to event 
rotation within, and last 2 clock cycles for AER output event 
transmission. VHDL synthesis report denotes that our 
implementation needs 498 slices (from 3584 that haves our 
Spartan 3, about 13%), and can operate at 80.14MHz.   

AER event processing block performs 12 arithmetic 
operations per event (5 subtractions, 1 addition, 4 
multiplications, and 2 divisions). With an 80MHz clocked 
system we can reach an ideal maximum of 960 Mops (Mega 
operations per second). However AER communication takes 4 
clock cycles, decreasing our system performance to 192 Mops, 
being the AER communication the bottleneck of our system. 
ATCL only introduces a latency of 62.5nS, able to process 
16M events per second. 

IV. SYSTEM TEST SCENARIO

For testing purposes we need to excite ATCL with an AER 
video streaming, and to monitor ATCL output, while moving 
the accelerometer. For this we use the USBAERmini2 board 
[13] as hardware interface, and the jAER software [14] as host
interface. Complete system test scenario is shown in Figure 6.
Where the USBAERmini2 is on the top, connected to the
AER-Robot by two AER ports, on the bottom (one for AER
input and other for output), and the accelerometer, that should
be attached to a robot, in the middle.

The USBAERmini2 is a bridge between an USB port and 
AER buses. It is able to monitor AER traffic trough the USB 
port, and also to sequence AER information. Its features can 
be found detailed in [13]. The idea is to sequence AER 
information from a PC using its AER sequencer port, process 
this information inside the ATCL according to accelerometer 
tilt, and monitor ATCL response using the AER monitor port. 

In the PC we use the jAER software [14], it is Java open 
source software that manages the USBAERmini2. Allowing 
us to select sequencing AER files comfortably, and visualize 
ATCL rotated video streaming in the PC screen. 

Experiments results are shown in Figure 7. There we can 
see two screens captures from jAER, images are from an AER 
sample file from jAER web site, on figure top we can see a 
person juggling but rotated about 30º to the left, and on the 



bottom, the same image rotate to the right. This happens 
according to accelerometer tilt, correcting image tilt in real-
time and in a continuous way.  

USBAERmini2

AER-Monitor 

Port

AER-Sequencer 

Port

AER-Robot

Accelerometer

USB Port

Figure 6.  ATCL test scenario 

V. CONCLUSIONS

This paper presents an AER layer for tilt correction, the 
ATCL. ATCL is software / hardware co-designed system, 
based on an 8051 microcontroller and a Xilinx FPGA, 
describing complete system deeply in this paper. Finally a test 
scenario has been designed and results showed, thanks to the 
use of AER-tools from the AER community. ATCL faces a 
common problem in several robotic fields, and can be easily 
integrated to current robots with AER vision. 
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