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Abstract—Auscultation is one of the most used techniques for
detecting cardiovascular diseases, which is one of the main causes
of death in the world. Heart murmurs are the most common ab-
normal finding when a patient visits the physician for auscultation.
These heart sounds can either be innocent, which are harmless, or
abnormal, which may be a sign of a more serious heart condition.
However, the accuracy rate of primary care physicians and expert
cardiologists when auscultating is not good enough to avoid most
of both type-I (healthy patients are sent for echocardiogram) and
type-1I (pathological patients are sent home without medication or
treatment) errors made. In this paper, the authors present a novel
convolutional neural network based tool for classifying between
healthy people and pathological patients using a neuromorphic
auditory sensor for FPGA that is able to decompose the audio into
frequency bands in real time. For this purpose, different networks
have been trained with the heart murmur information contained in
heart sound recordings obtained from nine different heart sound
databases sourced from multiple research groups. These samples
are segmented and preprocessed using the neuromorphic audi-
tory sensor to decompose their audio information into frequency
bands and, after that, sonogram images with the same size are
generated. These images have been used to train and test differ-
ent convolutional neural network architectures. The best results
have been obtained with a modified version of the AlexNet model,
achieving 97 % accuracy (specificity: 95.12%, sensitivity: 93.20%,
PhysioNet/CinC Challenge 2016 score: (0.9416). This tool could aid
cardiologists and primary care physicians in the auscultation pro-
cess, improving the decision making task and reducing type-I and
type-II errors.

Index Terms—Audio processing, Caffe, convolutional neural net-
works, deep learning, heart murmur, neuromorphic sensor, pattern
recognition.
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I. INTRODUCTION

EART disease is a major health problem and is one of the

main causes of death in the world. Cardiovascular dis-
ease (CVD) causes nearly half of the deaths in Europe (48%)
[1] and 34.3% in America (1 in 2.9 deaths in the United States)
[2]. Detecting CVDs at an early stage is crucial for applying
the corresponding treatment and reduce the potential risk fac-
tors. Auscultation is one of the most used techniques for this
purpose, and can provide clues to the diagnosis of many car-
diac abnormalities by listening and analyzing the heart sound
components using a stethoscope. It is very cheap and requires
minimal equipment. However, physicians need extensive train-
ing and experience for auscultating [3]. Moreover, the accuracy
rate of primary care physicians and medical students on the
auscultation process is between 20—40%, as reported in [4]-[7],
and only roughly 80% is achieved by expert cardiologists [4],
(71, [8].

Heart murmurs are sounds produced when blood flows across
one of the heart valves that are loud enough to produce audible
noise. Murmurs may be harmless (innocent), which are primar-
ily due to physiologic conditions outside the heart, or abnormal,
which may be a sign of a more serious heart condition or a
structural defect in the heart itself. The most common problems
that cause abnormal heart murmurs are mitral or aortic stenosis
and mitral or aortic regurgitation. The sounds can also be cat-
egorized by timing, into systolic and diastolic, differing in the
part of the heartbeat on which they can be heard (between the
S1 and S2 heart sounds, or starting at or after S2 and ending
before or at S1, respectively).

Heart murmurs are the most common abnormal finding when
a patient visits the physician for auscultation. A heart murmur
does not necessarily lead to having a CVD; it could be an in-
nocent murmur instead of a pathological one, which does not
represent current or future illness. The physician must decide
if the patient is healthy or not, but, due to the fact that the ac-
curacy is not great, the expert could be wrong, making type-I
or type-1I errors. A type-I error (alpha error) is the detection of
an effect that is not present (i.e., healthy patients are sent for
echocardiogram), while a type-II error (beta error) is failing on
the detection of an effect that is present (i.e., pathological pa-
tients are sent home without medication or treatment). It is clear
that, in this case, type-1I errors are more important to avoid.
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TABLE I
COMPARATIVE STUDY BETWEEN STATE-OF-THE-ART STUDIES ABOUT HEART SOUND DIAGNOSIS SYSTEMS

Classification

-Trimmed Mean Spectrogram

Ref. Preprocessing method Classes Results No. of samples
-Segmentation . . .
N ’ 85% (using simulated heart sounds) Train: 24 per class
9] | -Alignment ANN! 3 I, AS® or AR®
1 ignmen norma or 48.7% (using real ones) Test: 7 normal, 4 AS?®, 2 AR
-Spectrogram
-Lowpass filtering Train: 30 per class
[10] | -Segmentation (manually) MLP? ANN! 5: normal, AS?, AR, MS® or MR¢ 98% (using simulated heart sounds) ain: 59 per class
Test: 20 per class
-S-Transform
-Wavelet transform
-Normalization
. . Train: 1 al and 10 ab; al
[12] | -Segmentation FNNSL? 2: normal or abnormal 100% (using real heart sounds) ramn: 4 normat an aonorma
N Test: 2 normal and 2 abnormal
-Normalized Average Shannon Energy
-Envelope extraction algorithm
-Segl ati 4 ain: 25 non-pa gical, 36 pa gice
(147 | ~Segmentation PNN* 2: normal or abnormal 96.3% (using real heart sounds) Train: 25 non-pathological, 36 pathological

Test: 18 non-pathological, 37 pathological

-Band-pass filtering

-Short-time Fourier transform - .
[15] N Statistical analysis
-Features manually extracted from spectrogram

-Interesting areas were manually selected

2: innocent or pathological

90.9% (using real heart sounds) 447 innocent, 272 pathological

-Short-time Fourier transform
-Mean value of the signal segments

. SVM3
-Band-pass filtering

[16]

2: innocent or pathological

Train: 20 innocent, 20 pathological

96.07% (using real heart sounds) | A
Test: 5 innocent, 5 pathological

-Wavelet decomposition

17
17 -Feature detection using MIR toolbox from Matlab

Statistical analysis ASDE. MS® o TOF"

7: normal, PDA®, PS, MRY,

20 normal, 9 PDA®, 6 PS', 12 MRY, 13 ASDE,

85.08% (using real heart sounds) 17 MS¢. 13 TOFh

-Resampling
-Band-pass filtering
-Segmentation

[18] AdaBoost + CNN® 2: normal or abnormal

94.24% sensitivity and 77.81% specificity.
PhysioNet/CinC Challenge 2016 score: 86.02%
(using real heart sounds)

Train: 2575 normal, 665 abnormal
Test: 984 normal, 153 abnormal
(PhysioNet/CinC Challenge 2016 dataset)

-18 features extracted from time, frequency and
time-frequency domains based on a wrapper
feature selection scheme.

[19] Ensemble of SVMs’ 2: normal or abnormal

Train: 2301 normal, 570 abnormal
Test: 984 normal, 153 abnormal
(PhysioNet/CinC Challenge 2016 dataset)

86.91% sensitivity and 84.90% specificity.
PhysioNet/CinC Challenge 2016 score: 85.90%
(using real heart sounds)

I: Artificial Neural Network. 2: Multilayer Perceptron. *: Fuzzy Neural Network with Structure Learning. #: Probabilistic Neural Network. *: Support Vector Machine. ®: Convolutional Neural Network.
2 Aortic Stenosis. *: Aortic Regurgitation. °: Mitral Stenosis. : Mitral Regurgitation. ©: Patent Ductus Arteriosus. ': Pulmonary Stenosis.

2: Atrial Septal Defect. ": Tetralogy of Fallot.

However, echocardiograms cost between $750 and $1500 [4]
per patient, making type-I errors also important to avoid. The
probability of needing this costly procedure could be reduced
for both healthy people and pathological patients if a reliable
(with a high accuracy rate) diagnostic tool were available as an
aide for physicians.

The classification of heart sounds is not a new topic. Many
studies have worked toward designing practical murmur classi-
fier systems to improve the diagnostic accuracy of physicians.
Most of them use neural networks (NNs), support vector ma-
chines (SVMs) or some complex preprocessing algorithms to
carry out this task [7]-[17], [18], [19]. Many studies like [10],
[11], [15] have used a processing step where a person selects
the best portion of the sound signal that should be used as input
to the system, making this solution not ideal for a real scenario
because of the need of human interaction. Some of them have
used NN to classify between different kinds of heart murmurs
[71, [9]-[11], but have only trained the network with simulated
heart sounds with no noise, obtaining very bad accuracy re-
sults when testing the classifier with real heart sounds (48.5%).
Others have used only a small amount of real heart sounds
[10], [12], [14]-[17], which is not representative when it comes
to testing it in a real scenario. Table I summarizes the main
information about the preprocessing and the classification steps
that have been performed in some of the state-of-the-art stud-
ies that have been discussed in this section, along with the two
leading approaches from the PhysioNet/CinC Challenge 2016.
Works like [20] use similar preprocessing techniques and classi-
fication algorithms, but focusing on cough sounds identification
instead of heart murmurs.

The main aim of this work is to develop a classifier system
using a Convolutional Neural Network (CNN) that accepts heart
sound recordings directly after preprocessing the information,

and classifies the input to identify if the person whose heart
sound is acquired, is either a healthy person or a pathologi-
cal patient. The preprocessing step automatically divides the
heart sound recordings into windows of a specific time length.
Heart murmurs are located in the 195 Hz band [7], [9], but
can reach up to 700 Hz [10], [21], which confirms that they
can be identified and extracted from the heart sound signal in
the frequency domain. For this purpose, these segments of the
original sound are sent to a Neuromorphic Auditory Sensor
(NAS) [22], which tries to mimic the way in which the inner ear
works, decomposing the audio into frequency bands, and pack-
etizes the information using the Address-Event Representation
(AER) communication protocol [23]. Then, this information
is converted to sonogram images, which are then used as in-
put to the CNN for further classification using deep learning
algorithms.

The rest of the paper is structured as follows: Section II
presents an overview of the system architecture using a block di-
agram to explain each of the components in it. Then, Section III
describes the Neuromorphic Auditory Sensor (NAS) [22] and
how its output information is saved into AEDAT files [24] in
the computer using a USBAERmini2 board [25]. After this, in
Section IV, the dataset acquisition is explained, describing the
heart sound database that has been used in this work. Section V
presents the preprocessing algorithms executed using the data
before applying them as input to the classifier system. Caffe
[26], which is one of the most used deep learning frameworks,
is described in Section VI along with the Convolutional Neural
Networks (CNNs) that have been trained and tested in order
to classify the heart sound dataset. Section VII presents the
classification results and the comparison between the different
experiments that have been carried out in this work. Finally, the
conclusions of this work are presented in Section VIII.
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II. SYSTEM OVERVIEW

The system consists of different modules and steps to achieve
its purpose. Most of them are carried out in the computer; how-
ever, one of the most important parts of the preprocessing is done
outside of it, on a Field Programmable Gate Array (FPGA). A
block diagram of the whole system is presented in Fig. 1.

The heart sound recordings used in this work are obtained
from the PhysioNet/CinC Challenge database [27]. It consists of
3,126 heart sound recordings, lasting from 5 to over 120 seconds.
The main idea is that, after some preprocessing functions are
applied to the information, one image is obtained for each of
the audio samples contained in the dataset, so that it could be
used as input to feed the CNN. In order to generate images
with the same width and height, the first preprocessing step is
to divide the heart sound recordings into segments of the same
length. In this work, the accuracy of the system has been tested
using segmentation windows of 1, 1.25 and 1.5 seconds (without
overlapping), which were chosen because they are large enough
to contain the information from, at least, one full cardiac cycle,
but at the same time small enough to generate as many samples
as possible.

After this process is completed (generating 77573, 61518
and 51009 samples when using a segmentation window of 1,
1.25 and 1.5 seconds length, respectively), audio samples are
sent to the audio input of an AER-Node platform [28]. A 64-
channel mono NAS (Neuromorphic Auditory Sensor) [22] is
programmed on the Spartan-6 FPGA that the AER-Node board
has, which decomposes the audio signal into frequency bands
and packetizes the information using the AER (Address-Event
Representation) protocol [23]. An USBAERmini2 board [25]
receives this information and sends it to the computer through
a USB port. Then, a script running on MATLAB collects the
AER packets received and stores them into AEDAT files [24]
(one file per audio sample), which is the standard format used
for storing this kind of information.

A grayscale sonogram image is generated for each AEDAT
file using Neuromorphic Auditory VISualizer Tool (NAVIS)
[29], which is a desktop software application that is able to
load AEDAT files and postprocess the information obtained
from the NAS, generating useful charts like the cochleogram,
sonogram, histogram, etc. The whole set of images obtained are
then divided into three different datasets: one for training the



CNN (75% of the total amount of images), a second one for
validation (15%) and the last one to test the CNN and obtain the
accuracy ratio of the system (10%). Different CNN models have
been trained and tested using Caffe and their accuracy results
have been compared. Each of these elements and steps will be
described in detail in the next sections.

III. NEUROMORPHIC AUDITORY SENSOR

Neuromorphic Auditory Sensor (NAS) is an audio sensor for
FPGAs inspired by Lyon’s model of the biological cochlea [30].
This sensor is able to process an excitatory audio signal using
Spike Signal Proccesing (SSP) techniques [31], decomposing
incoming audio in its frequency components, and providing
this information as a stream of events using the Address-Event
Representation (AER) [23]. Current state-of-the-art of silicon
cochleae process audio in an analog way [32], using a bank
of low-pass filters (modeling the basilar membrane), and con-
vert the filters’ output to spikes (modeling the inner hair cells).
However, NAS works in the opposite way: first, it converts the
incoming audio to spikes, and directly processes these spikes
using a Spike Low-pass Filter (SLPF) bank with a cascade
topology. Due to the use of SSP filters, circuits are very simple
and do not need complex operating units or dedicated resources
(e.g. floating point ALUs, hardware multipliers, RAM memory,
etc...). As a consequence, NAS designers are able to replicate
SLPFs in low-cost FPGAs, building large scale NAS with a
low-clock frequency working fully in parallel.

To digitalize audio signals we use a commercial analog-to-
digital audio converter (CS5344, with a resolution of 24 bits
and a sample rate of 96 kSamples/sec.), that provides the audio
samples using an I2S bus. Inside the FPGA, audio samples from
the 12S bus are decoded to 24 bits digital words with two’s
complement. Digital audio samples are written in a synthetic
spike generator (SSG), which provides a spike stream with a
frequency that is proportional to the digital amplitude. These
spikes are used as input to a bank of 64 SSP filters with a
cascade topology, known as Cascade Filter Bank (CFB), which
processes audio spikes decomposing them in frequency. Finally,
output spikes from CFB are connected to an AER-Monitor [33].
This gives a unique address to the fired spikes following the
Address-Event Representation, and propagates them using an
asynchronous AER bus. Fig. 2 shows the block diagram of the
architecture of a mono-aural NAS.

A 64-channel mono-aural NAS for FPGA with a cascade
topology has been used together with a USB-AERmini2 inter-
face [25], as can be seen in Fig. 3. NAS response is stored as
AEDAT files and the output information can be seen in the sec-
ond image (b) of Fig. 4, where each dot corresponds to an event
that has been fired in a particular AER address at a specific time.

IV. DATASET ACQUISITION

The heart sound dataset used in this work contains the record-
ings used in the PhysioNet/CinC Challenge 2016 [34], [27],
which comprises nine heart sound databases from different
research groups. Heart sound recordings were sourced from sev-
eral contributors around the world from both healthy subjects

NAS connected to an USBAERmini2.

Fig. 3.

and pathological patients including children and adults, and
contains a total of 3,126 heart sound recordings, lasting from
5 seconds to over 120 seconds. The heart sound recordings were
collected from different locations on the body: aortic area, pul-
monic area, tricuspid area and mitral area. These recordings are
divided into two types: normal and abnormal heart sound record-
ings. The normal recordings were from healthy subjects and the
abnormal ones were from patients with a confirmed cardiac di-
agnosis, which is not specified, but typically they are coronary
artery diseases and heart valve defects like mitral valve prolapse,
mitral regurgitation, aortic stenosis and valvular surgery.

Audio recordings were resampled to 2000 Hz and have been
divided into three different sets of mutually exclusive popula-
tions, using 75% of them to train the network, 15% for validation
and 10% to test the network. These recordings are not clean and
contain noise from various sources due to the uncontrolled en-
vironment, such as talking, breathing, stethoscope motion and
intestinal sounds, which is important to note because training
the system with these real sounds will make it more robust and
noise tolerant.

Using only 75% of the samples that this dataset has (which
is only a total of 2345 heart recordings) for training the CNN
is not sufficient if we want our system to be robust enough
for a test with different recordings that are not included in that
collection. Moreover, working with audio files with variable
lengths is neither appropriate nor optimal for training a CNN:
dividing these files into shorter ones (in terms of duration) would
generate more samples that could be used to both train and test
the network, making the system more reliable. For this purpose,
the heart recordings obtained from the PhysioNet dataset were
segmented using a fixed window length. The segmentation is
one of the steps that have been carried out in the preprocessing
phase, which is described in the next section.

V. PREPROCESSING OF THE INFORMATION

Sound recordings from the PhysioNet database do not have
the same length (each file lasts from 5 to 120 seconds) and CNNs
need the input images to have the same width and height for
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Algorithm 1: Sonogram calculation.

1: integPeriod = 20 ms

2: sonogram = zeros(max(in_addr), max(in_tStamp)/
integPeriod)

3: for i = 1: max(in_addr) do

4:  sonogram(in_addr(i), in_tStamp(i)/integPeriod)++

5: end for

training and testing the network. For this purpose, a segmenta-
tion algorithm is applied to each of the samples before sending
the audio signal to the NAS’ audio input connector. In this work,
different experiments have been carried out, using 1, 1.25 and
1.5 second-long windows in the segmentation process, obtain-
ing 77573, 61518 and 51009 samples, respectively. This way,
the number of samples available is also increased (more than
16 times the amount of samples in the default heart recordings
database), which will provide more information in the training
process of the CNN (these algorithms need a huge amount of
images to train the system more robustly). Each of these three
datasets has been used to feed different CNN models and the
classification results are presented in Section VII.

These length values were selected due to the fact that they
can contain the information from a full cardiac cycle at least
(from the phase of relaxation diastole to the phase of contraction
systole; or, in terms of sound, the whole “lub-dub” sequence
including S1 and S2).

As was presented in the introduction (Section I), heart mur-
murs are located in the 195 Hz band [9], but can reach up to 700
Hz [21], which confirms that they can be identified and extracted
from the heart sound signal in the frequency domain. For this
purpose, each of the audio segments obtained from the original
sound in the previous step are sent to a NAS, which mimics the
way in which the inner ear works, decomposing the audio into
frequency bands, and packetizes the information using the AER
communication protocol. These packets are sent to the computer
through a USB port using the USBAERmini2 board. A script
in MATLAB is then used to generate an AEDAT file, which is
the standard format used for storing this kind of information,
for each of the audio samples. These files contain information
about the address and timestamp of every event that has been
fired in the NAS when feeding its input with an analog audio
signal.

NAVIS is a GPL-licensed desktop software application that
allows to post-process the information obtained from a NAS.
This tool implements a set of charts that allows to represent the
auditory information as cochleograms, histograms and sono-
grams, among others. It can also split the auditory information
into different sets depending on the activity level of the spike
streams. Due to the open-source nature of the project [35], it
has been modified to automatically take the AER information
contained in the AEDAT files that were obtained after send-
ing each of the segmented samples to the NAS, and generate
grayscale sonogram images based on the activity levels of the
sound recordings in the frequency domain across the NAS’
channels.

The pseudocode shown in Algorithm 1 presents the algorithm
that has been used to calculate the sonogram’s matrix of values
(pixels of the image). These values are then normalized between
0 and 255, and a grayscale tone is set based on each value (0
being black, and 255 being white). Image (c) in Fig. 4 shows
the output sonogram from one of the 1 second-long heart sound
recordings.

The whole preprocessing step can be seen in Fig. 4. The first
image (a) shows the audio signal that corresponds to one of
the 1-second samples after being segmented from the original
heart recording. Then, the second one (b) is the cochleogram of
the information contained in the AEDAT file that was obtained
after sending the audio signal to the NAS and capturing the out-
put information using MATLAB and the USBAERmini2 board.
Each dot of the cochleogram is an event that has been fired for a
particular AER address (there are 128 addresses in a 64-channel
mono NAS: each channel has two addresses, for positive and
negative spikes) at a specific time (timestamp). The sonogram
of the AEDAT file (c) was calculated using the equation that was
previously described, resulting in a grayscale image with a width
of 50 pixels (using time windows of 20000 s in length for inte-
grating the information) and a height of 64 pixels (the number of
both negative and positive spikes from the same channel add up).

VI. CAFFE

Caffe (Convolutional Architecture for Fast Feature Embed-
ding) is a customizable framework for state-of-the-art deep
learning algorithms. It allows to train and deploy general pur-
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80.00%, respectively.

pose CNNs and other deep models efficiently and in an easy
way. Caffe is capable of processing over 40 million images a
day on a single K40 or Titan GPU (~2.5 ms per image) thanks
to CUDA GPU computation. It has been used in many research
fields like vision, speech recognition, robotics, neuroscience and
astronomy.

Caffe provides a complete toolkit for training, testing and
deploying models, which can be described using the BSD-
licensed C++ library with Python and Matlab bindings. The
framework also provides a collection of reference models and
well-documented examples for all of these tasks, including the
“AlexNet” ImageNet model [36] and the “LeNet” MNIST model
[37]. These models can be modified, allowing to add/remove
layers to/from the network, change the input dataset format
and train it with different activation functions and parameters,
which are already implemented. Caffe model definitions are
written using the Protocol Buffer language [38], which is a
language-neutral platform-neutral and easy to use mechanism
for serializing structured data.

Fig. 5 shows the block diagram representation of the LeNet-5
model. The input dataset and the input image size have been set
to match our requirements.

Several tests have been performed, using different values on
some of the parameters of the Solver Prototxt file (which is the
file that contains the network’s training configuration) for each
of the three datasets that were obtained after the preprocess-
ing step (using 1 second, 1.25 seconds and 1.5 seconds audio
length windows on the segmentation phase). The parameters that
have been changed from the Solver Prototxt file are: (1) the base
learning rate of the network (base_Ir); (2) the momentum, which
indicates how much of the previous weight will be retained in
the new calculation (momentum); (3) the weight decay, which is
the factor of penalization of large weights (weight_decay); (4)
the test interval, which has been set to 10000 training iterations
(test_interval); (5) the number of test iterations that should oc-
cur per test_interval (test_iter), to match the number of samples
that the dataset has; and (6) the maximum training iterations, in-
dicating when the network should stop training, which has been
set to 500000 (max_iter). These parameters were optimized by
repetition and comparison. The solver mode has been changed
from CPU to GPU, due to the fact that the training process has
been carried out using a NVIDIA GeForce GTX 1060 with 6GB
of GDDRS5 memory, and CUDA Toolkit 8.



TABLE II
TRAINING PARAMETERS AND LAYER CONFIGURATIONS FOR EACH OF THE CNNs USED

base learning rate learning policy momentum | weight decay Conv. layers Pool. layers
. -Kernel sizes: 5 and 5 -Kernel sizes: 2 and 2
Default LeNet-5 0.01 inv 0.9 0.0005
-Strides: 1 and 1 -Strides: 2 and 2
. -Kernel sizes: 3 and 3 -Kernel sizes: 2 and 2
Modified LeNet-5 0.013 inv 0.6 0.000875
-Strides: 1 and 1 -Strides: 1 and 1
. -Kernel sizes: 11, 5, 3, 3 and 3 | -Kernel sizes: 3, 3 and 3
Default AlexNet 0.01 step (10000 iter) 0.9 0.0005
-Strides: 4, 1, 1, 1 and 1 -Strides: 2, 2, and 2
) . -Kernel sizes: 3, 3, 3, 3 and 3 -Kernel sizes: 3, 3 and 3
Modified AlexNet 0.013 step (10000 iter) 0.6 0.000875
-Strides: 2, 1, 1, 1 and 1 -Strides: 1, 1, and 1
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Fig. 8. Features learned for the two convolution layers (20 and 50 filters,
respectively) with the default version of the LeNet-5 model.
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Other CNNss like the AlexNet (Fig. 6), which is a much more
complex network, has also been tested for this purpose and the
accuracy results and comparison between this and the LeNet-5
models are presented in the next sections.

VII. RESULTS AND DISCUSSION

Three different window lengths have been used in the seg-
mentation process in this work: 1, 1.25 and 1.5 seconds. As
presented in the section where the preprocessing of the infor-
mation is described, using these three sample lengths leads to
obtaining up to 77573, 61518 and 51009 samples, respectively,
which is enough for training and testing a CNN. In this work,
modified versions of two widely-known CNN models have been
used. The accuracy of the network has been obtained for each
of the experiments. The sensitivity (Se), specificity (Sp) and
the PhysioNet/Computing in Cardiology Challenge 2016 score
(MAcc) have been calculated for the approaches that achieved
the best accuracy results using the equations that are defined
in [42].

A. Using the LeNet-5 Model

First, the accuracy of the system was tested using the LeNet-5
model [37]. The architecture of the model is presented in Fig. 5:
it consists of a convolutional layer followed by a pooling layer,
another convolutional layer followed by a pooling layer, and
then two fully connected layers similar to the conventional mul-
tilayer perceptrons. The classifier was trained and tested using
each of the three datasets described before without applying any
modification to the training parameters or to the configuration
of the CNN’s layers. The accuracy results can be seen in Fig. 7
for every 10000 training iterations up to a total of 500000 us-
ing a base learning rate of 0.01, the inv learning policy, 0.9 as
momentum and 0.0005 as weight decay. The inv learning policy
updates the learning rate based on the equation shown in (1),
where gamma is set to 0.0001 and power to 0.75. Table II sum-
marizes the training parameters and layer configurations (kernel
sizes and strides for each convolution and pooling layer) for each
of the CNN models used in this work.

lrate = l_rate (1 + gamma * iter) """

ey

After the default LeNet-5 CNN was trained and tested,
82.11% was achieved for the 1-second dataset, 82.39% for the
1.25-seconds dataset, and 80.00% for the 1.5-seconds dataset.
Se, Sp and MAcc were calculated for the dataset that achieved
the best accuracy, obtaining 83.26%, 78.58% and 0.8092, re-
spectively. Even though the model was not modified from its
default state to improve the classification, the obtained results
were very similar to the accuracy that expert cardiologists are
able to achieve when auscultating. Fig. 8 shows the features that
the default LeNet-5 model is learning on each of its convolution
layers. It can be seen that the first layer extract vertical infor-
mation from the images and the second one is able to detect
more complex patterns. However, the results obtained could be
improved by changing the network configuration.

In this context, the next experiment consisted in modifying
the same CNN model and its training parameters to improve the
accuracy results of the system. As in the previous case, the input
layer was adapted to be able to work with the proper image size
that matches its corresponding dataset (50x64 for the 1 s sample
length dataset, 63 x 64 for the 1.25 s dataset and 75 x 64 for
the 1.5 s dataset). Moreover, kernel sizes were reduced from 5
to 3 and the stride from 2 to 1, for a more detailed analysis of
the input images, which allows the extraction of more features
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Fig. 9. Accuracy results achieved for each dataset (1s in blue, 1.25 s in
green and 1.5 s in red) per 10000 training iterations using the modified version
of the LeNet-5 model. Accuracy ratios obtained after 500000 training itera-
tions: 93.68%, 93.57% and 91.14%, respectively, which are better that the ones
obtained previously.

from them. Training parameters were optimized by repetition
and comparison until the best results were obtained for each of
the datasets.

Fig. 9 presents the accuracy results for every 10000 training
iterations up to a total of 500000 using a base learning rate of
0.013, the inv learning policy, 0.6 as momentum and 0.000875
as weight decay. As can be seen, the 1 s dataset achieves the
best result (93.68%), while the 1.25 s and the 1.5 s datasets
achieve 93.57% and 91.14% accuracy ratios, respectively. The
chart also shows that using smaller window length values in
the segmentation step makes the network take a higher number
of iterations to converge when training the CNN, due to the
fact that more images are generated in the process. Se, Sp and
MAcc were calculated for the 1.25 s dataset, obtaining 92.84%,
91.48% and 0.9216, respectively. Training the system took an
average of four hours to complete when using the default model,
and six hours (~ 375 minutes) for the modified model, for each
of the experiments and datasets with a NVIDIA GeForce GTX
1060 GPU. The first approaches were carried out using the CPU
(3.2 GHz Intel 15-4460) instead of the GPU, which increased
the training process execution time more than 24 hours. An
average of 13.7% improvement over the default LeNet-5 model
was achieved in this case.

B. Using the AlexNet Model

The same experiments that were performed using the LeNet-5
model were then tested with a more complex architecture: the
AlexNet [36]. The network is made up of 5 convolutional layers,
max-pooling layers, dropout layers and 3 fully connected layers.
It was released in 2012 by Alex Krizhevsky and scaled the
insights of the LeNet-5 model into a much deeper and wider
neural network that could be used to learn much more complex
objects. It was used to win by a large margin the 2012 ILSVRC
(ImageNet Large-Scale Visual Recognition Challenge) [43].

First, the network was trained and tested without modifying
the architecture or the training parameters (only the input and
output layers were adapted to accept the image sizes that are
being used in this work, and to classify between two different
categories). The accuracy results can be seen in Fig. 10, where
a base learning rate of 0.01 is used along with the step learn-
ing policy and 0.9 and 0.0005 as momentum and weight decay,
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Fig. 10. Accuracy results achieved for each dataset (1s in blue, 1.25 s in
green and 1.5 s in red) per 10000 training iterations using the default version of
the AlexNet model. Accuracy ratios obtained after 500000 training iterations:
89.61%, 90.70% and 89.91%, respectively.
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Fig. 11.  Accuracy results achieved for each dataset (1s in blue, 1.25 s in green
and 1.5 s in red) per 10000 training iterations using the modified version of
the AlexNet model. Accuracy ratios obtained after 500000 training iterations:
94.88%, 95.95% and 97.05%, respectively.

respectively. Se, Sp and MAcc were calculated for the dataset
that achieved the best accuracy, obtaining 94.52%, 90.48% and
0.9250, respectively. As can be seen, the results do not dif-
fer much from the ones obtained with the modified version of
the LeNet-5 model while using the default training parameters.
Other learning policies like fixed and inv (which is the one that
the LeNet-5 model uses) were used without modifying the rest
of the network, but the results did not improve significantly.
The step learning policy updates the learning rate based on the
equation shown in (2), where gamma is set to 0.1 and step to
100000.

[_rate = [_rate % gamma'/1oorter/step)) 2)

In the next experiment, the AlexNet model was modified,
reducing kernel sizes and the stride value for each convolutional
layer. Training parameters were changed to the ones with whom
the LeNet5 obtained the best results, and, after that, they were
optimized by repetition and comparison. Fig. 11 presents the
accuracy results for every 10000 training iterations up to a total
of 500000 using a base learning rate of 0.013, the step learning
policy, 0.6 as momentum and 0.000875 as weight decay. In this
case, the 1.5 s dataset achieved the best result (97.05%), while
the 1s and the 1.25 s datasets achieved 94.88% and 95.95%
accuracy ratios, respectively. This could be due to the fact that
training a more complex CNN like the AlexNet allows to extract
more information from the 1.5 s images, which was not possible
with the LeNet-5 model. Se, Sp and MAcc were calculated for
the dataset that achieved the best accuracy, obtaining 95.12%,
93.20% and 0.9416, respectively.
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TABLE III
ACCURACY, SENSITIVITY, SPECIFICITY AND PHYSIONET/CINC CHALLENGE
2016 SCORE OF THE DIFFERENT STUDIED APPROACHES

Accuracy  Sensitivity(Se) Specificity(Sp) MAcc
Primary care 40% - - -
physicians
Expert 80% - - -
cardiologists
[18] Potes et al. - 94.24% 77.81% 0.8602
[19] Zabihi et al. - 86.91% 84.90% 0.8590
Default LeNet-5 82.39% 83.26% 78.58% 0.8092
Modified LeNet-5  93.68% 92.84% 91.48% 0.9216
Default AlexNet 90.70% 94.52% 90.48% 0.9250
Modified AlexNet  97.05% 95.12% 93.20% 0.9416

Best cases for the 1, 1.25 and 1.5 datasets are selected.

An average of 65 hours for the default model and 107 hours
for the modified model were needed to train the AlexNet CNN
using the GPU. The CPU was intended to be used instead of the
GPU in the first place, but the training process was estimated
around three months (for the default version) to complete per
experiment, which is an unreasonable amount of time. However,
as can be seen in the images, the system converges after the first
150000 training iterations, approximately, which corresponds
to 20 and 32 hours, respectively. Hence, the whole system could
be trained for less than half of the iterations and obtain a very
similar accuracy while spending much less time in the training
process.

The modified version of the AlexNet model achieved the best
results. However, it is important to point out that this CNN only
improves the accuracy of the modified version of the LeNet-5
(which is a much simpler CNN model) by around 3.5%, while
taking almost eighteen times the time needed to train the
second one.

VIII. CONCLUSION

In this work the authors have presented a useful tool to aid car-
diologists and primary care physicians in the auscultation pro-
cess. The system uses heart sound recordings from both healthy
patients and pathological patients directly, which are first split
using windows with a fixed length (1, 1.25 and 1.5 seconds)
and then sent to a NAS where the frequency components of

Block diagram of the complete system implemented on an FPGA using a PDM microphone for real-time analysis of the heart sound directly from the

the audio are extracted. After this, sonogram images are gener-
ated for each of the samples using NAVIS. These images were
used to feed different CNN models (LeNet-5 and AlexNet) ca-
pable of extracting interesting features from them, which have
been trained and tested with different configurations in Caffe to
classify between the two categories that were described.

The obtained results using different LeNet-5 and AlexNet
configurations achieve up to 97.05% accuracy rate in the best
case (with a modified version of the AlexNet model), and
80.00% in the worst case (with the default LeNet-5 configu-
ration). These accuracy rates include the 80% accuracy level
of an expert cardiologist (see Table III for a comparative study
of the obtained results), proving that the system could be very
useful as an aide for cardiologists and primary care physicians
in the auscultation process, reducing the number of both type-I
and type-II errors made. Thereby, the authors have presented
a reliable diagnostic tool that could improve the detection of
pathological heart murmurs when auscultating and, by aiding
the physician, achieve almost 100% accuracy between both.
Also, the results have been compared in terms of sensitivity,
specificity and the PhysioNet/Computing in Cardiology Chal-
lenge 2016 score (obtaining 95.12%, 93.20% and 0.9416 for the
best case, respectively) to the ones of leading approaches from
the competition (Se: 94.24%, Sp: 77.81%, MAcc: 0.8602, in the
best case), showing a clear improvement, especially in terms of
specificity.

Using a NAS in this context instead of a traditional digi-
tal audio processing approach allows us not only to achieve a
very good accuracy result, but also the possibility to develop a
portable diagnosis device based on the system that has been de-
scribed in this paper as the next step in this line of research. This
device would be fully implemented in an FPGA (see Fig. 12)
where a NAS, a configurable real-time segmentation and sono-
gram generator, and a full-custom CNN accelerator would be
programmed. The input to this system would be generated by
a PDM microphone that would be placed on each of the four
main auscultatory areas: Aortic area, Pulmonic area, Tricuspid
area, Mitral Area (Apex). The PDM microphone directly trans-
mits the audio signal information in a spike-based codification,
which would feed the NAS’ input. The fact that this device uses
a NAS to decompose the audio into frequency bands instead



of using a Fourier Transform leads to having a lower power
consumption. As it is presented in [44], a low-power radix-
2 FFT accelerator for FPGA achieves a power consumption of
125 mW; however, the NAS’ is only 29.7 mW [22], which is less
than 24% of the power consumption of the FFT. Additionally,
the NAS could interface directly with Spiking Convolutional
Neural Networks (SCNN) without the need of the segmentation
of the information and the sonogram generation, processing the
auditory information in a continuous way. When connected to
an SCNN, the system would only need to compute and classify
the input signal when spikes are being fired. This means that if
there is no activity in the input, the power consumption of the
device would be even less. This “neuromorphic stethoscope”
would also consist of a button to start the analysis and two
LEDs, which would indicate the result of the CNN’s classifica-
tion result in real time as either healthy subject or pathological
patient.
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