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Abstract— Time-of-flight (ToF) image sensors based on single-
photon detection, i.e., SPADs, require some filtering of pixel
readings. Accurate depth measurements are only possible if the
jitter of the detector is mitigated. Moreover, the time stamp needs
to be effectively separated from uncorrelated noise, such as dark
counts and background illumination. A powerful tool for this
is building a histogram of a number of pixel readings. Future
generation of ToF imagers are seeking to increase spatial and
temporal resolution along with the dynamic range and frame
rate. Under these circumstances, storing the complete histogram
for every pixel becomes practically impossible. Considering that
most of the information contained by the histogram represents
noise, we propose a highly efficient method to store just the rele-
vant data required for the ToF computation. This method makes
use of the shifted inter-frame histogram. It requires a memory
as low as 128 times smaller than storing the complete histogram
if the pixel values are coded on up to 15 bits. Moreover, a fixed
28 words memory is enough to process histograms containing up
to 215 bins. In exchange, the overall frame rate only decreases
to one half. The hardware implementation of this algorithm is
presented. Its remarkable robustness for a low SNR of the ToF
estimation is demonstrated by Matlab simulations and FPGA
implementation using input data from a SPAD camera prototype.

Index Terms— Shifted inter-frame histogram (SifH), real-time
time-of-flight (ToF) estimation, ToF image sensor, single-photon
avalanche-diode (SPAD).

I. INTRODUCTION

THE performance of CMOS image sensors based on Single
Photon Avalanche Diodes (SPADs) has been tremen-

dously improved in the last years [1], [2]. They have been
proven for photon counting and Time-of-Flight (ToF) [3].
SPADs are able to work in low illumination conditions with
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small integration times and to time stamp the arrival of the
first detected photon. These features make them suitable for
high-speed ToF CMOS Image Sensors (CIS) [4]. ToF-CIS
obtain the depth map of a scene by estimating the ToF at pixel
level. Due to the SPAD and Time-to-Digital Converter (TDC)
ensemble limitations such as uncorrelated noise (e. g. dark
counts and background illumination), limited photon detec-
tion efficiency, jitter and low illumination conditions, the
pixels ToF cannot be estimated from a single measurement.
Instead, a relatively large number of measurements is required.
From now on, let us call these measurements “inter-frames”,
so M inter-frames are required to build the final frame
representing an accurate depth image. Even for the best
performance SPAD imagers, still several thousands of inter-
frames are required [3]. Besides, if the level of the uncorrelated
noise is high, then it could trigger the pixels most of the time.
For instance, according to the experimental results reported
in [5], only 236 detections are true out of M = 100k
inter-frames. In the remaining 99.76% of the cases, pixels
have not been triggered at all or they have been triggered
by noise. In these conditions, averaging is not an option.
Instead, the computation of the ToF at pixel level involves
the finding of the digital code that is repeated most of the
time across all acquired inter-frames, i. e. the extraction of the
mode. Mode filters have been employed in image processing
in the spatial scope [6]. In this occasion, we are going to
filter all the time stamps obtained for the same pixel. This
problem can be addressed by building ToF histograms at
pixel level [7] or by deep learning algorithms [8]. In this
paper we only contemplate the first approach. In this way the
Signal-to-Noise Ratio (SNR) increases, improving accuracy
by

√
M times. The pixel values (ToF codes) across multiple

inter-frames are the addresses of the bins in the histogram
memory whilst the content of a memory address represents
how many times the address has been encountered (Fig. 1) [5].
When it comes to real-time ToF computation at ultra-high
speed (hundreds of thousands of inter-frames per second) for
wide range (hundreds of nanoseconds) with few picoseconds
temporal resolution and large spatial resolution (kpixel-array,
1 kpixel = 1024 pixels), the memory size required to store
the histogram becomes too large and full random access
time requirements become critical. In order to have a better
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Fig. 1. Block diagram of inter-frame histogram building.

understanding of the challenges designing a pixel level inter-
frame histogram builder and the limitations of histograms
storage, let us give some numbers:

i) Suppose that ToFs estimated by each pixel are coded
on 15 bits, the complete histogram for one single pixel has
32 kbins (1 kbin = 1024 bins). If each of the bins of
the histogram is coded on 10 bits, i.e. Nh = 10, the pixel
histogram requires 320 kb of memory. For an array of 64 ×
64 pixels, the memory footprint of the complete histogram will
be 1.25 Gb.

ii) Concerning the access to the histogram memory, let us
consider a chip throughput of 1.6 Gbps. This assumption takes
in consideration the switching performance of the digital out-
put pads (50 MHz) and the level of parallelization limited by
the power ring budget and package number of pins (32 chan-
nels). As each pixel value is coded on 15 bits, full random read
and write access times have to be less than 9.4 ns. No DDR
memory off-the-shelf meets these specifications because they
have been designed to be faster in burst mode and they have
large Read/ Write, Active, Precharge and Refresh latencies.
Even though DDR technology gets faster, the memory module
also became larger such that the latency stays the same. This
limitation naturally calls for parallelism. If the total memory
is divided in 32 channels, then the access timing constraint
is relaxed to 300 ns. On top of this, the memory shrinkage
associated to the division in channels implies a smaller latency.
However the memory size still remains the biggest issue,
e. g. it is too large to fit in a FPGA’s Block RAM (BRAM).
Moreover, an ASIC implementation of an SRAM memory
of 40 Mb per single channel of 2 × 64-pixels still requires
an area (more than 40 mm2 in a 90nm CMOS process) that is
too large to be affordable. For these reasons it is not possible
to store the complete histogram for every pixel.

Seeking to decrease the histogram memory size, the fol-
lowing algorithms are considered: Partitioned inter-frame
Histogram (PifH) and Folded inter-frame Histogram (FifH).

PifH is storing only a part of the complete histogram at
a time. This approach is referred as time gated scanning
technique [9]. Consider a partial histogram of only 2Nb bins,
where Nb is the number of bits of the partial histogram
memory. If the number of bits per pixel is Np , this algorithm

will require to build 2Np−Nb partial histograms. For instance,
pixel values on 15 bits can be represented in a histogram with
215 = 32768 bins. In order to overcome the border effect,
the partial histograms have to overlap. If each partial histogram
contains, for instance, only 28 bins, this algorithm will require
building at least 128 partial histograms. As the data of the
partial histograms can be discarded after processing, the his-
togram memory in this case is at least 2Np−Nb times smaller
(i.e. 128 times in the example). After scanning the entire
dynamic range, one last partial histogram might be required
around the peak detected in the early ToF estimation phase.
It ensures that the ToF information is not truncated between
consecutive partitions. However, the overall frame rate is also
decreased by the total number of required partial histograms.
For this reason PifH is more appropriate for moderate values
of Np (up to 10 bits).

FifH algorithm consists of building partial histograms by
clustering the pixel value without overlapping [10]. Let us
suppose two clusters: one corresponding to the least sig-
nificant Nb bits of the pixel value coded on Np bits; the
other corresponding to the

(
Np − Nb

)
most significant bits.

In addition to requiring the same memory footprint as PifH,
FifH has an overall frame rate only 2 times smaller com-
paring to the approach that stores the Complete inter-frame
Histogram (CifH). However, even if this technique is suitable
for hardware implementation, it requires additional compen-
sation for the uncertainty errors that occurs when the ToF
Gaussian bell is centered at multiples of 2Nb bins. Moreover,
it is worth to mention that the SNR of both histograms is
affected by noise folding.

This work presents a novel approach to efficiently store the
inter-frame Histograms (ifH) without losing the accuracy of
the ToF estimation. The basic idea of the proposed Shifted
inter-frame Histogram (SifH) algorithm relies on the following
observations: the uncorrelated noise is uniformly distributed
on the histogram’s floor and the ToF information is concen-
trated in the Gaussian bell. Therefore storing the CifH is
not necessary. Instead, only 2Nb bins centered on the ToF
data are enough to be stored. In order to do that, all the
time stamps have to be shifted to the Nb-bit base address
band. Consequently, the required memory is much smaller and,
above all, fixed while Np can vary over a range of values,
e. g. from 8 to 15 bits. This is an extraordinary advantage of
this algorithm because it allows to dynamically change Np and
to maximize the frame rate depending on the dynamic range
and temporal resolution requirements.

Ultra-high speed ToF sensors demand real-time ToF compu-
tation. We propose a circuit to realize such estimate on-the-fly
while the pixel ifH is collected. It is based on the detection
of the ifH peak, i. e. a mode filter operating on all the ToF
measurements acquired by each pixel. Extraction of the mode
is rather preferred than the histogram center of mass because
it can be implemented with a simpler hardware that requires a
smaller memory footprint. Notice that this choice relies on the
assumption that the histogram has a Gaussian shape. In these
conditions, the depth image is ready as soon as the acquisition
of the inter-frames ends, with a latency of just one inter-frame
acquisition.
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Fig. 2. Histogram partitioning.

The paper is organized as follows: Section II presents the
PifH algorithm as a solution to decrease to histogram memory
requirements. Section III focuses on the FifH algorithm, which
represents an advance over PifH due to its suitability to operate
on the outputs of high-speed and high resolution imagers.
The limitations of these algorithms are discussed as well.
Section IV concentrates on the novel SifH algorithm, which
overcomes all the limitation in terms of frame-rate, area,
and Np . The key parameters of the algorithm are computed.
The reliability and robustness of the algorithm are confirmed
by Matlab simulations and experimental results obtained with
a full custom FPGA implementation using input data provided
by a SPAD camera prototype. Section V presents the proposed
hardware for the SifH algorithm. It has been implemented
on a Spartan3 FPGA with very low resources. Section VI
contemplates the scalability of the design for large arrays in
the case of ASIC and FPGAs implementations. Section VII
extrapolates the implementation of the peak detector for a SifH
channel incorporating 128 pixels. Section VIII is dedicated to
conclusions.

II. PARTITIONED INTER-FRAME HISTOGRAMS (PIFH)

This is a quite straightforward implementation, requiring
only to compare the pixel values to a threshold corresponding
to the extremes of each partial histogram —see Fig. 2 in
which Nb = 8. If each pixel value is coded on Np = 11,
then there are 2Np−Nb = 8 partitions. Considering again that
Nh = 10 —which is a practical value derived from the fraction
of events that correspond to a true measurement in practice—,
each partition requires Nh × 2Nb = 2.5 kb of physical mem-
ory, which means 8 times less memory than CifH. Seamless
scalability for larger Np is the major advantage of this
approach. This can be achieved by using the same memory
footprint per partial histogram and multiplexing it in time.
The major disadvantage is that the complete histogram has
to be scanned until the true ToF data are found. For better
accuracy and ToF information integrity, the partitions have to
overlap. Moreover, after scanning and peak detection, one last
histogram has to be acquired centered on the peak detected
in the scanning phase. This means that the overall frame
rate decreases at least by 2Np−Nb times, depending on the
overlapping ratio.

The accurate ToF measurement is the mode of the CifH.
It will be denoted by BM as it is the position of the bin
rendering the largest value. The position of the bin rendering
the largest value of a partition is bM . If PM is the index of

Fig. 3. Histogram folding.

the partition containing the global maximum and the partitions
are not overlapping, BM can be computed as:

BM = 2Nb (PM − 1) + bM (1)

In order to improve the overall ToF computation rate, the par-
titions during scanning can have less samples [9], in which
case, the uncertainty error might increase. If speed is not a
concern, then this method can be successfully applied.

III. FOLDED INTER-FRAME HISTOGRAMS (FIFH)

This approach is based on applying masks on the incoming
time stamps in order to build 2 different histograms as follows:
the first one built from the most significant

(
Np − Nb

)
bits and

the second one built from the Nb less significant bits. We have
used CifH data provided by the SPAD-CAM prototype [11] as
input data in order to illustrate how FifH technique works (see
Fig. 3 – 11 bits marker). Compared to CifH, the memory foot-
print is decreased by 2Np−Nb = 8 times. Another important
observation is related to the noise floor of the Most Significant
Bit (MSB) histogram, SM S B , which is larger than the one
of the Least Significant Bit (LSB) histogram, SL S B which
in turn is larger than the noise of the CifH on 2Np bins,
S f loor (Fig. 3 – upper and lower insets). This happens because
the noise that is spread along the CifH folds into the MSB and
LSB histograms. Obviously the smaller the number of bins of
representation, the higher the folding order.

The ToF measurement, BM after performing the 2-step
acquisition is computed as:

BM = 2Nb
(
bM,M S B − 1

) + bM,L S B (2)

where bM,M S B and bM,L S B represent the position of the
maximum values in the MSB and LSB histograms. They are
used to compute a first approximation of the ToF.

The major advantage of this algorithm is that it can be
employed with pixels values represented with up to 15 bits
by using the same amount of physical memory as in the PifH.
This technique requires only 2 acquisitions, no matter Np .
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Fig. 4. FifH uncertainty error.

This is another important advantage compared to PifH where
the overall frame rate decreases at least by 2Np−Nb .

The major drawback of this technique is the uncertainty
error that occurs whenever the Gaussian bell is swept through
multiples of 2Nb . In this case the peak of the histogram is
misplaced (see Fig. 4 – circle marker). Note that the border
error is larger than 255 bins. This happens due to inherent
noise folding effect of the FifH technique. This is why a
MSB histogram has a lower SNR which makes it prone to
detect false peaks. The abnormal border errors correspond
to 3 bits-MSB (3MSB) histogram having the peak on the
first bin. The error could be lowered by increasing the SNRToF
of the input data (Fig. 4 – square marker). In this case,
the 3MSB histogram detects the peak with a boarder error
around 255 bins, rather than detecting false positives only on
the first bin.

Further corrections of the uncertainty points are required
by acquiring Fine Histograms (FH) centered on BM . These
histograms must have at least 2Nb+1 bins, i.e. 512 with this
occasion. Even so, when located at the FH borders, the ToF
information could be truncated. This is not acceptable when
ToF is required to be computed more accurately such as the
center of mass of the ToF information. Therefore, additional
bins are required as safety margin for the FH. After all, it looks
like the footprint of the FH exceeds the 8 bits address space
allocated for the MSB and LSB histograms.

FifH technique to compute the first approximation of
the ToF has been recently reported as Partial Histogram
Readout (PHR) [10]. PHR employs 3 Coarse Histograms (CH)
instead of 2 (previously called MSB and LSB histograms).
These 3 CHs coded on 3 bits are successively accumulated for
coarse estimation of 10 bits-ToF. Similar to eq. (2), the coarse
approximation of the ToF is computed as BM = 27bM,97 +
24bM,64 + 21bM,31, where bM,31, bM,64 and bM,97 are the
position of the peak in the CHs built from the [3:1], [6:4]
and [9:7] bits out of the [9:0] bits of the pixel values.

One particularity of FifH technique is that the bits corre-
sponding to the CHs do not overlap. Consequently, as pre-
dicted by the FifH approach, PHR is prone to uncertainty
errors. This is proved by the simulation results presented

Fig. 5. Coarse peak estimation by CH-PHR and CH-6MSB. True peak of
CifH with SNRToF of 34dB.

in Fig. 5. It shows a parametric simulation by sweeping the
peak of 10 bits-CifH along the entire dynamic range with
1 bin step. The true peak of CifH is compared to the coarse
approximation computed by PHR (CH-PHR) and CH-6MSB
which is built by the bits [9:4] of the pixel value. Thus,
CH-PHR suffers of border errors of 27 or 24 or 21 bins
(Fig. 5-red curve). This means that FH would require at least
28 bins to encompass the ToF information. It is worth to men-
tion that the number of border errors becomes even larger for
smaller SNRToF. This is due to the noise folding effect which
implies a higher noise floor for a smaller CH (see Fig. 3).

Although CH-6MSB makes a coarser approximation
than CH-PHR, it is more accurate because does not exhibit
border errors. Therefore CH-6MSB eventually requires smaller
FH then CH-PHR does. For this reason this approach is
contemplated in the next section related to the proposed SifH
algorithm. Obviously CH-PHR occupies less memory then
CH-6MSB but also involves much larger FHs to resolve the
border errors. Moreover, the coarse approximation of the peak
by CH-PHR is 3× slower than CH-6MSB.

Thus, multiple non-overlapping CHs are not suitable for
larger ToF depths due to lower computation rate and larger
uncertainty errors. For this reason the proposed SifH algorithm
is based on a single MSB histogram. Its size is optimized for
computation speed, memory footprint and accuracy for differ-
ent ToF depths up to 15 bits. SifH is extensively presented
in Section IV. A comparison with the PHR approach will be
presented as well.

IV. SHIFTED INTER-FRAME HISTOGRAMS (SIFH)

SifH completely eliminates the uncertainty error of the FifH
approach which involves large FHs for linearity corrections.
Besides, the physical memory requirements and overall frame
rate remain the same. Thus, by only using Nh×2Nb -bits SRAM
memory, the ToF can be accurately computed on-the-fly while
Np can vary in a range that goes up to 15 bits.

This feature is very important for the next generation of
3D cameras that will require simultaneously both, picosecond
time resolution and a wide dynamic range. Under these cir-
cumstances, the representation of pixel values by 15 bits codes
could be quite common. It means that the CifH for a single
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pixel would have 32768 bins. In this case, the required physical
memory is of 320 kb, leading to an outrageous amount
of 1.25 Gb for a 64 × 64-pixel array. Obviously, building the
complete histogram is not a good solution anymore [11], [13].
As mentioned in Section III, PHR algorithm based on the
FifH approach is a good option for ToF coded on lower
number of bits. However it is prone to border errors, as it will
be demonstrated later on by comparing the ToF computation
based on SifH and PHR.

The proposed SifH algorithm achieves a remarkable mem-
ory reduction, down to 128 times smaller than CifH of
15 bits-ToF. It is highly accurate over the entire dynamic range
even in low SNRToF. To the best of our knowledge, these
specifications are reported for the first time. Moreover, SifH is
able to adapt to different Np . Thus, frame rate can increase
when accuracy or dynamic range are less demanding.

Before explaining the principle of SifH, it is worth to men-
tion that a per-pixel histogram always contains 2 key parts: the
Gaussian bell which encodes the ToF and SPAD-TDC jitter;
and the noise floor which encodes the amount of uncorrelated
noise in the pixel. Let us suppose a typical ToF CifH retrieved
from the SPAD-CAM [11] (see Fig. 2). The specifications
of the SPAD imager along with the experimental setup are
presented in [5]: i) the average Dark Count Rate (DCR) at
1V and the Photon Detection Efficiency (PDE) at 640nm
are 42 kHz and 5%; ii) the imager operates in gating mode
with 300ns time gate; iii) the irradiance is below 10nW/mm2;
iv) each 11 bits-CifH is built out of 65536 inter-frames.
Analyzing the ToF histogram, one can realize that it is not
necessary to store the entire noise floor by building the CifH
because the majority of the bins contain redundant information
of the pixel noise. In fact, only using a reduced amount of
bins is enough to accurately compute the ToF. Note that the
histogram spans over about 300ns. Moreover the histogram
accumulates the noise by measuring the time interval from
the first occurrence of a noise pulse, after the time gate opens,
to a synchronization pulse coming from the laser. This explains
the uniformly distributed noise shape.

The key is to find a method to virtually zoom into the CifH
such that the Gaussian bell is captured by a smaller histogram
of just 2Nb bins. The SifH algorithm consists in building
2 histograms on a Nb bits address —for illustration purposes
Nb = 8 for Np = 15, 14 and Nb = 6 for Np = 11, 10:

• The first one is used to compute a coarse approximation
of the ToF data by extracting the position of the peak
in the histogram, bM,coarse. The CH is built from the
incoming pixel values previously filtered by applying
a mask on the Nb-MSB (Fig. 6 – black/red curves:
CifHs are on 15/11 bits). Note that the 11 bits-CifH
has been expanded to 15 bits-CifH as follows: the ToF
peak has been separated from the noise floor; the noise
floor of the 15 bits-CifH is built by concatenating the
noise floor of the 11 bits-CifH. The choice of this coarse
estimation approach has been discussed in Section III
by comparing it with the CH-PHR approach. As men-
tioned before, due to noise folding effect, each additional
20dB of SNR-CifH entails an increase of SNR-CH by
only 8dB.

Fig. 6. First histogram (CH) on 256 bins (black color) and 64 bins (red
color) when CifH has 32768 bins and 2048 bins.

Fig. 7. Second histogram (FH) on 64 bins and CifH on 2048 bins.

• The second one is centered on the ToF data such that we
keep the same accuracy of the CifH no matter Np (Fig. 7).
It is achieved by shifting the pixel values, pi x_val such
that they can be mapped on a histogram of 2Nb bins.

Unlike FifH and PHR, SifH employs the same number of bits
for both CH and FH. It is computed as Nb = ⌊

Np/2
⌋ + 1.

This means that at least one bit overlapping occurs between
CH and FH. For instance if Np = 15 then Nb = 8. Note
that for Np = 14, Nb has the same value as for 15 bits.
For even Np , two bits overlap which is even better from the
SNRToF point of view.

The thresholds of the filter are computed as:

T H+ = 2Np−Nb bM,coarse + SB − bos (3)

T H− = 2Np−Nb bM,coarse − SB − bos (4)

SB = 2Nb−1; bos = 2Nb /4 (5)

where SB is the number of side-band bins, and bos is the
offset eventually needed to correct the position of the peak
as follows. If Np is of 15 bits then Nb has to be of 8 bits.
This means that FH peak can be located anywhere along
2Np−Nb bins. At both ends, the ToF information might be
truncated, especially for large Gaussian FWHM. The solu-
tion is to use a larger number of bins (256 in this case).
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Fig. 8. Comparison between ToF code computed from 15 and 11 bits CifH
and SifH on 8 bits.

The bos parameter helps to center the FH displacement range
on the FH addresses space (see Fig. 7-inset).

The shifting value, � to be able to map the filtered pixel
values on Nb-bit histogram is computed as follow:

� =
[

floor

(
2Np−N b bM,coarse + SB − bos

2Nb

)

− 1

]

· 2Nb

+ mod

(
2Np−N b bM,coarse + SB − bos

2Nb

)

(6)

where “floor” and “mod” are the quotient and rest of the
division by 2Nb .

At this point we have to map on Nb-bit histogram the
incoming pixel values which have passed through the filter
such that:

T H+ ≥ pi x_val > T H− (7)

Note that pi x_val − � < 2Nb when the CifH has 2Np bins,
i.e. pi xel_val < 2Np .

After the FH is built, the precise position of ToF data
is obtained by extracting the position of the peak in the
histogram, bM, f ine . Finally, the accurate ToF code is com-
puted as:

BM = bM, f ine + � (8)

where BM is actually the pi x_val that was repeated most of
the time along the acquisition phase.

It is worth to mention that even though � could be affected
by error when the ToF data is positioned at multiples of 2Nb ,
it does not affect the BM . The reason is that � is subtracted
from the pixel values to build the FH and subsequently added
to compute the accurate ToF, such that an auto-zero compensa-
tion is automatically performed. Thus SifH is uncertainty error
free even if the SNRToF of the CifH is as small as 34dB. This is
proved by Fig. 8 where the histogram peak is swept across the
full dynamic range of the CifH. The continuous lines represent
the histogram peak extracted from the CifH. The square and
circle markers represent the histograms peaks computed by
the SifH algorithm using only 8 bits histograms. There is a
perfect match between Matlab simulations and experimental
results. Note that the input data used in Matlab simulations
have been fed to the FPGA implementation through a pattern
generator.

Fig. 9. ToF computed by SifH, PHR and CifH; SNRToF = 34dB.

In order to have a fair comparison with the PHR algo-
rithm, SifH has been down scaled to operate 10 bits-CifH.
As explained in Section III, PHR coarse peak could jump
by ±16 bins or ±128 bins. The FH of the PHR has
±8 bins around the coarse peak. FH is always centered
on the coarse peak. This means that, if the coarse peak is
deviated by 16 bins, the fine peak would be out of the FH
range. Even with 32 bins, the fine peak could be located
at one of the FH’s ends where peak detection is not safe
to operate. Consequently, PHR fails to resolve the ToF even
for 24× border errors, as Fig. 9 demonstrates. The 24× and
27× border errors (Fig. 9-blue curve) might not be seen in the
distance ranging experiment because it has too less points [10].
As predicted, these errors have been solved by employing a
FH of 34 bins, instead of 16 bins around the coarse estimation.
However, the larger errors cannot be resolved by 34 bins-FHs.
It requires at least 27+1 bins. Therefore the apparent advantage
of smaller CH-PHR footprint compared to CH-SifH footprint
is cancelled.

Instead, FH-SifH on 64 bins (6 bits) has a considerable
margin to operate error free even if the FWHM of the ToF data
is large. Moreover, the bos parameter can adjust the FH address
space such as the fine peak is never truncated. This is the key
difference that allows SifH to compute ToF error free, along
the entire dynamic range of the sensor (Fig. 9-red curve).
Moreover, SifH keeps working perfectly at 24dB, equivalent
to a high level of uncorrelated noise of 20× DCR. In this case,
PHR increases the number of ambiguity points.

Unlike SifH, PHR cannot be scaled up because the ToF
computation rate gets even lower than SifH (e.g. 5× slower
for Np = 15 bits). Moreover, FH-PHR memory requirement
exceed by far the one for CH-PHR (e.g. 213+1 bins for Np =
15 bits). Therefore SifH compared to PHR is faster and more
accurate. SifH occupies less memory for larger depth ToF.

V. SIFH BUILDING BLOCKS

In this implementation, we will be considering that Np

is 15 bits, Nh is 10 and Nb is equal to 8. The design of the
real-time SifH has been implemented on a Spartan3 FPGA.
It includes the following main blocks (see Fig. 10): a Np -bit
serial-input parallel-output (SIPO), a Np-bit parallel-input
parallel-output register (PIPO), one digital filter (DF),
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Fig. 10. Block diagram of SifH.

a multiplexer with 2 inputs on Np bits, a Nh × 2Nb -bit
SRAM memory, a Nh -bit register with one step automatic
increment, a peak detector circuit, 3 algebraic circuits to
compute additions, subtractions, multiplications and divisions
(Alg1, 2 and 3) and 2 × N p-bit memory to store the � value
and accurate ToF of the pixel.

The hardware implementation of the SifH algorithm of a
single pixel is operating as follows:

i) The global reset (RST_FR) is activated before starting to
capture a new frame. At this point it is important to reset the
Histogram SRAM and the Peak detector’s A and B registers.
Later on, the pixel value is serially loaded from the SPAD
imager through the SIPO, starting with LSB, on the negative
edge of the clock (CLK), while the signal WS is set low
(shift enabled). Np is defined by the signal PNoB. Every Np

periods of CLK the content of SIPO is loaded into PIPO,
on the positive edge of the signal PP. Therefore the output of
the PIPO, called pi x_val, is stable Np × TCLK time period
while it has to be placed in the right bin of the histogram.

ii) The first step is to build the coarse histogram by setting
the signal HS low.

When REN is set high, the memory located at the address
indicated by the pixel value is read out on the positive edge
of CLK. It represents how many times the current pixel value
has been encountered before. It is incremented by 1 unit when
LC is set high, on the negative edge of CLK. Subsequently,
the updated Number of Counts (NoC) is overwritten in the
histogram SRAM at the same address, when WEN is set high,
on the positive edge of CLK. Next, if the current NoC is
bigger than its previous value, it is overwritten along with the
corresponding address ADDR in the Peak detector’s registers,
A and B respectively (see Fig. 11).

The acquisition of the coarse histogram ends right after the
M-th pixel value is resolved. When ENDHC is set high, the
pixel value that has been encountered most of the times in
the CH is stored by register C to compute T H−, T H+ and �.
It is worth to mention that the division operation has been
implemented by a sequential scheme due to area constraints.

Fig. 11. Circuit diagram of peak detector.

Fig. 12. Circuit diagram of DF.

Thus the operation is completed in Np × TCLK. Under these
circumstances, it is better to store the � value and recall it
whenever is needed. This is the purpose of the register enabled
by the signal STRHC.

Unlike �, T H− and T H+ are not required to be stored
because they are computed quite fast from the position of the
final peak of the CH, PNoCc.

iii) At this point the Histogram SRAM and the temporal
registers A and B of the Peak detector have to be reset again.
The second acquisition can start to build the FH. The signal
HS is set high such that the pixel value is routed through DF
block (see Fig. 12). Note that the construction of the FH and
the detection of the peak value are the same as in the previous
step. The only differences are in the filtering of the input
pixel values and the condition to count them in the histogram
bins. First of all, some data alignment is required depending
on the input PNoB. This is required only for adaptive frame
rate applications where PNoB can vary from frame to frame.
Subsequently, each incoming pixel value is checked whether
it is within the limits computed at the previous step. If so,
then the pixel value translated on Nb-bit histogram address is
placed in the corresponding bin when both signals ACK and
LC are high. The translation is required to fit a Np-bit pixel
value on a Nb-bit histogram address. It is done by merely
subtracting the � value computed in the previous step from
the incoming pixel value. The final peak value address of the
fine histogram, PNoCf is available right after the acquisition
of the FH ends by placing the last pixel value in the right bin.

Finally, the accurate ToF is computed on chip by adding the
� value to the peak position of the FH, bM, f ine . The storage of
the ToF is enabled by the signal END_FR, on the negative edge
of CLK. The signals chronogram is depicted in Fig. 13. HC-Pi
and HC-Pf labels stand for the initial and final peak values of
the CH corresponding to a certain pixel. HF-Pi label represents
the initial peak value of the FH corresponding to the same
pixel.
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Fig. 13. Signals chronogram.

Thus, instead of sending to USB up to 320 kb of histogram
per pixel to estimate the ToF off-chip, we send directly only
the accurate ToF represented on maximum Np bits.

VI. SIFH SCALABILITY

The proposed SifH algorithm can be easily scaled to any
pixel-array size and it is suitable for ultra-high frame rate
imagers. Under these circumstances, in order to relax the
time constraints on the readout and bin placement circuits,
parallelism is naturally called.

Let us make the calculations for a 64×64-pixels ToF image
sensor with 32 outputs at 50 MHz with an equivalent through-
put of 1.6 Gbps and an inter-frame rate of 26 kfps to 48 kfps
when PNoB changes from 15 to 8 bits.

The time constraint on the histogram memory access is
given by the minimum PNoB. Suppose that each serial output
is connected to a SifH channel which has to resolve 128 pixels.
This means that the memory resources from Fig. 10 have to
be multiplied by 128, i.e. the 2.5 kbits histogram memory
and 56 bits register allocated as follows: 2 × 8 bits to store
the address of the peak values of the coarse/fine histograms,
10 bits for the peak value and 2×15 bits for � value and ToF.

For an ASIC implementation in a 90nm CMOS process,
the histogram memory footprint for one channel is
below 0.4 mm2. It easily fits into a mini ASIC with an
affordable price. In the end, 32 channels could be encapsulated
in the same package.

SifH algorithm is also suitable to be integrated on-chip with
the imager if it is shared by multiple pixels.

For FPGA implementation, one has to consider the total
histogram memory requirement from 8 to 16 Mb depending
whether the number of counts per bin is represented on
8 to 16 bits. However some Xilinx FPGA, such as XC7K160T
(325×36 kbits BRAM), XC7A200T (365×36 kbits BRAM) or

Fig. 14. Single channel of real-time peak detector.

XC7K355T (715 × 36 kbits BRAM) [14] could accommodate
all 32 SifH channels.

For the sake of simplicity the next section presents only the
scaling of the peak detector circuit. The multiplexing scheme
is similar for the � and ToF registers.

VII. ON-CHIP TOF COMPUTATION

Ultra-high inter-frame rate 3D SPAD imagers require the
computation of ToF on-the-fly. Consequently it has to be
implemented on-chip and parallelized over different channels.
For this purpose we propose a hardware to compute the peak of
each histogram in real-time. The design for one pixel (Fig. 11)
is scaled for one channel of 128 pixels. The block diagram of
one out of 32 channels is presented in Fig. 14.

It is based on the fact that each bin is accessed during the
histogram building phase. Thus the peak value is updated each
time a new bin value is read from the histogram memory. Thus
the histogram peak is available right after the acquisition phase
ends.

It is built by a pixel decoder, a 128 × 10 bits PIPO register
to store the histograms peak, a 128 × 8 bits PIPO to store the
peak address and a 128 × 8 bits PIPO to keep the final peak
address of the CH which is used to compute the corresponding
T H+ and T H−. Note that PIPO register can be replaced by
latches.

The pixel decoder is implemented by a 128 bits circular
shift register (CSR) and transmission gates (TG). It also can
be used to multiplex the registers that store the � value and
ToF of each pixel.

The circuit is operating as follows: PIPO 1, 2 are reset at
the beginning of each frame. Before receiving the first inter-
frame, the CSR is reset as well, selecting the first position in
PIPO 1-3, allocated for the first pixel in the channel.

The maximum NoC in the histogram of the first pixel and
the corresponding ADDR are updated on the positive edge
of WEN signal. On the next edge of the signal PP, the shift
register selects the second position in PIPO 1-3, allocated for
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the second pixel and so on up to the last pixel in the channel
of the first inter-frame.

After the last inter-frame is processed the final peak
addresses in the pixels’ CH are stored in PIPO 3 by activating
the signal ENDHC. At the end of the FH acquisition, the peaks
addresses of the FHs are stored by PIPO 2.

VIII. CONCLUSION

This paper concentrates on noise reduction in ToF SPAD
imagers based on pixel level inter-frame histogram building.
We have discussed the area limitations of storing the CifH
when Np is up to 15 bits. Two different alternatives have been
contemplated to reduce the histogram memory requirements,
i.e. PifH and FifH. However the frame rate of the former
technique is strongly affected by Np . The latter technique
requires some additional correction of the uncertainly errors
and it is affected by noise folding.

In order to overcome the aforementioned limitations,
we propose a method to efficiently store histograms in real-
time. SifH is highly efficient and suitable for kpixels high
speed imagers and large ToF depths. An extensive comparison
of the SifH algorithm to a recently reported PHR algorithm
based on FifH has been presented as well. SifH has the
following advantages: i) it requires very low memory footprint
(2.5 kbits or 256 bins/ ifH); ii) the memory footprint is fixed
for Np of 8 bits up to 15 bits; iii) the required memory
footprint for the same Np tremendously decreases up to
128 times; iv) the accuracy of peak detection is not affected
by increasing Np even if the ifH number of bins is fixed;
v) SifH is faster than PHR and the computation speed does
not depend on Np ; vi) unlike PHR, SifH is free of uncertainty
errors along the entire dynamic range; vii) SifH can be scaled
up to 15 bits-ToF. In order to cancel the border errors, PHR
would need larger FH than FH-SifH.

The SifH hardware implementation for one pixel is thor-
oughly presented. The scalability towards ultra-high frame rate
ToF imagers is discussed. All the calculations are taking into
account for 64 × 64-pixels array.

We have also proposed a custom design to extract in
real-time the peak of the pixel ifHs of a channel incorporating
128 pixels on up to 15 bits. The integration of the proposed
algorithm in ASIC and FPGAs is addressed as well.
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