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Abstract: This paper describes the control of a batch pH reactor by a nonlinear
predictive controller that improves performance by using data of past batches. The
control strategy combines the feedback features of a nonlinear predictive controller
with the learning capabilities of run-to-run control.
The inclusion of real-time data collected during the on-going batch run in addition
to those from the past runs make the control strategy capable not only of
eliminating repeated errors but also of responding to new disturbances that occur
during the run. The paper uses these ideas to devise an integrated controller
that increases the capabilities of Nonlinear Model Predictive Control (nmpc) with
batch-wise learning. This controller tries to improve existing strategies by the use
of a nonlinear controller devised along the last-run trajectory as well as by the
inclusion of filters.
A comparison with a similar controller based upon a linear model is performed.
Simulation results are presented in order to illustrate performance improvements
that can be achieved by the new method over the conventional iterative controllers.
Although the controller is designed for discrete-time systems, it can be applied to
stable continuous plants after discretization. Copyright c©2005 IFAC.
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1. INTRODUCTION

Nonlinear chemical plants have been many often
controlled by means of nonlinear feedback con-
trollers, even for batch mode of operation. Given
the nonlinear and time-varying characteristics of
batch plants, an acceptable tracking of set point
profiles can be only achieved with advanced non-
linear controllers because the process is never
in steady-state regime. In this point, iterative

1 This work was partially supported by Spanish Ministry
of Science and Technology under grant DPI2001-2380-C02-
01. The authors acknowledge the Predictive Control Group
of the University of Seville for their commentaries.

controllers have several advantages over classical
ones, mainly perfect tracking capabilities, as well
as trajectory improvement at every run of the
process.

A good example of strongly nonlinear process
suitable to be controlled by iterative controllers is
a pH batch fermentation process. pH control has
been extensively studied in literature using non
linear feedback controllers. Wright and Kravaris
(2001) propose an adaptive strategy for waste-
water treatment plants that uses a simplified dy-
namic model. A self-tuning controller is described
in Babuska et al. (2002). Adaptive nonlinear con-
trol strategies (Henson and Seborg, 1994), model-
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based (Sing and Postlethwaite, 1997) and fuzzy
logic controllers (Garrido et al., 1997) have also
been used.

However, feedback controllers have only limited
effectiveness in handling periodic reference tra-
jectories and disturbances. This is due to the
fact that there is no mechanism for passing feed-
back error information from one run to another,
and henceforth, learning based on previous runs
cannot take place. In batch mode of operation,
batch-to-batch variations can be significant and
are of primary concern. In most industrial cases,
the batch-to-batch variations are strongly auto-
correlated, providing the possibility of using pre-
vious batch results to adjust the recipe of a sub-
sequent batch. The error that cannot be removed
by on-line feedback control can be eliminated or
reduced by the so called batch-to-batch or run-to-
run control.

This can be done by means of Iterative Learning
Control (ilc) and Repetitive Control (rc), which
refer to a body of methodologies that attempt
to improve the control performance of a repeated
run based on the results from previous runs. The
two differ in that ilc deals with systems that
reset the state at the start of each new run,
while rc addresses those with continuous state
transition from one run to the next. The original
objectives behind the development of ilc and
rc were different. rc was developed as a way
to cancel periodic disturbances and/or tracking
periodic reference trajectories in a continuous
system, whereas ilc emerged as means to achieve
run-to-run improvements in robotics and servo-
mechanical systems. In the development of the
rc methods, the internal model principle has
played a major role (Hara et al., 1988), while
ilc designs have mostly followed the direction
of successive model inversion (Moore, 1998). In
fact, both control concepts share the same basic
principles and underlying issues (Longman, 1997).

Given the advantages of the batch-to-batch and
feedback control strategies, it is natural to explore
the possibility of combining them. Because feed-
back control can respond to disturbances immedi-
ately and batch-to-batch control can correct any
bias left uncorrected by the feedback controller,
which may be due to unmodelled disturbances,
parameter errors, and dynamics, the combined
scheme can potentially complement each other to
render the benefits of both. The idea of combining
batch-to-batch control with feedback control has
appeared in Lee et al. (1999).

Since the objective is to eliminate persisting er-
rors from previous runs as well as to reject new
disturbances as they occur during the current run,
the combination of these two techniques can be a
good solution. Notice that the problem is not easy

to solve since the feedback control of the on-going
run is a difficult problem itself, because it involves
a nonlinear controller. The inclusion of real-time
data collected during the on-going batch run (in
addition to those from the past runs) makes the
feedback control strategy capable of responding to
new disturbances that occur during the run.

The paper uses these ideas to develop an inte-
grated controller that increases the capabilities
of nmpc with batch-wise learning. This controller
tries to improve existing strategies by the use of a
nonlinear controller devised along the last-run tra-
jectory as well as by the inclusion of filters. Track-
ing the setpoint profile is tackled by a nonlinear
controller based on epsac (De Keyser, 1997) while
its iterative nature improves the performance at
each batch.

The paper is organized as follows. In section 2
a description of the pH control batch process
is presented. Section 3 describes the proposed
algorithm, showing the development of the control
strategy for the plant model. This strategy is
tested on a nonlinear simulator, comparing it with
other iterative controllers, and the results are
shown in section 4. Finally the major conclusions
are drawn in section 5.

2. PROCESS DESCRIPTION

The control of pH (McMillan, 1984) is common in
chemical and biotechnological industries. Exam-
ples of this kind of plants can be found in waste-
water treatment plants, the production of phar-
maceutical products and fermentation processes.
Controlling the pH value of these processes is diffi-
cult due to the highly nonlinear response of the pH
to the addition of acid or base and strong distur-
bances appearing in the process. These processes
can exhibit severe static nonlinear behavior be-
cause the gain can vary several orders of magni-
tude for a slight range of pH values.

This example corresponds to a laboratory fermen-
tation process taken from the literature. The pH
value ranks as one of the most important factors
that influence a fermentation process. A pH value
out of its optimum often inhibits the growth of
the essential micro-organisms, alters the bacterial
population and inhibits the desirable enzymatic
activities. The result is a delay in the fermentation
process or even the death of the micro-organisms.
The controller must achieve the prescribed accu-
racy (in some cases around 0.05 pH unit) despite
the severe process nonlinearities.

The process is shown in Figure 1 and consists of
a tank where three streams are mixed:

• an acid (H Cl) stream (q1),
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Fig. 1. pH process
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Fig. 2. Titration curve

• a buffer (K H2 P O4 and Na2 H P O4) stream
(q2), and

• a base (Na O H) stream (q3).

The process output is the pH value of the solution
which can be controlled acting on the valves.

A continuous model can be obtained by first prin-
ciples, assuming perfect mixing, constant density,
and complete solubility of the ions. This model
can be described by the following state-space
equations (see Babuska et al. (2002) for details
and parameter values):

Ah
dWa4

dt
= q1 (Wa1 −Wa4) + q2 (Wa2 −Wa4)

+q3 (Wa3 −Wa4) (1)

Ah
dWb4

dt
= q1 (Wb1 −Wb4) + q2 (Wb2 −Wb4) +

+q3 (Wb3 −Wb4) (2)
dh

dt
=

q1 + q2 + q3 − q4

A
(3)

The output function is given implicitly by

Wb4

Ka4x + 2Ka4Ka5x
2 + 3Ka4Ka5Ka6x

3

1 + Ka4x + Ka4Ka5x
2 + Ka4Ka5Ka6x

3
+

+Wa4 + Kwx− x−1 = 0 (4)

and
pH = − log

[
H3O

+
]

= log x (5)

The static Equations (4)-(5) make the process
highly nonlinear and can be used to obtain the

theoretical pH curve of the buffer solution for a
changing volume of acid or base (titration curve).
This curve is shown in Figure 2 and is obtained
by integrating Equations (1)-(5) with zero initial
conditions (initial states are obtained assuming
q3 = u = 0). The figure shows the static nonlinear
pH characteristic of a 1.25 l phosphoric acid
buffering solution to the addition of base and acid.
It is clearly shown how the slope of the pH curve
presents high variations along the curve.

3. CONTROLLER SYNTHESIS

The idea of the controller is to combine itera-
tive and model predictive control. Mainly, this is
achieved by using last batch trajectory in the con-
struction of an approximated linear time-varying
model. Also, batch deviation variables are used. If
the batch index is denoted by the superindex k,
they can be specified in the following form:

x̃k (t) = xk (t)− xk−1 (t) (6)

Finite duration linear time-varying batch process
can be described completely in the following sim-
plified matrix form:

ỹ = Gũ (7)

where ỹ is the process output and ũ the input.
The use of batch deviation variables eliminates the
bias term that should appear in equation (7). This
means that modelling and control tasks are also
simplified because the bias term, which includes
batch-correlated disturbances, does not need to
be identified or compensated. Deviation variables
will tend to zero when the system converges to the
reference trajectory.

Fig. 3. Linearized system around a given base
trajectory at time t

Therefore, the first task to build the controller is
to construct the linear time-varying (ltv) model
using deviation variables. The linearization should
be made around a base trajectory (for details,
see De Keyser (1997)). For batch processes, it is
equal to the one followed by the system in last
batch. Later, the system is discretized using an
adequate method, denoting xn = x(Tsn), being
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Ts the sampling time. A ltv system is obtained
in the form of equation (7).

In this case there exists a well-known first prin-
ciples model (equations 1-5). In other cases, an
empirical identification of the process should be
realized. Hammerstein models can also be used to
model the process (Camacho and Bordons, 2004).

It is implicitly assumed that the deviation vari-
ables are small, so the linearized system is accu-
rate. This is assured making the control variations
slow. Second order Volterra models could be used
for control (Bordons and Dorado, 2002), and they
should improve speed of convergence (in number
of batches) because model approximation to the
real one is better.

3.1 pH discrete-time model

The model given by equations (1)-(5) is linearized
and discretized using sampling time equal to Ts =
1s. Resulting equations are non observable, and
the states (Wa4 and Wb4) are not measurable.
It makes the control task more difficult, because
the states have to be known in order to get
the linearized model. Henson and Seborg (1994)
propose an open loop estimation technique for
these chemical invariants (Wa4 and Wb4).

The state-space linearized model has the form:

xk+1 = Akxk + Bkuk (8)

yk = Ckxk (9)

and the following expressions for matrices Ak and
Bk are obtained:

Ak =




a 0 a13

0 a a23

0 0 1


 (10)

with

a = 1− T

3∑
i=1

qiWai

Ah
(11)

a13 = T

q4Wa4 −
3∑

i=1

qiWai

Ah2
(12)

a23 = T

q4Wb4 −
3∑

i=1

qiWai

Ah2
(13)

and

Bk =
(

T
Wa3 −Wa4

Ah
, T

Wb3 −Wb4

Ah
, T

1
A

)t

(14)

As the output is given as an implicit function, the
implicit function theorem must be used to com-
pute matrix Ck (see Henson and Seborg (1994)).

Differentiating the function F (Wa4 ,Wb4 , x) = 0
(equation (4)) and expression (5), we have:

dF =
∂F

∂Wa4

dWa4 +
∂F

∂Wb4

dWb4 +
∂F

∂x
dx = 0 (15)

d (pH (x))
dx

=
d

dx
log10 x =

1
x ln 10

(16)

If Fx 6= 0 the implicit function theorem applies
here and the elements of the matrix Ck are ob-
tained. These elements are the partial derivatives
of the output with respect to the states Wa4 and
Wb4 . Note that C1,3 = 0 because the pH does not
depend of the volume of the solution. Then:

∂pH (Wa4 ,Wb4)
∂Wi4

=
∂pH

∂x

∂x

∂Wi4

= − 1
x ln 10

FWi4

Fx

(17)
where i must be substituted with a or b and

FWi4
=

∂

∂Wi4

∣∣∣∣(
W∗

a4
,W∗

b4
,x∗

) F (Wa4 ,Wb4 , x) (18)

Matrix Ck is given by

Ck =
(
− 1

x ln 10
1
Fx

, − 1
x ln 10

FWb4

Fx
, 0

)
(19)

with

FWb4
=

ka4x + 2ka4ka5x
2 + 3ka4ka5ka6x

3

1 + ka4x + ka4ka5x
2 + ka4ka5ka6x

3

(20)

Fx = kw +
1
x2

−Wb4

x

(
ka4x + 2ka4ka5x

2 + 3ka4ka5ka6x
3

1 + ka4x + ka4ka5x
2 + ka4ka5ka6x

3

)2

+Wb4

ka4 + 4ka4ka5x + 9ka4ka5ka6x
2

1 + ka4x + ka4ka5x
2 + ka4ka5ka6x

3
(21)

3.2 Dealing with uncertainties

Filtering is used in order to enhance closed loop
performance in the presence of noise. Strong non-
linearities and large levels of measurement noise
are many often present in pH plants, making
the use of robustness filters desirable. In batch
processes, two kind of filters are applicable. Both
are described in the following lines.

The first one is the well-known median filter. The
controller uses the pair

(
uk−1 (t) , yk−1 (t)

)
as base

trajectory, so the variance of the system variables
could tend to increase as the batch number grows,
even more when noise and batch disturbances are
present. Sometimes this problem occurs in con-
trollers that use past batches information. Perfor-
mance can be improved by using a median filter
in order to keep the variables smooth enough, as
it is pointed out by Mezghani et al. (2002). The
filter is defined by

y (t) =
1

2l + 1− r − s

l−s∑

j=−l+r

u(t + j) (22)
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Fig. 4. Several batch simulation with ilc

where u is a vector with 2l + 1 sorted elements of
the filtered variable v around time t. The r + s
extreme values are discarded and the mean is
computed.

Other possibility of filtering is the Exponential
Weighting Moving Average (ewma) filter. This fil-
tering, used in industrial batch processes (Moyne
et al., 2001), can estimate parameters, reduce sys-
tem noise or compensate drift terms. The result is
that the noise variance in the closed loop system is
lower. This filter can be viewed as a simple signal
estimator for batch processes. The expression for
the filtered output variable is

yk(t) = λfuk(t) + (1− λf )yk−1(t) (23)

where λf is a parameter.

4. RESULTS

In this section a comparison between nonlinear
inmpc and linear iterative controllers (bmpc and
ilc) is performed. Also an analysis of the con-
trolled system in the presence of disturbances (a
10% step in inlet acid flow at time t = 225s)
and noise is presented. The results are obtained
in simulation, and the controller has been tested
with the continuous time nonlinear plant model.

The first iterative controller is ilc. Its control law
is analogous to the proportional controller, and it
is determined by a constant gain K and the plant
delay d:

uk+1
t = uk

t + Kek
t+d (24)

The main difference between ilc and inmpc is
that the last one uses a batch-varying ltv model.
Therefore, it is more adequate for controlling this
strongly non-linear pH plant. A simulation with
an ilc controller (K = 6 · 10−4) is performed in
Fig. 4. Although the gain is conservative, closed
loop system becomes unstable after 5 iterations.
It is clear that control gain at t ≤ 150 and at
t ≥ 150 should be different (time-varying) and,
moreover, it should be modified when the batch
index is increased (batch-varying).
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Fig. 5. Linear model-based bmpc
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Fig. 6. Several batch simulation, convergence to
the set point

bmpc is an iterative-model based predictive con-
troller. Originally, it has been devised for dealing
with linear batch processes, specially chemical
processes (Lee et al., 1999), and it belongs to the
class of model-based iterative controllers. Other
example of model-based iterative controller is the
qilc, presented by Amann et al. (1996). In this
work, we have tested the bmpc controller on the
simulated pH plant.

Simulation studies have shown that this pH plant
cannot be directly controlled with a linear model
based controller, as can be seen in figure 5. The
model was identified performing two open loop
simulations with constant input (u = 0.010 and
u = 0.012). Unstable trajectories were obtained,
due to the strong nonlinearity of the process.
This behavior can be very harmful in controlled
systems. Nevertheless, it should be pointed out
that a linearization technique could allow the use
of bmpc in this plant.

In spite of the process difficulties, inmpc has
shown good capabilities to control this plant.
Fig. 6 shows the simulation of several sequential
batches controlled with inmpc. The set point is
only shown in the last 4 simulations to keep the
figure clear. Noise variance is equal to 0.01. The
controller is able to reach the set point in a few
batches.

However, the behavior deteriorates in a noisy en-
vironment or in the presence of greater distur-
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bances. Indeed, if the step in acid flow is increased
to 100% or the noise levels are increased to 0.5,
system could even become oscillatory. This unsta-
ble behavior is caused by large prediction errors
due to the effect of uncertainties together with the
strong nonlinearity. Filters described in section
3.2 are useful in this situation. A median filter
with parameters l = 4, r = 2 and s = 2 and an
ewma filter with λ = 0.2 are tested. These filters
permits the controller to deal with higher level of
disturbances, as shown in Fig. 7.

5. CONCLUSIONS

This paper has presented an strategy that has
been designed to control a batch pH reactor,
combining nonlinear predictive control with the
learning capabilities of batch-wise control.

The control law enhances the nonlinear controller
with the ability to make continuous batch-to-
batch trajectory refinement. Simulation results
are presented to illustrate performance improve-
ments that can be achieved by the new method
over the conventional mpc and learning methods.

The inclusion of real-time data collected during
the on-going batch run in addition to those from
the past runs make the control strategy capable
not only of eliminating repeated errors but also
of responding to new disturbances that occur
during the run. This strategy can improve existing
strategies by the use of a nonlinear controller
devised along the last-run trajectory as well as
by the inclusion of filters.

A comparison between inmpc and conventional
iterative controllers has been made. The time
and batch varying nature of the control gain
permits inmpc to improve the transient response,
decreasing the number of iterations needed to
algorithm convergence.
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