
Deep Neural Networks for the Recognition and
Classification of Heart Murmurs Using

Neuromorphic Auditory Sensors
Juan P. Dominguez-Morales , Member, IEEE, Angel F. Jimenez-Fernandez, Member, IEEE,

Manuel J. Dominguez-Morales, and Gabriel Jimenez-Moreno, Member, IEEE

Abstract—Auscultation is one of the most used techniques for
detecting cardiovascular diseases, which is one of the main causes
of death in the world. Heart murmurs are the most common ab-
normal finding when a patient visits the physician for auscultation.
These heart sounds can either be innocent, which are harmless, or
abnormal, which may be a sign of a more serious heart condition.
However, the accuracy rate of primary care physicians and expert
cardiologists when auscultating is not good enough to avoid most
of both type-I (healthy patients are sent for echocardiogram) and
type-II (pathological patients are sent home without medication or
treatment) errors made. In this paper, the authors present a novel
convolutional neural network based tool for classifying between
healthy people and pathological patients using a neuromorphic
auditory sensor for FPGA that is able to decompose the audio into
frequency bands in real time. For this purpose, different networks
have been trained with the heart murmur information contained in
heart sound recordings obtained from nine different heart sound
databases sourced from multiple research groups. These samples
are segmented and preprocessed using the neuromorphic audi-
tory sensor to decompose their audio information into frequency
bands and, after that, sonogram images with the same size are
generated. These images have been used to train and test differ-
ent convolutional neural network architectures. The best results
have been obtained with a modified version of the AlexNet model,
achieving 97% accuracy (specificity: 95.12%, sensitivity: 93.20%,
PhysioNet/CinC Challenge 2016 score: 0.9416). This tool could aid
cardiologists and primary care physicians in the auscultation pro-
cess, improving the decision making task and reducing type-I and
type-II errors.

Index Terms—Audio processing, Caffe, convolutional neural net-
works, deep learning, heart murmur, neuromorphic sensor, pattern
recognition.

This work was supported by the Spanish government under Grant (with
support from the European Regional Development Fund) COFNET
(TEC2016-77785-P). The work of J. P. Dominguez-Morales was supported by
a Formación de Personal Universitario Scholarship from the Spanish Ministry
of Education, Culture and Sport. This paper was recommended by Associate
Editor S. Renaud. (Corresponding author: Juan P. Dominguez-Morales.)

The authors are with the Robotic and Technology of Computers Labora-
tory, Department of Architecture and Technology of Computers, University
of Seville, Seville 41012, Spain (e-mail: jpdominguez@atc.us.es; ajimenez@
atc.us.es; mdominguez@atc.us.es; gaji@atc.us.es).

I. INTRODUCTION

H EART disease is a major health problem and is one of the
main causes of death in the world. Cardiovascular dis-

ease (CVD) causes nearly half of the deaths in Europe (48%)
[1] and 34.3% in America (1 in 2.9 deaths in the United States)
[2]. Detecting CVDs at an early stage is crucial for applying
the corresponding treatment and reduce the potential risk fac-
tors. Auscultation is one of the most used techniques for this
purpose, and can provide clues to the diagnosis of many car-
diac abnormalities by listening and analyzing the heart sound
components using a stethoscope. It is very cheap and requires
minimal equipment. However, physicians need extensive train-
ing and experience for auscultating [3]. Moreover, the accuracy
rate of primary care physicians and medical students on the
auscultation process is between 20–40%, as reported in [4]–[7],
and only roughly 80% is achieved by expert cardiologists [4],
[7], [8].

Heart murmurs are sounds produced when blood flows across
one of the heart valves that are loud enough to produce audible
noise. Murmurs may be harmless (innocent), which are primar-
ily due to physiologic conditions outside the heart, or abnormal,
which may be a sign of a more serious heart condition or a
structural defect in the heart itself. The most common problems
that cause abnormal heart murmurs are mitral or aortic stenosis
and mitral or aortic regurgitation. The sounds can also be cat-
egorized by timing, into systolic and diastolic, differing in the
part of the heartbeat on which they can be heard (between the
S1 and S2 heart sounds, or starting at or after S2 and ending
before or at S1, respectively).

Heart murmurs are the most common abnormal finding when
a patient visits the physician for auscultation. A heart murmur
does not necessarily lead to having a CVD; it could be an in-
nocent murmur instead of a pathological one, which does not
represent current or future illness. The physician must decide
if the patient is healthy or not, but, due to the fact that the ac-
curacy is not great, the expert could be wrong, making type-I
or type-II errors. A type-I error (alpha error) is the detection of
an effect that is not present (i.e., healthy patients are sent for
echocardiogram), while a type-II error (beta error) is failing on
the detection of an effect that is present (i.e., pathological pa-
tients are sent home without medication or treatment). It is clear
that, in this case, type-II errors are more important to avoid.

https://orcid.org/0000-0002-5474-107X

TABLE I
COMPARATIVE STUDY BETWEEN STATE-OF-THE-ART STUDIES ABOUT HEART SOUND DIAGNOSIS SYSTEMS

However, echocardiograms cost between $750 and $1500 [4]
per patient, making type-I errors also important to avoid. The
probability of needing this costly procedure could be reduced
for both healthy people and pathological patients if a reliable
(with a high accuracy rate) diagnostic tool were available as an
aide for physicians.

The classification of heart sounds is not a new topic. Many
studies have worked toward designing practical murmur classi-
fier systems to improve the diagnostic accuracy of physicians.
Most of them use neural networks (NNs), support vector ma-
chines (SVMs) or some complex preprocessing algorithms to
carry out this task [7]–[17], [18], [19]. Many studies like [10],
[11], [15] have used a processing step where a person selects
the best portion of the sound signal that should be used as input
to the system, making this solution not ideal for a real scenario
because of the need of human interaction. Some of them have
used NNs to classify between different kinds of heart murmurs
[7], [9]–[11], but have only trained the network with simulated
heart sounds with no noise, obtaining very bad accuracy re-
sults when testing the classifier with real heart sounds (48.5%).
Others have used only a small amount of real heart sounds
[10], [12], [14]–[17], which is not representative when it comes
to testing it in a real scenario. Table I summarizes the main
information about the preprocessing and the classification steps
that have been performed in some of the state-of-the-art stud-
ies that have been discussed in this section, along with the two
leading approaches from the PhysioNet/CinC Challenge 2016.
Works like [20] use similar preprocessing techniques and classi-
fication algorithms, but focusing on cough sounds identification
instead of heart murmurs.

The main aim of this work is to develop a classifier system
using a Convolutional Neural Network (CNN) that accepts heart
sound recordings directly after preprocessing the information,

and classifies the input to identify if the person whose heart
sound is acquired, is either a healthy person or a pathologi-
cal patient. The preprocessing step automatically divides the
heart sound recordings into windows of a specific time length.
Heart murmurs are located in the 195 Hz band [7], [9], but
can reach up to 700 Hz [10], [21], which confirms that they
can be identified and extracted from the heart sound signal in
the frequency domain. For this purpose, these segments of the
original sound are sent to a Neuromorphic Auditory Sensor
(NAS) [22], which tries to mimic the way in which the inner ear
works, decomposing the audio into frequency bands, and pack-
etizes the information using the Address-Event Representation
(AER) communication protocol [23]. Then, this information
is converted to sonogram images, which are then used as in-
put to the CNN for further classification using deep learning
algorithms.

The rest of the paper is structured as follows: Section II
presents an overview of the system architecture using a block di-
agram to explain each of the components in it. Then, Section III
describes the Neuromorphic Auditory Sensor (NAS) [22] and
how its output information is saved into AEDAT files [24] in
the computer using a USBAERmini2 board [25]. After this, in
Section IV, the dataset acquisition is explained, describing the
heart sound database that has been used in this work. Section V
presents the preprocessing algorithms executed using the data
before applying them as input to the classifier system. Caffe
[26], which is one of the most used deep learning frameworks,
is described in Section VI along with the Convolutional Neural
Networks (CNNs) that have been trained and tested in order
to classify the heart sound dataset. Section VII presents the
classification results and the comparison between the different
experiments that have been carried out in this work. Finally, the
conclusions of this work are presented in Section VIII.

Fig. 1. Block diagram of the system architecture.

Fig. 2. Mono-aural Neuromorphic Auditory Sensor for FPGA with an I2S audio ADC and AER interface.

II. SYSTEM OVERVIEW

The system consists of different modules and steps to achieve
its purpose. Most of them are carried out in the computer; how-
ever, one of the most important parts of the preprocessing is done
outside of it, on a Field Programmable Gate Array (FPGA). A
block diagram of the whole system is presented in Fig. 1.

The heart sound recordings used in this work are obtained
from the PhysioNet/CinC Challenge database [27]. It consists of
3,126 heart sound recordings, lasting from 5 to over 120 seconds.
The main idea is that, after some preprocessing functions are
applied to the information, one image is obtained for each of
the audio samples contained in the dataset, so that it could be
used as input to feed the CNN. In order to generate images
with the same width and height, the first preprocessing step is
to divide the heart sound recordings into segments of the same
length. In this work, the accuracy of the system has been tested
using segmentation windows of 1, 1.25 and 1.5 seconds (without
overlapping), which were chosen because they are large enough
to contain the information from, at least, one full cardiac cycle,
but at the same time small enough to generate as many samples
as possible.

After this process is completed (generating 77573, 61518
and 51009 samples when using a segmentation window of 1,
1.25 and 1.5 seconds length, respectively), audio samples are
sent to the audio input of an AER-Node platform [28]. A 64-
channel mono NAS (Neuromorphic Auditory Sensor) [22] is
programmed on the Spartan-6 FPGA that the AER-Node board
has, which decomposes the audio signal into frequency bands
and packetizes the information using the AER (Address-Event
Representation) protocol [23]. An USBAERmini2 board [25]
receives this information and sends it to the computer through
a USB port. Then, a script running on MATLAB collects the
AER packets received and stores them into AEDAT files [24]
(one file per audio sample), which is the standard format used
for storing this kind of information.

A grayscale sonogram image is generated for each AEDAT
file using Neuromorphic Auditory VISualizer Tool (NAVIS)
[29], which is a desktop software application that is able to
load AEDAT files and postprocess the information obtained
from the NAS, generating useful charts like the cochleogram,
sonogram, histogram, etc. The whole set of images obtained are
then divided into three different datasets: one for training the

CNN (75% of the total amount of images), a second one for
validation (15%) and the last one to test the CNN and obtain the
accuracy ratio of the system (10%). Different CNN models have
been trained and tested using Caffe and their accuracy results
have been compared. Each of these elements and steps will be
described in detail in the next sections.

III. NEUROMORPHIC AUDITORY SENSOR

Neuromorphic Auditory Sensor (NAS) is an audio sensor for
FPGAs inspired by Lyon’s model of the biological cochlea [30].
This sensor is able to process an excitatory audio signal using
Spike Signal Proccesing (SSP) techniques [31], decomposing
incoming audio in its frequency components, and providing
this information as a stream of events using the Address-Event
Representation (AER) [23]. Current state-of-the-art of silicon
cochleae process audio in an analog way [32], using a bank
of low-pass filters (modeling the basilar membrane), and con-
vert the filters’ output to spikes (modeling the inner hair cells).
However, NAS works in the opposite way: first, it converts the
incoming audio to spikes, and directly processes these spikes
using a Spike Low-pass Filter (SLPF) bank with a cascade
topology. Due to the use of SSP filters, circuits are very simple
and do not need complex operating units or dedicated resources
(e.g. floating point ALUs, hardware multipliers, RAM memory,
etc...). As a consequence, NAS designers are able to replicate
SLPFs in low-cost FPGAs, building large scale NAS with a
low-clock frequency working fully in parallel.

To digitalize audio signals we use a commercial analog-to-
digital audio converter (CS5344, with a resolution of 24 bits
and a sample rate of 96 kSamples/sec.), that provides the audio
samples using an I2S bus. Inside the FPGA, audio samples from
the I2S bus are decoded to 24 bits digital words with two’s
complement. Digital audio samples are written in a synthetic
spike generator (SSG), which provides a spike stream with a
frequency that is proportional to the digital amplitude. These
spikes are used as input to a bank of 64 SSP filters with a
cascade topology, known as Cascade Filter Bank (CFB), which
processes audio spikes decomposing them in frequency. Finally,
output spikes from CFB are connected to an AER-Monitor [33].
This gives a unique address to the fired spikes following the
Address-Event Representation, and propagates them using an
asynchronous AER bus. Fig. 2 shows the block diagram of the
architecture of a mono-aural NAS.

A 64-channel mono-aural NAS for FPGA with a cascade
topology has been used together with a USB-AERmini2 inter-
face [25], as can be seen in Fig. 3. NAS response is stored as
AEDAT files and the output information can be seen in the sec-
ond image (b) of Fig. 4, where each dot corresponds to an event
that has been fired in a particular AER address at a specific time.

IV. DATASET ACQUISITION

The heart sound dataset used in this work contains the record-
ings used in the PhysioNet/CinC Challenge 2016 [34], [27],
which comprises nine heart sound databases from different
research groups. Heart sound recordings were sourced from sev-
eral contributors around the world from both healthy subjects

Fig. 3. NAS connected to an USBAERmini2.

and pathological patients including children and adults, and
contains a total of 3,126 heart sound recordings, lasting from
5 seconds to over 120 seconds. The heart sound recordings were
collected from different locations on the body: aortic area, pul-
monic area, tricuspid area and mitral area. These recordings are
divided into two types: normal and abnormal heart sound record-
ings. The normal recordings were from healthy subjects and the
abnormal ones were from patients with a confirmed cardiac di-
agnosis, which is not specified, but typically they are coronary
artery diseases and heart valve defects like mitral valve prolapse,
mitral regurgitation, aortic stenosis and valvular surgery.

Audio recordings were resampled to 2000 Hz and have been
divided into three different sets of mutually exclusive popula-
tions, using 75% of them to train the network, 15% for validation
and 10% to test the network. These recordings are not clean and
contain noise from various sources due to the uncontrolled en-
vironment, such as talking, breathing, stethoscope motion and
intestinal sounds, which is important to note because training
the system with these real sounds will make it more robust and
noise tolerant.

Using only 75% of the samples that this dataset has (which
is only a total of 2345 heart recordings) for training the CNN
is not sufficient if we want our system to be robust enough
for a test with different recordings that are not included in that
collection. Moreover, working with audio files with variable
lengths is neither appropriate nor optimal for training a CNN:
dividing these files into shorter ones (in terms of duration) would
generate more samples that could be used to both train and test
the network, making the system more reliable. For this purpose,
the heart recordings obtained from the PhysioNet dataset were
segmented using a fixed window length. The segmentation is
one of the steps that have been carried out in the preprocessing
phase, which is described in the next section.

V. PREPROCESSING OF THE INFORMATION

Sound recordings from the PhysioNet database do not have
the same length (each file lasts from 5 to 120 seconds) and CNNs
need the input images to have the same width and height for

Fig. 4. Outputs of the different preprocessing steps: the first image (a) is the original audio signal after the segmentation process; the second one (b) is the AER
information obtained from the NAS’ output; and the last one (c) is the grayscale sonogram image obtained with NAVIS, where a whiter tone in a specific section
means that that section has more activity. (a) Audio signal. (b)Cochleogram. (c) Sonogram.

Algorithm 1: Sonogram calculation.
1: integPeriod = 20 ms
2: sonogram = zeros(max(in_addr), max(in_tStamp)/

integPeriod)
3: for i = 1: max(in_addr) do
4: sonogram(in_addr(i), in_tStamp(i)/integPeriod)++
5: end for

training and testing the network. For this purpose, a segmenta-
tion algorithm is applied to each of the samples before sending
the audio signal to the NAS’ audio input connector. In this work,
different experiments have been carried out, using 1, 1.25 and
1.5 second-long windows in the segmentation process, obtain-
ing 77573, 61518 and 51009 samples, respectively. This way,
the number of samples available is also increased (more than
16 times the amount of samples in the default heart recordings
database), which will provide more information in the training
process of the CNN (these algorithms need a huge amount of
images to train the system more robustly). Each of these three
datasets has been used to feed different CNN models and the
classification results are presented in Section VII.

These length values were selected due to the fact that they
can contain the information from a full cardiac cycle at least
(from the phase of relaxation diastole to the phase of contraction
systole; or, in terms of sound, the whole ”lub-dub” sequence
including S1 and S2).

As was presented in the introduction (Section I), heart mur-
murs are located in the 195 Hz band [9], but can reach up to 700
Hz [21], which confirms that they can be identified and extracted
from the heart sound signal in the frequency domain. For this
purpose, each of the audio segments obtained from the original
sound in the previous step are sent to a NAS, which mimics the
way in which the inner ear works, decomposing the audio into
frequency bands, and packetizes the information using the AER
communication protocol. These packets are sent to the computer
through a USB port using the USBAERmini2 board. A script
in MATLAB is then used to generate an AEDAT file, which is
the standard format used for storing this kind of information,
for each of the audio samples. These files contain information
about the address and timestamp of every event that has been
fired in the NAS when feeding its input with an analog audio
signal.

NAVIS is a GPL-licensed desktop software application that
allows to post-process the information obtained from a NAS.
This tool implements a set of charts that allows to represent the
auditory information as cochleograms, histograms and sono-
grams, among others. It can also split the auditory information
into different sets depending on the activity level of the spike
streams. Due to the open-source nature of the project [35], it
has been modified to automatically take the AER information
contained in the AEDAT files that were obtained after send-
ing each of the segmented samples to the NAS, and generate
grayscale sonogram images based on the activity levels of the
sound recordings in the frequency domain across the NAS’
channels.

The pseudocode shown in Algorithm 1 presents the algorithm
that has been used to calculate the sonogram’s matrix of values
(pixels of the image). These values are then normalized between
0 and 255, and a grayscale tone is set based on each value (0
being black, and 255 being white). Image (c) in Fig. 4 shows
the output sonogram from one of the 1 second-long heart sound
recordings.

The whole preprocessing step can be seen in Fig. 4. The first
image (a) shows the audio signal that corresponds to one of
the 1-second samples after being segmented from the original
heart recording. Then, the second one (b) is the cochleogram of
the information contained in the AEDAT file that was obtained
after sending the audio signal to the NAS and capturing the out-
put information using MATLAB and the USBAERmini2 board.
Each dot of the cochleogram is an event that has been fired for a
particular AER address (there are 128 addresses in a 64-channel
mono NAS: each channel has two addresses, for positive and
negative spikes) at a specific time (timestamp). The sonogram
of the AEDAT file (c) was calculated using the equation that was
previously described, resulting in a grayscale image with a width
of 50 pixels (using time windows of 20000 µs in length for inte-
grating the information) and a height of 64 pixels (the number of
both negative and positive spikes from the same channel add up).

VI. CAFFE

Caffe (Convolutional Architecture for Fast Feature Embed-
ding) is a customizable framework for state-of-the-art deep
learning algorithms. It allows to train and deploy general pur-

Fig. 5. Block diagram of the LeNet-5 model architecture.

Fig. 6. Block diagram of the AlexNet model architecture.

Fig. 7. Accuracy results achieved for each dataset (1s in blue, 1.25 s in green
and 1.5 s in red) per 10000 training iterations using the default LeNet-5 model.
Accuracy ratios obtained after 500000 training iterations: 82.11%, 82.39% and
80.00%, respectively.

pose CNNs and other deep models efficiently and in an easy
way. Caffe is capable of processing over 40 million images a
day on a single K40 or Titan GPU (∼2.5 ms per image) thanks
to CUDA GPU computation. It has been used in many research
fields like vision, speech recognition, robotics, neuroscience and
astronomy.

Caffe provides a complete toolkit for training, testing and
deploying models, which can be described using the BSD-
licensed C++ library with Python and Matlab bindings. The
framework also provides a collection of reference models and
well-documented examples for all of these tasks, including the
“AlexNet” ImageNet model [36] and the “LeNet” MNIST model
[37]. These models can be modified, allowing to add/remove
layers to/from the network, change the input dataset format
and train it with different activation functions and parameters,
which are already implemented. Caffe model definitions are
written using the Protocol Buffer language [38], which is a
language-neutral platform-neutral and easy to use mechanism
for serializing structured data.

In this work, a modified version of the LeNet-5 CNN [37] has
been used, where the number of outputs has been changed to
two, as the goal is to distinguish between two classes: healthy
subject and pathological patient. This model was designed for
handwritten and machine-printed character recognition, but it is
also well known for its high accuracy results for image recogni-
tion and feature extraction. Many studies have used this model
for a wide variety of purposes, like freehand sketch recognition
[39], Alzheimer’s disease recognition [40] or even horse gait
classification [41], obtaining very good results.

Fig. 5 shows the block diagram representation of the LeNet-5
model. The input dataset and the input image size have been set
to match our requirements.

Several tests have been performed, using different values on
some of the parameters of the Solver Prototxt file (which is the
file that contains the network’s training configuration) for each
of the three datasets that were obtained after the preprocess-
ing step (using 1 second, 1.25 seconds and 1.5 seconds audio
length windows on the segmentation phase). The parameters that
have been changed from the Solver Prototxt file are: (1) the base
learning rate of the network (base_lr); (2) the momentum, which
indicates how much of the previous weight will be retained in
the new calculation (momentum); (3) the weight decay, which is
the factor of penalization of large weights (weight_decay); (4)
the test interval, which has been set to 10000 training iterations
(test_interval); (5) the number of test iterations that should oc-
cur per test_interval (test_iter), to match the number of samples
that the dataset has; and (6) the maximum training iterations, in-
dicating when the network should stop training, which has been
set to 500000 (max_iter). These parameters were optimized by
repetition and comparison. The solver mode has been changed
from CPU to GPU, due to the fact that the training process has
been carried out using a NVIDIA GeForce GTX 1060 with 6GB
of GDDR5 memory, and CUDA Toolkit 8.

TABLE II
TRAINING PARAMETERS AND LAYER CONFIGURATIONS FOR EACH OF THE CNNS USED

Fig. 8. Features learned for the two convolution layers (20 and 50 filters,
respectively) with the default version of the LeNet-5 model.

Other CNNs like the AlexNet (Fig. 6), which is a much more
complex network, has also been tested for this purpose and the
accuracy results and comparison between this and the LeNet-5
models are presented in the next sections.

VII. RESULTS AND DISCUSSION

Three different window lengths have been used in the seg-
mentation process in this work: 1, 1.25 and 1.5 seconds. As
presented in the section where the preprocessing of the infor-
mation is described, using these three sample lengths leads to
obtaining up to 77573, 61518 and 51009 samples, respectively,
which is enough for training and testing a CNN. In this work,
modified versions of two widely-known CNN models have been
used. The accuracy of the network has been obtained for each
of the experiments. The sensitivity (Se), specificity (Sp) and
the PhysioNet/Computing in Cardiology Challenge 2016 score
(MAcc) have been calculated for the approaches that achieved
the best accuracy results using the equations that are defined
in [42].

A. Using the LeNet-5 Model

First, the accuracy of the system was tested using the LeNet-5
model [37]. The architecture of the model is presented in Fig. 5:
it consists of a convolutional layer followed by a pooling layer,
another convolutional layer followed by a pooling layer, and
then two fully connected layers similar to the conventional mul-
tilayer perceptrons. The classifier was trained and tested using
each of the three datasets described before without applying any
modification to the training parameters or to the configuration
of the CNN’s layers. The accuracy results can be seen in Fig. 7
for every 10000 training iterations up to a total of 500000 us-
ing a base learning rate of 0.01, the inv learning policy, 0.9 as
momentum and 0.0005 as weight decay. The inv learning policy
updates the learning rate based on the equation shown in (1),
where gamma is set to 0.0001 and power to 0.75. Table II sum-
marizes the training parameters and layer configurations (kernel
sizes and strides for each convolution and pooling layer) for each
of the CNN models used in this work.

l rate = l rate ∗ (1 + gamma ∗ i ter)(−power) (1)

After the default LeNet-5 CNN was trained and tested,
82.11% was achieved for the 1-second dataset, 82.39% for the
1.25-seconds dataset, and 80.00% for the 1.5-seconds dataset.
Se, Sp and MAcc were calculated for the dataset that achieved
the best accuracy, obtaining 83.26%, 78.58% and 0.8092, re-
spectively. Even though the model was not modified from its
default state to improve the classification, the obtained results
were very similar to the accuracy that expert cardiologists are
able to achieve when auscultating. Fig. 8 shows the features that
the default LeNet-5 model is learning on each of its convolution
layers. It can be seen that the first layer extract vertical infor-
mation from the images and the second one is able to detect
more complex patterns. However, the results obtained could be
improved by changing the network configuration.

In this context, the next experiment consisted in modifying
the same CNN model and its training parameters to improve the
accuracy results of the system. As in the previous case, the input
layer was adapted to be able to work with the proper image size
that matches its corresponding dataset (50x64 for the 1 s sample
length dataset, 63 × 64 for the 1.25 s dataset and 75 × 64 for
the 1.5 s dataset). Moreover, kernel sizes were reduced from 5
to 3 and the stride from 2 to 1, for a more detailed analysis of
the input images, which allows the extraction of more features

Fig. 9. Accuracy results achieved for each dataset (1s in blue, 1.25 s in
green and 1.5 s in red) per 10000 training iterations using the modified version
of the LeNet-5 model. Accuracy ratios obtained after 500000 training itera-
tions: 93.68%, 93.57% and 91.14%, respectively, which are better that the ones
obtained previously.

from them. Training parameters were optimized by repetition
and comparison until the best results were obtained for each of
the datasets.

Fig. 9 presents the accuracy results for every 10000 training
iterations up to a total of 500000 using a base learning rate of
0.013, the inv learning policy, 0.6 as momentum and 0.000875
as weight decay. As can be seen, the 1 s dataset achieves the
best result (93.68%), while the 1.25 s and the 1.5 s datasets
achieve 93.57% and 91.14% accuracy ratios, respectively. The
chart also shows that using smaller window length values in
the segmentation step makes the network take a higher number
of iterations to converge when training the CNN, due to the
fact that more images are generated in the process. Se, Sp and
MAcc were calculated for the 1.25 s dataset, obtaining 92.84%,
91.48% and 0.9216, respectively. Training the system took an
average of four hours to complete when using the default model,
and six hours (∼375 minutes) for the modified model, for each
of the experiments and datasets with a NVIDIA GeForce GTX
1060 GPU. The first approaches were carried out using the CPU
(3.2 GHz Intel i5-4460) instead of the GPU, which increased
the training process execution time more than 24 hours. An
average of 13.7% improvement over the default LeNet-5 model
was achieved in this case.

B. Using the AlexNet Model

The same experiments that were performed using the LeNet-5
model were then tested with a more complex architecture: the
AlexNet [36]. The network is made up of 5 convolutional layers,
max-pooling layers, dropout layers and 3 fully connected layers.
It was released in 2012 by Alex Krizhevsky and scaled the
insights of the LeNet-5 model into a much deeper and wider
neural network that could be used to learn much more complex
objects. It was used to win by a large margin the 2012 ILSVRC
(ImageNet Large-Scale Visual Recognition Challenge) [43].

First, the network was trained and tested without modifying
the architecture or the training parameters (only the input and
output layers were adapted to accept the image sizes that are
being used in this work, and to classify between two different
categories). The accuracy results can be seen in Fig. 10, where
a base learning rate of 0.01 is used along with the step learn-
ing policy and 0.9 and 0.0005 as momentum and weight decay,

Fig. 10. Accuracy results achieved for each dataset (1s in blue, 1.25 s in
green and 1.5 s in red) per 10000 training iterations using the default version of
the AlexNet model. Accuracy ratios obtained after 500000 training iterations:
89.61%, 90.70% and 89.91%, respectively.

Fig. 11. Accuracy results achieved for each dataset (1s in blue, 1.25 s in green
and 1.5 s in red) per 10000 training iterations using the modified version of
the AlexNet model. Accuracy ratios obtained after 500000 training iterations:
94.88%, 95.95% and 97.05%, respectively.

respectively. Se, Sp and MAcc were calculated for the dataset
that achieved the best accuracy, obtaining 94.52%, 90.48% and
0.9250, respectively. As can be seen, the results do not dif-
fer much from the ones obtained with the modified version of
the LeNet-5 model while using the default training parameters.
Other learning policies like fixed and inv (which is the one that
the LeNet-5 model uses) were used without modifying the rest
of the network, but the results did not improve significantly.
The step learning policy updates the learning rate based on the
equation shown in (2), where gamma is set to 0.1 and step to
100000.

l rate = l rate ∗ gamma(f loor (i ter/step)) (2)

In the next experiment, the AlexNet model was modified,
reducing kernel sizes and the stride value for each convolutional
layer. Training parameters were changed to the ones with whom
the LeNet5 obtained the best results, and, after that, they were
optimized by repetition and comparison. Fig. 11 presents the
accuracy results for every 10000 training iterations up to a total
of 500000 using a base learning rate of 0.013, the step learning
policy, 0.6 as momentum and 0.000875 as weight decay. In this
case, the 1.5 s dataset achieved the best result (97.05%), while
the 1s and the 1.25 s datasets achieved 94.88% and 95.95%
accuracy ratios, respectively. This could be due to the fact that
training a more complex CNN like the AlexNet allows to extract
more information from the 1.5 s images, which was not possible
with the LeNet-5 model. Se, Sp and MAcc were calculated for
the dataset that achieved the best accuracy, obtaining 95.12%,
93.20% and 0.9416, respectively.

Fig. 12. Block diagram of the complete system implemented on an FPGA using a PDM microphone for real-time analysis of the heart sound directly from the
patient.

TABLE III
ACCURACY, SENSITIVITY, SPECIFICITY AND PHYSIONET/CINC CHALLENGE

2016 SCORE OF THE DIFFERENT STUDIED APPROACHES

Accuracy Sensitivity(Se) Specificity(Sp) MAcc

Primary care
physicians

40% – – –

Expert
cardiologists

80% – – –

[18] Potes et al. – 94.24% 77.81% 0.8602
[19] Zabihi et al. – 86.91% 84.90% 0.8590
Default LeNet-5 82.39% 83.26% 78.58% 0.8092
Modified LeNet-5 93.68% 92.84% 91.48% 0.9216
Default AlexNet 90.70% 94.52% 90.48% 0.9250
Modified AlexNet 97.05% 95.12% 93.20% 0.9416

Best cases for the 1, 1.25 and 1.5 datasets are selected.

An average of 65 hours for the default model and 107 hours
for the modified model were needed to train the AlexNet CNN
using the GPU. The CPU was intended to be used instead of the
GPU in the first place, but the training process was estimated
around three months (for the default version) to complete per
experiment, which is an unreasonable amount of time. However,
as can be seen in the images, the system converges after the first
150000 training iterations, approximately, which corresponds
to 20 and 32 hours, respectively. Hence, the whole system could
be trained for less than half of the iterations and obtain a very
similar accuracy while spending much less time in the training
process.

The modified version of the AlexNet model achieved the best
results. However, it is important to point out that this CNN only
improves the accuracy of the modified version of the LeNet-5
(which is a much simpler CNN model) by around 3.5%, while
taking almost eighteen times the time needed to train the
second one.

VIII. CONCLUSION

In this work the authors have presented a useful tool to aid car-
diologists and primary care physicians in the auscultation pro-
cess. The system uses heart sound recordings from both healthy
patients and pathological patients directly, which are first split
using windows with a fixed length (1, 1.25 and 1.5 seconds)
and then sent to a NAS where the frequency components of

the audio are extracted. After this, sonogram images are gener-
ated for each of the samples using NAVIS. These images were
used to feed different CNN models (LeNet-5 and AlexNet) ca-
pable of extracting interesting features from them, which have
been trained and tested with different configurations in Caffe to
classify between the two categories that were described.

The obtained results using different LeNet-5 and AlexNet
configurations achieve up to 97.05% accuracy rate in the best
case (with a modified version of the AlexNet model), and
80.00% in the worst case (with the default LeNet-5 configu-
ration). These accuracy rates include the 80% accuracy level
of an expert cardiologist (see Table III for a comparative study
of the obtained results), proving that the system could be very
useful as an aide for cardiologists and primary care physicians
in the auscultation process, reducing the number of both type-I
and type-II errors made. Thereby, the authors have presented
a reliable diagnostic tool that could improve the detection of
pathological heart murmurs when auscultating and, by aiding
the physician, achieve almost 100% accuracy between both.
Also, the results have been compared in terms of sensitivity,
specificity and the PhysioNet/Computing in Cardiology Chal-
lenge 2016 score (obtaining 95.12%, 93.20% and 0.9416 for the
best case, respectively) to the ones of leading approaches from
the competition (Se: 94.24%, Sp: 77.81%, MAcc: 0.8602, in the
best case), showing a clear improvement, especially in terms of
specificity.

Using a NAS in this context instead of a traditional digi-
tal audio processing approach allows us not only to achieve a
very good accuracy result, but also the possibility to develop a
portable diagnosis device based on the system that has been de-
scribed in this paper as the next step in this line of research. This
device would be fully implemented in an FPGA (see Fig. 12)
where a NAS, a configurable real-time segmentation and sono-
gram generator, and a full-custom CNN accelerator would be
programmed. The input to this system would be generated by
a PDM microphone that would be placed on each of the four
main auscultatory areas: Aortic area, Pulmonic area, Tricuspid
area, Mitral Area (Apex). The PDM microphone directly trans-
mits the audio signal information in a spike-based codification,
which would feed the NAS’ input. The fact that this device uses
a NAS to decompose the audio into frequency bands instead

of using a Fourier Transform leads to having a lower power
consumption. As it is presented in [44], a low-power radix-
2 FFT accelerator for FPGA achieves a power consumption of
125 mW; however, the NAS’ is only 29.7 mW [22], which is less
than 24% of the power consumption of the FFT. Additionally,
the NAS could interface directly with Spiking Convolutional
Neural Networks (SCNN) without the need of the segmentation
of the information and the sonogram generation, processing the
auditory information in a continuous way. When connected to
an SCNN, the system would only need to compute and classify
the input signal when spikes are being fired. This means that if
there is no activity in the input, the power consumption of the
device would be even less. This “neuromorphic stethoscope”
would also consist of a button to start the analysis and two
LEDs, which would indicate the result of the CNN’s classifica-
tion result in real time as either healthy subject or pathological
patient.

REFERENCES

[1] M. Nichols, N. Townsend, P. Scarborough, R. Luengo-Fernandez, J. Leal,
A. Gray, and M. Rayner, “European cardiovascular disease statistics 2012:
European heart network. brussels,” Eur. Soci. Cardiology, Sophia Antipo-
lis, 2012.

[2] D. Lloyd-Jones et al., “Heart disease and stroke statistics-2010 update a
report from the American heart association,” Circulation, vol. 121, no. 7,
pp. e46–e215, 2010.

[3] D. Roy, J. Sargeant, J. Gray, B. Hoyt, M. Allen, and M. Fleming, “Helping
family physicians improve their cardiac auscultation skills with an inter-
active CD-ROM,” J. Continuing Edu. Health Professions, vol. 22, no. 3,
pp. 152–159, 2002.

[4] E. Etchells, C. Bell, and K. Robb, “Does this patient have an abnormal
systolic murmur?” Jama, vol. 277, no. 7, pp. 564–571, 1997.

[5] S. Mangione and L. Z. Nieman, “Cardiac auscultatory skills of internal
medicine and family practice trainees: a comparison of diagnostic profi-
ciency,” Jama, vol. 278, no. 9, pp. 717–722, 1997.

[6] M. Lam et al., “Factors influencing cardiac auscultation proficiency in
physician trainees,” Singapore Med. J., vol. 46, no. 1, pp. 11–14, 2005.

[7] S. L. Strunic, F. Rios-Gutiérrez, R. Alba-Flores, G. Nordehn, and S. Bums,
“Detection and classification of cardiac murmurs using segmentation tech-
niques and artificial neural networks,” in Proc. IEEE Symp. Comput. Intell.
Data Mining, 2007, pp. 397–404.

[8] K. Ejaz, G. Nordehn, R. Alba-Flores, F. Rios-Gutierrez, S. Burns, and
N. Andrisevic, “A heart murmur detection system using spectrograms
and artificial neural networks.” in Proc. Int. Conf. Circuits, Signals, Syst.,
2004, pp. 374–379.

[9] F. Rios-Gutierrez, R. Alba-Flores, and S. Strunic, “Recognition and classi-
fication of cardiac murmurs using ANN and segmentation,” in Proc. 22nd
Int. Conf. Electr. Commun. Comput., 2012, pp. 219–223.

[10] H. M. Hadi, M. Y. Mashor, M. Z. Suboh, and M. S. Mohamed,
“Classification of heart sound based on S-transform and neural net-
work,” in Proc. 10th Int. Conf. Inf. Sci. Signal Process. Appl., 2010,
pp. 189–192.

[11] H. Hadi, M. Mashor, M. Mohamed, and K. Tat, “Classification of heart
sounds using wavelets and neural networks,” in Proc. 5th Int. Conf. Electr.
Eng. Comput. Sci. Autom. Control, 2008, pp. 177–180.

[12] L. Jia, D. Song, L. Tao, and Y. Lu, “Heart sounds classification with a
fuzzy neural network method with structure learning,” in Proc. Int. Symp.
Neural Netw., 2012, pp. 130–140.

[13] M. Singh and A. Cheema, “Heart sounds classification using feature ex-
traction of phonocardiography signal,” Int. J. Comput. Appl., vol. 77, no. 4,
pp. 13–17, 2013.

[14] T. Leung, P. White, W. Collis, E. Brown, and A. Salmon, “Classification
of heart sounds using time-frequency method and artificial neural net-
works,” in Proc. 22nd Annul. Int. Conf. Eng. Med. Biol. Soc., 2000, vol. 2,
pp. 988–991.

[15] A.-L. Noponen, S. Lukkarinen, A. Angerla, and R. Sepponen, “Phono-
spectrographic analysis of heart murmur in children,” BMC Pediatrics,
vol. 7, no. 1, pp. 23–33, 2007.

[16] M. Markaki, I. Germanakis, and Y. Stylianou, “Automatic classification
of systolic heart murmurs,” in Proc. 2013 IEEE Int. Conf. Acoust., Speech
Signal Process., 2013, pp. 1301–1305.

[17] I. S. Perera, F. A. Muthalif, M. Selvarathnam, M. R. Liyanaarachchi, and
N. D. Nanayakkara, “Automated diagnosis of cardiac abnormalities using
heart sounds,” in Proc. 2013 IEEE Point-of-Care Healthcare Technol.,
2013, pp. 252–255.

[18] C. Potes, S. Parvaneh, A. Rahman, and B. Conroy, “Ensemble of feature-
based and deep learning-based classifiers for detection of abnormal heart
sounds,” in Proc. Comput. Cardiol. Conf., 2016, pp. 621–624.

[19] M. Zabihi, A. B. Rad, S. Kiranyaz, M. Gabbouj, and A. K. Katsaggelos,
“Heart sound anomaly and quality detection using ensemble of neural
networks without segmentation,” in Proc. Comput. Cardiol. Conf., 2016,
pp. 613–616.

[20] J. Amoh and K. Odame, “Deep neural networks for identifying cough
sounds,” IEEE Trans. Biomed. Circuits Syst., vol. 10, no. 5, pp. 1003–
1011, Oct. 2016.

[21] C. N. Gupta, R. Palaniappan, S. Swaminathan, and S. M. Krishnan, “Neu-
ral network classification of homomorphic segmented heart sounds,” Appl.
Soft Comput., vol. 7, no. 1, pp. 286–297, 2007.

[22] A. Jiménez-Fernández et al., “A binaural neuromorphic auditory sensor
for FPGA: A spike signal processing approach,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 28, no. 4, pp. 804–818, Apr. 2016.

[23] The Adress-Event Representation communication protocol. [Online].
Available: https://www.ini.uzh.ch/ amw/scx/std002.pdf

[24] The Adress-Event Representation communication protocol, 1993. [On-
line]. Available: https://www.ini.uzh.ch/∼amw/scx/std002.pdf

[25] R. Berner, T. Delbruck, A. Civit-Balcells, and A. Linares-Barranco, “A
5 Meps $100 USB2.0 address-event monitor-sequencer interface,” in Proc.
2007 IEEE Int. Symp. Circuits Syst, 2008, pp. 2451–2454.

[26] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, and T.
Darrell, “Caffe: Convolutional architecture for fast feature embedding,” in
Proc. 22nd ACM Int. Conf. Multimedia, ACM, Nov. 2014, pp. 675–678.

[27] A. L. Goldberger et al., “Physiobank, physiotoolkit, and physionet com-
ponents of a new research resource for complex physiologic signals,”
Circulation, vol. 101, no. 23, pp. e215–e220, 2000.

[28] T. Iakymchuk et al., “An AER handshake-less modular infrastructure PCB
with x8 2.5 Gbps LVDS serial links,” in Proc. IEEE Int. Symp. Circuits
Syst., 2014, pp. 1556–1559.

[29] J. P. Dominguez-Morales, A. Jimenez-Fernandez, M. Dominguez-
Morales, and G. Jimenez-Moreno, “NAVIS: Neuromorphic Auditory VI-
Sualizer tool,” Neurocomputing, vol. 237, pp. 418–422, 2017.

[30] R. F. Lyon and C. Mead, “An analog electronic cochlea,” IEEE Trans.
Acoust., Speech, Signal Process., vol. 36, no. 7, pp. 1119–1134, Jul. 1988.

[31] A. Jimenez-Fernandez, A. Linares-Barranco, R. Paz-Vicente, G. Jiménez,
and A. Civit, “Building blocks for spikes signals processing,” in Proc. Int.
Joint Conf. Neural Netw., 2010, pp. 1–8.

[32] M. Yang, C. H. Chien, T. Delbruck, and S. C. Liu, “A 0.5 V 55 µW 64 ×
2 channel binaural silicon cochlea for event-driven stereo-audio sensing,”
IEEE J. Solid-State Circuits, vol. 51, no. 11, pp. 2554–2569, Nov. 2016.

[33] E. Cerezuela-Escudero, M. J. Dominguez-Morales, A. Jiménez-
Fernández, R. Paz-Vicente, A. Linares-Barranco, and G. Jiménez-Moreno,
“Spikes monitors for FPGAs, an experimental comparative study,” in Proc.
Int. Work-Conf. Artif. Neural Netw., 2013, pp. 179–188.

[34] C. Liu et al., “An open access database for the evaluation of heart sound
algorithms,” Physiological Meas., vol. 37, no. 12, pp. 2181–2213, 2016.

[35] NAVIS Tool GitHub, 2015. [Online]. Available: https://github.com/
jpdominguez/NAVIS-Tool/

[36] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf. Pro-
cess. Syst., 2012, pp. 1097–1105.

[37] Y. LeCun et al., “LeNet-5, convolutional neural networks,” 2015. [Online].
Available: http://yann. lecun. com/exdb/lenet.

[38] Protocol Buffers, 2008. [Online]. Available: https://developers.google.
com/protocol-buffers/

[39] R. K. Sarvadevabhatla and R. V. Babu, “Freehand sketch recognition using
deep features,” CoRR, vol. abs/1502.00254, 2015. [Online]. Available:
http://arxiv.org/abs/1502.00254

[40] S. Sarraf and G. Tofighi, “Deep learning-based pipeline to recognize
alzheimer’s disease using fMRI data,” bioRxiv, 2016. [Online]. Available:
http://www.biorxiv.org/content/early/2016/07/31/066910

[41] A. Rios-Navarro, J. P. Dominguez-Morales, R. Tapiador-Morales,
M. Dominguez-Morales, A. Jimenez-Fernandez, and A. Linares-
Barranco, “A sensor fusion horse gait classification by a spiking neural
network on SpiNNaker,” in Proc. Int. Conf. Artif. Neural Netw, 2016,
pp. 36–44.

[42] G. D. Clifford et al., “Classification of normal/abnormal heart sound
recordings: The physionet/computing in cardiology challenge 2016,” in
Proc. Comput. Cardiol. Conf., 2016, pp. 609–612.

[43] O. Russakovsky et al., “ImageNet large scale visual recognition chal-
lenge,” Int. J. Comput. Vision, vol. 115, no. 3, pp. 211–252, 2015.

[44] S. Mookherjee, L. DeBrunner, and V. DeBrunner, “A low power radix-2
FFT accelerator for FPGA,” in Proc. 49th Asilomar Conf. Signals, Syst.
Comput., 2015, pp. 447–451.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

