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Genome replication involves dealing with obstacles that
can result from DNA damage but also from chromatin al-
terations, topological stress, tightly bound proteins or
non-B DNA structures such as R loops. Experimental ev-
idence reveals that an engaged transcription machinery at
theDNAcan either enhance such obstacles or be an obsta-
cle itself. Thus, transcription can become a potentially
hazardous process promoting localized replication fork
hindrance and stress, which would ultimately cause ge-
nome instability, a hallmark of cancer cells. Understand-
ing the causes behind transcription–replication conflicts
as well as how the cell resolves them to sustain genome
integrity is the aim of this review.

The eukaryotic genome duplicates entirely during each
S phase of the cell cycle. For this purpose, each replisome
must maintain an accurate rate through the chromati-
nized DNA template and must overcome frequent
obstacles such as DNA lesions resulting from endogenous
or exogenous genotoxic sources, proteins tightly bound
to DNA, torsional stress, or non-B DNA structures. To
achieve such a fundamental task on a faithful and timely
manner, eukaryotic cells use interconnectedmechanisms
to couple DNA replication to DNA damage sensing
and repair, hence, counteracting replicative stress and ge-
netic instability. These are hallmarks of tumorigenesis
(Hills and Diffley 2014; Gaillard and Aguilera 2016),
which gain additional relevance given that cancer risk in-
creases with cell divisions (Tomasetti and Vogelstein
2015), highlighting the role of replication in genetic
instability.

At the same time, gene expression is necessary for cell
survival and proliferation, transcription potentially being
the major source of obstacles faced by an advancing repli-
some. Despite the temporal or spatial separation between

replication and transcription of a number of genes, both
processes will inevitably occur on the same DNA region
at the same time in certain occasions, causing transcrip-
tion–replication (T–R) conflicts, as has been extensively
reviewed recently in both prokaryotes and eukaryotes
(Merrikh et al. 2012; García-Muse and Aguilera 2016;
Hamperl et al. 2017). Indeed, mounting evidence supports
the proposal that transcription is amajor source of genetic
instability (Aguilera 2002; Gaillard et al. 2013), an impor-
tant part of such transcription-associated instability being
dependent on DNA replication in eukaryotes (Prado and
Aguilera 2005; Gottipati et al. 2008; Paul et al. 2013; Ham-
perl and Cimprich 2016). Furthermore, replication forks
emanating from new replication origins induced by onco-
gene activation cause T–R conflicts (Jones et al. 2013;
Macheret and Halazonetis 2018). These forks are prone
to collapse, leading to double-strand breaks (DSBs), sug-
gesting that transcription might be an important source
of replicative stress associated with oncogene activation
(Jones et al. 2013; Macheret and Halazonetis 2018). Along
this line, oncogenesis has been related to the genetic in-
stability created by the increased transcriptional activity
at genes induced by oncogenes, such as estrogen-induced
genes in breast cancer cells with estrogen overproduction
(Stork et al. 2016) or oncogenic RAS overexpression (Kot-
santis et al. 2016).

T–R encounters that compromise genome integrity
do not necessarily have to rely on a physical collision
between both machineries. Since both transcription and
replication processes deeply affect topology, chromatin
organization and the structure of the DNA template,
different mechanisms exist by which transcription com-
promises genome integrity in a replication-mediated
manner. Understanding the causes behind T–R conflicts
as well as how the cell resolves them to sustain genome
integrity is the aim of this review, focusing mainly on
eukaryotes.
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Obstacles to replication fork progression

Replication initiates bidirectionally from a well-defined
and usually single origin in bacteria but from multiple
and less-well-defined origins in eukaryotes. DNA un-
winding by the 3′–5′ replicative helicase is coupled to
DNA synthesis initiated by the Pol α-primase complex
and extended by the leading and lagging strand polymeras-
es (Pol ε and Pol δ, respectively) (Fig. 1A). These proteins
work together with a plethora of additional factors that as-
semble in the structure of the replisome until replication
is terminated at chromosome ends or when two forks con-
verge (Bell and Labib 2016). Replication forks, however,
can encounter different obstacles during their progression,
that can compromise genome integrity if not properly re-
solved (Fig. 1B).
During fork progression, unwinding of the parental

DNA generates the accumulation of topological stress in
the formof positive supercoiling (overwinding) ahead. Pos-
itive supercoiling would obstruct further unwinding and
forkprogression, and thereforeneeds tobecounteractedei-
ther passively or actively (Fig. 1B, panel i). Passively, fork
rotation can alleviate the positive supercoiling but trans-
lates it into intertwines between the two new sister chro-
matids behind the fork, known as DNA precatenates
(Postowet al. 1999, 2001) that need to be repaired to enable
sister chromatid separation in mitosis (Lucas et al. 2001).
Furthermore, excessive fork rotation can induce genomic
instability (Schalbetter et al. 2015). Therefore, there is

the need for specialized enzymes, DNA topoisomerases,
to actively relieve the topological tensions. Topoisomer-
ase function relies on the passing of one DNA molecule
through the other by transient single-stranded (type I) or
double-stranded (type II)DNAbreaks (for review, seeKesz-
thelyi et al. 2016; Pommier et al. 2016). Whereas both
Topoisomerase 1 and 2 can act ahead of the fork, the reso-
lution of precatenates accumulated behind the fork re-
quires the specific action of Top2 (Lucas et al. 2001;
Cebrián et al. 2015). Importantly, however, accessibility
of DNA topoisomerases ahead of the fork is restricted to
certain genomic contexts, including when two forks con-
verge (replication termination regions), heterochromatin
and other topological barriers such as the nuclear enve-
lope. In these cases, further fork progression is thought
to rely exclusively on fork rotation to solve the topological
stress (Keszthelyi et al. 2016).
Moreover, DNA replication takes place in the context

of a chromatinized DNA template, chromatin being po-
tentially an obstacle to progression. Eukaryotic DNA is
wrapped around histone octamers (each containing two
copies of each of the four core histones: H2A, H2B, H3,
and H4) that are further stabilized by the linker histone
H1 into higher-order structures. Histones are marked by
posttranslational modifications, such as histone acetyla-
tion, methylation, phosphorylation, or ubiquitination,
which define the state of the chromatin (for review, see
Alabert and Groth 2012). Chromatin has an impact on
both replication initiation and fork progression (Alabert
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Figure 1. Replication fork progression and ob-
stacles. (A) A simplified version of replication
forks moving away from a replication origin.
Replisomes contain the CMG (MCMs, Cdc45,
and GINS) replicative helicase, polymerases α,
δ, and ε, and a plethora of additional factors that
ensure fork progression, such as histone chaper-
ones (as exemplified by FACT) and remodelers.
(B) Obstacles to replication fork progression.
Fork progression can be hampered by topological
stress (panel i); certain chromatin structures such
as heterochromatin (panel ii); other nonnucleo-
somal DNA-bound proteins (panel iii), as exem-
plified by the Tus protein in bacteria or FOB1-
mediated fork barriers in the yeast rDNA; DNA
damage, ranging from single-strand breaks
(SSBs) and DSBs to interstrand cross-links (ICLs)
or base modifications (panel iv); non-B DNA
structures, including G quadruplexes (G4), hair-
pins, DNA–RNA hybrids, and R loops as well tri-
plex or cruciform nucleic acid structures that can
contain DNA and RNA (panel v); and the tran-
scription machinery itself (panel vi).
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and Groth 2012) by either facilitating or making it more
difficult to replicate, this being in some cases associated
with heterochromatin (Fig. 1B, panel ii; Janssen et al.
2018). Indeed, recent in vitro experiments with reconsti-
tuted chromatin have confirmed that fork progression re-
quires accessory factors such as chromatin remodelers
and histone chaperones (Devbhandari et al. 2017; Kurat
et al. 2017).

Advancing forks can encounter other intrinsically diffi-
cult to replicate regions, at which DNA unwinding can be
aided by additional helicases, such as the PIF1 family of
helicases, which can aid in fork progression through non-
nucleosomal DNA-bound proteins (Ivessa et al. 2003).
DNA-bound proteins may constitute a transient or full
block to DNA unwinding and replisome progression
(Fig. 1B, panel iii). Indeed, they can act as barriers ensuring
replication termination at specific sites, such as the Tus
protein of Escherichia coli (Hill et al. 1989; Willis et al.
2014) or Fob1 at the Saccharomyces cerevisiae rDNA
repeats (Kobayashi 2003). In addition, and despite the
existence of multiple DNA repair mechanisms to
counteract DNA damage throughout the cell cycle, ad-
vancing replisomes can still encounter a damaged tem-
plate, ranging from single-strand breaks (SSBs) and DSBs
to interstrand cross-links (ICLs) or base modifications
unable to be copied by the replicative DNA polymerases
(Fig. 1B, panel iv). Moreover, replication forks can directly
or indirectly stall at non-B DNA structures, including
DNA–RNA hybrids, R loops, or G quadruplexes (G4)
(Fig. 1B, panel v). The presence of DNA repeats in a se-
quence can also make it prone to form hairpins, as well
as triplex or cruciform nucleic acid structures that impair
fork progression (Fig. 1B, panel v; for review, see Mirkin
2006).

Inmost cases, replication fork blockage in vivo does not
occur alone. Thus, the displaced strand in an R loop facil-
itates the formation of DNA hairpins (Loomis et al. 2014)
or G4 structures (Duquette et al. 2004), as open chromatin
makes the DNA template more susceptible to DNA
damaging agents (Falk et al. 2008) and highly negatively
supercoiled DNA enhances the action of damaging agents
(LaMarr et al. 1998) and the accumulation of secondary
structures (Baaklini et al. 2008). Similarly, the negative
supercoiling frequently associated with GC-rich and
skewed sequences would potentially promote the forma-
tion of G4 structures and DNA–RNA hybrids (Ginno
et al. 2013; Manzo et al. 2018).

In addition to these features, accumulating evidence
supports that transcription is likely the major source of
replicative impairments (Fig. 1B, panel vi).Original studies
reported that a fork pauses when encountering transcrip-
tion in bacterial systems in vitro (Liu and Alberts 1995)
and in vivo (French 1992; Mirkin and Mirkin 2005) as
well as in yeast (Prado and Aguilera 2005). Furthermore,
only S-phase transcription caused genome instability
measured as hyper-recombination in yeast (Prado and
Aguilera 2005). Consistently, genome-wide analysis re-
vealed that replication forks frequently pause at tran-
scribed units (Azvolinsky et al. 2009). Since transcription
affects chromatin, DNA supercoiling and structure, geno-

toxic accessibility, and non-B DNA structure formation,
understanding how transcription impairs fork progression
requires tackling the way transcription-associated events
contribute to fork stalling.

The transcription machinery and its potential
to stall replication

Actively transcribing genomes are covered by large
machineries consisting of different RNA polymerases
(RNAPs), transcription- and chromatin-modifying factors,
and the nascent RNA. Initiation of transcription is preced-
ed by the loading of a number of general transcription
factors (GTFs) before the RNAP is recruited. RNAPII,
responsible for protein-coding genes and most noncod-
ing RNAs, is recruited to the promoter as part of the tran-
scription preinitiation complex in its closed form, waiting
to be activated by the TFIIH-mediated melting of the
DNA and phosphorylation of the C-terminal domain
(CTD) of the largest subunit of RNAPII holoenzyme to ini-
tiate RNA synthesis. After synthesizing a short transcript,
the RNAPII undergoes a promoter-proximal pausing to
enable RNA 5′ end capping. Phosphorylation of Ser2 re-
stores transcription and allows the loading of transcrip-
tion elongation factors (TEFs) and RNA processing
factors for productive elongation (Fig. 2A; for review, see
Bentley 2014). Transcription elongation is coupled to
mRNA packaging and splicing until it reaches the termi-
nation region, in which RNA 3′ end processing and termi-
nation factors are loaded to generate an export-competent
messenger ribonucleoprotein particle (mRNP) and
remove the RNAPII from the DNA template. There
are several different and often-redundant pathways to
ensure proper termination, mostly involving RNAP paus-
ing, RNA cleavage, and/or destabilization of the RNAPII–
DNA interaction (for reviews, see Porrua et al. 2016;
Proudfoot 2016). In addition to the canonical transcription
termination processes, RNAPII transcription can con-
clude by a roadblock caused by DNA-bound proteins, a
mechanism that resembles RNAPI termination and
that seems to occur more often than previously foreseen
(Candelli et al. 2018). Importantly, the occurrence of tran-
scription at the proximity of the nuclear pores facilitates
RNA export through coupling both processes (Fig. 2A;
Luna et al. 2008). The complexity of the transcription
machinery, together with multiple mRNA processing
steps, including 5′ and 3′ end processing and splicing,
and mRNP assembly factors may provide a challenge to
advancing replication forks. Consequently, cells must
have developed specific mechanisms to either avoid or
easily resolve T–R conflicts imposed by the threats creat-
ed at the different transcription stages.

Fork progression through transcription preinitiation
complexes

In principle, an RNAP sitting at the promoter might pre-
sent a barrier to fork progressionmuch like a protein tight-
ly bound to DNA, but there are not sufficient studies
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that have tried to specifically evaluate this phenomenon.
Genome-wide analysis of replisome positioning in yeast
cells have not provided evidence that forks have a major
preference to stall at promoter regions (Azvolinsky et al.
2009; Gómez-González et al. 2011; Seo et al. 2012). It is
thus possible that unless there is an additional structure
or element that holds the RNAP tight to the promoter,
replication forks efficiently bypass transcription preini-
tiation complexes or RNAP sitting at promoters. This
may suggest that cells have efficient mechanisms to
either remove or bypass the RNAP and/or associated
GTFs at the preinitiation stage. Indeed, in vitro seminal
studies with the T4 replication machinery revealed that
an E. coli promoter-bound RNAP can be displaced by the
fork with the help of a helicase (Bedinger et al. 1983). Al-
though R loops may accumulate at a number of pro-
moter-proximal regions (Ginno et al. 2012), these do not
seem to be a major source of replicative stress in that
case. However, promoter regulatory regions could have
replication-independent tumorigenic potential, as shown
in cells with BRCA1 or BRCA2 cancer-associated muta-
tions, which enhanced RNAPII pausing and DNA–RNA
hybrids at promoter-proximal regions (Zhang et al. 2017;
Shivji et al. 2018).

Elongating RNAP stalling and backtracking as sources
of T–R conflicts

An important difference emerges once the RNAP enters
the elongation and termination phases. Next, the nascent
RNA strand in the active pocket of the RNAP hybridizes
with the template DNA (over a region of at least 9 nucle-
otides in the case of RNAPII) (Westover et al. 2004), tightly
associating the RNAP with the DNA. It is important
to note that the RNAP holoenzyme embraces dsDNA
(Barnes et al. 2015), and could a priori constitute a block
for replisomes approaching from both directions (head-
on and codirectional encounters). In principle, an elongat-
ing RNAP could be evicted from chromatin as it happens
with promoter-bound RNAP. In fact, the E. coli replisome
can displace head-on-encountered RNAPs from the DNA
to allow replisome progression in vitro (Pomerantz and
O’Donnell 2010). The relevance of RNAP removal to
prevent T–R conflicts is supported by the observation
that yeast RNAPIImutants that retain RNAPII at chroma-
tin cause replication problems (Felipe-Abrio et al. 2015).
RNAPII removal occurs as a last-resort response to tran-
scription-blocking DNA lesions and at sites of convergent
transcription and it involves ubiquitin-mediated degrada-
tion of the largest subunit of RNAPII, Rpb1 (Hobson et al.
2012;Wilson et al. 2013a,b). It is therefore possible that re-
moving elongating RNAPs after fork stalling requires an
active process in vivo. So far, RNAPII removal after repli-
cation stress was genetically shown to implicate the repli-
cation checkpoint, the chromatin-remodeling complex
INO80C, and the PAF transcription complex in budding
yeast (Poli et al. 2016). In Schizosaccharomyces pombe,
the RNA interferencemachinery also promotes RNAP re-
lease for heterochromatic silencing (Zaratiegui et al. 2011;
Castel et al. 2014).
The transcription cycle involves frequent regulatory

pauses, mainly at the 5′ and 3′ ends. The cotranscriptional
splicing of the nascent RNA as well as changes in
supercoiling, chromatin, and other structural elements
in the DNA influence transcription elongation. Further-
more, RNAPs can also pause or arrest at damaged DNA
sites, thus facilitating the process of transcription-coupled
repair (TCR) required for transcription resumption
(Gaillard and Aguilera 2013). In general, RNAP pauses
are transient unless the RNAP backtracks leading to a
more stable structure that involves losing the contact be-
tween the RNAP active site and the 3′ end of the nascent
RNAmolecule (Fig. 2A; Cheung and Cramer 2011). Back-
tracking is required for proofreading and occurs at specific
regulatory regions but can also occur during elongation
when encountering a damaged template or chromatin
and topological obstacles (for review, see Gómez-Herreros
et al. 2012;Nudler 2012).After backtracking, transcription
resumption relies on the cleavage of the displaced tran-
script to restore contact of the RNA 3´ end with the
RNAP active site, which occurs with the help of specific
factors such as bacterial GreA and GreB (Opalka et al.
2003; Tehranchi et al. 2010) or eukaryotic TFIIS (Cheung
and Cramer 2011). Importantly, a backtracked RNAP
may constitute a threat to fork progression, leading to
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Figure 2. Transcription and its potential to stall replication.
(A) The RNAPII transcription cycle. RNAPII at its pre-initiation
stage sits on DNA with GTFs waiting to be activated by TFIIH.
Once activated, elongating RNAPII is ready to synthetize the
RNAwith the help of TEFs. The RNA is then cotranscriptionally
processed into an export-competent mRNP, with gene gating fa-
cilitating transcription–export coupling. During elongation,
RNAPII pauses at regulatory regions and can even backtrack.
Once terminated, RNAPII is released from the DNA. (B) Tran-
scription-induced obstacles. In addition to the transcription ma-
chinery itself, which is bound to DNA and could block fork
progression, transcription enhances the occurrence of structures
that hamper replication fork progression. Transcription elonga-
tion causes accumulation of positive supercoiling ahead of and
negative supercoiling behind theRNAP, enhances the probability
of DNA damage, or can promote the formation of non-B DNA
structures such asG4 orDNA–RNAhybrids, which have been as-
sociated with chromatin compaction.
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genetic instability as shown in bacteria mutated in GreA
and GreB (Dutta et al. 2011).

Given the potential harmfulness of backtracking,
cells have developed mechanisms to limit it by favoring
RNAP elongation, eviction or degradation, which may
help to avoid deleterious T–R conflicts (Fig. 2A). Thus,
the coupling of transcription and translation in bacteria
limits backtracking (Proshkin et al. 2010). On the other
hand, specific factors, such as bacterial DskA prevent
backtracking by avoiding nucleotide misincorporation
(Tehranchi et al. 2010; Roghanian et al. 2015). In human
cells, RECQL5, a DNA helicase that interacts with
RNAPI and RNAPII, has also been shown to prevent back-
tracking by promoting transcription elongation. This
function of RECQL5 counteracts T–R conflicts directly
(Saponaro et al. 2014; Urban et al. 2016), supporting the
idea that a backtracked RNAP enhances the probabilities
of T–R conflicts in eukaryotic cells.

Transcription termination

A role for transcription termination factors (TTFs) in pre-
ventingT–Rconflictswas first reportedbasedon theobser-
vation that mutants in the bacterial termination factor
Rho led to replication-dependent DSBs (Washburn and
Gottesman 2011). Transcription-associated genetic insta-
bility and replication defects were later reported in certain
yeast termination mutants, such as those with mutations
in the RNA 5′ end processing factors Rna14, Rna15, Fip1,
or Hrp1 (Luna et al. 2005; Stirling et al. 2012; Gaillard
and Aguilera 2014) or in the Xrn2 exoribonuclease (Mora-
les et al. 2016). These studies could suggest that inefficient
transcription termination leads to T–R conflicts. More-
over, recent mapping of Okazaki fragments (OK-seq) indi-
cates that paused RNAPII at transcription termination
sites serves to drive replication termination (Chen et al.
2019), indicating that T–R conflicts occur at termination
regions and could even have a physiological role by con-
tributing to coordinate the orientation of transcription
and replication in a codirectional manner.

Likewise, the DNA–RNA helicase senataxin, which as
part of the Nrd1–Nab3–Sen1 (NRD) complex is involved
in noncoding RNA termination (Proudfoot 2016; Porrua
et al. 2016), has a striking role in preventing transcrip-
tion-associated genetic instability in yeast (Mischo et al.
2011) and human cells (Skourti-Stathaki et al. 2011).
However, transcription-associated genetic instability
phenotypes were not observed in other NRD mutants
(Mischo et al. 2011). Furthermore, the loss of senataxin
leads to not only inefficient termination but also the for-
mation of DNA–RNA hybrids that affect fork progression
(Mischo et al. 2011; Skourti-Stathaki et al. 2011; Alzu
et al. 2012). Several other reports suggest that senataxin
has a role beyond canonical transcription termination.
Budding yeast senataxin, but not Nrd1, associates with
replication forks (Alzu et al. 2012) and is regulated during
the cell cycle peaking in S/G2 (Mischo et al. 2018), and its
depletion leads to DNA breaks along the chromosomes,
as mapped by Rad52 immunoprecipitation (Costantino
and Koshland 2018). In addition, immunofluorescence

experiments have shown that human senataxin forms
foci that associate with DNA damage markers after repli-
cation stress (Yuce and West 2013). Altogether, these re-
ports suggest that senataxin could be recruited to solve
T–R conflicts, likely through its role as a DNA–RNA
helicase but it is also possible that senataxin promotes
RNAPII release at T–R conflict sites.

Transcription as an enhancer of replication obstacles

Transcription can not only obstruct replication fork pro-
gression by itself but also enhance the occurrence of
structures that impede fork progression by modifying
the template DNA structure and topology as well as in
the surrounding chromatin (Fig. 2B).

Transcription-induced DNA damage

Even though transcription can be used to favor repair of
RNAP-blocking DNA lesions via TCR (Gaillard and
Aguilera 2013), it can also be an important source of
DNA damage, leading to transcription-associated genetic
instability. This has been demonstrated in bacteria, yeast,
and human cells by the induction of mutagenesis and re-
combination at a particular DNA sequence when it was
heavily transcribed, a phenomenon that has been broadly
reviewed (Aguilera 2002; Gaillard et al. 2013; Jinks-
Robertson and Bhagwat 2014). Although an important
part of transcription-associated genetic instability is likely
caused by fork stalling caused by the RNAP itself, tran-
scription can also enhance damage directly, this probably
being the major cause of transcription-associated muta-
genesis. This could be explained by an increased accessi-
bility of the DNA when it is transcribed due to more
open chromatin or even to its topological state. Indeed, ac-
cumulation of negative supercoiling behind RNAP could
lead to transient regions of ssDNA, which is chemically
less stable than dsDNA (Lindahl 1993), as well as to dam-
aging agents orDNA-modifying enzymes.Thus, transcrip-
tion-induced DNA damage can certainly contribute to
fork stalling.

Chromatin alterations

The number of reports on the effects of chromatin context
on transcription has extensively grown since it was first
discovered that in vitro transcription is impeded by nucle-
osomes (Knezetic and Luse 1986; Lorch et al. 1987) and
that histone modifications affect gene expression in vivo
(Han and Grunstein 1988; Kayne et al. 1988). Transcrip-
tion elongation through chromatin is aided by the histone
chaperone FACT as well as by chromatin remodelers,
such as RSC, and histone acetyltransferases, such as
NuA4 or SAGA (Li et al. 2007). The intricate relationship
between transcription and chromatin state is clearlyman-
ifested in the distribution along the gene bodies of most
histone modifications, which responds to a histone code
that cells would interpret differently to exert specific
functions (for review, see Li et al. 2007). Thus, transcribed
regions (euchromatin) are typically associated with
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acetylation of histones H3 and H4 as well as to dime-
thylation or trimethylation of the Lys4 of histone H3
(H3K4me2 or H3K4me3) (Fig. 2A), whereas H3K9me and
H3K27me, are often associated with heterochromatic re-
gions. Inevitably, these chromatinmarks would influence
the ability of a replication fork to pass through.
Several reports have highlighted transcription-associat-

ed impacts on chromatin that could potentially hamper
fork progression, such as cotranscriptional DNA–RNA
hybrids, which induce chromatin compaction (Fig. 2B;
Castellano-Pozo et al. 2013; Colak et al. 2014; Groh
et al. 2014; Loomis et al. 2014; Skourti-Stathaki et al.
2014) and RNAP pausing, which drives heterochromatin
formation (Parsa et al. 2018). On the other hand, yeast
and human cells lacking the FACT complex showed tran-
scription-associated genetic instability and fork progres-
sion impairments, implying a key role of this histone
chaperone to prevent T–R conflicts (Herrera-Moyano
et al. 2014). In agreement, the histone chaperones FACT
and CAF1 are specifically recruited to transcribing chro-
matin to promote fork progression (Li et al. 2018). Other
chromatin factors could also inherently protect the cell
from T–R conflicts by regulating the coordination be-
tween DNA replication and transcription, and, indeed,
depletion of histone H1, a key heterochromatin compo-
nent, causes replication stress and DNA damage linked
to T–R conflicts in Drosophila and human cells (Bayona-
Feliu et al. 2017; Almeida et al. 2018).

Topological constraints

Transcription elongation causes accumulation of positive
supercoiling in front and negative supercoiling behind the
RNAP, according to the twin supercoiled domain model
(Fig. 2B; Liu and Wang 1987). Whereas, as mentioned
previously, positive supercoiling obstructs further un-
winding, negative supercoiling can destabilize the physio-
logical structure of DNA favoring not only a major
susceptibility to DNA damage but also the formation or
stabilization of non-B DNA structures. In principle, T–R
conflicts would topologically resemble transcription–
transcription (convergent genes) or even replication–repli-
cation (regions of replication termination) encounters. In-
deed, highly transcribed regions seemprone to topological
stress (Bermúdez et al. 2010; Kouzine et al. 2013; Naugh-
ton et al. 2013). However, convergent transcription does
not causeanenhanceddetectable increase in genetic insta-
bility even in topoisomerase-deficient mutants (García-
Rubio and Aguilera 2012; Pannunzio and Lieber 2016)
and does not seemto cause amajor and detectable topolog-
ical stress at least at some convergent genes (Naughton
et al. 2013). Thismaymean that the topological constraint
by itself is not sufficient to compromise genome integrity
and that, certainly, topoisomerases efficiently remove
transcription-associated changes in DNA supercoiling,
as the bacteria and yeast genetic data suggest (Sternglanz
et al. 1981; Drolet 2006; Tuduri et al. 2009; García-Rubio
and Aguilera 2012; Joshi et al. 2012).
It would be important to establish up to which point

positively supercoiled DNA ahead of an elongating

RNAP would constitute a difficult to replicate region
without the need of a physical collision between the
transcription and replicationmachineries. Under this sce-
nario, a T–R conflict could putatively induce fork rotation
as a way to locally release the torsional stress. However,
any failure to properly do so would promote that the accu-
mulated positive supercoiling arrests the fork, potentially
leading to fork reversal (see below).

Cotranscriptional R loops

Non-B DNA structures, such as hairpins, G4 structures,
and R loops, consistent in a DNA–RNA hybrid and the
displaced ssDNA (Fig. 2B), may block fork progression.
Physiological R loops can form regularly at specific re-
gions, such as the S regions of the Immunoglobulin genes
(Yu et al. 2003). However, unscheduled R loops are an im-
portant source of genetic instability.Cells thushavedevel-
oped several mechanisms to prevent their accumulation.
DNA–RNAhybridization is prevented byRNAprocessing
and export factors, such as the THO complex (Huertas
and Aguilera 2003), the ASF/SF2 RNA processing factor
(Li and Manley 2005), and others, as reviewed extensively
(Aguilera and García-Muse 2012; Santos-Pereira and
Aguilera 2015; Aguilera and Gómez-González 2017).
These factorswould coat the nascentRNA, limiting its ca-
pacity to hybridize back with the DNA template. R-loop
formation is also limited by the cotranscriptional control
of local supercoiling and chromatin structure that would
directly impact theavailabilityof theDNAtemplate tohy-
bridize with the RNA (Tuduri et al. 2009; French et al.
2011; Bayona-Feliu et al. 2017; Salas-Armenteros et al.
2017; Taneja et al. 2017; Almeida et al. 2018). Dysfunction
of any of thesemechanismswould enhance the accumula-
tion of unscheduled R loops.
Several studies have led to the conclusion that the genet-

ic instability associated with cotranscriptional R loops is
due to hindrances in fork progression. Replication impair-
ment and genetic instability was detected in most of the
R-loop-accumulating cells (Huertas and Aguilera 2003;
Li and Manley 2005; Wellinger et al. 2006; Tuduri et al.
2009; Gan et al. 2011; Bayona-Feliu et al. 2017; Salas-
Armenteros et al. 2017; Almeida et al. 2018). Replica-
tion-induced DNA breaks caused by estrogen-mediated
changes in transcription are also R-loop-dependent (Stork
et al. 2016). Furthermore, the increased genetic instability
associated with head-on T–R conflicts in bacteria and
yeast is at least partially dependent on the presence of
DNA–RNA hybrids (Lang et al. 2017; García-Rubio et al.
2018) and persistent DNA–RNA hybrids cause DNA
breaks preferentially when they occur close to a head-on
replication fork (Costantino and Koshland 2018). Strong
evidence that R loops block fork progression, thus promot-
ing T–R conflicts and transcription-mediated DNA
damage, comes from the fact that replication-associated
repair factors, such as FACT, BRCA1, BRCA2, and other
members of the Fanconi anemia (FA) pathway are required
for repair and proper fork progression throughT–Rconflict
sites and R loops (see below; Bhatia et al. 2014; García-
Rubio et al. 2015; Hatchi et al. 2015; Schwab et al. 2015;
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Madireddy et al. 2016; for review, see Bhatia et al. 2017).
The FA pathway has a key role in the repair of ICLs. Al-
though ICLs promote checkpoint signaling independently
of replication, their removal during the S/G2 phases of the
cell cycle is coupled to DNA replication and depends on
the FA pathway (for review, see Constantinou 2012),
thus suggesting a role for FA factors in replication-depen-
dent R-loop removal.

Nevertheless, there are several reasons to believe that
DNA–RNA hybrids by themselves do not block fork pro-
gression. Apart from the harmless DNA–RNA hybrids of
Okazaki fragments or of mitochondrial replication initia-
tion regions, replicative helicases can unwindDNA–RNA
hybrids as well as duplex RNA in vitro (Shin and Kelman
2006). Furthermore, recent results provide evidence that
replication forks can clear codirectionally formed DNA–

RNA hybrids in vivo (Hamperl et al. 2017; García-Rubio
et al. 2018). Whether this is performed by the replicative
helicase itself or aided by accessory helicases remains an
open question. A recent study reported specific R-loop-
accumulating yeast histone mutants impaired in H3 ser-
ine 10 phosphorylation that had no detectable conse-
quences on genome integrity, thus definitely concluding
that a second step, likely involving chromatin alterations,
is required for DNA–RNA hybrids to be harmful (Fig. 2B;
García-Pichardo et al. 2017).

This second step, however, can also be achieved by
the binding of DNA–RNA hybrid stabilizing factors inde-
pendent of chromatin modifications. This is the case for
overexpression of the yeast DNA–RNA-binding protein
Yra1, which is able to bind ssDNA as well as DNA–

RNA hybrids (García-Rubio et al. 2018) or expression of
HB-GFP, a hybrid-binding domain of RNaseH fused to
GFP, which induced DNA damage in R-loop-accumulat-
ing human cells depleted of BRCA2 (Bhatia et al. 2014).
Although not formally demonstrated, such DNA damage
could be due to fork impairment. The possible existence
of proteins that, like Yra1, are capable of stabilizing
R loops could be a physiological strategy to control
R-loop-driven effects. Indeed, gene expression has been
shown to be modulated in Arabidopsis by the binding of
AtNDX, a homeodomain-containing protein, to the dis-
placed ssDNA of R loops at the COOLAIR long noncod-
ing RNA locus (Sun et al. 2013). Although replication
through these regions has not been studied, it is conceiv-
able that this or some other R-loop-stabilizing proteins
could potentially modulate T–R conflicts. The recent
identification of new DNA–RNA hybrid-binding proteins
(Cristini et al. 2018; Wang et al. 2018) could possibly shed
light on this.

Finally, it is worth noticing that DNA–RNA hybrids
are also enhanced by either single- or double-stranded
DNA breaks (Roy et al. 2010; Britton et al. 2014; Li et al.
2016; Ohle et al. 2016; Cohen et al. 2018), which suggests
that cotranscriptional DNA breaks would also contribute
to the formation of unscheduled R loops capable of
compromising genome instability (Aguilera and Gómez-
González 2017). However, the relevance of such break-
induced R loops on DNA replication has not been
evaluated.

Head-on vs. codirectional T–R conflicts

The enhanced replication fork pausing at head-on versus
codirectional T–R conflicts together with the increased
genome instability detected at head-on conflicts estab-
lished that head-on T–R conflicts (Fig. 3, panel i) are
more harmful for both prokaryotic and eukaryotic cells
(French 1992; Liu and Alberts 1995; Mirkin and Mirkin
2005; Prado and Aguilera 2005). Conclusive evidence
was provided in budding yeast by showing that deletions
between direct repeats were highly induced by head-on
T–R conflicts but not by codirectional ones (Prado and
Aguilera 2005). In bacteria, inverting the orientation of
codirectional genes to make them transcribe head-on led
to impaired fork progression, loss of genome integrity
and cell death (Boubakri et al. 2010; Srivatsan et al.
2010). Moreover, highly transcribed rRNA and tRNA
genes contain specific polar replication fork barriers
that help to prevent T–R conflicts and genetic instability
(Little et al. 1993; Deshpande andNewlon 1996; Takeuchi
et al. 2003).

More recent studieswith humancells using an episomal
assay based on the highly transcribed and DNA–RNA hy-
brid-pronemAIRNsequence showed increasedDNAdam-
age and checkpoint activation only in head-on T–R
conflicts (Hamperl et al. 2017). However, it is important to
note that R loops also form at sites of codirectional T–R
conflicts (Fig. 3, panel ii), although they are not harmful
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Figure 3. Head-on versus codirectional T–R conflicts. Tran-
scription and replication machineries can encounter each other
when travelling in head-on (panel i) or codirectional (panel ii) ori-
entation with different consequences for the cell. Whereas the
RNAP embraces both DNA strands and can constitute an obsta-
cle by itself in both orientations, other transcription-derived ob-
stacles such as supercoiling or DNA–RNA hybrids will have
different effects depending on the orientation of the conflict.
(Panel i) Head-on T–R conflicts might be enhanced by the gener-
ation of positive supercoiling in front of bothmachineries, wheth-
er they are stabilized or not by the presence of a blocked RNAP
and/or DNA–RNAhybrids. (Panel ii) Codirectional T–R conflicts
are known to be less deleterious. Although the negative super-
coiling accumulated behind RNAPmight facilitate the formation
of DNA–RNAhybrids, thesewould likely be dissolved by the rep-
lication fork given the 3′–5′ polarity of the eukaryotic replicative
helicase.
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by themselves, as shown in wild-type yeast cells (García-
Rubio et al. 2018). In bacteria, although the consequences
of head-on conflicts are worse, codirectional encounters
can also generate conflicts that require auxiliary replica-
tion proteins to either bypass or resolve them (Merrikh
et al. 2011). Whether codirectional T–R conflicts may
also lead to R-loop-mediated DNA damage in certain eu-
karyotic mutant backgrounds enhancing R-loop levels
has not been tested.

T–R conflicts at specific genomic regions

There are certain genomic locations that are characterized
for being intrinsically difficult to replicate, such as fragile
sites, the rDNA region and telomeres. These specific re-
gions share several features such as the presence of repet-
itiveDNA sequences, a tendency to formnon-B secondary
structures, late replication timing, or a heterochromatic
context. Since they all undergo active transcription, it is
important to acknowledge whether T–R conflicts are be-
hind the replication hindrance at these specific locations.

Fragile sites

Fragile sites are genomic regions that recurrently present
gaps and breaks on metaphase chromosomes when cells
undergo replication stress, such as that caused by low dos-
es of the DNA polymerase inhibitor aphidicolin. Interest-
ingly, they frequently colocalize with the chromosome
rearrangements observed in tumor cells (for review, see
Durkin and Glover 2007), suggesting that fragility is exac-
erbated in the cellular circumstances of the tumoral pro-
cess. In addition to DNA breaks and gaps, fragile sites
lead to aberrant mitotic structures such as ultrafine ana-
phase bridges (UFBs) and micronuclei (Oestergaard and
Lisby 2017). So far, three kinds of fragile sites have been
described: rare fragile sites (RFSs), whichwere initially ob-
served as a rare mendelian inherited trait and are associat-
ed with the expansion of dinucleotid or trinucleotide
repeats with the potential to form DNA secondary struc-
tures (Magenis et al. 1970); common fragile sites (CFSs),
which are regions with recurrent fragility in all individu-
als (Glover et al. 1984); and early replicating fragile sites
(ERFSs), recently defined in highly transcribed and early
replicating regions (Barlow et al. 2013).
Fragility involves fork impairment, as indicated by the

fact that ATR deficiency triggers the breakage of CFSs in
the absence of replicative stress (Casper et al. 2002). The
fact that CFSs share a propensity to form non-B DNA
structures, late replication timing, scarcity of replication
origins, and long genes have contributed to the current
model to consider CFSs as difficult to replicate regions,
which involve frequent fork collapse and few backup ori-
gins to fire. In agreement, the number of origins inversely
correlates with fragility (Letessier et al. 2011). In contrast
to CFSs, ERFSs locate at regions with high-transcriptional
density but are early replicating and origin-rich, which
initially suggested a different mechanism for their fragili-
ty. However, recent high-resolutionmapping of origin ini-

tiation and DSBs after replicative stress suggests that a
common mechanism involving poly-dA:dT tracts could
explain both CFSs and ERFSs (Tubbs et al. 2018).
Importantly, transcription is associated with instability

in all types of fragile sites. Whereas ERFSs locate at high
transcriptional density regions, many CFSs map within
the coding regions of long genes and do not show fragility
in the absence of transcription (Helmrich et al. 2006;
Smith et al. 2006). Furthermore, artificially inducing tran-
scription of a long, late replicating gene induces its fragil-
ity (Blin et al. 2019). Long highly transcribed regions are
also hotspots for copy number variants (CNVs), which in-
deed tend to overlap with CFSs (Wilson et al. 2015). Tran-
scription can promote fragility by different mechanisms.
Cotranscriptional DNA–RNAhybrids have been detected
in RFSs such as those at the FXN and FMR1 genes from pa-
tient cells from Friedreich ataxia and Fragile X syndromes
(Groh et al. 2014) and in CFSs such as FRA3B, FRA16D,
and FRA7K (Helmrich et al. 2011). Recent reports support
a role for T–R conflicts in the fragility of CFS and that
R loops can contribute to such conflicts. Thus, an RNa-
seH-sensitive fork stalling was directly visualized in
vivo by labeling DNA fibers and fluorescence in situ hy-
bridization at the FRA16D CFS when FANCD2 is deplet-
ed (Madireddy et al. 2016). Consistent with the fact
that FANCD2 depletion causes R-loop accumulation
(García-Rubio et al. 2015; Schwab et al. 2015), FANCD2
immunoprecipitation at CFSs was also reduced by RNa-
seH (Okamoto et al. 2018), suggesting a role for FA path-
way in removing R loops at FRA16D.
Finally, transcription not only promotes frequent fork

stalling and collapse but seems to also be responsible for
the scarcity of active replication origins at CFSs (Snyder
et al. 1988; Lõoke et al. 2010). Indeed, it has been shown
in vitro that RNAPII can push the loaded replicative heli-
case before its activation (Gros et al. 2015). If the few rep-
lication origins in these regions were not sufficient to
ensure their duplication, cells would reach the next cell
cycle phase with unreplicated DNA that can undergo
breakage. Nonetheless, transcription can also prevent fra-
gility by advancing the replication timing to earlier S
phase, giving more time to complete replication at these
regions (Blin et al. 2019).

The rDNA region

rDNA contains multiple (150–200 in yeast and up to 350
in humans) tandem repeats of the DNA coding for
rRNA, with intense transcriptional activity driven by
RNAPI. These RNAPI-transcribed regions are separated
by long intergenic spacers that range from 2 kb in yeast
to 30 kb in mammals and that contain polar replication
fork barriers, which prevent collisions with head-on
RNAPI-driven transcription. The yeast rDNA loci are
likely the best-studied regions for T–R conflicts and con-
stitute the less stable regions in the yeast genome (Koba-
yashi 2014). In yeast, replication fork barriers are driven
by the binding of the Fob1 protein and require certain
replisome components, such as the Tof1/Csm3 complex
that counteracts the action of the PIF1 family helicase
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Rrm3 (Mohanty et al. 2006). Fob1-bound DNA stalls forks
leading to breaks that will be normally repaired by equal
sister chromatid recombination without any consequenc-
es for the cell (Kobayashi and Ganley 2005). However, in
the absence of Fob1, T–R conflicts lead to hyper-recombi-
nation between the repeats, resulting in rDNAexpansions
and contractions as well as in the production of extrachro-
mosomal rDNA circles (Kobayashi and Horiuchi 1996;
Kobayashi 2003; Takeuchi et al. 2003). These conflicts
are likely caused by the positive supercoiling accumulat-
ed in front of RNAPI and the frequent formation of
DNA–RNA hybrids (Christman et al. 1988; El Hage
et al. 2010). Although still not so well studied, this mech-
anism seems conserved in humans, in which an RNAPI
transcription terminator complex can act as a replication
fork barrier at the rDNA aided by the Tof1/Csm3 ortho-
logs TIMELESS/TIPIN (Akamatsu and Kobayashi 2015).

Telomeres

The ends of eukaryotic chromosomes, known as telo-
meres, represent another source of endogenous replicative
stress. Telomeremaintenance ismainly carried out by tel-
omerase in many organisms, a reverse transcriptase ex-
pressed in germ and stem cells that extends the 3′ end of
chromosomes to counteract the erosion caused by replica-
tion during each round of cell division. In the absence of
telomerase, homologous recombination pathways are
activated for the alternative lengthening of telomeres
(ALT) (Apte and Cooper 2017). Telomeres are difficult to
replicate regions containing all potential obstacles to rep-
lication such as heterochromatin, torsional stress, and re-
petitive DNA that can promote the formation of non-B
DNA structures (for review, see Gilson and Géli 2007).
Furthermore, as in the case of CFSs, telomeres generally
replicate late and replication origins are scarce at telo-
meric regions (Sfeir et al. 2009).

Despite their heterochromatic structure, telomeres pro-
duce an RNAPII transcribed long noncoding RNA named
TERRA (telomeric repeat-containing RNA) (Azzalin et al.
2007; Luke et al. 2008; Schoeftner and Blasco 2008). TER-
RA forms R loops at telomeres, which seems to have an
important role in ALT pathways (Balk et al. 2013; Pfeiffer
et al. 2013; Arora et al. 2014; Yu et al. 2014), through a still
not fully understood mechanism that is likely related to
their capability to promote recombination. Importantly,
TERRA levels are specifically increased upon telomere
shortening (Arnoult et al. 2012; Cusanelli et al. 2013;
Porro et al. 2014) and are cell cycle-regulated in normal
cells to prevent the harmful effects of telomeric R loops
on replication (Graf et al. 2017). Likely related to this, sta-
bilization of DNA–RNA hybrids by overexpression of
Yra1 protein causes telomere shortening and instability
in yeast (García-Rubio et al. 2018).

Cellular response to T–R conflicts

The mechanisms to resume DNA synthesis after fork
stalling are influenced by the nature of the lesion, whether

it blocks both leading and lagging strands or only one of
them (for review, see Yeeles et al. 2013). When repriming
is possible, it ensures the continuity of DNA synthesis.
However, stalled forks can also arrest, accumulating
ssDNA and leading to the activation of S-phase check-
points. Checkpoints must maintain the stability of repli-
cation forks to promote their restart. Otherwise, forks
can suffer nucleolytic degradation and can even break
and/or irreversibly arrest, leading to cell death.

Repriming or arrest

Repriming was originally shown downstream from lag-
ging strand blocks in bacteria (McInerney and O’Donnell
2004; Nelson and Benkovic 2010) and has been confirmed
recently in vitro with the yeast replisome (Taylor and
Yeeles 2018). Repriming the lagging strand does not
seem to be difficult, since it would involve initiating a
new Okazaki fragment, leaving a ssDNA gap behind.
However, repriming at the leading strand implies uncou-
pling between parental DNA unwinding and new DNA
synthesis, leaving a ssDNA gap in the leading strand.
Both bacterial and eukaryotic replisomes have an inherent
ability to reprime the leading strand by themselves, al-
though inefficiently (Heller and Marians 2006; Yeeles
andMarians 2011; Taylor and Yeeles 2018). In agreement,
uncoupling was reported in vertebrates (Byun et al. 2005),
and ssDNA gaps have been reported in both leading and
lagging strands in yeast treated with UV damage (Lopes
et al. 2006). The existence of a human protein that com-
bines polymerase and primase activities (PrimPol) and
promotes DNA synthesis after UV further supports that
repriming can occur in the leading strand in vivo (Gar-
cía-Gómez et al. 2013; Mourón et al. 2013). This ensures
the progression of the fork without major delays in S
phase, since ssDNA gaps left behind the fork can be re-
paired by postreplicative repair pathways, which involve
either TLS or recombination-mediated pathways such as
template switching (Branzei and Foiani 2010).

Although DNA-bound RNAP could constitute a block
for both leading and lagging strands (Fig. 3) and would
therefore not allow direct repriming, other transcription-
derived obstacles can impose a block for only one of
the replicating strands; for example, G4 or DNA–RNA
hybrids (Fig. 4A). Interestingly, Prim-Pol can bypass G4
(Schiavone et al. 2014) and counteracts R-loop accumula-
tion in human cells (Svikovic et al. 2019), suggesting that
it promotes repriming after T–R conflicts driven by these
non-BDNA structures (Fig. 4B). DNA–RNAhybrids could
even potentially be directly used for repriming, as inmito-
chondria, where DNA–RNA hybrids initiate replication
(Xu and Clayton 1996). Along the same line, the tran-
scribed RNA can be used as a primer, as shown for the
E. coli replisome in vitro (Pomerantz and O’Donnell
2008) and for the origin-independent replication recently
described at the yeast rDNA locus (Stuckey et al. 2015).

When forks arrest for long enough, ssDNA accumula-
tion triggers the activation of the S-phase checkpoints,
of which the main players are the human ATR/CHK1
and yeast Mec1/Rad53 kinases (Fig. 4A; for review, see
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Ciccia and Elledge 2010). Checkpoint activation leads to a
number of processes, some of which target the replication
process itself, such as a suppression of further origin firing
in order to halt S-phase progression until the replica-
tion block is released (Yekezare et al. 2013). In mammals,
stringent replicative stress also triggers ATR-mediated
activation of the FA pathway at the fork (Fig. 4B; Lossaint
et al. 2013; Sirbu et al. 2013; Dungrawala et al. 2015). The
FA-associated nuclease FAN1 is then recruited to stalled
forks to restrain fork progression preventing chromosome
abnormalities through a mechanism that is still not fully
understood (Lachaud et al. 2016). Although T–R conflicts
might elicit a specific checkpoint response, it seems that
transcription-derived obstacles are sensed just as any oth-
er lesions blocking fork progression. R-loop-accumulating
yeast mutants activate the S-phase checkpoint (Gómez-
González et al. 2009) and head-on T–R conflicts induce
ATR checkpoint activation in human cells (Hamperl
et al. 2017). Furthermore, R-loop-accumulating mutants
require a functional S-phase checkpoint to survive (Gó-
mez-González et al. 2009), and an MCM-specific mutant
impairing its checkpoint activation function was found
to lead to R-loop-driven T–R conflicts (Vijayraghavan
et al. 2016). These results suggest that the replication
checkpoint protects against the harmful effect of T–R
collisions. Importantly, since checkpoints constitute the
main protective barrier against tumorigenesis (Bartkova
et al. 2005; Gorgoulis et al. 2005), T–R conflicts might
have stronger consequences in tumoral cells, where
checkpoint responses are undermined.

Fork protection and replication resumption

In the absence of a proper checkpoint response, replication
forks can reverse (Sogo et al. 2002) and ultimately lead to

an irreversible arrest and cell death (Lopes et al. 2001; Ter-
cero and Diffley 2001; Tercero et al. 2003). In theory, T–R
conflicts can induce fork reversal by extrusion promoted
by the R loop (Fig. 4B) or by the topological barrier caused
by gene-gating to the nuclear envelope. In the latter case,
the checkpoint promotes the release of genes from the
nuclear pore, thus specifically suppressing this deleterious
effect of transcription-induced fork reversal on fork pro-
gression (Bermejo et al. 2011). Reinforcing the idea that
fork reversal can be induced by T–R conflicts and R loops,
a recent yeast study on large spontaneous insertions
claims that some of these inserted sequences potentially
arise from the cleavage of reversed forks andwere enriched
in R-loop-prone regions, including centromeres or telo-
meres (Yu et al. 2018). However, fork reversal seems a dou-
ble-edge sword as it is also involved in fork stabilization in
mammalian cells, thus avoiding nucleolytic degradation
of the fork (for review, see Liao et al. 2018). Nucleolytic
degradation is also prevented by factors such as BRCA1,
BRCA2, and FANCD2 (Lomonosov et al. 2003; Schlacher
et al. 2011; Ying et al. 2012; Ray Chaudhuri et al. 2016),
all of which have been shown to protect from DNA–

RNA hybrid accumulation, replication problems, and/or
DNA breaks (Bhatia et al. 2014; García-Rubio et al. 2015;
Hatchi et al. 2015; Schwab et al. 2015). These results sug-
gest not only that fork protection and/or replication-asso-
ciated repair could have a role in resolving T–R conflicts
(Bhatia et al. 2017) but also that an important cause of rep-
lication fork blockage are R loops, whose dissolution by
specialized pathways such as FA is critical. Indeed, the
FA helicase FANCM and its yeast counterpart, Mph1,
play a role in R-loop removal in vitro and in vivo (Schwab
et al. 2015; Lafuente-Barquero et al. 2017). The differential
role of FANCM, senataxin, and other helicases recently
described to remove DNA–RNA hybrids, such as DHX9

A
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Figure 4. Cellular response to T–R con-
flicts. (A) The fate of a replication fork fac-
ing a transcription-induced obstacle would
likely depend on the nature of the block,
whether affecting only one or both replicat-
ing strands. (B) Possible outcomes after T–R
conflicts. Repriming ahead of the fork can
directly solve encounters of the lagging
strand with obstacles, such as DNA–RNA
hybrids. In contrast, blocks in unwinding,
such as those caused by head-on T–R con-
flicts might induce fork reversal. Fork ar-
rest, possibly involving some uncoupling
and long ssDNA accumulation, triggers
the activation of the checkpoint, which is
responsible for maintaining the stability of
forks, thus preventing irreversible collapse.
Replication-associated repair functions,
such as FACT, BRCA1, BRCA2, and FA re-
pair pathway, are required for proper fork
progression through T–R conflicts such as
R loops, likely with the help of specialized
helicases.
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(Chakraborty and Grosse 2011), DDX1 (Li et al. 2016),
DDX19 (Hodroj et al. 2017), DDX23 (Sridhara et al.
2017), DDX21 (Song et al. 2017), or even PIF1 (Tran et al.
2017), remains to be elucidated.

Ultimately, a T–R conflict can lead to DNA breakage,
which could promote replication restart via a break-in-
duced replication-likemechanism (for reviews, see Anand
et al. 2013; Yeeles et al. 2013). Replication-born DSBs are
preferentially repaired by homologous recombination us-
ing the intact sister chromatid as a template (Kadyk and
Hartwell 1992; Johnson and Jasin 2000; González-Barrera
et al. 2003) but can also be repaired by homologous re-
combination with ectopic homologous sequences leading
to chromosomal rearrangements (Pardo et al. 2009). Some
studies suggest that transcription channels DSB repair
pathway choice toward homologous recombination
(Chaurasia et al. 2012; Aymard et al. 2014) and an increas-
ing amount of reports support that transcription definitely
influences DSB repair (Aguilera and Gómez-González
2017; Marnef et al. 2017). This is a phenomenon that we
need to explore further, as it may have an important im-
pact on transcription-associated genetic instability.

In conclusion, our current knowledge points to a
general cellular response to replication fork blockage to
warrant fork protection, avoid collapse, and allow replica-
tion resumption, with T–R conflicts being a major event
triggering this response.

Effects of T–R conflicts in genome evolution

T–R conflicts may have contributed to genome structure.
In bacteria, gene disposition seems to have evolved favor-
ing a codirectional rather than a head-on orientation of
transcription with respect to replication (Merrikh 2017).
Moreover, it has been proposed that the higher genetic in-
stability of head-on oriented genes could be a motor for
their faster evolution required in processes such as
virulence or adaptation (Lang et al. 2017; Merrikh 2017).
In eukaryotes, transcription of a number of genes seems
adjusted to the temporal replication program to prevent
coincidence (Meryet-Figuiere et al. 2014) and some stud-
ies mapping replication origins genome-wide have detect-
ed certain preference for T–R codirectionality in the
human genome (Huvet et al. 2007; Petryk et al. 2016). Fur-
thermore, massive transcription induced by different
types of stress seems to specifically inhibit replication
(Duch et al. 2013, 2018; Canal et al. 2018). However,
even though preferential transcription orientation can
be observed at specific locations, such as the polar replica-
tion fork barriers at rDNA and tRNA genes (Takeuchi
et al. 2003), a genome-wide prevalence for T–R codirec-
tional orientation is not as obvious as in bacteria and rep-
lication fork pauses in budding yeast have been detected
at transcribed units regardless of their orientation (Azvo-
linsky et al. 2009). This may be due to the fact that where-
as bacteria contain single well-defined replication origins
and termination sites, eukaryotes contain many replica-
tion origins, with most genes having the chance to be rep-
licated from both directions in different circumstances.

Indeed, the rDNA fork barriers behave bidirectionally in
humans (Little et al. 1993), likely reflecting themajor flex-
ibility of replication initiation in human cells.

Finally, the high frequency of spurious transcription ob-
served all over genomesmay suppose an important source
of T–R conflicts that has not yet been properly evaluated
and could have contributed to the organization of
eukaryotic genomes. Indeed, deregulated long noncoding
RNAs can be a potential source of unscheduled R loops
and T–R conflicts, as shown in human cells depleted of
the chromatin remodeler and TEF Spt6 (Nojima et al.
2018), which might explain the transcription-dependent
hyper-recombination phenotype previously reported in
S. cerevisiae spt6 mutants (Malagón and Aguilera 1996).
Nevertheless, recent OK-seq data in human cells have
revealed that replication initiation and termination are
coordinated with transcription to favor coorientation,
particularly at genes occupied by high levels of RNAPII
(Chen et al. 2019).

Conclusions and perspectives

Numerous research reports over the last decades have
contributed to establish transcription as a major cause of
replicative hindrance. Such hindrance may not necessari-
ly be due to the transcription machinery itself but to the
consequences that transcription has on DNA structure
and its surrounding chromatin. In recent years, it has be-
come evident that transcription can lead to R-loop forma-
tion and other forms of non-BDNAstructures, topological
constraints or local chromatin changes, apart from poten-
tially facilitating DNA damage. At present, an increasing
number of reports are adding light to our understanding of
the relevance of T–R conflicts in genome dynamics and
structure. These include the identification of new factors
contributing to T–R conflicts and partial deciphering of
mechanisms by which cells protect stalled forks and re-
pair replication-born DNA breaks caused by T–R colli-
sions. However, our knowledge of the mechanisms
protecting cells from the harmful effects of T–R conflicts
and the mechanisms by which cells promote replication
resumption or repriming after a transcription block are
still scarce. We are just beginning to explore these phe-
nomena and their relevance in cell physiology.

There are at least two aspects that need to be resolved at
this point. First, do cells have specific processes, likely re-
lated to transcription, to prevent it becoming a threat for
fork progression? So far, this seems to be the case, given
the increasing evidence that implicates mRNP processing
factors in preventing the formation of structures like R
loops that enhance T–R collisions. Second, do T–R con-
flicts represent a particular type of harmful event for
which specific resolving mechanisms have evolved or do
cells just respond with the same general machinery, as
in the case of transcription-independent fork-stalling
threats? In the latter case, we would expect to identify
known replication and repair factors, such as the FA path-
way proteins with a role in solving transcription-associat-
ed replication blocks and their derived consequences.
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Certainly, the possibility that T–R conflicts represent a
major source of replication stress and genome instability
occurring in normal cells and, more significantly, in tu-
moral cells in which the major DNA damage response
pathways are altered provides strong arguments for the
need to decipher the factors and mechanisms controlling
transcription-induced replication hindrance.
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