
On the Correlation of CNN Performance
and Hardware Metrics for Visual Inference on a

Low-Cost CPU-based Platform
Delia Velasco-Montero1, Jorge Fem ández-Bem i1, Ricardo Carmona-Gálán1, Angel Rodríguez-Vázquez1

'Instituto de Microelectrónica de Sevilla (Universidad de Sevilla-CSIC), Sevilla, Spain
delia@ imse-cnm. csic. es

Abstract—W hile providing the same functionality, the various
Deep Learning software frameworks available these days do not
provide similar performance when running the same network
model on a particular hardware platform. On the contrary,
we show that the different coding techniques and underlying
acceleration libraries have a great impact on the instantaneous
throughput and CPU utilization when carrying out the same
inference with Caffe, OpenCV, TensorFlow and Caffe2 on an
ARM Cortex-A53 multi-core processor. Direct modelling of this
dissimilar performance is not practical, mainly because of the
complexity and rapid evolution of the toolchains. Alternatively,
we examine how the hardware resources are distinctly exploited
by the frameworks. We demonstrate that there is a strong
correlation between inference performance - including power
consumption - and critical parameters associated with memory
usage and instruction flow control. This identified correlation is a
preliminary step for the development of a simple empirical model.
The objective is to facilitate selection and further performance
tuning among the ever-growing zoo of deep neural networks
and frameworks, as well as the exploration of new network
architectures.

Keywords—convolutional neural networks, deep learning, edge
inference, embedded vision, hardware performance, software
frameworks

I . I n t r o d u c t i o n

Deep Learning (DL) [1] has emerged as the reference
paradigm for applications demanding accurate inference. In
particular, concerning computer vision, Convolutional Neural
Networks (CNN) are being employed for multiple tasks, rang
ing from image recognition to pixel-wise segmentation. This
versatility along with much higher accuracy in comparison with
classical vision approaches come at the cost of notably increas
ing the requirements for computational and memory resources
[2], This constitutes a major challenge for the implementation
of CNNs in embedded systems [3].

The relevance gained by the DL paradigm in the last few
years has driven the development of several software frame
works for prototyping and practical deployment of CNNs.
While globally targeting the same functionality, each of these
frameworks follows a particular approach and exploits spe
cific libraries to deal with the massive computational load
demanded by deep neural networks. For instance, matrix-matrix
or matrix-vector operations, which are the backbone of CNNs,
can be realized by Basic Linear Algebra Subroutines (BLAS)

[4] [5] available in a number of libraries: Adas [6], MKL
[7], OpenBLAS [8] [9], Eigen [10], cuBLAS [11], etc. This
diversity of strategies and tools result in remarkable different
inference performance from DL frameworks, even when they
are running the same CNN model on a common hardware
platform. Direct modelling of this heterogeneous performance
is unmanageable due to the complexity of the frameworks and
their rapid evolution.

In this context, research on CNN is usually focused on a
straightforward assessment. For instance, some works dissem
inate a throughput comparison of various DNN frameworks
[12]—[14], including Caffe, TensorFlow, Torch, CNTK, MXNet,
etc. Even so, actually focused on embedded platforms, fewer
contributions have evaluated the efficiency of DNN software
tools for computer vision at the edge [15]—[18]. All these
benchmarks extract direct metrics from CNN inference. Al
though more customized and specific CNN implementations on
CPU-based embedded systems have been reported [19] [20], a
generalized study should include popular DL frameworks that
can operate on a wide range of embedded devices.

In this paper we explain performance of embedded DL in
ference indirectly through metrics of hardware exploitation that
can be easily measured, alternatively to such usually followed
direct approach. The analysis is carried out on a Raspberry
Pi 3 Model B [21] (RPi), an inexpensive embedded computer
featuring a 4-core ARM Cortex A-53 CPU. We first report
the performance achieved by four popular DNN frameworks
in terms of throughput and CPU utilization when performing
1000-category image classification. We then correlate these
performance figures with hardware events registered during
inference, pointing out the critical aspects at both software and
hardware level affecting each other. Finally, we show that some
of the registered hardware events exhibit a strong correlation
with power consumption as well. Overall, we are setting the
foundations for the next step in our research, namely the
development of a methodology for simple empirical modelling
of DL inference on CPU-based embedded platforms.

II. P e r f o r m a n c e A n a l y s i s

A. Hardware Platform

All the experiments reported in this paper refers to the Quad
Core ARM Cortex-A53 1.2GHz 64-bit CPU [22] [23] included

978-l-7281-3227-3/19/$31.00©2019 TREE

249

in the Broadcom BCM2837 System-on-a-Chip (SoC) of the
Raspberry Pi 3 Model B. Each core of this CPU is in turn
an ARMv8-A processor capable of independently executing
instructions.

Cortex-A53 processors exhibit two memory systems, namely
Level 1 (LI) and Level 2 (L2). The LI memory system
includes, per core processor, separate instruction and data
caches (I-cache, D-cache), and a Memory Management Unit
(MMU). The MMU in turn features one Translation Lookaside
Buffer (TLB) - a two-level cache for instruction and data that
translates between virtual and physical addresses. Instruction
caching and dynamic branch prediction are also allowed in
order to increase overall performance and reduce power con
sumption. The L2 memory system contains a unified cache,
which is shared between the cores. Specifically, for the SoC of
the RPi, LI amounts to 32KB whereas L2 comprises 512KB.

Each ARMv8-A core implements the so-called Advanced
Single Instruction Multiple Data architecture - commonly
referred to as ARM NEON technology - as well as vector
floating-point (VFP) operations for acceleration [24],

In addition to the SoC, the Raspberry Pi features 1GB
RAM LPDDR2 900MHz, where we load the CNN weights
and keep intermediate results while running the networks. The
non-volatile storage capacity of the system is provided by an
attached micro-SD card. The operating system is Raspbian [25].

B. Software Frameworks

Caffe [26] implements convolutions as image-to-column
transformation (im2col) plus General Matrix-Matrix Multipli
cation (GEMM), using Basic Linear Algebra Subprograms
(BLAS) as the back-end for GEMM. According to our tests -
not reported in this paper - OpenBLAS [9] is the BLAS library
supported by the RPi CPU, and compatible with Caffe, that
better leverages the four cores of the ARM Cortex-A5 3. Ten-
sorFlow [27] expresses computations as static graphs, which
are built just once and run repeatedly for inference. It makes
use of the Eigen library [10] to generate efficient parallel code
for multicore CPUs. We installed pre-built TensorFlow 1.3.0 for
RPi [28]. This version exploits ARM hardware optimizations
- NEON and VFP - for computational acceleration. OpenCV
[29] implements a module that allows the use of pre-trained
models for inference from other frameworks. We took CNN
model files from Caffe. OpenCV version 3.3.1 was compiled
to exploit both ARM NEON and VFP optimizations as well.
Caffe2 [30] is designed to be lightweight, modular and mobile-
oriented. It also uses static graphs for network definition and
the Eigen library for matrix calculation. Caffe2 is optimized
for ARM CPUs with NEON.

C. Inference Performance

One of the consequences of the high computational demand
of CNN models is that the temperature of the RPi’s ARM
Cortex-A53 SoC can rapidly increase during inference. This
forces the CPU frequency, and thereby the throughput, to
go down. To take this aspect into account, we measured the

TABLE I
Main parameters defining the assessed CNN architectu res .

GoogLeNet ResNet-50 SqueezeNet-vl.l
Model Repository [31H33] [34]—[36] [37]—[39]

Top-1 (%) accuracya 69.2±0.4 72.6±0.1 58.3±0.0
Top-5 (%) accuracy3 89.0±0.1 91.0±0.0 80.0±0.1

Input size 1x224x224x3 1x224x224x3 1x227x227x3
#Outputs 1000 1000 1000

#Conv. layers 57 53 26
#Fully-Conn. layers 0

#weights ~7.0M ~25.6M ~1.2M
#MACs ~1.6G ~3.9G ~396k

a Accuracy measured over the validation set of the ImageNet ILSVRC 2012 dataset,
without any data augmentation. Random initialization of weights leads to small
deviations in accuracy even if it is the same model but trained on each framework.

following four performance metrics after each processed image
over a long period - 6 minutes - of continuous inference:

• Throughput. It is calculated as the inverse value of the
total time required per image when batch size is set to 1 -
this includes the time required to read and pre-processing
the image, perform the inference, extract the metrics and
save the results.

• CPU utilization. It was measured by using the Python
p s u t i l library.

• CPU frequency and temperature. We used the
vcgencm d tool to check the variations of the SoC’s
temperature and frequency caused by the CNN-based
inference. Although the ARM Cortex-A53 CPU ideally
operates at a maximum frequency of 1.2 GHz, the chip
temperature can alter the instantaneous CPU frequency.

To identify performance trends on each DL framework,
these metrics were measured for three CNNs with different
architectures capable of recognizing 1000 image categories,
namely SqueezeNet [40], GoogLeNet [41], and ResNet-50
[42]. We used pre-trained implementations of these models
provided by each framework [31]—[39]. Table I summarizes
main architectural and operational aspects of them. Python was
the coding language we used since it is the language through
which all of the network definitions are available for all of
the frameworks. Furthermore, all these DL tools use single
precision floating-point data format (float32).

Fig. 1 depicts the temporal evolution of the metrics above
defined when performing image recognition with SqueezeNet.
Fig. 2 shows the average values of CPU utilization and through
put for all the cases during the 6-minute period inference. The
following aspects must be emphasized:

• CPU utilization is quite stable for each framework over
the inference period, but its average varies significantly
among frameworks. Caffe reaches the highest value for
the three network models tested.

• There are different patterns of temperature evolution.
When the temperature is approaching 80°C, the processor
protects itself by downclocking, which in turn decreases
the throughput. This has a great impact on the total number
of processed images over the test period.

• In spite of the fact that Caffe is apparently the framework
making the most of the CPU, its throughput is the lowest

250

_ 4.0
"Tn"
Q.

^ 35 D
Q.^3.03o
I 2'5

2.0

85

70 :

1.2

1.1 a

1.0 |
0.9 S

£
0.8 it

0.7

u 80

ro
<D 70 a.
E
£ 65

60
1 2 3 4 5

Time (min)

Throughput (fps)
------- Caffe
------ TensorFlow
------- OpenCV
------- Caffe2

CPU utilization (%)
- Caffe

TensorFlow
OpenCV

- - Caffe2

Tem perature (°C)
------- Caffe
------ TensorFlow
------- OpenCV
------- Caffe2

Frequency (GHz)
~ Caffe

TensorFlow
- OpenCV

Caffe2

Figure 1. Extracted performance metrics when running SqueezeNet. Similar trends are observed for GoogLeNet and ResNet-50.

(a)

(b)

■ Caffe ■ TensorFlow OpenCV Caffe2

Figure 2. Average values of CPU utilization (a) and throughput (b) during a
6-minute period of continuous inference.

for the three CNNs. (Actually, we have observed this
seeming contradiction for still two more models, namely
Network-in-Network [43] and MobileNet [44].)

Next, we delve into the details of hardware exploitation in
order to elucidate the underlying reasons for this behavior, in
particular for the contradiction arising in Caffe between CPU
utilization and throughput.

III. H a r d w a r e E x p l o i t a t i o n A n a l y s is

A. Methodology
We extracted statistics on the processing load and memory

usage of the CPU for the four analyzed frameworks when per
forming inference with SqueezeNet, GoogLeNet and ResNet-
50. For the sake of a fair comparison, we set a fixed number of
images, N = 50, to be processed in all cases. Otherwise, the
resulting metrics would be biased by the different inference
pace of each framework. These 50 images were randomly

taken from the ImageNet dataset [45] - using different input
images does not change the quantitative outcomes of our study.
The targeted parameters were obtained from the p e r f tool
[46], which gathers data through counters and event monitors
provided by the Performance Monitoring Unit (PMU) included
in the Cortex-A53 processor. In particular, we gathered data
related to PMU hardware events [47]. In order to dismiss
statistics related to the load of the CNN model weights -
our analysis is focused on inference processing - , a two-
phase approach was carried out. Firstly, we collected statistics
when running the whole inference script (si). Secondly, we
singled out the counts associated with the creation and load
of the model architecture ($2). Thus, the statistics employed to
compare hardware performance are derived as (s i —S2) / N, i.e.,
statistics that represent per-image performance. In order to re
duce estimation errors - keep in mind that p e r f provides count
estimates - , we averaged the values from 5 measurements.

B. Experimental Results and Discussion

Fig. 3 depicts the most representative parameters among all
the gathered statistics. Let us carefully examine them. First,
note that the particular coding techniques and libraries making
up Caffe render, for the RPi’s CPU, the highest number of
instructions (Fig. 3(a)) and demand the highest number of
memory accesses (Fig. 3(c)) in all cases. The processor does
its best to cope with these requirements. That’s why the rates
of instructions per second (Fig. 3(b)) and memory access per
second (Fig. 3(d)) are also the highest for Caffe, which in turn
explains the fact that this framework reaches the highest value
of CPU utilization mentioned in Section II-C. However, even
executing more instructions per second and fetching more data
per second than any other framework, Caffe attains the lowest
throughput due to its notably greater demand of processing
and memory as a whole. We must also point out that Caffe
is the framework for which the CPU applies branch prediction
more extensively (Fig. 3(k)). This means that the processor

251

■
■■ I I I ■

GoogLeNet ResNet-50 SqueezeNet
(a)

| | | |

E 1

S 1.0i/i
a. 0.8
a!
ÏÏ 0.6

^ 0.4
o

<y 0.2
2

le 9 __Mill liü
■ ■ ■ ■ ■ ■ ■ Ml

(b)

ResNet-50
(d)

l u i t . - i . L ■n r k

ilIIi .-J ■ j i J i J
(g)

i f c l Mi H l: . d i f c ■ t
(j)

i l
Caffe ■ TensorFlow OpenCV H Caffe2

Figure 3. Hardware event statistics registered for 50 images consecutively inferred.

executes instructions before knowing for sure whether they
will be finally executed or not. If the prediction was correct,
the result is available sooner, thereby accelerating inference.
In the case of Caffe, the performance of the CPU in terms of
branch prediction is poor (Fig. 3(1)), adding up instructions

uselessly executed. Concerning cache exploitation, Caffe is
distinctively good at loading data at LI (Fig. 3(e)) which will
be successfully fetched later on (Fig. 3(f)). The exploitation of
L2 and TLB by Caffe is also notable (Figs. 3(g)-3(j)) - note that
the OpenBLAS library, exploited by Caffe, is highly oriented

252

Ie9

Time (seconds)

Figure 4. Power consumption and correlated hardware metrics when running GoogLeNet on Caffe four times.

Data memory accesses

Figure 5. Alignment between throughput and one hardware metric for the 12
combinations of assessed frameworks and networks. Note the logarithmic scale
in the x-axis.

to this accomplishment [8]. This suggests that the main reason
for the poor coupling between Caffe and this CPU could be
a poor mapping between the high-level instructions in Caffe’s
source code and the processor’s instruction set.

With respect to the other three frameworks, there are also
differences to be highlighted. The instruction reduction with re
spect to Caffe showed in Fig. 3(a) suggests a better exploitation
of the ARM SIMD instruction set. In fact, these frameworks
leverage the ARM hardware optimizations by compilation. Ten-
sorFlow stands out as the most efficient framework, requiring
the minimum number of instructions and memory accesses to
complete the inference (Fig. 3(a) and Fig. 3(c), respectively).
This characteristic, in conjunction with high rates of instruc
tion execution and memory access (Fig. 3(b) and Fig. 3(d),
respectively), enable the highest average throughput achieved
by TensorFlow for GoogLeNet and ResNet-50; OpenCV is the
best option for SqueezeNet (see Fig. 2(b)). The most effective
framework in terms of branch prediction is Caffe2. Regarding
cache memory exploitation, TensorFlow and Caffe2 present a
similar performance. OpenCV makes a poor use of LI but is

TABLE H
Pearson correlation coefficient betw een instantaneous power

CONSUMPTION AND THREE HARDWARE METRICS FOR GOOGLENET.

L l-d cache loads /sec L2-d cache loads /sec Instructions /sec
Caffe 0.85 0.72 0.94

TensorFlow 0.95 0.88 0.92
OpenCV 0.89 0.66 0.89

Caffe2 0.82 0.79 0.80

the best by far on exploiting L2 (Figs. 3(e)-3(h)).
Concerning the differences between the three studied CNN

architectures, number of executed instructions in Fig. 3(a)
exhibit a concordance with the number of MAC operations
reported in Table I - although each framework depicting a
distinctive relationship, as explained above. Likewise, the more
weights the network has (Table I), the more data memory ac
cesses it requires (Fig. 3(c)). In addition, the extracted hardware
metrics have a remarkable correlation with throughput for all
the networks as highlighted in Fig. 5, where previously reported
values are scattered showing a nearly linear pattern.

C. Power Consumption
Besides explaining throughput and CPU usage as discussed,

the statistics extracted with the p e r f tool also exhibit corre
lation with power consumption. Fig. 4 depicts instantaneous
power measured with a Keysight N6705C DC Power Ana
lyzer vs. three hardware metrics simultaneously sampled every
10 milliseconds. This figure correspond to four consecutive
GoogLeNet inferences running on Caffe. Similar results have
been obtained for the other frameworks and networks. Table II
summarizes the Pearson correlation coefficients between these
metrics and power consumption for each framework running
GoogLeNet. Note that the coefficients are greater than 0.66
in all cases, reaching a value of 0.95 for LI D-cache accesses
during inference on TensorFlow. Taking into account the impor
tance of power consumption in embedded vision applications,

253

its relevance in optimization loops [48], and how difficult its
direct measurement is - supply pins must be accessible and
special equipment like the aforementioned power analyzer is
required the proposed hardware metrics constitute a simple
way to characterize embedded platforms.

IV. C o n c l u s i o n

An optimal selection of DL software framework and DNN
architecture for a particular embedded hardware platform def
initely make a difference in terms of performance. Specific
coding strategies and acceleration libraries implemented by
the frameworks exploit the underlying hardware in diverse
manners, giving rise to a wide range of inference rates and
power profiling even on the same network model. Instead of
a direct modelling of the expected performance and power
consumption of DL frameworks and DNNs on a particular
CPU-based platform, we propose to carry out such modelling
through metrics of hardware exploitation. These metrics can
be easily extracted through standard tools. In this paper we
present a preliminary study that supports the applicability of
our proposed approach. Our next step will be to develop a
performance model based on such metrics and insert it into
an optimization loop in order to determine the best selection
according to prescribed specifications.

A c k n o w l e d g m e n t

This work was supported by United States Office of Naval
Research through ONR NICOP N00014-19-1-2156, by Spanish
Government MINECO (European Region Development Fund,
ERDF/FEDER) through Project TEC2015-66878-C3-1-R, by
Spanish Government through FPU Grant FPU17/02804, and
by EU H2020 MSCA ACfflEVE-ITN, Grant No 765866.

R e f e r e n c e s

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436-444, 2015.

[2] M. Verhelst and B. Moons, “Embedded deep neural network process
ing,” IEEE Solid-State Circuits Magazine, vol. 9, no. 4, pp. 55-65, 2017.

[3] V. Sze, “Designing hardware for machine learning,” IEEE Solid-State
Circuits Magazine, vol. 9, no. 4, pp. 46-54, 2017.

[4] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh, “Basic
linear algebra subprograms for fortran usage,” ACM Trans. Math.
Softw.,vol. 5, no. 3, pp. 308-323, Sep. 1979.

[5] T. e. a. Kielmann, Basic linear algebra subprograms (BLAS), 2011.
[6] Automatically tuned linear algebra software (ATLAS). [Online],

Available: http://math-atlas.sourceforge.net
[7] Intel Math Kernel Library. [Online]. Available: https://software.mtel.

com/en-us/mkl
[8] Goto, K. et al., “Anatomy of high-performance matrix multiplication,”

ACM Trans. Math. Softw., vol. 34, no. 3, pp. 12:1-12:25, May 2008.
[9] OpenBLAS, optimized BLAS library based on GotoBLAS2 1.13 BSD

version. [Online], Available: https://github.com/xianyi/OpenBLAS
[10] Guennebaud, G. et al., “Eigen.” [Online]. Available: http://eigen.

tuxfamily.org/
[11] Dense linear algebra on GPUs. [Online]. Available: https://developer.

nvidia.com/cublas
[12] Bahrampour, S. et al, “Comparative study of Caffe, Neon, Theano, and

Torch for deep learning,” arXiv, no. 1511.06435, 2015.
[13] Hanhirova, J. et al., “Latency and throughput characterization o f con

volutional neural networks for mobile computer vision,” arXiv, no.
1803.09492, 2018.

[14] Shaohuai, S. et al., “Benchmarking state-of-the-art deep learning soft
ware tools,” arXiv, no. 1608.07249, 2016.

[15] Ignatov A., et al., “A l Benchmark: running deep neural networks on
android smartphones,” arXiv, no. abs/1810.01109, 2018.

[16] Velasco-Montero, D. et al., “Optimum selection of DNN model and
framework for edge inference,” IEEE Access, vol. 6, pp. 51680-51692,
2018.

[17] Zhang, X. et al., “pCAMP: Performance comparison of machine learn
ing packages on the edges,” USENIX Workshop on Hot Topics in Edge
Computing (HotEdge 18). USENIX Association, 2018.

[18] Pena, D. et al., “Benchmarking of CNNs for low-cost, low-power
robotics applications,” RSS Workshop: New Frontier for Deep Learn
ing in Robotics, 2017.

[19] Lee, Sung-Jin et al., “Efficient SIMD implementation for accelerating
convolutional neural network,”, pp. 174-179, 2018.

[20] Liangzhen Lai, L. et al., “CMSIS-NN: Efficient neural network kernels
for Arm Cortex-M CPUs,” arXiv, no. 1801.06601, 2018.

[21] “Raspberry Pi 3 Model B.” [Online], Available: https://www.raspberrypi.
org/products/raspberry-pi-3-model-b/

[22] ARM, ARM Cortex-A53 MPCore Processor.Technical Reference
Manual. [Online], Available: https://developer.arm.eom/docs/ddi0500/g

[23] ARM Processors.Cortex-A53. [Online], Available: https://developer.
arm.com/products/processors/cortex-a/cortex-a53

[24] ARM, ARM Cortex-A53 MPCore Processor Advanced SIMD
and Floating-point Extension. Technical Reference Manual.

[25] Raspbian. [Online], Available:
https://www.raspberrypi.org/downloads/raspbian/.

[26] Jia, Y. et al., “Caffe: Convolutional architecture for fast feature embed
ding,” arXiv, no. 1408.5093, 2014.

[27] Abadi, M. et al., “Tensorflow: A system for large-scale machine learning,”
12th USENIX Symposium on Operating Systems Design and Implemen

tation (OSDI 16), pp. 265-283, 2016.
[28] A Docker image for Tensorflow. [Online], Available: https://github.

com/DeftWork/rpi-tensorflow
[29] OpenCV. [Online], Available: https://opencv.org/
[30] Caffe2. [Online], Available: https://caffe2.ai/
[31] BAIR/BVLC GoogLeNet Model. [Online]. Available: https://github.

com/BVLC/caffe/tree/master/models/bvlc googlene
[32] Inception V I. [Online]. Available: http://download.tensorflow.org/

models/inception/vl/2016/08/28.tar.gz
[33] Caffe2 Models. BVLC GoogLeNet. [Online]. Available: https:

//github.com/caffe2/models/tree/master/bvlc/googlenet
[34] Deep Residual Learning for Image Recognition. [Online]. Available:

https://github.com/KaimingHe/deep-residual-networks
[35] ResNet V I 50. [Online], Available: http://download.tensorflow.org/

models/resnet/vl/50/2016/08/28.tar.gz
[36] Caffe2 Models. ResNet50. [Online]. Available: https://github.com/

caffe2/models/tree/master/resnet50
[37] SqueezeNet v l . l . [Online]. Available: https://github.com/DeepScale/

SqueezeNet/tree/master/SqueezeNet/vl.l
[38] Caffe to TensorFlow. [Online], Available: https://github.com/ethereon/

caffe-tensorflow
[39] Caffe2 Models. SqueezeNet. [Online], Available: https://github.com/

caffe2/models/tree/master/squeezenet
[40] Iandola, F. et al., “Squeezenet: Alexnet-level accuracy with 50x fewer

parameters and <1M B model size,” arXiv, no. 1602.07360, 2016.
[41] Szegedy, C. et al., “Going deeper with convolutions,” arXiv, no.

1409.4842, 2014.
[42] Kaiming, He et al., “Deep residual learning for image recognition,” arXiv,

no. 1512.03385, 2015.
[43] M. Lin, Q. Chen, and S. Yan, “Network in network,” arXiv, no.

1312.4400, 2013.
[44] Howard, A. et al., “Mobilenets: Efficient convolutional neural networks

for mobile vision applications,” arXiv, no. 1704.04861, 2017.
[45] Russakovsky, O. et al., “ImageNet large scale visual recognition

challenge,” International Journal o f Computer Vision (DCV), vol. 115,
no. 3, pp. 211-252, 2015.

[46] perf: Linux profiling with performance counters. [Online]. Available:
https://perf.wiki.kemel.org/index.php/Main Page

[47] ARM, ARM architecture reference manual. ARMv8, for ARMv8-A
architecture profile, 2017.

[48] T. Y. et al., “Netadapt: Platform-aware neural network adaptation for
mobile applications,” arXiv, no. 1804.03230, 2018.

254

