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Abstract— This paper presents a novel event-based vision sen-
sor with two operation modes: 1) intensity mode and spatial con-
trast detection. They can be combined with two different readout
approaches: 1) pulse density modulation and time-to-first spike.
The sensor is conceived to be a node of an smart camera network
made up of several independent an autonomous nodes that send
information to a central one. The user can toggle the operation
and the readout modes with two control bits. The sensor has
low latency (below 1 ms under average illumination conditions),
low power consumption (19 mA), and reduced data flow, when
detecting spatial contrast. A new approach to compute the spatial
contrast based on inter-pixel event communication less prone to
mismatch effects than diffusive networks is proposed. The sensor
was fabricated in the standard AMS4M2P 0.35-µm process.
A detailed system-level description and experimental results are
provided.

Index Terms— Bio-inspired vision, AER (address event
representation), spatial contrast, asynchronous vision sensors.

I. INTRODUCTION

EVENT-BASED vision sensors differ from conventional
frame-based image sensors in that their outputs are not

encoded representations of image intensity maps. Instead,
these sensors deliver reduced sets of data signaling the
presence of spatio-temporal contrast in incoming scenes.
These data can be encoded in different ways and are typ-
ically conveyed by spikes –similarly to biological vision
systems [1]. Encoding techniques include, among others,
Pulse Density Modulation (PDM) [2], [3] and Time-to-First
Spike (TFS) [4], [5], which are just the two employed in the
chip reported in this paper.

The rationale for event-based vision sensors is that
they preclude transmitting and manipulating huge amounts
of irrelevant data which are typically encountered in
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images. Event-based sensors are information-centric entities
while conventional image sensors are data-centric ones.
Event-based sensors extract relevant information from visual
scenes right at the point where these scenes are captured (at the
focal plane), discard irrelevant data, such as for instance pixel
values corresponding to uniform backgrounds, and transmit
only a reduced amount of data with the relevant informa-
tion needed to identify people, objects, shapes, etc. [6], [7].
When embedded into neuromorphic systems, their usage
report significant advantages in terms of system size, speed,
and energy budget [8]–[10]. These features are extremely
important for applications like vision-enabled wireless vision
sensors [11], [12]. In these applications, a large number of
interacting sensor nodes is deployed for distributed monitoring
of large areas under the control of a central processing node.
Each node monitors a small region and is responsible of
detecting events happening within its corresponding region.
Information is shared locally among nodes themselves and
with a central processing unit. Sensor ability to extract infor-
mation in autonomous manner, with low-latency (i.e., at high-
speed) and with reduced power consumption are cornerstone
in these application scenarios. Furthermore, event outputs
can be easily conveyed into radio signals using an UWB
modulator [12], thus facilitating inter-node communications.

Following the detection of suspicious events, nodes may
be required to upload complete images for further analysis.
For instance, the Viola-Jones algorithm [13] can be used to
detect people faces [14]. To that purpose, event sensors should
also be capable of uploading complete images upon demand.
Regarding this, the question arises why not using conventional
image sensors, which naturally produce complete images, and
employ embedded digital processors for extracting events.
Although there is not a closed answer to this question, empir-
ical evidences tell us that using event-based sensors are more
efficient in terms of power consumption and speed [15]–[17].
This is not surprising since scenes acquired by nodes of
wireless sensors do not contain relevant for information
during most of the time. Hence, downloading, transmitting
and processing irrelevant data, as it would happen whether
conventional image sensors were employed, represents a waste
of precious resources. Particularly data transmission takes
most of the power; for instance, for the wireless sensor
reported by Chen et al. [12], power consumption is 0.9mW
for the sensor and 15mW for radio transmission. There
are specific network communication standards like ZigBee
(www.zigbee.org), aimed to reduce the power consumption in
low data rate communication networks. Dedicated studies to
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Fig. 1. System block diagram. Center: Pixel matrix. Left: Circuitry for selection of the sensor’s readout and operation modes. Top and right: Asynchronous
arbitration circuitry. Row and column petitions are arbitrated with the same circuitry: asynchronous communication logic, demultiplexers, and arbiters.

minimize the power consumption when transmitting images
wirelessly have also been published [18]. Some authors pro-
pose on-chip image processing to avoid raw data over wireless
channels at the expense of area consumption and system
complexity, [19]–[21].

This paper reports an event-based sensor aimed for surveil-
lance and inspection applications that compute spatial contrast
and also provide intensity images. Two operation modes,
namely:

• Intensity Mode (IM)
• Contrast Detection (CD)

and two readout modes:
• Pulse Density Modulation (PDM)
• Time-to-First Spike (TFS)

are available. Two bits are used to reconfigure device operation
and readout modes without switching it off.

The different operation/readout modes involve tradeoffs
between image quality, speed, bandwidth, and power con-
sumption. Thus, the intensity mode provides better image
quality and lower latency at the expense of a larger power
and bandwidth consumption. On the other hand, the contrast
mode delivers compressed images, with significant energy and
bandwidth consumption saving. Regarding the two readout
modes, the first one (PDM) provides pixels spikes with an
output frequency proportional to light intensity or spatial
contrast, depending on the operation mode.

On the other hand, with the second readout mode (TFS),
pixels spike, at the most, one time after a global reset.

In this case, light intensity or spatial contrast are inversely
proportional the pixel spiking latency after the global reset.
In these readout modes, image quality (PDM) can be traded
for a reduced output data flow (TFS).

The sensor chip reported in this paper uses an improved
approach to compute the spatial contrast based on inter-pixel
communication with spikes. The pixel itself has been proposed
at the outcome of a previous research work conducted in
the design of pixels capable of detecting contrast without
being calibrated [22], [23]. These previous papers reported
only an isolated pixel, while this one reports the design
and characterization of a 64 × 64 focal plane array with
all supporting circuits to make it a complete vision sensor
system. The contrast computation method employed is less
prone to mismatch and crosstalk than prior ones based on
diffusive networks. The reasons are that pixel transistors do
not operate in subthreshold region and that neighbor pixels
exchange digital signals to compute spatial contrast. Diffusive
networks are quite dependent on photocurrents diffusive net-
work components to compute the spatial contrast and employ
transistors operating in subthreshold region [5], [24]–[27].
The sensor does not need to be calibrated [5], [27].
There are prior event-based vision sensors that can provide
intensity images [3], [28], [29] (also known as octopus
retinas) and devices that can compute spatio-temporal
contrast [5], [24]–[26]. However, to the best of our knowledge,
devices that can be reconfigured in-line to switch between
these operation modes have not been reported yet.
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Fig. 2. AER communication circuitry. Each row and each column is
connected to one of this elements as is depicted in Fig. 1.

The sensor was fabricated in the AMS4M2P 0.35 μm stan-
dard process. This article provides a insightful description of
the main sensor blocks and detailed experimental results, ana-
lyzing the sensor performance in different environments. The
article is organized as follows: Section II explains the main
sensor constitutive blocks and the interconnections between
them. The arbitration system is described there. Section III
describes the contrast computation approach proposed in
this paper. The pixel implementation and its operation are
described there. Section IV depicts how the different sensor
readout and operation modes can be selected. Section V
presents the experimental results conducted to characterize the
sensor and benchmarks it against the state-of-the-art. Finally
Section VI draws some conclusions and describes further
work.

II. SYSTEM DESCRIPTION

Fig. 1 displays the system block diagram. The main system
blocks and their interconnections are indicated. The sensor
is made of a pixel matrix, a block dedicated to control the
sensor operation and readout modes, and the Address Event
Representation (AER) arbitration system. The AER logic and
the arbitration system is reported elsewhere [30]. Each pixel
can be considered as an asynchronous block that generates
events. Such events are handled by the arbitration system
that arbiters the pixel petitions at the row and column levels
(_req_y and _req_x signals in Fig. 1). Firstly, row pixel
petitions are arbitered. When a pixel receives the acknowledge
signal reset_y, initiates a column petition enabling the signal
_req_x. Finally, when the pixel receives the signal reset_x, its
address has already been sent through the AER bus and the
request signals are released.

Fig. 2 displays the schematics of one AER communication
logic cell. This circuitry is dedicated to receive and send the
request and acknowledge signals of each row/column. It also
generates the bus request signal (_bus_req) to send a new event
out the chip. Whenever it receives the off-chip signal _bus_ack,
it releases the pixels petitions.

Fig. 3 displays the arbitration logic and how it is arranged.
We use two arbiters to arbitrate the row and columns petitions

Fig. 3. (a) Greedy arbiter schematics and its symbol. (b) 64-input arbitration
tree.

as is shown in Fig. 3. An arbiter is a circuit that avoids
collisions between simultaneously requests. If it receives
simultaneously two request signals from two pixels located
in different rows/columns, only one will be attended. The
circuitry of one arbiter is displayed in Fig. 3.(a). Arbiters are
arranged as is depicted in Fig. 3.(b) with a tree shape.

Finally, we display in Fig. 4 the detailed connectivity of the
AER blocks depicted in Fig. 1. Note that the AER blocks are
replicated twice. One of them arbiters the rows requests and
another one is dedicated to the columns requests. In between
the AER communication logic and the arbitration tree, there
is a demultiplexer. Its purpose is to encode the X- and
Y-addresses of the pixels that have fired.

The arbitration system can handle event rates up to 10Meps
(where eps means events per second) for pixels of the same
row, and up to 2Meps for pixels of different rows, [30].
Such event rates are fast enough for low-medium resolution
arrays, like the one reported in this article (64 × 64 pixels).
This arbitration scheme adds also some pipeline operation.
When the _bus_ack signal is received, the pixel who fired
is reset immediately, allowing pixels to elicit row petitions
before the _bus_ack signal is disabled. The external signal
_bus_req triggers an off-chip datalogger to save the AER bus
address. Once the pixel which fired coordinates are stored, the
datalogger sends back to the chip the signal _bus_ack.

As it will be shown in Section V-E, the proposed arbitration
system is fast enough to operate under all the illumination
conditions where the sensor was tested. However, if we scaled
arbitrarily the number of pixels and we exceeded such limit,
pixels requests would not be attended instantaneously and
the event timing would be corrupted, i.e. pixels would need
to wait an arbitrary amount of time until their petitions are
attended. To amend this limitation, there are faster arbitration
schemes like the one proposed by Boahen et al. that can
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Fig. 4. Detailed connectivity of the AER blocks depicted in Fig. 1.

Fig. 5. Diagram displaying the inter-pixel communication to compute the
spatial contrast and pixel communication signals to handle the AER protocol.

reach 20Meps [31]. Another solution, would be to divide the
pixel array into two independent blocks and use two arbitration
systems operating in parallel, i.e. the maximum event rate
throughout would be doubled.

III. CONTRAST COMPUTATION AND PIXEL OPERATION

The approach to compute the spatial contrast is new. It is
based on inter-pixel communication (see Fig. 5). Pixels send
pulses to their neighbors (North, South, West, and East)
with a frequency that is proportional to the light intensity
they receive. There is a competition between each pixel
and its neighbors. If one pixel has higher illumination than

its neighbors, that pixel will be exposed to spatial contrast,
and enabled to send out events with average frequency ( fi, j ),
proportional to the difference between its local photocur-
rent (Ii, j ) and the average photocurrent within its neighbor-
hood (Iavg), i.e.:

fi, j ∝ max
(
0, Ii, j − (

Ii+1, j + Ii−1, j + Ii, j+1 + Ii, j−1
) · k

)

= max
(
0, Ii, j − Iavg

)
(1)

Where k is a constant that can be tuned, depending on
the desired neighbor influence in the contrast computation.
The lower k is the higher is the influence of the neigh-
borhood in the contrast computation, i.e. the central pixel
should be exposed to a higher gradient illumination to detect
contrast. If k = 4, fi, j = max

(
0, Ii, j − Iavg

)
. This com-

putation is equivalent to first-order Laplacian operator. If we
compare this approach to the traditional one with diffusive
networks [5], [24]–[27], there are a few advantages: Pixel
transistors operate in strong inversion. Signals exchanged
between adjacent pixels are digital and less prone to
crosstalk. The implementation of a diffusive network (resistive
two-dimensional grids) requires area. Usually their transistors
operate in subthreshold region being more prone to mismatch
and crosstalk. Inter-pixel communication with spikes models
more accurately some kinds of neuron communication in
biological systems. The limitation of our approach is that we
do not have the possibility of tuning the number of neighbors
involved in the contrast computation. In our design, the
pixel neighborhood could be extended, adding one transistor
per extra neighbor. In this implementation, as a proof-of-
concept 4-pixel neighborhood was considered to compute
the spatial contrast. As it will be discussed in Section V,
there is a tradeoff between latency and power and bandwidth
consumption.

Fig. 6 displays pixel schematics. Each pixel has an
integrated-and-fire neuron that behaves as an oscillator gen-
erating pulses with a frequency that is proportional to its
local photocurrent, Ii, j = Iph . The oscillation frequency is
given by:

fi, j =
[(

VD D − Vre f
)

Ii, j
· C1 + �Tact ive

]−1

≈ Ii, j

C1 · (VD D − Vre f1)
(2)

Where VD D is the reset voltage and Vre f1 is the comparator
threshold voltage, that can be adjusted, depending on the
desired sensor speed response. �Tact ive is the amount of
time that the integrate-and-fire neuron is active. �Tact ive is
determined by the sum of the delays introduced by the
integrate-and-fire comparator and output digital buffer. The
integrate-and-fire neuron outputs are connected to the neigh-
boring pixels (Nnorth , Nsouth , Nwest , and Neast ) as is depicted
in Fig. 6. Every pulse generated by the integrate-and-fire
neuron, provokes a voltage increment of the capacitor C2
and every pulse received from the neighbors elicits a voltage
decrement at C2:

�VC2 = ± I{+,−}
C2 · �Tact ive

(3)
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Fig. 6. Pixel schematics. Connections from/to neighbors have been highlighted in red. Transistor sizes are (W/L) μm/μm Mp1 = 0.5/1, Mp2 = Mp3 =
Mp4 = 4/1, Mp5 = Mp6 = Mp7 = Mp8 = 1/2, Mp9 = 0.5/1, Mn1 = 1/0.35, Mn2 = Mn3 = 1/3, Mn4 = 1/0.55, Mn5 = Mn6 = 0.6/0.55,
Mn7 = Mn8 = 1/3, Mn9 = 3/1, and capacitance values are C1 = C2 = 20 f F , Cr f = 4 f F .

The currents I{+,−} can be adjusted tuning the voltages Vup

and Vdown, i.e.:

I+ = VD D

R
(
Vup, VC2

) I− = VC2

R
(
Vdown, VC2

) (4)

Vup controls the influence of the central pixel in the contrast
computation. Vdown controls the influence of neighbourhood
in the contrast computation (k parameter of Eq. 1. Thus, there
is a competition among the central pixel and its neighbors.
To illustrate this, Fig. 7 depicts how the voltage at C2 changes
depending on the input pixel photocurrents of the pixel (Ii, j )
and one of its neighborgs. If the central pixel is exposed to
higher illumination than Iavg , the voltage at C2 will rise up
every time that the voltage Vpulse is active and an event will be
sent out of the chip when the voltage threshold of the second
comparator Vre f2 is reached. If there is no spatial contrast
(pixel illumination is similar to the average illumination in
the neighborhood), the voltage at C2 will never reach Vre f2 .
That is the principle of operation computing spatial contrast,
equivalent to the Laplacian operator described by Eq. 1.

If we disable the influence of the neighborhood in the
contrast computation and maximize the voltage increments
at C2 (by setting Vup = Vdown = 0V ), every pulse of
the integrate-and-fire neuron can be conveyed into an output
event. Hence, pixel outputs frequencies will be given by Eq. 2
and will be proportional to the illumination received by each
pixel. As a result, the sensor will be operate as an octopus
retina [3], [28], [29].

On the right of Fig. 6, we find the in-pixel digital circuitry
to handle the AER communication with the peripheral blocks
depicted in Fig. 4.

Finally, the two different readout modes can be set with
the digital switch T FS. If T FS = 0, the voltage Vr f will
rise up immediately after the pixel is reset by the periphery
(reset_x = reset_y = 1). Transistor Mp9 will operate as
a pull-up transistor. Thus, pixels can spike as many times

Fig. 7. Illustration of the contrast computation principle with inter-pixel
communication. The transient voltages VC1 and Vpulse inside one pixel
(see Fig. 6) are displayed in red. We also display in blue the voltage Vpulse
coming form its neighbouring pixels. The effect of the pixel and its neighbors
on VC2 is shown. The number of positive increments is proportional to the
pixel photocurrent. The number of voltage decrements is proportional to the
neighbors photocurrents. In this example, the neighbors’ average photocurrent
is lower than the pixel photocurrent. As a result, events are elicit when the
voltage VC2 reaches Vre f2 .

as necessary. This is the Pulse Density Mode (PDM) readout.
If T FS = 1, after reseting the sensor with the signal Reset ,
the voltage Vr f will be high. The first time that the pixel is
reset by the arbitration system Vr f will be pulled down by
transistor Mn9 . After that, the voltage of Vr f will rise very
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Fig. 8. Comparator schematics. Transistor sizes are: (μm/μm):
Mn1 = Mn2 = 2/0.5, Mp1 = Mp2 = 2/4, Mp3 = Mp4 = 2/0.35,
Mn3 = 6/0.35.

Fig. 9. Set of analog multiplexors to set the pixel voltages for the intensity
and the contrast detection modes.

slowly because transistors Mp9 and Mn9 are switched-off. The
pixel will remain reset in the meantime. In practice, pixels will
be allowed to spike at the most once. That is the Time-to-first-
spike (TFS) readout.

Fig. 8 displays the comparator schematics. A two-stage
comparator was selected for the design. For this chip imple-
mentation, we desired to control the threshold voltages Vre f1

and Vre f2 . To make the integrate-and-fire neuron circuit
stable, a controlled delay must be introduced between the
comparator output and the self-reseting signal that closes
the loop. By adding a second-stage to the comparator, we
make the delay bigger, stabilizing the circuit operation. Under
nominal operation, the analog power consumption of each
comparator was set to be lower than 150nA. The comparator
has been previously implemented in prior designs offering
good performance [5]. To mitigate mismatch, we have paid
special care selecting the transistors sizes of the differential
pair. The comparator has an estimated DC offset voltage of
approximately Vos = 15mV. The input voltage has to exceed
the threshold voltage (Vref1 or Vre f2 ) plus Vos to elicit one
pulse. This offset voltage does not affect significantly the pixel
operation because usually Vre f1 and Vre f2 values are much
higher than Vos .

IV. OPERATION AND READOUT MODES

The sensor has been designed to allow the operator to
toggle among operation and readout modes using two control
bits. The binary input MODE sets the operation mode. The
binary input TFS sets the readout mode. The sensor has not
to be reset when toggling between operation modes. Analog
multiplexors have been added to the chip (see Fig. 9) to set the
values of the voltages Vup and Vdown, depending on the circuit
operation mode. In intensity mode, every pulse generated by

TABLE I

OPERATION MODES AND READOUT METHODS TRUTH TABLE

Fig. 10. Experimental setup displaying the vision sensor, lens mount, and
the USBAERmini data logger. The elements have been labeled in the picture.

the integrate-and-fire neuron is directly conveyed into and
output event. When M O DE = 0, we maximize the voltage
increments provoked by the pixel setting Vup = 0V . Thus,
every voltage increment when the integrate-and-fire neuron
fires will reach the voltage Vre f2 and an event will be sent.
Neighbors influence is also disabled by setting Vdown = 0V .
In the contrast detection mode (M O DE = 1), the voltages Vup

and Vdown can be tuned by the user, depending on the desired
pixel/neighbors influence in the contrast computation. Under
normal operating conditions, we set their values to Vup = 2.4V
and Vdown = 0.53V. Table I summarizes the truth table of the
binary inputs MODE and TFS for the different operation and
readout modes.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

Fig. 10 displays the experimental setup. A custom PCB and
a dedicated lens mount were fabricated to host the sensor.
The board USBAERmini [32] was used as a data logger to
send the sensor outputs to a PC and render real time images.
The sensor was fabricated in the standard CMOS AMS4M2P
0.35 μm process. The sensor was tested with a 4mm
F = 1 : 2 CS-mount lens. Fig. 11 shows a chip photo
including pads and the pixel layout. In order to avoid crosstalk
between neighbouring pixels, capacitor C2 and the more
sensitive pixel nodes have been placed in one specific region
that is not crossed by digital communication signals. Chip
dimensions are 3.6mm×3.8mm. Main sensor specifications are
summarized on Table II.

B. Sensor Performance

A dedicated Java interface was programmed to display
images on a PC, [33]. Fig. 12 shows the interface displaying
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Fig. 11. Chip micro photograph and pixel layout. Chip dimensions, including
pads, are 3.6 mm × 3.8 mm. Pixels size is 40 μm × 40 μm.

TABLE II

SENSOR SPECIFICATIONS

Fig. 12. Custom jAER interface rendering real-time images. We show
snapshots of the same scene with the sensor operating in intensity (top) and
contrast detection (bottom) modes.

snapshots of the same scene in intensity and contrast detection
modes. Fig. 13 displays several snapshots of static images
taken in both operation modes in indoor environments with

Fig. 13. Snapshots taken in the Intensity Mode and the Contrast Detection
modes. Event rates in each operation mode are indicated.

scene illuminations ranging between 300-500lux and PDM
readout. The output data flow is lower operating in contrast
detection mode. Typically, the event rate is 4-6 times lower
in contrast detection Mode and PDM readout, depending on
the visual scene. The contrast detection mode allows to use
the vision sensor to recognize objects or people in the visual
scene. The intensity mode can be used to obtain more detailed
and quality images.

C. Power Consumption

Power consumption mainly depends on the event rate.
Fig. 14 displays the dependency between the output event rate
and the chip power consumption, including pads. Operating
in indoor environments with average illumination conditions
between 300-600lux, the power consumption is always below
2mA in all the operation modes. It comes mainly from the
analog circuitry and does not change significantly with the
event rate. In average, consumption is below 2mA in indoor
environments. For event rates above 300keps, the digital power
consumption becomes dominant and there is a linear depen-
dence between the event rate and the power consumption.
Linear data fitting for event rates above 300keps has been
added to the plot. There is approximately an increment of
0.13mA for every event even rate increment of 100keps. The
analog power consumption mainly comes from the pixels
comparators. The digital power consumption comes from
the arbitration system and the periphery, that is very active
for high event rates. Examining the graph of Fig. 14, we
observe that the contrast detection mode will lead to save
power by reducing the event rate. Note that in wireless sensor
network the main power consumption comes from the data
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Fig. 14. Chip power consumption versus event rate.

transmission [12]. Hence, it is crucial to reduce the output
data flow.

D. Fixed Pattern Noise

The sensor was conceived to compute spatial contrast
without being calibrated, avoiding the traditional contrast
computation approach with diffusive networks [5], [27]. With
the new approach, we avoid calibration by using inter-pixel
communication with spikes. Only pixels exposed to higher
illumination than their neighbors can spike. Only one transistor
per neighbor is necessary to take it into account in the contrast
computation. In our implementation, a 4-pixel neighborhood
is considered. Pixel neighbors placed in the North, South,
East, and West have influence in the contrast computation.
To compute the fixed pattern noise, we illuminated all the
pixel array with uniform and constant light. Events send out
by the pixels where recorded during a few seconds. We define
the Fixed Pattern Noise (FPN) for event-based vision sensors
as the ratio between the standard deviation of the output
frequencies normalized by the average output frequency, i.e.:

F P N =

N∑

i=1

√(
fi − f̄

)2

N · f̄
= σ f

f̄
(5)

Operating in contrast computation mode, with an average
chip illumination of 100lux, we gauged the FPN. The sensor
optics was removed and a diffuser was placed over it to
obtain uniform illumination. The measured FPN was 3.2%.
FPN is mainly provoked by mismatch of the voltage incre-
ments/decrements at C2. The value is higher than the predicted
by simulation, [22]. The main reason is that our mismatch
models were not completely accurate. Usually circuit simu-
lators do not model mismatch of slope factor (or gamma).
Since the transistors that inject or subtract charge from C2
(Mp4 , Mp3 , Mn2 and Mn3 ) are sensitive to body-effect, such
mismatch affects performance, even though it is not detected
by most simulators. Charge injection has also a random
component not modelled. Another reasons are the arbitrary
delays introduced by the periphery and the USBAERmini

board that handles the communication with a PC to display
real-time images. Other non-idealities that we have observed
and have an influence in the contrast computation is the charge
leakage at C2. This leakage provokes voltage drops of the
stored voltage at C2 that alter the contrast computation, in
situations where the average event rate is low (due to low
illumination and/or low spatial contrast). We also believe that
for future system integrations the more feasible option to
improve FPN would be to implement a more populated neigh-
bourhood to compute the contrast computation. By doing this,
mismatch between neighbors influence would be averaged.
For instance, considering an 8-pixel neighbourhood would
have an extra cost of four transistors per pixel, but could
improve the FPN figure. The choice of the neighborhood has
a tradeoff between layout and pixel complexity, FPN, and
spatial resolution. By increasing neighbors that participate,
FPN will be lower. However, the area consumption will be
higher, and the spatial resolution detecting contrast will be
lower (edges will be wider in the resulting image). Operating
in Intensity Mode, the FPN is 2.4%. In that case, voltage
increments/decrements have not any impact in the contrast
computation, for this reason, the FPN is lower. Still arbitrary
delays introduced by the AER arbitration system affect the
contrast computation.

If we scaled down the technology, the transistor mismatch
impact would be presumably higher and could be predicted
according the Pelgrom’s law [34]. However, reducing the
transistors size, more transistors could be added in the same
pixel area. Hence, we could add more connectivity among
neighbouring pixels as previously discussed, making the sys-
tem more robust against mismatch when computing spatial
contrast.

The impact of dark current and transistor leakage at the
integration capacitance C1 was also quantified. Dark current
and transistor leakage provoke charge losses at the integra-
tion capacitance. If the voltage at the integration capacitance
reaches the voltage threshold Vre f1 , an undesired packet of
charge will be injected in C2. In intensity mode, this voltage
increment will elicit one event. There is a tradeoff between
speed and the impact of dark current. If we lower the value
of Vref1 , the residual event activity will be lower, but also the
latency response of the sensor. Without any illumination, with
Vre f1 = 2.4V, the average event rate is f̄ = 1.2Hz, and with
Vre f1 = 1V the average event rate due to the dark current and
the transistor leakage was f̄ = 0.45Hz.

E. Dynamic Range

Fig. 15 shows the dependence between the event rate and
and chip illuminance in intensity mode. For illumination
values higher than 100lux, there is approximately a linear
dependence between event rate and illumination. For illumi-
nation values below 10lux, dark current and leakage effect
start being noticeable. The sensor can operate satisfactorily
in environments with uncontrolled illumination conditions.
We define the dynamic range as the ratio between the highest
and the lowest illumination values with illumination conditions
where the sensor can operate in both operation modes. The
lowest illumination value is limited by the dark current and the
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Fig. 15. Dependency between scene illumination and event rate in Intensity
Mode.

transistor leakage. Both factors discharge slowly C1 generating
output events. Under very low illumination conditions, these
events can be comparable to the average pixel event activity
and limit the sensor performance. With high illumination val-
ues, the event activity growth is proportional to illumination.
In such situations, the periphery can be a bottleneck if the
event rate is higher than 10Meps, that is the maximum event
rate that our arbitration system can handle [30]. In such
situations, the arbitration system can introduce random delays
that corrupt the event timing. Operating in intensity mode, the
event rate depends on illumination, and the periphery saturates
earlier than operating in contrast detection mode. In the last
operation mode, the dynamic range is sensibly higher because
the event rate is lower. The sensor dynamic range (operating
in intensity mode) is higher than 90dB. The lowest chip
illuminance where the sensor was able to render images was
0.02lux. The highest illumination value where the sensor was
tested without corrupting the event timing was higher than
1klux. Note that operating in contrast detection mode, this
dynamic range can be extended. In practical situations, with
an array of 64 × 64, is difficult to exceed event rates higher
than 10Meps. Hence, the practical dynamic range is higher
than 90dB. To saturate the periphery, we placed the sensor
very close to a very bright light source. Such situations are
difficult to find in real application scenarios.

F. Latency

Fig. 16 displays the sensor response latency operating in
contrast detection mode. The sensor was focusing a pattern
with black and white transitions. The average pixels latency
detecting spatial contrast was measured for different chip
illuminance values. Error bars indicating the inter-pixel devi-
ation for each measurement have been added. Under very
bright illumination values, the pixel latency response is close
to 400μs with an inter-pixel deviation of 50μs. Inter-pixel
deviations are mainly due to pixel mismatch and arbitration
delays introduced by the asynchronous arbitration system.

G. Contrast Sensitivity

Let us considerer a pixel neighborhood exposed to a illu-
mination step. The half of the neighbors and the central pixel

Fig. 16. Chip illuminance versus latency response operating in contrast mode.
Error bars showing the inter-pixel deviation for each measurement have been
added to the plot.

Fig. 17. Experiment to determine the pixel contrast sensitivity. We generated
a illumination step between two adjacent regions. The central pixel and two of
its neighbors were exposed to a illumination level I1. The other two neighbors
were exposed to an illumination level I0, lower than I1. I1 was swept to vary
the value of the WC, while I0 was kept constant.

receive a certain level of illumination I1. The rest of neighbors
receive a level of illumination I0, as it is depicted in Fig. 17.
If I1 > I0, the central pixel will spike with a frequency
that will depend on the difference between illumination levels
I1 − I0, and the value of voltage variation at C1 necessary
to elicit one voltage increment at C2, �V1 = VD D − Vre f1 .
�V1 was kept constant during the experiment, �V2 = VD D −
Vre f2 = 1V .

The Weber Contrast (WC) between two adjacent regions
with different illumination values is defined as:

WC = I1 − I0

I1 + I0
(6)

Where I1 and I0 are the photocurrent values of pixels of
the adjacent regions. Operating, we can express the difference
between illumination levels I1 − I0 as:

I0 − I1 = 2 · WC · I0

1 − WC
(7)
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Fig. 18. Contrast sensitivity measurements. Pixels of one column were
exposed to illumination steps with different Weber contrast values. Their
output frequencies were measured and averaged. Error bars indicate responses
standard deviation.

The spiking frequency of the second integrate-and-fire neu-
ron in Fig. 6 is given by:

f = I+ − I−
C · �V2

(8)

If we assume that two neighbors photodiodes generate a
photocurrent value I1, and the other two are exposed to
a photocurrent value I0, the spiking frequency would be
proportional to:

f ∝ Ii, j − k ′ (Ii+1, j + Ii−1, j + Ii, j+1 + Ii, j−1
)

C · �Vref2

(9)

The constant of proportionality, α, will depend of �Vref1 .
Taking into account that I1 = Ii+1, j = Ii−1, j , I0 = Ii, j+1 =
Ii, j−1, and introducing the constant k = 2k ′ in Eq. 9, we can
express the firing frequency as:

f = α
I1 (1 − k) − k · I0

C · �Vre f2

= α
1 − k

C · �Vre f2

(
I1 − I0 − k · I0

1 − k

)
(10)

The value of I0 is kept constant. We vary the value of I1 to
change the value of WC and measure the output frequency.
α is a constant that is proportional to Vre f1 , i.e. α = f (Vre f1).
Hence, the pixel spiking frequency can be expressed as a
function of the WC and I0:

f = α
1 − k

C2 · �Vref2

[
2 · WC · I0

1 − WC
+ 1 − 2 · k

1 − k
· I0

]
(11)

Fig. 18 shows the average response of the pixels of
one column to different illumination steps with values speci-
fied in Table III. In our experiment, we measured the output
frequency for different values of the WC. Measurements have
been repeated for different values of �Vre f1 , keeping constant
the rest of system parameters. We observed that we can fit
the experiment results with the family of curves described
by Eq. 11 for different values of parameter α. Error bars
indicating the inter-pixel deviation of each measurement have

TABLE III

LUMINANCE STEPS AND WEBER’S CONTRAST RELATIONSHIP

Fig. 19. Measured pixels responses when reseting the whole array. Pixels
with higher illumination/contrast will spike first and one time.

been added. The value of the Weber contrast was determined
for each illumination step computing the value of the ratio
I0/I1. To do that, we measured the average event activity in
each region operating in intensity mode. The higher Vre f1 is,
the higher the event rate is. The sensor contrast sensitivity
can be defined as the slope of the linear fitting of each plot.
With Vre f1 = 2.9V , we can achieve a contrast sensitivity of
7khz/WC. We can interpret such feature in the following way:
under normal values of WC (see Fig. 18), all pixels have a
temporal resolution below one millisecond, i.e. they spike with
frequencies above 1Khz when detecting spatial contrast.

H. Time-to-First Spike Readout Mode

The time-to-first spike (TFS) readout mode is an readout
mode that starts will a chip global reset. Pixels can spike at the
most once. The ones exposed to higher illumination/contrast
(depending on the operation mode) will spike first. This
readout mode, combined with the contrast detection mode,
provides an extremed compressed data flow. A low number
of events is necessary to identify elements of the visual
scene [37]. If the pixel array is reset several times to track
a moving scene, the operation is similar to a frame-based
operation where time between consecutive frames can be
adjusted dynamically, depending on the desired speed. Fig. 19
displays how pixels send out the chip events after a global
reset. Initially, pixels are reset and silent. No events are sent
out. After the reset is disabled, pixels start firing, sending
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TABLE IV

STATE-OF-THE-ART COMPARISON

RQST signals. There is a latency (Tlat ) between the global
reset and the events that is inversely proportional to the light
intensity or spatial contrast detected by pixels. This latency is
used to render the resultant images. The user can decide how
many events are selected to reconstruct one image.

Fig. 20 depicts how this readout mode performs taken snap-
shots with the camera. We took an snapshot of a static screw
combining the different operation and readout modes. Fig. (a)
displays the image taken in intensity mode with PDM readout.
Fig. 20.(b) displays the image taken in contrast detection
mode with PDM readout. The TFS readout is useful in the
contrast detection mode because only pixels that detects spatial
contrast will spike at the most once. Fig. 20. (c, d, e, f, g, h)
shows the same image taken in contrast detection mode with
TFS readout, reconstructed after receiving Nspikes . We can

observe that a number of events of lower than 1,000 and
delay lower than 30ms, it is possible to identify the screw. The
user can decide how many events, Nspikes , receive to render
one image and reset the sensor again, after receiving them.
This operation mode is particularly useful for surveillance
applications, where bandwidth and power consumption have to
be saved. If changes in the visual scene are slow, time between
resets can be enlarged, giving the possibility of adjusting the
sensor temporal resolution dynamically.

I. Benchmarking and Comparison With the State-of-the-Art

If we compare the performance of the proposed sensor with
designs based on frame-based sensors, the power consumption
saved in the data transmission within a wireless camera net-
work could be reduced significantly. For comparative purposes,
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Fig. 20. Snapshot taken combining different operation and readout modes.
(a) Intensity mode + PDM, (b) Contrast mode + PDM, (c, d, e, f, g, and h)
Contrast mode + TFS, reconstructing the image representing the first Nspikes
received.

the sensor reported by Chen et al. [12] has a UWB transmitter
with a power consumption of 15mW@1.3Mbps, i.e. 11.5nJ/bit.
If we assume that we are operating with a frame-based sensor,
with the same pixel array resolution, a frame rate of 25fps,
and 8 bits to codify pixel illumination, its output data flow
would be 800kbits/s. Under average illumination conditions
(see snapshots in Fig.13 and event rates in Fig. 15), in all
the operation modes, the event rate of the proposed sensor
is always lower than 100kevents/s. Therefore, assuming a
linear dependence between the event rate and the power
consumption, the transmission power consumption would be
9.2mW with the frame-based sensor and 1.15mW with our
sensor. The power saved in the data transmission could even
be higher operating with TFS read out.

Comparing the new sensor to previously reported event-
based vision sensors, the new device abandons the traditional
approach to compute spatial contrast based on diffusive
networks, [5], [27]. Instead, inter-pixel spike communication
is proposed, improving the pixel fill factor over other
devices that compute spatial contrast with diffusive
networks [5], [25]–[27].

Table IV summarizes the most relevant and recently pub-
lished event-based vision sensors that can provide intensity

and/or contrast detection on the focal plane. The new sensor
is the only one who has two operation and two readout
modes, offering a good deal between fill factor, dynamic
range, power consumption, and pixel complexity. It is possible
to toggle between operation modes instantaneously, without
reconfiguring the sensor, with only one control bit. The FPN
values are competitive, taking into account that the sensor does
not need to be calibrated. In this work, a 4-pixel neighborhood
was considered to compute spatial contrast. The neighborhood
considered in the contrast computation could be extended
adding one extra transistor per extra neighbor.

VI. CONCLUSION

A new event-based vision sensor that can provide intensity
images and detect spatial contrast have been presented. Two
readout modes are available: PDM and TFS. The operator
can toggle among operation and readout modes with two
control bits, trading between image quality and bandwidth
and/or power consumption. The sensor is suitable to be a
node of smart camera networks, reconfiguring its operation
depending on the requirements given by a central node or
an operator. The spatial contrast computation is achieved,
without calibration, with a novel approach based on inter-pixel
spike communication, more robust against mismatch than the
traditional one with diffusive networks. Detailed experimental
results and sample images are provided. The new sensor has
been bench marked and offers a flexible and competitive
alternative to previously reported sensors. As a future work,
we plan to improve the contrast detection by adding a large
neighborhood when computing spatial contrast. We also plan
to run experiments to test the sensor in real Embedded Smart
Camera Networks and quantify the benefit that we expect from
its reconfigurability.
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