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Abstract—This paper reports a programmable 400 � pitch
neural spike recording channel, fabricated in a 130 nm standard
CMOS technology, which implements amplification, filtering, dig-
itization, analog spike detection plus feature extraction, and self-
calibration functionalities. It can operate in two different output
modes: 1) signal tracking, in which the neural signal is sampled and
transmitted as raw data; and 2) feature extraction, in which the
spikes of the neural signal are detected and encoded by piece-wise
linear curves. Additionally, the channel offers a foreground cali-
bration procedure in which the amplification gain and the pass-
band of the embedded filter can be self-adjusted. The amplification
stage obtains a noise efficiency factor of 2.16 and an input referred
noise of 2.84 � over a nominal bandwidth of 167 Hz–6.9 kHz.
The channel includes a reconfigurable 8-bit analog-to-digital con-
verter combined with a 3-bit controlled programmable gain am-
plifier for adjusting the input signal to the full scale range of the
converter. This combined block achieves an overall energy con-
sumption per conversion of 102 fJ at 90 kS/s. The energy consumed
by the circuit elements which are strictly related to the digitiza-
tion process is 14.12 fJ at the same conversion rate. The complete
channel consumes 2.8 � at 1.2 V voltage supply when operated
in the signal tracking mode, and 3.1 � when the feature extrac-
tion mode is enabled.

Index Terms—Biomedical circuit, biopotential amplifier, fea-
ture extraction, low-power ADC, multichannel recording, neural
recording system, spike detection.

I. INTRODUCTION

N EURAL sensors consisting of a Multi-Electrode-Array
(MEA) and a signal-acquisition front-end are crucial for

the diagnosis and treatment of neural diseases as well as for
brain-machine interfacing [1]–[5]. The trend today is to place to-
gether the electrodes and the front-end electronics, and to wire-
lessly transmit outside the brain the digitally encoded informa-
tion derived from the captured neural activity [6]–[13]. This
system embedding trend poses significant challenges to the de-
sign of the front-end electronics, besides the requirement to
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handle very weak signals. One of the most relevant challenges
is low-power dissipation. It is needed to extending the life time
of the implants and precluding tissue to be damaged due to ex-
cessive heating. This quest for low-power dissipation not only
demands for the use of ultra-low power techniques in the design
of the front-end electronics but also calls for the minimization
of the amount of data to be sent in order to reduce the power
budget of the communications. Accordingly, many recently re-
ported neural sensor front-ends not only provide the means for
the acquisition, amplification, filtering and digitization of the
recorded activity but also include digital processing stages for
data compression before transmission. Thus, in neural sensors
for the acquisition of Action Potentials (AP), or spikes, it is more
and more common to find feature extraction processors for their
characterization [8], [9], [11], [14]–[16].

In its simplest form, neural spike feature extractors only
transmit the temporal position of the spikes [8], [9]. However,
for some applications this is not enough [1]–[3] and some kind
of spike sorting technique must be employed. This problem
can be overcome by transmitting the information of the com-
plete spike [11]—not adequate if a big multi-electrode array
is considered. Seeking to extract, and hence transmit, just the
essential information required to classify spikes, techniques
such as principal component analysis or discrete wavelet trans-
forms can be employed [7]. However, they have the cost of high
computational complexity [14]. Other alternative techniques,
better suited for low-power close-to-sensor embedding, are
based on the extraction of the amplitudes, time widths and peak
positions of the spikes [15], [16]. This paper reports a neural
spike detector channel chip in which relevant spike features are
codified in digital domain by approximating the spike wave-
form by a Piece-Wise Linear (PWL) curve, as presented by the
authors in [17]. As will be shown, this technique yields more
than two orders of magnitude data compression as compared to
raw spike information.

Besides this feature extractor, the distinctive properties of
the channel architecture reported in this paper are conferred
by the extensive usage of digitally-assisted analog circuits
for reconfiguration and calibration. This has allowed to fully
incorporate all needed functionalities (Band-Pass filter and
Low Noise Amplifier (BP-LNA), Programmable Gain Am-
plifier (PGA), Analog-to-Digital Conversion (ADC), spike
detector and feature extractor) within the pitch of commercially
available MEAs, namely [8]. As there is
no need for off-channel processing or multiplexing tasks (they
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Fig. 1. Block diagram of the neural channel architecture.

are required in other reported architectures [7]–[10], [13]),
building arbitrarily large multi-channel arrays can be easily
done by placing channel instances side by side and serializing
their outputs for transmission through the wireless link.

The channel, whose basic architecture has been announced
in [18], is reported and demonstrated in this paper through a
CMOS chip in 130 nm technology. This channel chip has two
output modes which are referred to as signal tracking mode and
feature extraction mode. In the signal tracking mode, the neural
signal is converted and transmitted as raw data at 22.5 kS/s
output rate. In the feature extraction mode, the system detects
the spikes and approximates their waveforms on-the-fly to ob-
tain an output feature vector of 24 or 56-bit, depending on the
spike shape. Additionally, the channel chip implements a fore-
ground calibration mechanism to self-adjust the amplification
and filtering characteristics of the read-out circuit. The chip
supply voltage is 1.2 V and its power consumption is 2.8 in
the signal tracking mode and 3.1 in the feature extraction
mode.

The paper is structured as follows. Section II explains the ar-
chitecture of the presented neural sensor channel. The LNA and
ADC designs are detailed in Sections III and IV, respectively.
Experimental results are reported in Section V, while Section VI
includes the conclusions.

II. NEURAL SENSOR CHANNEL ARCHITECTURE

Fig. 1 shows the architecture of the neural sensor channel chip
and Fig. 2 shows a microphotograph of the chip and a detailed
floorplan of the channel.

The chip consists of a band-limited fully-differential
BP-LNA, a reconfigurable binary search based ADC which
embeds a PGA, a switched-capacitor window comparator,
a spike feature extractor and some digital circuitry for pro-
gramming, calibration and control. Additionally, it includes
a frequency-controlled signal generator (FCSG) to drive the
channel during the foreground adjustment of its passband char-
acteristics. Two low-distortion, low-resistance CMOS switches
are used to selectively connect the input of the BP-LNA block
to the electrode, during read-out operation, or to the FCSG
generator, during calibration. These switches are implemented
on deep n-wells to improve the noise isolation from the silicon
substrate.

Fig. 2. Layout and microphotograph of the neural spike recording channel.

The digital core of the channel works at a master clock fre-
quency of 800 kHz. It is responsible to define the state of the
remaining blocks of the channel in accordance to the selected
configuration. On the one hand, the digital core points out which
blocks remain idle at each operation mode and powered them
off, either totally or partially, by means of power gating tech-
niques. On the other hand, it incorporates clock division and
clock gating strategies, so that non-idle blocks work at the min-
imum clock frequency able to comply with the selected opera-
tion mode. Altogether, these power saving methods deals to a
reduction in the current consumption of the complete channel
of more than 30%.

The different operation modes and associated channel config-
urations are described below.

A. Calibration

Only the BP-LNA, the ADC, the FCSG and some digital
circuitry are active during calibration. The ADC operates at
22.5 kS/s with 8-bit resolution.

Calibration starts by adjusting the passband characteristics
of the BP-LNA to counteract CMOS process variations. Two
programming bits are used to calibrate the
High-Pass (HP) pole of the bandpass filter, while two other

control the position of the Low-Pass (LP) pole.
The goal is to tune the filter passband from about 200 Hz to
7 kHz, corresponding to the spectral range of neural spikes. The
HP and LP poles are calibrated one after the other using the
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same adjustment procedure. It consists in driving the BP-LNA
with the output of the FCSG, tuned to the target HP or LP pole
frequency, and keeping track of the attenuation from midband
gain observed at the output of the ADC for the different pro-
gramming sets. That configuration which obtains a voltage at-
tenuation closer to 3 dB, situation in which the driving tone and
pole position exactly coincide, is selected.

Afterwards, the gain of the PGA is adjusted. The goal is
to scale the ADC input signal so that it maximally covers the
full scale range of the converter without overflows. Three pro-
grammable bits are provided to set the PGA
gain from 0 to 18 dB at discrete steps of 3 dB. In this phase the
input of the BP-LNA is connected to the microelectrode, thus
capturing neural activity, and the FCSG block is powered off.
The calibration procedure follows a binary search algorithm in
which the bits of are sequentially set, from the most-
to the least-significant bit, seeking for the largest gain possible
free from ADC saturation.

The values of , and thus obtained are
collected in a local memory which is later accessed and restored
during readout operation.

For a more detailed description of the circuits and operations
involved in the calibration flow, readers are referred to [19].

B. Signal Tracking Mode

In this operation mode the raw neural data is extracted with no
additional digital processing. Hence, the signal captured by the
neural electrode is first conditioned by the BP-LNA and then
digitized into a 8-bit word by the ADC operating at 22.5 kS/s
throughput rate. The output of the ADC is serially read out at
a rate of 200 kHz for a real-time external reconstruction of the
neural waveform.

C. Feature Extraction Mode

In this mode a data reduction process is realized aiming to
compress the amount of information to be transmitted by the
channel. Instead of sending the complete raw data, only some
features extracted from the detected spikes are actually trans-
ferred. This mode encompasses two phases, namely: spike de-
tection phase and spike processing phase.

During the spike detection phase, the output of the PGA is
directly processed by the window comparator at a clock fre-
quency of 100 kHz, whereas the binary search block, respon-
sible for the ADC conversion, is switched-off for power saving
(see Fig. 1). The window comparator detects when the magni-
tude of the PGA output exceeds a given threshold value, .
In such a case, control signal turns on (it remains in the low
state, otherwise), the window comparator is disabled, and the
spike processing phase starts. The threshold value is exter-
nally provided in digital format and an in-channel 8-bit Dig-
ital-to-Analog Converter (DAC) is used to obtain its analogue
counterpart.

During the spike processing phase, the feature extraction
process is performed. To that end, the spike waveform is ap-
proximated on-the-fly by a first-order PWL representation, as
illustrated in Fig. 3. Monophasic spikes, with just one single
positive or negative peak, are represented with three variables:
two time segments, for the peak position and for the

Fig. 3. Piece-Wise Linear spike approximation. In this example, � is
“00001101”.

overall duration of the spike ; and one voltage, for its
peak amplitude . Biphasic spikes, with one positive and
one negative peak, require two sets of the aforementioned
variables (one per phase) and an additional measurement of
the separation between the phases, . All these variables are
codified into 8-bit digital vectors to give an overall data load of
24 or 56 bits, depending on the spike shape. Potential waveform
fluctuations during the spike phases are not accounted for in the
PWL approximation; only the absolute maximum or minimum
values are considered in the spike representation.

The feature extraction process is realized in digital domain
and, therefore, the binary search block of Fig. 1 is enabled to
digitize the incoming signal. A conversion rate of 90 kS/s is se-
lected in this case. The digital PWL extractor comprises a 8-bit
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Fig. 4. Functional flow in of the digital system.

synchronous counter, digital comparators and a small finite state
machine for control purposes. The counter, working at 100 kHz
and enabled by the signal, is used to measure the time seg-
ments , and, eventually, . The comparators are used to
determine the peak positions and threshold crossings. Finally,
a set of 8-bit registers are used to store the PWL variables. The
algorithm is illustrated in Fig. 4 (only in the case of monophasic
spikes, for simplicity). The performance of the proposed spike
detection and feature extraction approaches are detailed in the
Appendix.

III. LOW-NOISE AMPLIFIER BAND-PASS FILTER

The BP-LNA block is used to boost the weak signals detected
by the microelectrodes and filter out the undesired frequency
components. The spectral content of neural spikes are typically
comprised in the frequency range from 200 Hz to 7 kHz and
their amplitudes can be as low as tens of . This compels
the acquisition circuitry to exhibit an input-referred noise well
below 5 and a dc gain larger than 30 dB [8]. In order to
cope with these challenging specifications, different candidate
topologies for the BP-LNA block have been proposed, namely:
the so-called capacitive feedback network, [20]–[25], the miller
integrator feedback network [26], and the capacitive amplifier
feedback network [27]. These topologies have been compared
by the authors in [28], where it is demonstrated that the capaci-
tive feedback solution offers the best trade-off between power,

Fig. 5. Band-Pass Low-noise amplifier. (a) Schematic. (b) Transistor-level
OTA implementation. (c) Programmable feedback pseudo-resistor.

area and noise efficiency. Accordingly, the proposed BP-LNA
essentially follows the capacitive feedback structure as well.

Fig. 5(a) shows the schematic of the BP-LNA which intro-
duces three main modifications to the original proposal in [20].
First, it uses a fully-differential architecture to increase the dy-
namic range of the amplifier and improve the PSRR and CMRR
performance. Second, the Operational Transconductance Am-
plifier (OTA), shown in Fig. 5(b), uses a high output-swing two-
stage topology with feedforward capacitive compensation in the
first stage. And third, the first stage of the OTA uses a comple-
mentary input differential pair to reuse the tail current and nearly
double the achieved transconductance [29].

Two continuous-time Common-Mode FeedBack (CMFB)
circuits are used to set the dc common-mode output voltages
of the OTA stages. In both cases, the CMFB circuit consists
in a resistive divider connected to the outputs of the respec-
tive stages, and a common-mode sense amplifier driven by a
common-mode voltage reference . This voltage is gener-
ated in-channel so as to maximize the output swing of the OTA.

Assuming that the two stages of the OTA are modeled by
single-pole networks, the transfer function of the architecture in
Fig. 5(a) is characterized by a midband gain, , two
zeros and three poles. The zeros are one at the origin, due to the
ac-coupling through the input capacitance , and the other at
high frequency, due to the feedforward path through the capac-
itance . Regarding poles, one of them, , is responsible
for the HP corner of the bandpass transfer characteristic of the
BP-LNA and it is due to the feedback network around the OTA,
i.e.,

(1)

The other two poles are due to the internal structure of the OTA,
as well as the feedback and load capacitances. In the proposed
BP-LNA, the OTA has been designed in such a way that these
poles, responsible for the LP corner of the bandpass character-
istic, are real and nominally identical. Accordingly, there is a
double pole at a frequency, , approximately given by

(2)
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which induces a 40 dB/dec magnitude roll-off in the transfer
characteristic—beneficial to reduce the in-band integrated
noise. In the above expression, and are the
transconductances of the first and second stage, respectively;

, where is the capacitance at the output
node of the first stage and is the compensation capacitance;
and , where is the load capacitance and

is the parasitic capacitance at the output of the OTA.
The input-referred rms noise of the architecture in Fig. 5(a)

can be calculated as

(3)

where and are, respectively, the output-referred
noise spectral density and the equivalent noise bandwidth of the
OTA; and and are likewise defined for the feedback
resistor .

Assuming that the input transistors of the OTA operate in
weak inversion, the output-referred noise spectral density of the
OTA, , is approximately given by

(4)

where is the transistor slope factor. Regarding the equivalent
noise bandwidth of the OTA, it can be approximated, after some
algebra, by the expression

(5)

where and
are, respectively, the feedback factor and the equivalent input
capacitance of the BP-LNA; stands for the total parasitic
capacitance at the input node of the OTA; and is the dc gain
of the first stage.

For the feedback resistance, and
the noise equivalent bandwidth can be approximated as

. Replacing these equations as well as (4)
and (5) into (3), it can be found that

(6)

A methodology similar to [30], [31] has been applied to select
the best implementation in terms of power consumption, area
occupation and noise performance. During the design proce-
dure, some relevant technological parameters are extracted and
stored in look-up tables. This information is then combined with
the above equations to get an optimized sizing of the different
LNA devices according to the selected targets. The outcome
of this process was a BP-LNA instance with ,

, and .
In this design, the OTA shows an open-loop dc gain of 90 dB

and a gain-bandwidth product of 5.75 MHz for a load capaci-
tance of 5 pF. The BP-LNA is unconditionally stable under PVT
(process corner, voltage supply, operating temperature) varia-
tions.

Fig. 6. BP—LNA measured frequency response for the different pole position
configurations.

Due to the low frequency specified for the HP pole (1), very
large feedback resistances must be employed in the BP-LNA.
They have been implemented with pseudo-resistors based on
pMOS transistors in deep subthreshold, as shown in Fig. 5(c)
[29]. In order to improve linearity, the feedback resistor is im-
plemented by the series connection of at least eight of these
pseudo-resistors.

The frequencies of the HP and LP poles are process-depen-
dent. Indeed, our PVT simulations show that the HP pole may
vary by more than 200%, whereas the variations of the LP pole
may be in the order of 40%. To cope with this situation, both the
feedback resistance and load capacitance of the BP-LNA are
made digitally adjustable with programming words

and , respectively. These words
are automatically estimated by following the calibration pro-
cedure described in Section II-A. Programming the feedback
resistance is accomplished by altering the number of serially
connected pseudo-resistors, as shown in Fig. 5(c). Similarly,
the load capacitance is programmed by properly adding capac-
itors in parallel. Basic component sizes, either pseudo-resistors
or capacitors, in these programmable arrays have been properly
scaled so as to uniformly cover the variation ranges estimated
by PVT simulations.

The performance of the BP-LNA has been validated through
measurements from the chip. Fig. 6 shows the measured fre-
quency response of the BP-LNA for the different HP and LP
tuning configurations. The midband gain is about 47.5 dB in
all cases. The HP pole can be adjusted from 11.5 to 167 Hz,
whereas the tuning range for the LP pole is from 4.8 to 9.8 kHz.
After calibration (see Section II-A), the nominal bandwidth of
the BP-LNA is established as 167 Hz–6.9 kHz. Unless other-
wise stated, measurements were obtained with this nominal
bandwidth configuration. It is worth observing the programming
range of the HP pole is not wide enough to include the target
position of 200 Hz. This reveals the transistors models provided
by the foundry for deep subthreshold operation are not accurate
enough. In practice, it would have been convenient to extend the
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Fig. 7. Measured input-referred noise voltage spectral density of the BP-LNA.

Fig. 8. Measured BP-LNA CMRR.

Fig. 9. Measured BP-LNA output distortion.

programming range even beyond the estimations derived from
PVT simulations.

Fig. 7 shows the input-referred noise spectral density of
the BP-LNA. The rms value of the input referred noise is
3.8 , integrated from 1 Hz to 100 kHz, and 2.84
over the nominal passband. Fig. 8 shows the CMRR of the
BP-LNA, which obtains more than 83 dB in the passband. Un-
fortunately, the experimental setup does not permit to measure
the PSRR; simulation results obtain values larger than 70 dB,
though. As an illustration of the linearity performance, Fig. 9
plots the frequency response of the BP-LNA for a 1 kHz input
tone with 2 amplitude. As can be seen, the second and
third harmonics are more than 60 dB below the fundamental.
For 4.1 amplitude, the THD of the BP-LNA degrades to
about 1% because of the OTA saturation onset.

The current drawn by the BP-LNA is 1.6 , thereby re-
sulting into a power consumption of 1.92 from a 1.2 V
supply voltage. The Noise Efficiency Factor (NEF) of the
BP-LNA, defined as [32]

(7)

amounts 2.16 over a noise integration bandwidth of
1 Hz–100 kHz, and 1.62 over the filter passband. Table I
summarizes the performance of the BP-LNA in perspective
with other recent publications.

IV. PGA AND ADC

Programmable gain and data conversion are embedded into
a single block. It is a sort of reconfigurable-ADC in which the
functionality (either S&H or ADC), signal gain and sampling
frequency are digitally-programmable. Such flexibility is cru-
cial for saving area and power—the most important constraints
of our neural channel chip.

To confront the design of the ADC one may think of using
Successive Approximation Register (SAR) architectures with
capacitive-based DACs. Actually, these architectures are well
suited for low-power, medium resolutions ADCs [33]–[36] and
have been extensively employed for neural recording applica-
tions [6]–[10]. However, because of the large number of unitary
elements required by capacitive DACs, these architectures are
not appropriate in scenarios with strong area constraints, as it
is the case of this design where the whole channel must fit in
a pitch of 400 .1 Alternative architectures must be devised
instead.

The proposed ADC follows a binary search algorithm for data
conversion employing the SC architecture of Fig. 10(a) [37].
The circuit consists in two active blocks, a S&H programmable
gain amplifier/integrator (which uses a single operational ampli-
fier) and a comparator, as well as a conventional SAR register
(not shown in the figure). Circuit operation is as follows. The
signal is first sampled and stored in the integrator by transferring

1The total capacitance required by conventional binary weighted arrays is
� � , where � is the resolution of the converter and � is the value of the
unitary capacitor—ultimately determined by noise, linearity and matching con-
siderations. Even using specific techniques for area reduction, e.g. array splitting
with attenuation capacitors, the smaller SAR converters proposed so far, with
requirements on resolution and speed similar to those in this design, have an area
occupation larger than 0.05�� . Our proposal obtains more than 30% area re-
duction, including the programmable gain amplifier which not only serves the
purposes of data conversion but also amplification adjustment.
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TABLE I
STATE-OF-THE-ART COMPARISON OF THE BP-LNA MEASURED PERFORMANCE

Fig. 10. SC-based ADC. (a) Schematic. (b) Waveform.

charge from capacitor to . Afterwards, the conversion
phase starts. It is simply realized by successively comparing the
integrated voltage with , where is the full-scale
reference voltage of the converter, and index ,
indicates the conversion step ( represents the converter reso-
lution). The weighted voltages are generated by a pas-
sive SC arrangement [shaded area in Fig. 10(a)]. If the integrated
voltage is larger (alternatively, smaller) than the comparator

Fig. 11. Transistor-level schematic. (a) OTA. (b) Dynamic-latch.

sets to ‘1’ (alternatively, ‘0’) the -th conversion, and the inte-
grator is updated by subtracting (alt. adding) . As illus-
trated in the timing diagram of Fig. 10(b), the conversion takes

clock cycles, 2 for sampling and for carrying out the
binary search algorithm.

During spike detection, the voltage divider and the com-
parator are disabled and the block operates as a PGA, clocked at
100 kHz. The gain of the PGA can be adjusted from 0 to 18 dB
at discrete steps of 3 dB (this gives a total gain for the channel
front-end of 47.5–65.5 dB, including the LNA contribution) by
controlling a 3-bit programmable input capacitance. When the
ADC functionality is enabled (during the rest of the operation
modes), the sampling frequency can be programmed between
22.5 kS/s and 90 kS/s.

Fig. 11(a) shows the schematic of the fully differential OTA
in the . It is a folded-cascode topology with a
SC-based common-mode feedback circuit (not shown). The
OTA uses a dynamic biasing scheme in which supply currents
are adjusted according to the slew-rate demand. This is ac-
complished by controlling the widths of transistors M3-M7.
As an illustration, 10(b) shows how the tail current provided
by transistor M3 decreases along the conversion process. It is
worth mentioning this OTA reconfiguration, applied during the
hold phases , has negligible impact on the voltage stored
in the integration capacitor, i.e., no contamination by kick-back
effects is observed during ADC operation.
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Fig. 12. FFT-spectrum of the ADC response for low and Nyquist input fre-
quencies sampled at 90 kS/s.

Fig. 11(b) shows the schematic of the comparator, a current-
controlled dynamic-latch buffered with class-A amplifiers.

The dynamic latch is formed by a differential pair loaded by
a positive feedback network based on cross-coupled inverters.
When the strobe signal turns on, the differential pair trans-
forms the input voltage into a current unbalance which is regen-
erated and latched by the feedback network to obtain a binary
differential output voltage. This voltage is boosted to the rails by
means a two class-A amplifiers. The outputs of these amplifiers
drive a conventional RS latch (not shown) to store the results of
the comparison. As in the OTA, the bias currents of the differ-
ential pair and the class-A amplifiers are adapted according to
the selected sampling frequency.

Experimental results show that the Equivalent Number of Bits
(ENOB) of the ADC is 7.62-bit for a sampling frequency of
90 kS/s, and 7.65-bit for 22.5 kS/s. The total power consump-
tion of the is 1.8 average when the ADC runs
at 90 kS/s. It decreases to 500 nW when the sampling frequency
is 22.5 kS/s, and to just 360 nW when the ADC function is dis-
abled and the S&H samples the input signal at 100 kHz. Fig. 12
shows the spectrum of the ADC output at 90 kS/s sampling rate
(spike processing) for a low input frequency and at Nyquist rate,
respectively. The measured linearity is represented in Fig. 13 by
means of the INL and DNL.

Defining the Figure of Merit (FoM) for the analog-to-digital
conversion as

(8)

we obtain 102 fJ/conv for the PGA and ADC sampling
at 90 kS/s. In order to make a fair comparison with the
state-of-the-art on ADCs, we have calculated the FoM value
when only the power of the blocks contributing to the conver-
sion is accounted for; i.e., by excluding the power required to
build the PGA functionality. It results into 250 nW, which gives
a FoM of 14.12 fJ/conv.

Table II summarizes the performance of the
under its different modes of operation.

V. SC WINDOW COMPARATOR

The window comparator detects a neural spike when the dif-
ferential output of the S&H PGA goes (in absolute value) above
a certain threshold voltage configured by means of the 7-bit
digital word . Fig. 14 shows the schematic of the window

Fig. 13. Linearity response of the ADC. (a) INL. (b) DNL.

TABLE II
��� � ��� PERFORMANCE

comparator. It is a switched-capacitor implementation which
requires two comparators; one detects the sign of the sampled
signal and the other detects the occurrence of the spike. The
first one reuses the comparator of the ADC (which is disabled
during the spike detection phase), while the second one is im-
plemented using the same dynamic-latch architecture presented
in Fig. 11(b). The comparison phase starts by storing the analog
threshold voltage in the input capacitors with opposite signs. In
the next phase, the differential output of the S&H PGA is con-
nected to the input capacitors depending of the detected sign.
Thus the compared voltage is , in order to
detect both the positive and negative spikes. Note that, as the
threshold voltage is multiplied by two, the input digital signal
has to be divided by two and, consequently, the system only
needs a 6-bits DAC.

The employed DAC follows an architecture similar to that
presented in [38], a 6-bits R-2R resistive current divider struc-
ture with pMOS transistors. This architecture achieves the re-
quired resolution with very low area occupation and a minimum
power consumption. Simulation results show that the output
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Fig. 14. Schematic of the window comparator. (a) Sign spike detector.
(b) Signal waveform. (c) Window comparator.

Fig. 15. Experimental set-up for measurements with saline solution.

noise voltage of the resistive DAC is around 450 , similar
to the 475 output power noise of the LNA, which makes
this design suitable for the application.

The power consumption of the window comparator and the
DAC is 200 nW.

VI. EXPERIMENTAL RESULTS

The performance of the neural channel sensor has been first
validate with an experiment that emulates the neuron-electrode
interface in a real neural recording system by means of a con-
trolled saline solution. Fig. 15 shows the set-up of the experi-
ment. The input signal is synthetically generated with an arbi-
trary waveform generator and introduced in the saline solution
through an electrode. This signal is captured by another elec-
trode 2 cm away from the first and connected to the input of
the neural channel. In order to emulate the conductivity of the
brain tissue, the selected 0.01-molar saline solution has a con-
ductivity of 0.15 S/m [39]. The system is powered by means of

Fig. 16. Oscilloscope capture for the saline solution experiment: input neural
signal with low-frequency LFP disturbance (up) and output of the BP-LNA
(down).

Fig. 17. Capture of the logic analyzer screen under the feature extraction mode.

two external batteries to reduce as much as possible the 50 Hz
interference of the power line.

Fig. 16 illustrates the output of the BP-LNA for a neural
input signal containing spikes and a subjacent low-frequency
local field potential (LFP) waveform. This signal, on the top of
Fig. 16, has been taken from a public database of intra-cortical
recordings [40]. It features 3.0 mVpp amplitude and an output
rate of 30 kS/s. A dc offset of 50 mV has been intentionally su-
perposed to this signal. The output of the BP-LNA, represented
on the bottom, shows that both the LFP signal and the dc offset
are successfully attenuated by the filter. The spikes are clearly
visible and detectable.

Fig. 17 shows the response of the system when it works under
the feature extraction mode. Signal com_out represents the se-
rial output of the spike feature registers, while com_clk is the
clock signal employed to read this data. The input signal is a
synthetic neural signal with 0.8 mVpp amplitude and the dc gain
of the channel amounts 59.5 dB after calibration. Both the input
signal and the obtained feature extracted PWL representation
have been overlaid to appreciate the operation of the extractor.
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Fig. 18. In vitro experiment. (a) Microphotograph of the hippocampus cell cul-
ture inside the in-vitro MEA. (b) Segment of the extracellular recording with a
burst of spikes and (c) zoom over four consecutive spikes.

The collected information for the extracted spikes is shown at
the bottom of the figure.

Extracellular recordings were made from a culture of human
hippocampus cells to verify the functionality of the acquisition
system in a real recording environment. We used a standard
in-vitro MEA with a pattern of 8 8 electrodes, 400 pitch.
Fig. 18(a) shows a microphotograph of the biological tissue in-
side the MEA. The channel input signal was taken from one of
the microelectrodes with higher neural activity. The dc gain of
the channel took its maximum value (65.5 dB) after calibration
because the amplitude of the extracellular action potential was
less than 350 . The BP-LNA was set after calibration to
its nominal bandwidth, 167 Hz–6.9 kHz. Fig. 18(b) shows a seg-
ment of the recorded waveform at a sampling rate of 22.5 kS/s
and Fig. 18(c) shows a zoom of the shaded area in Fig. 18(b), in
which four spikes can be easily distinguished. Again, the spikes
were clearly visible and detectable along the whole recording
session.

TABLE III
MEASURED PERFORMANCE OF THE NEURAL CHANNEL

The measured performance of the presented neural recording
channel is shown in Table III. The total power consumption of
the system (including the 280 nW due to biasing circuitry) is
2.8 at the signal tracking mode. When the feature extrac-
tion mode is selected, we have to distinguish between the power
consumed during the detection operation (2.96 ), on the one
hand, and during the spike processing analysis (4.2 ), on the
other hand. Assuming that, on average, the firing rate of neural
signals is of 30 spikes/second and the spike mean duration is
about 3 ms, the system will only process the spike during 9%
of the time, while the rest will work under the spike detection
mode. Consequently, when the system is configured on the fea-
ture extraction mode, the average power consumption is 3.1 .
A low-leakage technology option has been employed resulting
into a total leakage power of 50 nW for the digital circuitry.

It is also important to remark the achieved reduction of the
output data bitrate when the feature extraction mode is selected.
It goes from 180 kbps when no signal analysis is done (signal
tracking mode) down to 1.44 kbps when just the main spike
features are sent, which means a reduction of more than 99%.

VII. CONCLUSIONS

The channel reported in this paper is conceived to include all
the circuitry needed to sense, detect, extract features and digi-
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TABLE IV
NEURAL CHANNEL SENSORS WITH FEATURE EXTRACTION CAPABILITIES STATE-OF-THE-ART COMPARISON

tize spikes within an area of , using a stan-
dard 130 nm CMOS process, thus fitting to the pitch of com-
mercially available microelectrodes and making it feasible for
multi-channel recording. Key point of the reported design are
reconfiguration, on the one hand, and data compression on the
other. Regarding the latter, Table IV compares the specs of pre-
viously reported neural channels with embedded feature extrac-
tion to those of the chip presented in this paper. As it can be seen
our chip includes all functions (signal adaptation, digitization,
spike detection and feature extraction) on-channel, and achieves
the lowest power consumption per channel. The FoM value dis-
played in the table is defined as in (8) but taking into account the
power consumption of the channel. Regarding reconfiguration,
our chip includes foreground self-calibration (filter bandwidth
and PGA), is able to operate at different modes and reconfigure
the building blocks dynamically depending selected operation
mode. All-in-all, all these reconfiguration features are crucial to
achieve the low power operation figures.

Experimental results show that the circuit requires 2.8 ,
from a 1.2 V supply, when tracking the input signal, and 3.1
if the feature extraction mode is selected. The input referred
noise is 3.8 when integrated in a 1 Hz–100 kHz band,
resulting into a NEF value of 2.16. The measured ENOB is
7.64-bits with a power consumption of 1.8 at 90 kS/s.
Experiments with conductivity-controlled saline solution and
in-vitro extracellular recordings were done to verify the proper
operation of the channel.

Comparison with other published neural sensor interfaces
shows that the chip reported in this paper shows the lowest
power consumption and is the only one that integrates all the
functionality within an electrode pitch area.

APPENDIX

To evaluate the performance of the spike detection and fea-
ture extraction, 60-seconds spike-controlled neural signals were

used as channel input. These signals were built from an ex-
tense neural spike database of intra-cortical recordings [40] and
randomly distributed following a Poisson distribution with con-
trolled firing rates and background noise levels. The background
neural noise noise was generated from 25 aggregated synthetic
neural signals with different firing rates to simulate the inter-
ference caused by close neurons. The amplitude of this inter-
ference was adjusted in the different tests to achieve different
signal-to-noise ratios (SNRs). The SNR is defined as [16]

(9)

where and are the signal and noise standard deviations, re-
spectively. As both the position and type of the spikes are known
a priori, it is possible to evaluate the performance of the detec-
tion analysis. The neural threshold voltage has been externally
calculated in time-domain using the absolute value algorithm
[14], and introduced to the system through the digital input .
In future integrations of the neural channel, this adaptive voltage
threshold logic will be embedded in the channel.

The quality of the detection is illustrated by means of the
probability of detection and false alarms figures [14]. The first
one is given by

(10)

while the probability of false alarm is defined as

(11)

Fig. 19 illustrates the performance of the spike detection re-
sults for different input SNRs compared to that reported by [14]
and [16]. The probability of detection is higher than 80% for
SNR above 2.5 dB, while, for the same range, the probability of
false alarm keeps below 15%. It is worth observing the achieved
performance is similar to the other approaches for SNRs above
0 dB. Further, it must be noted that the presented approach has
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Fig. 19. Performance of the spike detection. (a) Probability of detection versus
SNR. (b) Probability of false alarm versus SNR.

Fig. 20. Spike sorting performance of the proposed feature extraction method:
original spikes (first row); detected and sorted spikes (second row).

very limited impact on silicon area thanks to the extensive use
of digital-assisted analog design and building block reuse.

The performance of the proposed feature extraction method
is evaluated by the accuracy with which spikes can be sorted. In
order to do that, a 60-seconds synthetic neural signal with a total
of 250 APs from 4 different sources was used as input. The de-
tected spikes were classified depending on their Euclidean dis-
tances [15]; if the spike distance to a cluster falls below a certain
threshold, such a spike also belongs to that cluster. The result of
this classification is shown in Fig. 20. The first row plots ensem-
bles of spikes belonging to the four different clusters, while the
second row shows the shapes of their extracted features, as well
as their mean. The accuracy of the presented sorting method is
depicted in Fig. 21. For this analysis, only the detected spikes
have been taken into account. As can be seen, for SNRs above
6 dB, the sorting error is below 10%.

Fig. 21. Classification error of the spike sorting method from the proposed
spike feature extraction.
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