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Abstract—This paper presents a synthesis procedure for the op-
timization of the dynamic range of continuous-time fully differen-
tial - filters. Such procedure builds up on a general extended
state-space system representation which provides simple matrix
algebra mechanisms to evaluate the noise and distortion perfor-
mances of filters, as well as, the effect of amplitude and impedance
scaling operations. Using these methods, an analytical technique
for the dynamic range optimization of weakly nonlinear - fil-
ters under power dissipation constraints is presented. The proce-
dure is first explained for general filter structures and then illus-
trated with a simple biquadratic section.

Index Terms— - filters, filter synthesis, dynamic range op-
timization, noise analysis, distortion analysis, low power.

I. INTRODUCTION

F ULLY DIFFERENTIAL - circuits and techniques
are widely employed to design integrated continuous-time

filters. Over the years significant contributions have been made
regarding the proposal of transconductor topologies with
enhanced noise and distortion performance. Based on such
transconductors, filters with enlarged dynamic range (DR)1 can
be built for different practical applications. However, despite
the availability of high-performance transconductors, dynamic
range optimization may be hampered due to inaccurate evalu-
ation of the impact of noise and distortion on the overall filter
performance.

Regarding the impact of noise, one of the most significant
early contributions was due to Groenewold [1]. He employed
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1DR is defined as the ratio between the maximum and minimum signal that
can be processed by the filter. The latter is limited by the total integrated output-
referred noise power of the filter,� , and the former is limited by the maximum
output distortion level which can be tolerated. Assuming a single-tone excitation
and letting be the maximum signal level at the output of the filter, the dynamic
range can be expressed as

�� � ����� � �� �� � � � ��

state-space descriptions to evaluate noise performance through
simple matrix manipulations. Similar approaches to noise eval-
uation have been used in [2], [3]. In this paper, we adopt these
noise evaluation techniques. Also, we adopt the general -
structure proposed in [3].

Regarding the impact of distortion, different techniques
have been reported; for instance, those presented in [4]–[9].
Proposals in [4], [5] are based on frequency-domain calculation
using Volterra series which, although powerful, tend to be very
cumbersome as the filter order increases. In [6], [7] nonlineari-
ties of individual transconductors are propagated by means of
partial transfer functions to the output, where the contributions
are summed to estimate the overall distortion behavior of the
filter. Finally, [8], [9] use time-domain analysis and state-space
modelling for the evaluation of harmonic and intermodulation
distortion in filters with no floating capacitors. None of these
approaches provides the simple, general and systematic matrix
manipulation techniques which are available for noise. Conse-
quently, no systematic method is yet available to evaluate the
impact of both noise and distortion on a general - filter
structure, thereby limiting the ability of designers to maximize
the dynamic range of practical filter implementations.

This paper presents methods and techniques to evaluate the
impact of both noise and distortion on the - filter structure
of [3] through simple and systematic matrix algebra. For dis-
tortion evaluation we combine state-space and Volterra Series
representations [10] in such a way that they can be easily em-
bedded in matrix form.

The paper also addresses the issue of scaling. The opti-
mization of DR through modifications of the amplitude and
impedance levels at the internal filter nodes is covered for both
biquadratic sections and general - filters. In the case of
biquadratic sections, the paper reports compact DR expressions
which provide more accurate estimations of the influence of
the quality factor, , than those in [1]. For general filters,
the techniques presented in this paper overcome the lack of
univocal solutions observed in the approach presented in [6].

The paper is structured as follows. Section II describes the
state-space representation of general - filters, and provides
relationships among the state-space matrix and a set of internal
transfer functions which are essential for the foregoing analysis.
Sections III and IV present the systematic techniques for the
evaluation of noise and distortion, respectively. Section V deals
with the scaling of - filters. Section VI addresses the dy-
namic range optimization of generic - filters and the pro-
cedure is illustrated in Section VII for biquad structures. Finally,
Section VIII concludes the paper.

1549-8328/$25.00 © 2008 IEEE
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Fig. 1. Simplified schematic of a fully balanced � -� filter.

II. SPACE-STATE REPRESENTATION OF - FILTERS

Fig. 1 shows the conceptual schematic of a generic contin-
uous-time fully balanced - filter with integration nodes.
We assume that each integration node can be connected to the
input and to all the remaining integration nodes; we further as-
sume that these connections can be realized with either capac-
itors or transconductors. It is illustrated in Fig. 1 for a generic
integration node . Capacitive
connections to other integration nodes are realized with capaci-
tors ; transconductance connections to other
integration nodes are realized with transconductors

; connections to the input are realized with capacitors
and transconductors , respectively. This general diagram

contemplates also the general case where the filter output is ob-
tained as the linear combination of the input and an arbitrary
number of internal node voltages. Using an extended state-space
notation, the filter is described as [3]

(1)

which is actually a generalization of the representation given in
[1]. In the expression above:

• and are, respectively, the input and output voltages of
the filter and is a state vector which
gathers all the integration node voltages. Operator
denotes matrix transpose.

• is an matrix whose element represents the
transconductance of the transconductor connected from
node to node .

• is an vector given by

(2)

where and represent, respectively, the transconduc-
tance and capacitance between the filter input node and the
integration node ; is formed by transconductances
and is composed by capacitances.

• in (1) is a vector whose element denotes the
voltage amplification between node and the output; re-
alized by a transconductor with input and transconduc-
tance , loaded with a resistor of resistance
implemented by a feedback transconductor [see Fig. 1(a)].
Parameter is the voltage gain of the forward path from the
input to the output of the filter; realized by a transconductor
with gain loaded by the same feedback transcon-
ductor as before.2

• Finally, is an matrix composed by capacitances
with the following structure:

(3)

where the negative and positive components of the inte-
gration nodes are chosen such that all the out-of-diagonal
entries are negative.

In conventional - structures, the anti-diagonal entries of
, namely and , coincide as they represent the same ca-

pacitor. However, there are practical topologies which lead to
non-symmetrical matrices. This happens, for instance, in the
so-called - opamp structures where the integrating capac-
itor is connected in feedback configuration around one opamp
[11].

From the representation in (1) the input–output transfer func-
tion of the filter can be calculated as

(4)

In addition to this overall transfer function, other functions need
to be defined. On the one hand, let be the transfer function
from to the integration node . It can be shown that

(5)

where

(6)

2For the sake of generality the mathematical formulation in the paper con-
siders the general representation above. In many practical situations, there is no
forward path from the input so that � � �. Also, in many cases the output of
the filter is taken from a single internal node so that only one entry of vector
� is non-zero (i.e., � � ��� � � � � � � � � � � ��). Moreover, if no output voltage
amplification is required, then vector� is unitary (the only non-zero entry has
unity value) and the output summing network can be suppressed.
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On the other hand, let be the transfer function from a current
source connected to integration node (between the output
terminals of transconductors with gain for ) to
the filter output for . If all the transfer functions

, are collected into a vector

(7)

it is easy to show that

(8)

As will be shown afterwards, vectors and significantly sim-
plify the evaluation of filter distortion. Also, they are useful to
calculate the relative sensitivities of the filter transfer function

with respect to the matrices in the representation (1). They
can be easily obtained using the Hadamard product as3

(9)

where the sensitivities are defined as .
Up to now, it has been assumed that transconductances

remain constant with frequency. In a more general case, the
representation in (1) must be extended to also cope with fre-
quency-dependent transconductances [7]. This can be done at
the price of a more complex state-space matrix description. As
an example, let us assume that transconductance exhibits a
one-pole roll-off with time constant . This can be modelled
by replacing transconductor by the network at the right
of Fig. 2(a), where and the low-frequency
transconductance is given by .

Note that this model adds a new node to the topology (la-
belled ) per transconductor. Hence, matrices of the extended
state-space representation must be rebuilt. This is indicated in
Fig. 2(b) which shows the rows and columns that must be added
to account for the new filter node, . For consistency, the low
frequency behavior must be made equal to the original fre-
quency-independent entry in (1).

III. NOISE IN - FILTERS

We assume noise is only contributed by transconductors and
that frequency is high enough so that noise behavior is dom-
inated by thermal contributions. Thermal noise contributions
from different transconductors are assumed un-correlated (this
is supported by the fact that transconductors are different phys-
ical entities), and are modelled by output current noise sources
with double-sided power spectral density (PSD)
where is the transconductance, is Boltzmann’s constant,

3The Hadamard product of two� � �matrices� and�, denoted by���,
is an � � � matrix given by �� ��� � � � [4].

Fig. 2. (a) Circuit replacement for adding one-pole roll-off transconductance
characteristics to the generic schematic of Fig. 1(a). (b) Required modifications
on the state-space matrices.

is the absolute temperature and is the noise excess factor of
the transconductor—the value of this latter parameter depends
on the actual transconductor implementation [12].

Using the transfer functions defined in the previous section
[see (7) and (8)], the total output-referred noise voltage PSD of
the filter can be expressed as

(10)

Here, the first term accounts for the noise contributions of all
transconductors in the filter core. The second term corresponds
to the output summing structure. From now on we will assume
that this second term is either negligible (which occurs for large
enough values of as it happens in practice), or null (which
corresponds to the case where the filter output is simply taken
from a single internal node). With this assumption, the total
output noise of the filter is approximately given by

(11)

which represents an upper-limit value.
In order to evaluate the integral in (11) it is worth noting that

matrix , defined as [1], [13]4

w (12)

can be algebraically obtained from the following generalized
Lyapunov equation [14]:

(13)

4�is related to the observability grammian of the system,� , as� �
� �� [15].
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Fig. 3. Conceptual schematic at the �th integration node of the filter including
nonlinearities.

and, therefore, the total noise of the filter can be written as

(14)

where w , represent the elements at the diag-
onal of matrix is the sum of all the
transconductances driving node . In the right-hand side of this
equation, represents the noise contributed to the output
from the th integration node.

IV. DISTORTION IN - FILTERS

We focus here on the impact of nonlinearities on the
input–output voltage-to-current transformation. Assuming
weakly nonlinear operation conditions and that transconductors
are fully balanced; their input–output characteristic can be
approximated by

(15)

where is the third-order nonlinearity coefficient and is the
input voltage. This simplified model, where even-order non-
linear coefficients are null because of the balanced structure,
suffices for most practical transconductors [11], [12].

Let us first consider that the output summing structure of
Fig. 1(a) does not generate distortion; the influence of this struc-
ture will be computed in later on. Using (15), the extended
state-space representation in (1) becomes

(16)

where is the Hadamard cube of x (it
is obtained by three consecutive Hadamard products—see foot-
note 3). For illustration purposes, Fig. 3 shows a conceptual
schematic (single-ended for simplicity of the drawing) which
displays the components which contribute to the th integration
node according to (16). In this figure, the linear and nonlinear
components are clearly separated.

Several approaches are found in literature for the analysis of
the nonlinear behavior described by (16), [4]–[9]. Here we use
Volterra’s series expansions [10]. This method consists in de-
composing the internal nodes variables in operators, according
to [16]

(17)

where is the input signal of the system, is an arbitrary
amplitude scaling factor

(18)

is referred to as the th order Volterra operator and is the
th Volterra kernel [10]. The Laplace transform of this multidi-

mensional kernel is defined as

(19)

where is the -dimensional Laplace variable. Function
describes in frequency-domain the th order

distortion performance of the system. Hence, describes
the linear behavior of the system, accounts for
the third-order nonlinear behavior, and so on.

The relevant feature of Volterra’s series expansions approach
is that, for weakly nonlinear systems and low values of , series
(17) rapidly converges and it can be approximated by the first
few terms. Therefore, if the distortion behavior of a fully bal-
anced - filter is dominated by the third-order nonlineari-
ties of the transconductors, can be simply approximated
by . Replacing this expression
in (16) and grouping terms with the same power of , the fol-
lowing two linear systems in and are obtained

(20)

and

(21)

where . The first equations of these two systems
can be mapped into the first- and third-order circuits shown in
Fig. 4(a) and (b), respectively. Solving both circuits, the first-
and third-order transformed kernels of the filter are respectively
given by

(22)
and

(23)

From these expressions, the third-order harmonic distortion
of the filter and its intermodulation performance can be esti-
mated, with no transient analysis needed, by [16]

(24)

where is the amplitude of the input tones applied to the system.
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Fig. 4. (a) First-order and (b) third-order circuits at node �.

Equation (24) can be related to vectors and , defined in
(6) and (7), respectively, as shown in (25) at the bottom of the
page. It reveals that the distortion evaluation of a - filter
can be easily accomplished by simple matrix algebra. These
closed-form expressions compare favourably to others in the lit-
erature, demanding a much more cumbersome formulation [4],
[5].

Let us now consider the case where the output summing struc-
ture of Fig. 1(a) also contributes distortion. In this case, the con-
ceptual schematic of the filter output takes the form in Fig. 5,
similar to that in Fig. 3 for the filter core. As above, the analysis
of this circuit encompasses decomposition into a first- and a
third-order schematics (shown, respectively, in Fig. 6(a) and (b))
which are solved one after the other to give

(26)

Fig. 5. Conceptual schematic of the output structure including nonlinearities.

Fig. 6. First-order (a) and (b) third-order (b) circuits to evaluate the distortion
of the output stage.

where and are obtained from (22) and (23). In these
represents the linear part of the filter response, and

the third-order nonlinear contribution. After some algebra, the
third-order harmonic distortion of the filter and its intermodula-
tion performance take the form in (27), shown at the bottom of
the page, where terms and , defined in
(25), are due to the core of the filter.

As an illustration of the proposed distortion evaluation
method, Fig. 7 shows in solid lines the calculated third-order
intermodulation and harmonic distortion components of a fully
balanced seventh-order low-pass Chebyshev filter with 10 MHz
cut-off frequency. The filter uses a standard leap-frog structure

(25)

(27)
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Fig. 7. Estimations of �� ��� �� � and�� ���. using transient analysis
and the proposed method.

and it is assumed that all transconductors exhibit a third-order
nonlinear term .

Calculations are made assuming that the filter is driven by
input tones of 125 mV at different frequencies. The third-order
intermodulation estimation assumes a 100 kHz offset frequency
between the input tones. For comparison purposes, Fig. 7 in-
cludes also entries for the third-order intermodulation (aster-
isks) and harmonic distortion (circles) calculated at different
input frequencies by means of conventional Fourier analysis of
a transient response. As can be seen, both methods give approx-
imately the same results, however, whereas the computational
cost of the transient approach is 135 s cpu time, that of the
proposed method is of only 0.6 s (data using a 1.8 GHz Pen-
tium Mobile processor), i.e., more than two orders of magnitude
lower.

V. SCALING OF - FILTERS

This section presents analytic expressions to account for the
impact of scaling on filter noise and distortion. This is worth
doing because scaling is customarily employed for filter de-
sign [6], [12], [17], [18]. We consider only scaling operations
which retain the frequency response, , required by the ap-
plication. This excludes frequency scaling operations which are
easily implemented by multiplying all filter capacitances by the
same factor [this makes and,
thereafter, ] or by scaling all filter transcon-
ductances by [this makes and,
thereafter, ].

In the foregoing analysis, filters are grouped into two cate-
gories. On the one hand, filters with all capacitors grounded ex-
cepting, perhaps, those connecting the integration nodes with
the filter input (they are characterized by a diagonal matrix ).
On the other hand, filters which include floating capacitors be-
tween integration nodes.

Unless otherwise stated, if denotes a given variable in the
prototype system, represents the corresponding transformed
variable.

A. Filters Without Floating Capacitors

Table I summarizes results for the three types of scaling con-
sidered herein. The second column shows the basic and derived
matrix equations for each type of scaling. The third column in-
cludes comments regarding the effects of corresponding trans-
formation on the noise and distortion performance of the filter.

A first scaling approach consists of multiplying each row of
the state equation in (1) by a corresponding positive number, .
This transformation, denoted as noise scaling in Table I, mod-
ifies the local impedance at each node of the filter without al-
tering their voltage swings. Hence, it does not affect the distor-
tion behavior of the filter-interesting property that will be ex-
ploited later on.

The noise contributed to the output from the th integration
node in the scaled filter becomes , whereas the
sum of all transconductances driving the th node of the filter
scales as . It means that to
reduce the noise contribution at node by a factor ,
the total transconductance must be increased by the same
factor. This increases the area occupation of the filter as well,
because capacitances are also scaled by .

For a given value of the total transconductance,
, there is an optimum set of scaling co-

efficients , which minimizes the total noise
contributed by the filter. After some calculations (detailed in
Appendix I) it is found that such optimum set is obtained when
all the diagonal elements of the transformed matrix are iden-
tical, i.e.,

w w w (28)

which gives

w

w
(29)

In this case, the total noise of the filter can be expressed as

(30)

A special case of noise scaling is power scaling in which all
the multiplying factors take on the same value and, hence,
all capacitors and transconductors of the filter core are scaled
by . In this case, the total output noise value of the filter is
transformed according to , without affecting the
distortion behavior. This fact will be used in Section VI to relate
the total noise of the filter with its power consumption.

Consider now that scaling is made by multiplying column
entries instead of row entries. This transformation is labelled
distortion scaling in Table I where scaling factors are called

. It affects the amplitude level of the voltages
at the internal nodes of the filter and, therefore, modifies its dis-
tortion behavior. Actually, distortion improves for scaling fac-
tors . However, this operation affects the noise behavior
and defines a trade-off between noise and distortion. It is worth
noting that matrix remains unaltered after distortion scaling
and so w w . This fact will be exploited in the next section.
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TABLE I
BASIC SCALING TRANSFORMATIONS

A last option for filter scaling consists of applying a sim-
ilarity transformation on the state-space representation in
(1). A typical case, illustrated in Table I, corresponds to a
diagonal transforming matrix with coefficients . As in
the previous case, this mapping carries on both noise and
distortion modifications on the prototype filter, and a trade-off
can be established as well: scaling factors decrease
the noise contribution but worsen distortion. This type of
transformation is typically used to equalize and maximize
the peak voltages at the input of the transconductors in the
filter—this is done by means of a diagonal matrix with
coefficients , where
is the maximum input signal range of transconductors and

are the peak values of each defined
in (5) (they usually occur near the passband of the filter) [17].

B. Filters With Floating Capacitors

The presence of floating capacitors between the integration
nodes makes the matrix non-diagonal. As a consequence,

previous scaling operations cannot be applied in stand-alone
manner. Otherwise the symmetry of [see (3)] would be lost,
the feedback and forward paths of the floating connections
would be different and, consequently, they would be unrealiz-
able with simple capacitors. To overcome this situation, scaling
operations should be pair-wise applied so that symmetry of
is always restored after scaling.5

As an example, let us assume that a prototype filter with
floating capacitors is scaled by a diagonal similarity transfor-
mation . The non-diagonal components of matrix

change as , thus, breaking the symmetry for
. In order to restore this property and, hence, allow the

use of floating capacitors as in the prototype filter, one possi-
bility is to noise scale the filter (see Table I), in such a way that
the relationship is met for ,
what guarantees that . A similar procedure can be envi-

5Rigorously speaking, scaling could be performed in a single step by means
of a similarity transformation with an orthogonal � matrix �� � � �.
However, from a synthesis perspective, it is more simple and intuitive to use
two consecutive scaling operations.
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sioned if, instead of noise scaling, a distortion scaling is applied
for restoring symmetry.

VI. DYNAMIC RANGE OPTIMIZATION OF

GENERAL - FILTERS

We have seen that for a given total transconductance the noise
of a - filter can be minimized by making all diagonal
terms of matrix identical. We have also seen that, by ap-
plying distortion scaling, the harmonic distortion and intermod-
ulation performance can be improved while keeping the terms

unaltered. Hence, an optimum noise-scaled filter will re-
tain this feature after distortion scaling. This observation is at
the core of a recently proposed procedure for dynamic range
optimization of weakly nonlinear - filters under power
dissipation constraints [6]. It consists of the consecutive appli-
cation of noise and distortion optimizations on the prototype
filter. However, this procedure presents two limitations. First,
the noise and distortion contributions, as well as power con-
sumption, of transconductors not accounted in matrix are ne-
glected. Indeed, transconductors assessed in matrix are re-
placed by ideal current sources. This simplification precludes
obtaining univocal solutions from the optimization procedure,
as will be illustrated in the next section by means of an example.
Second, distortion optimization is constrained by the condition
that the noise generated at the filter core keeps unaltered. This
condition reduces the design space of filter parameters and, con-
sequently, may preclude that a global optimum is reached.

These drawbacks are overcome by the procedure presented
in this section. Without loss of generality and to keep mathe-
matics as simple as possible, let us assume that all transconduc-
tors in the filter share the same topology and linear range, and
exhibit the same current efficiency, ; where this latter param-
eter is defined as the ratio between the transconductance and
the biasing current of the cell [18], [19]. In this case, the total
power consumption of the filter, , is proportional to the sum
of all its transconductances, , as ,
where is the power supply voltage of the filter [18]. A prac-
tical way of fulfilling this assumption is by implementing all
transconductance values through the parallel connection of uni-
tary transconductors.6

Let us assume that a generic fully balanced - filter
with no output network (see Fig. 1(a)) has been, first, optimally
noise scaled and, then, distortion and power scaled. In this case,
taking into account Table I and applying a power scaling factor

, the total noise of the filter for a total
power consumption becomes

(31)

6This is, indeed, a common practice among integrated circuit designers. By
using multiple instances of a given transconductor, the design complexity is
notably reduced and the robustness of the filter against variations of the tech-
nological process is improved. Using this strategy in combination with proper
layout techniques, matching between transconductors is largely favoured and
the tunability of the filter, simplified [20], [21].

where and are the coefficients of the matrices and
after optimum noise scaling, and is the sum of all the
transconductances of the filter after distortion scaling. Useful
for the foregoing analysis, can be also expressed as

(32)

where (respectively, ) is the sum of the transconduc-
tances of all the transconductors with input at the th node (re-
spectively, filter input) of the optimum noise-scaled filter.7

Let us further assume, without loss of generality, that the dis-
tortion performance of the filter is evaluated by the third-order
intermodulation. From Table I and assuming that input tones
are close together , at can be
expressed as

(33)

where , see definition in (7), is obtained after optimum noise
scaling. Equation (33) can be also written as

(34)
where coefficients and , both independent of , are de-
fined as

(35)

The maximum power at the output of the filter, , for a peak
intermodulation distortion value, , can be obtained
from (34) as

(36)

from where the dynamic range of the filter (see footnote 1) can
be calculated, using (31), as

(37)

This expression can be recast as

(38)

where is an adimensional number, which
depends on the particular transconductor implementation used
in the filter, and depends on
the filter structure. Parameter gives a measure on how large
the dynamic range of a filter can be for a given power dissipation

7In this section and the following, if � denotes a variable or coefficient of the
original prototype, �� refers to the corresponding variable or coefficient of the
optimally noise scaled filter.
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and distortion performance. Hence, it can be used as a figure of
merit for comparing transconductor implementations.

Equation (38) also shows that for a given power consump-
tion , maximum tolerated distortion and
selected transconductor topology , the optimization of the
filter dynamic range implies maximizing . As re-
mains unaltered after scaling, the only scaling-dependent factor
in is , which we define as a cost function in
the dynamic range optimization procedure

(39)

Clearly, to optimize the dynamic range of a filter, must
be minimized. The minimum of is calculated by setting

, which after some algebra obtains the set of equa-
tions

(40)

where is the conjugate of and extracts the real
part of the argument. Summing the left-hand terms of the above

equations, on the one hand, and the right-hand terms, on the
other, the following two relationships are obtained:

(41)

from where, equating the results and using (40), the optimum
distortion-scaling coefficients can be calculated by recur-
sively solving the expression

(42)

using the definition of in (34). With these values, the ab-
solute minimum for becomes

(43)

Note that if input transconductors are not accounted for in the
above analysis, which is the situation considered in [6], coef-
ficients and are null and (43) becomes indeterminate.8

8By removing the effects of input transconductors on distortion and noise,
they are assumed to perform as perfect voltage-to-current converters. In essence,
these ideal converters play the same role as the input current-controlled current
sources used in [6], i.e., to inject signal into a current-input filter. Assuming that
� has no capacitive components, i.e.,� is a null vector, the driving signal of
the current-input filter takes in our model the form�� . In the case of [6], such
driving signal is simply given by �� . Obviously, the dimensionality of matrix
� in both procedures is different but, from the point of view of optimizing the
dynamic range of the current-input filter, defined by matrix � and �, this is
irrelevant.

Fig. 8. Fully differential � -� biquadratic section.

This reveals that there is an infinite number of solutions that
achieve the same dynamic range for a given power dissipation,
and not a single solution as stated in [6]. It is to be understood
that by including the effects of input transconductors on distor-
tion and noise, the optimization algorithm finds the necessary
constraint to achieve a single and univocal solution.

It is also worth mentioning that the dynamic range optimiza-
tion may result in a non-unity distortion-scaling coefficient for
the output node of the filter, i.e., if the output is taken from node

, coefficient will more likely be . This implies that
vector becomes non-unitary, however, there is no need to add
an amplification output stage to the filter (see Fig. 1) to guar-
antee an optimum dynamic range. Instead, the output of the filter
could be directly taken from node . Note that any potential
output network will ideally scale the output noise and desired
signal power by the same factor while retaining the distortion
performance of the filter core. Therefore, the dynamic range will
remain unaltered after amplification.

Finally, note that the optimization process described above is
restricted to a single operating frequency. Therefore, such fre-
quency must be carefully chosen so that it corresponds to the
worst-case dynamic range of the filter. This can be done by a
previous analysis on the noise and distortion dependence with
frequency through (10) and (25).

VII. CASE STUDY: BIQUADRATIC SECTIONS

As a case of study, the procedure in the previous section
is herein applied to the biquadratic section of Fig. 8. In the
following analysis, transconductor-dependent parameters have
been derived from a simple folded-cascode topology, designed
in a 0.13 m CMOS technology at a power supply of 3.3 V.
They are and giving

. Using these transconductors, a low-pass filter
with cut-off frequency at MHz has been designed.
The power consumption of this filter is mW.

Using the extended state-space representation of Section II,
the biquad in Fig. 8 can be described by the matrices

(44)
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where vector selects the low-pass output voltage (integration
node 2) of the biquadratic section. Using (4), the input–output
transfer function can be obtained as

(45)

where is the quality factor of the filter, and determines the
voltage gain of the biquad. Additionally, the total transconduc-
tance of the biquad is,

(46)

the total output noise mean-squared value of the filter is given
by

(47)

and the matrix , defined in (12), can be obtained by solving
the generalized Lyapunov equation in (13), as

(48)

As noted in Section V, there is an optimum noise scaling trans-
formation which minimizes the total noise contributed by the
biquad for a given amount of total transconductance. Such trans-
formation uses the scaling factors (29),

(49)

where

(50)

which give, using (30), the following expression for :

(51)

It is worth noting that depends inversely on . The
above transformation modifies the state-space matrix descrip-
tion as

(52)

and the value at the diagonal of matrix now amounts
.

Fig. 9 illustrates the effect of noise scaling on as a func-
tion of the scaling coefficient for different quality factors
of the biquad. In this figure, the second scaling coefficient, ,
is constrained by keeping the total transconductance unaltered
after the transformation. Additionally, it has been assumed that

and in the original design. As can be seen, for

Fig. 9. Noise versus � for the biquadratic section. The quality factor� sweeps
from 2 to 20 at steps of 2.

every reaches a minimum value at (displayed by
circles in Fig. 9).

Fig. 10 illustrates the distortion performance at the low-pass
output of the biquad. It shows the third-order harmonic distor-
tion measured at as function of the input angular frequency,

, [Fig. 10(a)]; and the third-order intermodulation distortion
evaluated at , assuming that both tones are very close
together, so that [Fig. 10(b)]. The figures have
been obtained for and after a distortion scaling of
the state-space matrix representation in (52) using coefficient
as sweeping parameter and setting . As can be seen from
both figures, the third-order intermodulation distortion domi-
nates over the third-order harmonic distortion and reaches a
local maximum close to the cut-off frequency of the biquad. In-
terestingly enough, the third-order harmonic distortion exhibits
notches which depend on the particular choice of the scaling pa-
rameters and . This is better observed in Fig. 11(a), which
represents the third-order harmonic distortion for an input tone
at as function of the scaling parameters and . Indeed,
it can be analytically demonstrated that the notch occurs
along the line , as can be observed in the figure. To-
gether, the plot shows that distortion tends to diminish for large
values of and . This is also observed on the graphics for the
third-order intermodulation distortion of Fig. 11(b). Increasing

and to reduce the distortion response of the biquad im-
plies, however, an increase on the output noise contribution, ac-
cording to the expressions in Table I. This suggests a trade-off
on the dynamic range of the filter, whose optimum value can be
deduced by following the procedure in Section VI.

Considering that the distortion performance of the filter is
evaluated by the third-order intermodulation component close
to the cut-off frequency of the filter, , the maximum of the
dynamic range is found by minimizing the cost function

(53)

where . Taking into
account that coefficients and defined in (35) take the form

(54)
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Fig. 10. Distortion performance in terms of the input frequency: (a) third-order
harmonic distortion; (b) third-order intermodulation distortion. Scaling param-
eter � ranges from 0.5 to 5.0 at steps of 0.25.

it can be found, applying (42), that the optimum values of the
scaling factors and for values amount

(55)

from where can be approximated as
and, finally, the optimum dynamic range of the biquadratic sec-
tion can be expressed as

(56)

Note that it happens to be inversely proportional to , con-
trarily to what it is stated in [1], [2], where the dynamic range
is claimed to depend inversely on . It is also possible to ex-
press the dynamic range in (56) in terms of the total capacitance
of the biquad, , after the optimization process. Assuming
that is large enough, it can be found that ,
from where, using the definition of in the previous sec-
tion, the optimum dynamic range of the biquadratic section can
be written as

(57)

Fig. 11. Distortion performance for input tones close to the cut-off frequency of
the filter in terms of the distortion scaling parameters � and � for� � � and
� � �: (a) Third-order harmonic distortion; (b) third-order intermodulation
distortion. Parameters � and � vary from 1.0 to 10.0 at steps of 0.25.

and, hence, directly proportional to .
Fig. 12 shows the dynamic range of the biquad versus and
for , and assuming a maximum intermodu-

lation level of dB. As it can be seen the max-
imum DR, which approximately amounts 57 dB, is obtained for
the and values in (55). This is an improvement of 0.2 dB
as compared to the dynamic range obtained from the distortion
unscaled filter . On the other hand, Fig. 13 shows
the peak dynamic range versus for the same level of distor-
tion. Note that the deviation between the exact expression, ob-
tained by replacing (53) into (37), and the approximation in (56)
tends to reduce as long as increases. In the same figure, results
from transistor-level simulations of the biquad using the unitary
transconductor previously designed have been included. As can
be seen there is a good agreement among these results and the
theoretical ones, thus confirming that DR is inversely propor-
tional to the square of .

Fig. 14 compares the intermodulation performance a bi-
quadratic section with obtained by transistor-level
simulation and Fourier analysis, to that derived from the matrix
methods proposed in this paper. In both cases, the filter has
been excited with two tones separated 100 kHz and amplitude

mV. As can be seen, the deviation between both
curves is lower than 1 dB. Regarding noise, the transistor-level
design achieves a total output noise of whereas the
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Fig. 12. DR versus � and � of the biquadratic section.

Fig. 13. DR versus � for the biquadratic section.

Fig. 14. Intermodulation over the frequency of a biquadratic section for two
tones of 125 mV.

estimation obtained with the proposed approach is .
This represents a 0.9% deviation.

TABLE II
RESULTS OF THE PROPOSED OPTIMIZATION TECHNIQUE

IN A CURRENT-INPUT BIQUAD

To conclude this section, Table II compares the most relevant
biquad parameters before and after applying the proposed dy-
namic range optimization. In this table, similar to [6], the influ-
ences of the input transconductor on noise and distortion have
been neglected. This is done, first, to highlight the limitations
of the approach in [6] and, second, to show that the proposed
optimization procedure also holds for current-mode filters. A
high value has been assumed in the calculations. The pro-
totype design is a generic biquadratic section in which the ca-
pacitance ratio, , can take an arbitrary value. Com-
paring both columns in Table II, it can be seen that the case

in the prototype filter obtains a DR very close to the op-
timum. On a related note, the second column of Table II shows
that there is an infinite number of solutions which exhibit op-
timum dynamic range; each of them with a different noise and
distortion behavior depending on the particular value of param-
eter . Using the same transconductor described above and as-
suming , the optimum DR is found to be 57.6 dB. This
is about 15% in linear scale higher than that previously cal-
culated, however, it must be noted that now the effects of the
input transconductor has been ignored. Using the methodology
proposed in [6], the same optimum dynamic range value is ob-
tained, however, only a single solution is provided, namely, that
corresponding to . This particular solution is
that which keeps noise constant during distortion optimization.

VIII. CONCLUSION

This paper presents a synthesis procedure to maximize
the DR of continuous-time fully differential - filters. It
presents fast methods to evaluate noise and distortion perfor-
mances of filters using dot matrix representations, as well as
a throughout discussion on the influence of amplitude and
impedance scaling on them. Using these methods, an analytical
procedure for the optimization of generic weakly nonlinear

- filters for a given power consumption is presented. It
shows that the dynamic range of - filters depends both
on the selected transconductor topology and the high-level
dimensioning of the filter, and that this latter can be optimized
independently from the former by minimizing a simple cost
function. A figure of merit to compare different transconductor
structures is also proposed. The presented techniques have been
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particularized to a simple biquadratic section and validated
by electrical simulations of a transistor-level implementation.
The analysis reveals that for a biquad with quality factor, ,
the optimum dynamic range is inversely proportional to ,
contrarily to what it is stated in previous publications.

APPENDIX

After noise scaling, the total transconductance of the filter,
, is transformed into .

From this latter expression, the value of an arbitrary scaling
coefficient, say , can be related to the other ones,

, by the equation

(58)

Taking into account (14) and Table I, the set of scaling coef-
ficients which minimizes the total noise contributed by the
filter for a given amount of total transconductance is ob-
tained by solving the equations

w w

(59)
for . Taking into account (58) and the constraint

, solving (59) gives

w w (60)

which is equivalent to set W w w . From (60),
the optimum values are then obtained as

w

w
(61)

as stated in (29).
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