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ABSTRACT
In this work, we discuss the fundamental aspects of Electrohydrodynamic (EHD) conduction pumping of dielectric liquids. We build a mathe-
matical model of conduction pumping that can be applied to all sizes, down to microsized pumps. In order to do this, we discuss the relevance
of the Electrical Double Layer (EDL) that appears naturally on nonmetallic substrates. In the process, we identify a new dimensionless param-
eter related to the value of the zeta potential of the substrate-liquid pair, which quantifies the influence of these EDLs on the performance of
the pump. This parameter also describes the transition from EHD conduction pumping to electro-osmosis. We also discuss in detail the two
limiting working regimes in EHD conduction pumping: ohmic and saturation. We introduce a new dimensionless parameter, accounting for
the electric field enhanced dissociation that, along with the conduction number, allows us to identify in which regime the pump operates.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5121164., s

I. INTRODUCTION

The future of fluidic heat transfer systems lies in innovative
solutions for fluid flow generation and control that can address the
evolving needs of modern high power systems, both terrestrially
and in space. Traditional mechanical pumping techniques, although
efficient and well understood, are difficult to miniaturize and suf-
fer from mechanical breakdown, excessive vibrations, and difficulty
with pumping thin liquid films and multiphase flows. As an active
method for flow control in fluidic heat transfer systems, Electro-
hydrodynamic (EHD) conduction pumping1–6 has unique advan-
tages over traditional mechanical methods for generation of flow.
EHD conduction pumps have simple, compact designs with no mov-
ing parts and therefore low vibration and acoustic noise. These
pumps have been shown to enhance heat transfer at different size
scales, ranging from centimeters7,8 and millimeters9 to hundreds of

micrometers10 and in the presence and absence of gravity.11 It has
been shown to significantly enhance the heat transfer in pool boiling
systems.11,12

EHD flows are generated by electric forces acting on electric
charges present in a liquid.13 There are three main mechanisms to
generate a net volumetric electric charge in a liquid: injection, induc-
tion, and conduction.14 In the first case, electric charges are injected
from the electrodes into the liquid. The induction mechanism of
charge generation is based on the existence of a gradient or dis-
continuity of the electrical conductivity. In conduction, the charges
are generated by dissociation of a weak electrolyte in the liquid.
Conduction is the mechanism used in EHD conduction pumping.

Under equilibrium conditions, with no applied electric field or
under the effect of only a weak electric field (less than 106 V/m,
in order to not affect the dissociation process), the electrolyte
impurities found within a dielectric liquid undergo reversible
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dissociation and recombination reactions at equal rates. These reac-
tions are described as

AB
dis.
Ð→

←Ð

rec.
A+ + B−, (1)

where AB is a simple neutral electrolyte species, while A+ and B−

are the positive and negative ions it dissociates into. The bulk of
the liquid, in equilibrium, is electroneutral, but near a surface, this
equilibrium breaks due to the presence of the interface. As a conse-
quence, near a surface, an Electric Double Layer (EDL) develops.15

This is truly independent of the application of an external electric
field or whether the surface is metallic or dielectric. The simplest
structure of an EDL is composed of a layer of ions stuck on the inter-
face (the Stern layer) and a diffuse layer in the liquid (the Debye
layer) with a net electric charge. The thickness of the diffuse layer,
the Debye length λD, is determined by the equilibrium between
charge diffusion and recombination. The typical diffusion time is
τD = λ2

D/D, while the typical recombination time is τσ = ε/σ. Here, D
is the diffusion coefficient, ε is the permittivity, and σ is the electrical
conductivity. In equilibrium, τD ≈ τσ , and we get, for the case of a
univalent symmetric electrolyte with equal ionic mobilities for both
species,15,16

λD =
√

εD
σ
=

√
εKkBT
σe0

. (2)

We have used the Einstein relation D = KkBT/e0,17 where e0 is the
elementary charge, K is the ionic mobility, kB is the Boltzmann
constant, and T is the absolute temperature. The electro-osmosis
pumps, another type of EHD pump, operate by applying an elec-
tric field parallel to the surface to exert an electrical force on the EDL
near the electrodes, putting the liquid into motion.14

The charge distribution in the EDL is a result of the equilib-
rium between charge diffusion and ion recombination. When an
electric potential is applied between metallic electrodes immersed
in an electrolyte, this equilibrium is perturbed. The applied elec-
tric field, perpendicular to the electrodes, pushes away the ions of
the same polarity than the electrode. Then, some of the ions of the
opposite polarity do not find a counterion to recombine before arriv-
ing at the electrode. If the applied electric field is high enough, the
Debye layer disappears and a heterocharge layer develops, with a net
electric charge of opposite polarity to the electrode. The thickness of
this heterocharge layer can be estimated as follows: The typical ionic
velocity is KE0, with E0 being the order of magnitude of the compo-
nent of the electric field perpendicular to the surface. Then, before
recombining, the ions typically travel a distance

λH ∼ KE0τσ =
εKE0

σ
. (3)

Let us stress that the EDL and the heterocharge layer have fun-
damentally different physical origins. The EDL is the result of the
equilibrium between ionic diffusion and recombination, while the
heterocharge layers arise from the balance between recombination
and the ionic electric drift created by an external electric field. The
heterocharge layers only appear next to metallic electrodes where an
applied electric potential, producing a normal electric field, exists.
The EDL appears in equilibrium conditions next to any solid surface
in contact with an electrolyte, metallic or not.

In EHD conduction pumping, an electric field is applied across
two electrodes immersed in the liquid, generating Coulomb forces
acting on the heterocharge layers that develop.1,14 Since the force
applied on the fluid is proportional to the size of the layers, and the
layers form near the electrode surfaces, a simple way of affecting the
size of each layer is by controlling the geometry of the electrodes
used. As shown by Yazdani and Seyed-Yagoobi,18 under the assump-
tion of equal ionic mobilities, the force for flush electrodes as shown
in Fig. 1 will always be directed toward the electrode with the larger
wetted surface area. In Fig. 1, a sample neutral electrolyte is shown
dissociating into negative and positive ions, which drift toward the
heterocharge layers over the positively charged high voltage elec-
trodes and the ground electrodes, respectively. The electric force and
the subsequent flow and pressure generations can be controlled by
varying the potential applied to the electrodes.

As a promising fluid flow control technique, EHD conduction
pumping has been rigorously investigated by various researchers
over the past few decades. Atten and Seyed-Yagoobi1 have for-
mulated the initial theoretical models describing the phenomenon
and its characteristic parameters and have compared experimental
results with approximate theoretical estimates for predicting pres-
sure generation capabilities. Dimensional numerical calculations of
EHD conduction in a channel were performed by Jeong, Seyed-
Yagoobi, and Atten19 for a hollow tube high voltage electrode and
ring ground electrode configuration, which provided a prediction of
the force distribution and pressure generation capabilities of EHD
conduction pumping for certain electrode geometries. Additional
fundamental nondimensional numerical studies performed by
Yazdani and Seyed-Yagoobi20,21 have shown the profiles of the het-
erocharge layers over flush electrodes in thin film flows driven by
EHD conduction, the heat transfer enhancement potential of the
EHD conduction pumping technology, and the effect of different
charge mobility ratios on the characteristic parameters and perfor-
mance of the EHD conduction mechanism. Mahmoudi, Adamiak,
and Castle22 were able to predict pressure generation of a macroscale
EHD conduction pump using a similar nondimensional simula-
tion model. Experimental studies by Jeong and Seyed-Yagoobi7 have
shown the effect of electrode geometry on pressure generation in
more detail, with numerical models from Feng and Seyed-Yagoobi23

showing the profiles of the heterocharge layers in perforated elec-
trode geometries. Experimental studies by Mahmoudi et al.24 and

FIG. 1. Illustration of the EHD conduction mechanism. The heterocharge layer
locations are indicated in green and yellow. The corresponding polarity with
respect to the electrodes is shown. The placement of the EDL on the substrate
is indicated with red lines.
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Gharraei et al.25 have also shown the effect of different working flu-
ids on pressure generations, and experimental studies by Abe et al.26

showed the effect of the surface characteristics of the electrodes on
the pressure generation performance of an EHD conduction pump.
It should be noted that the traditional efficiency of EHD conduc-
tion pumps in terms of flow generation (defined as the flow power
generated divided by the input electric power) is very small since
the transmission of electrical energy into pressure is not direct but
passes through the chemical reaction. In most cases, the traditional
efficiencies recorded for EHD conduction pumps have been less than
5%, often even less than 1%.14 However, when considering the total
power consumption of these devices, which is on the order of sin-
gle watts or less, this traditional formulation of efficiency becomes
less relevant. When used in heat transfer applications, it is better
to consider the efficiency of EHD conduction pumps in terms of
heat transfer enhancement vs their input electric power. Past exper-
iments have shown that a single watt of input power can generate
two or three order of magnitude enhancements in the resultant heat
transport capacity.11,27 Therefore, EHD conduction pumping effi-
ciency in heat transport systems is defined as the ratio of the maxi-
mum additional heat removed from the system due to the presence
of the EHD conduction pump and the input electric power to the
pump.

However, the effect of the operating regime on the efficiency of
EHD conduction pumps has not been investigated. There are two
regimes: ohmic and saturation. In the former case, the ions have
time to recombine inside the volume and an electroneutral bulk is
generated. In the latter case, the ions reach the electrodes before
they have time to recombine. Typically, these regimes are charac-
terized for the nondimensional conduction number, usually named
C0 in the literature.1 In this paper, we analyze in detail the depen-
dence of the generated pressure onC0. The application of an external
electric field enhances the dissociation of electrolytes, and this is
the Onsager-Wien effect.13,28 We introduce a new nondimensional
number, which we will call β, that, along with C0, allows the charac-
terization of the regime where a given EHD conduction pump will
operate.

Another point with interesting technology applications is EHD
conduction pumping in systems of microscale, down to some tens of
micrometers. Typically, in these geometries, there is a nonconduct-
ing substrate. As it is the case for all surfaces immersed in a liquid, an
EDL develops near this substrate. In macrosized systems, this EDL
can be safely ignored. However, if we want to work with smaller con-
duit sizes, its influence could be important. In this work, we build a
model of EHD conduction pumping that includes boundary condi-
tions suited to pumps of all sizes, down to tens of micrometers. As a
result of this analysis, we introduce a new dimensionless parameter:
the ratio between the natural electric field inside the double layer and
the applied field between the electrodes. This parameter can also be
used to describe the transition from EHD conduction pumping to
electro-osmosis, where the pressure head is generated by the electric
force on the EDL.

The reminder of this paper is organized as follows. In Sec. II,
we present the physical model. We describe the physical mech-
anisms involved and write down the nondimensional equations
and associated boundary conditions. We also define the nondimen-
sional parameters relevant for the problem. The model includes the
enhancement of the dissociation process induced by the applied

electric field, the Onsager-Wien effect. In Sec. III, we discuss the
two limit regimes in EHD conduction pumping: the ohmic regime
and the saturation regime. We discuss, in particular, the generated
pressure in each regime. Finally, in Sec. IV, we summarize the main
conclusions of this work.

II. PHYSICAL MODEL
In this section, we present the physical model for EHD conduc-

tion pumps. The relevant magnitudes are the ionic species concen-
trations, the electric potential, the electric field, and the velocity and
pressure fields. In the usual experimental conditions, the Joule heat-
ing can be neglected, as the electric currents are very small. As there
are no heat sources or sinks in the experiments, the liquid can be
assumed to be isothermal. We present the dimensional and nondi-
mensional equations of the model, the boundary conditions, and the
nondimensional parameters. In general, we will consider boundary
conditions for three types of surfaces: positive electrodes, negative
electrodes, and nonmetallic substrates. We give the boundary condi-
tions associated with each one of these types. The application of the
model to microsized pumps requires special care with the formula-
tion of the electric boundary conditions on nonmetallic substrates.
The main novelty introduced here compared to previous works is
the definition of two new dimensionless parameters related to the
Onsager-Wien effect and the description of the EDL on nonmetallic
substrates, respectively.

A. Dissociation–recombination
The only source of ions in the liquid is the dissociation-

recombination processes of the electrolytes present in the volume.
The applied electric fields in EHD conduction pumping are never
high enough to produce charge injection from the electrodes. We
consider a simple model consisting of a reversible process of dissoci-
ation and recombination of a neutral species into univalent positive
and negative ions.1 In equilibrium, we have

kDc0 = kRneq
+ neq
−
= kR(neq)

2, (4)

where c0 is the concentration of the neutral species, and neq
+ and neq

−

are the concentration of the positive and negative species in equilib-
rium (electroneutrality implies neq

+ = neq
−
= neq). Their dimensions

are in m−3. The dielectric liquids used in EHD conduction pumping
are nonpolar or weakly polar. Then, the electrolyte is weakly dissoci-
ated and the concentration of the neutral species, c0, can be consid-
ered constant. The magnitudes kD and kR are the rates of dissociation
and recombination, respectively. When an external electric field, E,
is applied, the rate of dissociation increases, and this is the electric
field enhanced dissociation effect or the Onsager-Wien effect28

kD(∣E∣) = k0
DF(w(∣E∣)), (5)

where F is the Onsager function and w(|E|) is the enhanced dissoci-
ation rate coefficient,

F(w(∣E∣)) =
I1(4w(∣E∣))

2w(∣E∣)
, w(∣E∣) =

LB
LO
= (

e3
0∣E∣

16πεk2
BT2 )

1/2

. (6)
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Here, I1(x) is the modified Bessel function of the first kind and
order 1. LB and LO are the Bjerrum and Onsager distances,
respectively,29

LB =
e2

0

8πεkBT
, LO =

√
e0

4πε∣E∣
. (7)

LB is the distance where the electrostatic energy between two ions
becomes the same order as the thermal energy. Two ions can be
considered to be bounded in an ionic pair when their separation is
smaller than LB, as in that situation the thermal motion is not able
to overcome their electrical attraction. The length LO is the distance
from a point charge where the magnitude of the external electric field
E becomes of the same order as the electric field produced by the
charge in the liquid. In the expressions above, ε = εrε0 is the abso-
lute permittivity (εr and ε0 being the dielectric constant of the liquid
and the permittivity of the vacuum, respectively). In order for the
external electric field to affect the equilibrium of an associated ionic
pair, it has to be LO ≤ LB, that is, the external electric field has to be
strong enough to affect the electric attraction between the ions in an
associated pair. When |E| = 0, we have w(0) = 0 and F(0) = 1, and no
enhancement occurs. When there is enhancement, we will assume
that the dissociation-recombination equilibrium is not appreciably
modified.30 Then, the equilibrium concentration of the ionic species
is

neq = n0
eq

√
F(w(∣E∣)), (8)

where n0
eq is the concentration of ionic species with no external

electric field applied. The electrical conductivity is proportional to
the concentration of ionic species at equilibrium. For a symmetric
electrolyte, it is

σ = 2e0Kneq, (9)

with K being the ionic mobility. Then, the conductivity depends on
the electric field as

σ = σ0
√
F(w(∣E∣)), (10)

where σ0 stands for the electrical conductivity without field
enhanced dissociation. The dielectric liquids used in EHD conduc-
tion pumping have conductivities in the range of 10−11 to 10−7

S/m.

B. Electric equations and boundary conditions
The electrical magnitudes are described by the Poisson equa-

tion for the electric potential Φ and the electrostatic field definition.
In the volume of the liquid, we have

∇ ⋅ (ε∇Φ) = −e0 (n+ − n−), E = −∇Φ. (11)

Here, n+ and n− are the volume concentration of positive and
negative species, respectively.

With regard to the boundary conditions, the metallic elec-
trodes will have a fixed electric potential. Special consideration
must be given to the electric boundary conditions on the non-
metallic substrates. Whenever an electrolyte is in contact with a
surface, with no external electric field applied, an electrical dou-
ble layer (EDL) develops.15,16 The simplest EDL structure comprises

one layer of ions rigidly adhered on the surface of the solid, the
Stern layer, and a diffuse layer near the surface, the Debye layer. The
length scale of this Debye layer is given by Eq. (2). For a working
temperature of 300 K and a typical value of the dielectric constant
εr = 5, we get values of the Debye length varying between 1 and
30 μm for the liquids typically used in EHD conduction pump-
ing. Hence, in macro- and mesosized pumps, the effect of the EDL
can be safely ignored. However, this is not the case if we consider
systems with typical dimensions of tens of micrometers. The elec-
tric field created by the imposed electric potential is going to per-
turb the natural charge distribution in the EDL. The EDL next to
the substrate can affect the performance of the EHD conduction
pump.

The ions in the Stern layer can be assumed to remain stuck on
the interface, unless very high electric fields are applied (109 V/m).15

Then, the right boundary condition on the surface of the substrate
is a uniform surface charge density, σS, representing the Stern layer,
assumed to be constant. The magnitude of this surface charge can
be estimated from measurements of the zeta potential, ζ, when the
EDL is in its nondisturbed state, that is, with no normal external
electric field applied.16 The ζ potential is the electrical potential dif-
ference between the surface and the electroneutral bulk of the liquid.
Using the Debye-Hückel approximation, the electric potential of the
nondisturbed EDL can be approximated as

ΦEDL ≃ ζe−z/λD , (12)

where z is the distance to the interface. The volumetric charge
density in the Debye layer is

ρEDL = −∇ ⋅ (ε∇ΦEDL) = −
εζ
λ2
D
e−z/λD . (13)

Now we can estimate the total charge in the Debye layer,

QEDL = S
∞

∫

0

ρEDL(z)dz = −
εζS
λD

. (14)

Here, S is the area of the interface. As the liquid is electroneutral, the
total charge in the Stern layer is −QEDL, so the surface charge is

σS =
εζ
λD

. (15)

This expression corresponds to the surface charge on an infinite
plane that would produce an electric field ζ/λD, that is, the order
of magnitude of the electric field across the unperturbed Debye
layer.

Let us stress that we use the value of the zeta potential only as
a way to estimate the value of the intrinsic surface charge appearing
on the interface between a liquid and a solid substrate. It is an experi-
mental parameter characteristic of a given substrate-liquid pair. The
value of the electric potential on the substrate during an EHD con-
duction experiment is not ζ in general. This would mean that the
electric field would be normal to the interface, and this is not the
case. In addition, we do not use the Debye-Hückel approximation in
our model for EHD conduction pumping. It is used here to estimate
the value of σS from the value of ζ obtained from experiments where
the Debye-Hückel approximation is valid.
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Then, the electric boundary conditions for each type of surface
are

positive electrode: Φ = Φ0,

negative electrode: Φ = 0,

substrate: n ⋅ ∇Φ = σS/ε.

(16)

Here, n is the unit vector normal to the surface of the substrate
pointing from the liquid toward the substrate.

The volume of the substrate has to be included in the model
only if the polarization surface charge on the substrate is relevant.
This polarization charge is produced by the different values of the
dielectric constant in the liquid and the substrate. Its magnitude is
related to the jump of the normal components of the electric field
at both sides of the interface. If the external applied field is mainly
parallel to the substrates, the effect of this polarization surface charge
is already taken into account in the zeta potential. If this is not the
case, the substrate volume must be included in the computational
domain.

C. Transport equations and boundary conditions
As we have discussed in Sec. II A, in the liquids used in EHD

conduction pumping, the concentration of the neutral species, c0,
can be considered constant. The conservation equations for the
concentration of the positive and negative species, n+ and n−, are

∂n±
∂t

+∇ ⋅ F± = kD(∣E∣)c0 − kRn+n−. (17)

The first term on the right-hand side corresponds to dissociation,
while the second term represents recombination. The flux densities
F± are

F± = ±n±K±E + n±u −D±∇n±. (18)

The first term represents the electric drift, the second one represents
the advection by the fluid, and the third one represents the diffu-
sion. In this paper, we will assume that the two ionic species have the
same values for the ionic mobility and diffusion coefficients; thus,K+
= K− = K and D+ = D− = D. We will take for kR the upper bound
determined by Langevin, kR = 2e0K/ε.31 With all these assumptions,
and using (6), the transport equations read

∂n±
∂t

+∇ ⋅ (n±(u ± KE) −D∇n±)

=
2e0K(n0

eq)
2

ε
⎛

⎝
F(w(∣E∣) −

n+n−
(n0

eq)
2

⎞

⎠
. (19)

We discuss now carefully the role of diffusion. In the elec-
troneutral bulk and inside the heterocharge layers, diffusion is neg-
ligible. In the bulk, the ratio of the diffusive current and the electric
drift is

D∣∇n±∣
n±K∣E∣

≈
D/d
KE0

=
kBT/e0

E0d
=
ΦT

Φ0
. (20)

We have used the Einstein relation here, D = KkBT/e0. The thermal
potential is ΦT = kBT/e0 ≈ 25 mV at room temperature. The applied
potential is always much higher than ΦT , even for microsized sys-
tems. For example, for d = 10 μm and E0 = 106 V/m, it is Φ0 = 10 V.
This is the reason why diffusion is usually neglected in EHD bulk
flows.32

Inside the heterocharge layer, the length scale is given by the
heterocharge thickness, λH , given by (3). Then, the ratio is

D∣∇n±∣
n±K∣E∣

≈
D/λH
KE0

=
σ0kBT
e0KεE2

0
= 6 × 10−3

− 6 × 10−7
≪ 1. (21)

We have taken σ0 = 10−11 to 10−7 S/m, K ≈ 10−8 m2/V s, εr ≈ 5,
T ≈ 300 K, and E0 = 106 V/m. These are typical values in EHD
conduction pumping experiments. Hence, next to the metallic elec-
trodes, inside the heterocharge layers, we can neglect diffusion.

However, the situation is different on nonmetallic substrates.
The applied electric field generated by the electrodes is typically par-
allel to the substrates. Then, the EDL naturally present does not
disappear completely, as it is the case near metallic electrodes. In
macrosystems, this EDL can be safely ignored.1 However, we want
to develop a model that can be applied to EHD pumps of all sizes.
Then, we have to keep the charge diffusion in the model in order to
describe the distribution of electric species next to the nonmetallic
substrates.

We discuss now the boundary conditions for the ionic species.
On the positive metallic electrode, any positive ion created by dis-
sociation near the electrode is pushed away by the Coulomb force.
Therefore, we have n+ = 0. As we retain the diffusive term, we need
a boundary condition for the flux of the negative species on the
positive electrode. The electric current through the positive elec-
trode is sustained by the flux of negative species given by the electric
drift term, diffusion being negligible as we have discussed above.
Hence, we impose as boundary condition a normal zero gradient
of the species concentration. This boundary condition implies that
there is no accumulation of species next to the electrode. Once
the ions get neutralized, they move with the flow and re-enter the
dissociation-recombination process. This discussion is valid for the
negative metallic electrode with the polarities reversed.

As for the nonmetallic substrate, there is no transfer of charge
between the ionic species and the substrate. Then, the flux of ionic
species must be null on the substrate. Thus, the general boundary
conditions for each of the typical physical boundaries are

positive electrode: n+ = 0, n ⋅ ∇n− = 0,

negative electrode: n− = 0, n ⋅ ∇n+ = 0,

substrate: F± ⋅ n = 0.

(22)

D. Hydrodynamic equations and boundary conditions
The hydrodynamic equations are the momentum equation and

the continuity equation,

ρm(
∂u
∂t

+ u ⋅ ∇u) = −∇P + μ∇2u + FE,

∇ ⋅ u = 0.
(23)

Here, u is the fluid velocity, P is the pressure, ρm is the fluid
density, and μ is the dynamic viscosity. The electric force FE has
three components: the Coulomb force, the dielectric force, and the
electrostriction force,29,33

FE = qE −
1
2
E2
∇ε +∇(

1
2
ρm(

∂ε
∂ρm
)

T
E2
). (24)
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As we are assuming the liquid to be isothermal, the permittivity is
uniform and the dielectric force does not appear. The electrostric-
tion force, being the gradient of a scalar magnitude, can be included
in the pressure. Hence, only the Coulomb force has to be considered.
The expression in terms of the species densities is

FE = qE = e0(n+ − n−)E. (25)

The hydrodynamic boundary conditions are no-slip for the three
types of physical surfaces.

E. Dimensionless governing equations, boundary
conditions, and parameters

In this section, the dimensionless physical magnitudes are
expressed with an asterisk. We choose these scales for each physical
magnitude,

x, y ∼ d, n± ∼ n0
eq, E ∼ E0, Φ ∼ E0d,

u ∼ KE0, t ∼ d/KE0, P ∼ ρmK2E2
0.

(26)

Here, d is a typical length characterizing the size of the system. This
model is intended to be applied to EHD pumps sized from centime-
ters to tens of micrometers. We have chosen the order of magnitude
of the imposed field, E0, as the relevant electrical magnitude, and
we derive the scale for the applied electric potential from it. The
reason is that, in the experiments, we will be working at the max-
imum electric field without charge injection from the electrodes in
order to get a greater electric force. So, it is E0 that is going to char-
acterize the regime. In EHD conduction pumps, E0 is of the order
of several megavolts per meter. The time scale is the transit ionic
time.

With these scales, the nondimensional equations are

∂n∗±
∂t∗

+∇ ⋅ (n∗±(u
∗
± E∗)) − α∇2n∗± = 2C0(F(w(∣E∗∣) − n∗+n

∗

−),

(27)

∇
2Φ∗ = −C0(n∗+ − n

∗

−), (28)

E∗ = −∇Φ∗, (29)

∂u∗

∂t∗
+ u∗ ⋅ ∇u∗ = −∇P∗ +

1
ReE
∇

2u∗ + M2C0(n∗+ − n
∗

−)E
∗, (30)

∇ ⋅ u∗ = 0. (31)

The nondimensional parameters in these equations are

C0 =
e0n0

eqd
εE0

, α = kBT
e0E0d

, ReE = ρmKE0d
μ , M =

√
ε/ρm
K . (32)

The number C0 is the conduction number. Using (9), it can be
written as

C0 =
σ0d

2εKE0
. (33)

This number is a key parameter to differentiate the two limit
regimes in EHD conduction: ohmic and saturation. We discuss
thoroughly these regimes in Sec. II F. The number α is the

diffusion number. It can be understood as the ratio of the thermal
electric field generated by the thermal agitation, ET = kBT/e0d, and
E0. As we have discussed in Sec. II C, diffusion is always negligible
in the electroneutral bulk and inside the heterocharge layers. How-
ever, we keep diffusion to be able to apply the model to microsized
pumps where the effect of the natural surface charge on nonmetal-
lic substrates can be relevant. The number ReE, the electric Reynolds
number, is a Reynolds number built with the ionic velocity. Typical
values in EHD conduction pumps range from 5000 for centime-
ter sized pumps to 5 for sizes of the order of 10 μm. Let us stress
that this is not the hydrodynamic Reynolds number. The electric
Reynolds number plays the role of a nondimensional applied electric
field. The mobility number M is the ratio of the so-called hydro-
dynamic mobility and the ionic mobility.34 It only depends on the
liquid properties. In the experiments, the value of M is typically
lower than 10, although for very viscous liquids it can be of the order
of 1000.

The Onsager function with the nondimensional electric field
can be written as

F(w) =
I1(4w)

2w
, w(∣E∗∣) = O1/2

∣E∗∣1/2, (34)

where the Onsager nondimensional number O is

O =
e3

0E0

16πεk2
BT2 . (35)

When O ≥ 1, the enhanced dissociation by the electric field is rele-
vant. Therefore, the typical value of the applied electric field where
this happens is

O = 1Ô⇒ E0 =
16πεk2

BT
2

e3
0

≃ 9 MV/m. (36)

This value has been computed with εr = 5 and room tempera-
ture. In the experiments, the value of this number is in the range
O ∈ [0.1, 2].

However, for a given pump, the value of O changes with
the applied voltage. It would be preferable to define a nondimen-
sional number that characterizes the behavior of a given pump.
The relevant nondimensional number related to E0 here is the
conduction number, C0. We then define a new nondimensional
number as

O = β2
/C0 Ô⇒ β = (

e3
0σ0d

32πε2Kk2
BT

2 )

1/2

. (37)

This number depends only on the operational values of the EHD
pump. In this way, the Onsager function can be computed as

F(w) =
I1(4w)

2w
, w(∣E∗∣) = βC−1/2

0 ∣E∗∣−1/2. (38)

We will see in Sec. III that β can be used to identify the operating
regime for a given EHD conduction pump. In experiments, β is small
for microsized pumps and around 30 for pumps in the centimeter
range.
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FIG. 2. Geometric configuration for the
numerical simulations of Sec. II F. The
color plot shows the nondimensional net
electric charge. The streamlines of the
flow are also plotted. The geometry is
two dimensional.

The nondimensional boundary conditions on each boundary
type are

pos. electrode: n∗+ = 0, n ⋅ ∇n∗− = 0,
Φ∗ = 1, u∗ = 0,

neg. electrode: n ⋅ ∇n∗+ = 0, n∗− = 0,
Φ∗ = 0, u∗ = 0,

substrate: n ⋅ (±n∗±E∗ − α∇n∗±) = 0,
n ⋅ ∇Φ∗ = Λ, u∗ = 0.

(39)

The parameter Λ is a new dimensional number defined as

Λ =
ζ

E0λD
. (40)

The dimensionless surface charge density Λ describes the effect of
the Stern surface charge. It can be written as Λ = ES/E0, where
ES = ζ/λD is the order of magnitude of the electric field created by
the Stern layer. This parameter has an interesting physical interpre-
tation for microsized pumps. When Λ ≪ 1, it is ET ≪ E0 and the
external field dominates the charge distribution near the substrate.
This is the regime where EHD conduction pumps work. When
Λ ≫ 1, the electric field generated in the EDL dominates. This
is the situation for electro-osmosis pumps. Then, Λ characterizes
the transition from electro-osmosis pumping to EHD conduction
pumping.

Equations (27)–(31) along with definition (34) and boundary
conditions (39) define the mathematical model for EHD conduction
pumping. These equations can only be solved numerically, even for
the simplest configurations.

F. Comparison with experimental data
In order to validate the model, we compare the outcome of our

simulations with the results from the experiments described in Ref.
10. In that work, the authors use as liquid the refrigerant R-123. In
the provided specifications, the values of the physical magnitudes
are εr = 4.9, μ = 4.3 × 10−4 Pa s, and ρm = 1.47 × 103 kg/m3.
We estimate the ionic mobility from Walden’s rule,35 and it is
K ≃ 5 × 10−8 m2/V s. The conductivity can vary in the range of 10−7

to 10−8 S/m. All the simulations presented in this section have been
made with σ0 = 10−7 S/m and the other properties values provided
above. The typical size of the micropump described in this paper
is d = 50 μm. The temperature for the simulations is T = 293 K.
These computations do not pretend to obtain accurately the exper-
imental values of electric current and generated pressure, as there
are physical properties not well known, notably the ionic mobilities
of the species. Our aim is to obtain the correct orders of magnitude
and overall trends of the physical quantities. The numerical simu-
lations have been performed with COMSOL Multiphysics that uses

the finite element method. The Navier-Stokes equations are solved
with streamline and crosswind stabilization.36,37 The transport equa-
tions are solved using the transport of diluted species module with
the scheme from Gomes Dutra Do Carmo and Galeão.38 The com-
putations were performed on progressive refined meshes until the
maximum variation in the results was smaller than 5%.

Figure 2 depicts the geometric configuration used in the com-
putation. The configuration is two dimensional. It has been con-
structed with the same relative dimensions as the experimental
pump described in Ref. 10. The location of the metallic electrodes
and the substrate is indicated. We impose periodic boundary con-
ditions at the left and right borders and symmetry boundary condi-
tions at the top border. The color plot corresponds to the nondimen-
sional charge density computed as qt = n+ − n−. The heterocharge
layers next to each electrode are clearly visible. The streamlines of
the fluid velocity are also plotted. The computation was done with
E0 = 12 MV/m and zeta potential ζ = 25 mV.

Figure 3 plots the results from numerical simulations along
with experimental data. The first plot (top) shows the values

FIG. 3. Comparison of experimental values from the micropump in Ref. 10 with the
computed ones. The first plot (top) shows the electric current, and the second plot
(bottom) shows the maximum generated pressure without net flow.
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FIG. 4. Evolution of the nondimensional average velocity with the adverse pressure
gradient for the computed values for the micropump compared with the data from
the mesopump from Ref. 10. The behavior is similar, although the slope is different.

of the electric current. We see that the numerical simulation gives
the right order of magnitude of the measured current. The second
plot (bottom) shows the maximum generated pressure measured
when there is no net flow in the circuit. We see that the fit is accept-
able. To obtain the values of ΔPmax in the numerical simulation, we
apply an adverse pressure gradient Δp at the right border, increas-
ing the value of Δp until the net flow is zero. In order to apply this
pressure drop, COMSOL fixes the pressure to be zero at a point
on the left border of the domain while imposing at the right bor-
der a normal stress corresponding to the given value of the pressure
drop. An alternative way of achieving this is to impose a uniform
force on the domain, along the X direction, of absolute value Δp/Lx,
with Lx being the horizontal length of the domain. We have per-
formed some computations using these techniques to check that we
get the same results with both methods. Once the value of ΔPmax
has been computed for a pair of electrodes, we multiply this num-
ber by 10, accounting for the 10 noninteracting pairs of electrodes
in the experiment. In this way, we reproduce the pressure drop pro-
duced by the hydraulic circuit outside the pump. Figure 4 plots the

evolution of the computed dimensionless average velocity vs the
adverse pressure gradient. The evolution is quasilinear, indicating
that the structure of the flow changes very little as the value of the
adverse pressure gradient is increased. In order to confirm this, Fig. 5
shows the streamlines of the flow, along with the net nondimen-
sional net electric charge, for different values of the adverse pres-
sure gradient Δp. The global structure of the flow changes very little
as the value of Δp is increased. Only the plot at the bottom, for
Δp = 0.10, shows a new roll at the left of the domain. For this
value, the average net velocity is almost zero. This corresponds to
the region of closer to the horizontal axis in the line in Fig. 4, where
the evolution diverges more from linearity.

We have also included in Fig. 4 one series of experimental data
of the maximum generated pressure vs the applied potential from
the mesopump in Ref. 10. They do not provide these data for the
micropump. Anyway, we have included the data from their biggest
pump to show that the trend is similar to what we obtain with our
numerical simulations for the micropump. The slope is different due
to the different sizes of the pumps.

III. CONDUCTION REGIMES
Here, we analyze in detail the characteristics of the EHD con-

duction mechanisms in the two limiting regimes: ohmic and sat-
uration. These regimes have been discussed elsewhere.1,14,30 We
show that the new parameter β, along with the conduction num-
ber C0, is the relevant parameter to characterize the regime that
EHD conduction pumps operate in, including the enhanced dissoci-
ation by the electric field. Here, we are particularly interested in the
dependence of the generated pressure with C0 and β. This has not
been discussed in the aforementioned works. In this section, all the
equations are dimensionless. We drop the asterisks for the sake of
clarity.

Let us consider a simple 2D planar geometry with two parallel
electrodes a distance d apart as depicted in Fig. 6. An electric voltage
V0 is applied between the electrodes so that the typical electric field
is E0 = V0/d. There is no motion of the liquid, as the electrodes are

FIG. 5. Streamlines of the flow and net
nondimensional charge for several val-
ues of the adverse pressure gradient
imposed. The bottom case corresponds
to an average flow velocity almost null.
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FIG. 6. Dimensionless configuration for the 2D parallel plate case, along with the
net electric charge distribution in the ohmic regime, with no flow motion. The het-
erocharge layers at each electrode are clearly visible. The computation has been
made for C0 = 10, with no Onsager-Wien effect.

symmetric and the ionic mobilities of the species are assumed to be
identical. We can also neglect diffusion as there is no substrate. We
look for stationary solutions. In addition, the physical magnitudes
depend only on the coordinate x; hence, the mathematical problem
is 1D. Then, Eqs. (27)–(31) reduce to

±
d(n±E)

dx
= 2C0(F(w(∣E∣)) − n+n−), (41)

d2Φ
dx2 = −C0 (n+ − n−), (42)

E = −
dΦ
dx

. (43)

The Onsager function F(w) is defined in (34). The boundary condi-
tions are

n+(0) = 0, n−(1) = 0, Φ(0) = 1, Φ(1) = 0. (44)

The numerical results presented in this section have been com-
puted numerically using a 1D model of the problem described by
Eqs. (41)–(43) and boundary conditions (44). The computations
have been made with COMSOL Multiphysics.

A. Regime characterization
The number C0, from the expression (33), can be written as

the ratio of two typical times: the ionic transit time τK = d/KE0,
which is the typical time needed by the ions to travel from one
electrode to the other, and the ohmic time τ0

σ = ε/σ0, which is
the typical time the ions take to recombine in the absence of the
Onsager-Wien effect. Hence, C0 = τK/2τ0

σ . The distance an ion cre-
ated by dissociation near one of the electrodes typically travels before
recombining is

λH ≃ KE0τ0
σ =

1
2C0

d. (45)

When C0 ≫ 1, we have τ0
σ ≪ τK and λH ≪ d, and this is the ohmic

regime. In this case, the heterocharge layers are very thin and the
bulk is electroneutral. The first plot in Fig. 7 (top) shows the distri-
bution of positive and negative species along with the electric field.
These profiles have been computed with C0 = 10 and β = 0, that is,
without the Onsager-Wien effect. The heterocharge layers and the
electroneutral bulk are well delimited. The color plot in Fig. 6 (bot-
tom) represents the distribution of net electric charge for the same
configuration computed as (n+ − n−).

When C0 ≪ 1, it is τK ≪ τ0
σ and λH ≫ d. This means that the

heterocharge layers overlap, and there is no electroneutral bulk. The

FIG. 7. Nondimensional values of the concentration of positive and negative
species and the electric field, without the Onsager-Wien effect. For C0 = 10 (top), in
the ohmic regime, the heterocharge layers and the electroneutral bulk are clearly
delimited. For C0 = 0.1 (bottom), in the saturation regime, there is no electroneutral
bulk. In addition, the nondimensional electric field in the saturation regime is very
close to 1.
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ions typically leave the liquid before they have time to recombine.
This is the saturation regime. The second plot in Fig. 7 (bottom)
plots the distribution of positive and negative species along with the
electric field for C0 = 0.1 and β = 0. We can see that the concen-
trations of species are very low, as the ions leave the domain before
they have time to recombine. As a consequence, the value of the net
electric charge is small and the nondimensional electric field is very
close to 1 in the whole domain.

In fact, when electric field enhanced dissociation is considered,
we have to replace the ohmic time above by τσ = ε/σ = τ0

σ/
√
F(w),

where we have used (10). That is, the conduction regimes are better
described by the combination30

CE
0 = C0

√
F(w0), w0 = βC−1/2

0 =
√
O. (46)

Here, w0 is given by (34) when the magnitude of the nondimensional
electric field E is 1. We will use F0 = F(w0). If CE

0 ≫ 1, we are in the
ohmic regime. If CE

0 ≪ 1, we are in the saturation regime.

B. Ohmic regime
The ohmic regime, where CE

0 ≫ 1, is characterized by the
existence of two heterocharge layers next to the electrodes and an
electroneutral bulk. As it is discussed in Ref. 1, we can use a bound-
ary layer approximation. The analysis made by these authors is an
extension to liquids of the boundary layer analysis applied in the gas
phase by Thomson and Thomson.39 We will work only with the left
half of the domain, as the distribution of the species and electric field
is symmetric. Then, we have a heterocharge layer for 0 < x < λ and
an electroneutral bulk for λ < x < 1/2. Here, λ = λH/d. The hete-
rocharge layers appear because ions produced near the electrodes of
opposite polarity typically travel a distance λ before they recombine.
The ions of the opposite polarity to the electrode have few counteri-
ons around them to recombine. Then, inside the heterocharge layers,
recombination can be neglected. Mathematically, the recombination
terms n+n− in Eq. (41) are negligible compared to the dissociation
term because of the boundary conditions p = 0 and n = 0 at the
electrodes. The Onsager function is not constant inside the hete-
rocharge layer, but we simplify the problem assuming that F(w(|E|))
≃ F(w(|E(x = 0)|)) = Fe, that is, it takes the value at the electrode.30

We also neglect diffusion, as we are inside the heterocharge layer (see
Sec. II C). With these assumptions, Eqs. (41)–(43) inside the hete-
rocharge layer, corresponding to the positive electrode, 0 < x < λ,
reduce to

±
d(n±E)

dx
= 2C0Fe, (47)

dE
dx
= C0(n+ − n−) (48)

with boundary conditions

n+(0) = 0, n−(λ) =
√
Fb, E(λ) = Eb. (49)

Here, Eb is the electric field in the bulk and Fb = F(Eb). The second
equation expresses that, in the electroneutral bulk, the dissociation-
ionization process is in equilibrium. Then, the values of the concen-
trations of ionic species are the equilibrium ones, given by (8). These

equations are easily solved to get

0 < x < λ :

E(x) =
√

4C2
0Fex2 − 4C0

√
FbEbx + (1 +

Fb
Fe
)E2

b,

n+(x) =
2C0Fex
E(x)

,

n−(x) =
2
√
FbEb − 2C0Fex

E(x)
.

λ < x < 1/2:

E(x) = Eb,
n±(x) =

√
Fb.

(50)

The width of the heterocharge layer is

λ =
Eb

2C0

√
Fb
Fe

. (51)

In this symmetric configuration, there is no net electric force
on the liquid. However, we can explore the dependence of the gen-
erated pressure computing the electric force on the left half of the
fluid domain, delimited by the dotted rectangle in Fig. 6. We have

ΔPe =
1/2

∫

0

(n+ − n−)Edx =
λ

∫

0

(n+ − n−)Edx = −
E2
b

2C0

Fb
Fe

. (52)

We have used (50) to compute the integral. The negative sign implies
that the force is directed toward the left electrode. From now on, ΔPe
will mean the absolute value of the generated pressure.

In experimental conditions, β has a wide range of values. For
pumps of centimeter size, it can be β ≃ 30. Figure 8 plots the evo-
lution of the factor E2

bFb/Fe vs C0. These plots have been obtained
integrating numerically Eqs. (41)–(43) along with boundary condi-
tions (44). When C0 ≫ 1, this factor becomes independent of C0
and equal to 1. Therefore, in this limit, the dimensionless generated
pressure scales as

ΔPe ≃
1

2C0
. (53)

FIG. 8. Factor E2
bFb/Fe vs C0 for different values of β.
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This asymptotic law will be more accurate for small and moderate
values of β. Actually, it is exact if there is no enhanced dissociation.
However, in the experiments, high values of β imply high values of
C0. For example, if β = 30, typically C0 ranges from 700 to 12 000.
From Fig. 8, it can be seen that for these values of C0, the factor
depends only weakly on C0.

In this limit, the dimensionless current density is

J = n−(0)E(0) ≃ 2. (54)

The reference scale for the current density is J0 = σE0/2.
The dependence of the corresponding dimensional magnitudes

on the applied electric field is

ΔPdim
e ∝ E2

0 ∝ V2
0 , ΔJdim

∝ E0 ∝ V0. (55)

C. Saturation regime
In this regime, we have CE

0 ≪ 1. From Eq. (45), the hete-
rocharge layers span all the volume between electrodes, overlapping,
as it can be seen in the second plot in Fig. 7 (bottom). Hence, there
is no electroneutral bulk. In addition, the ions typically leave the liq-
uid before they have time to recombine. Then, we can again neglect
recombination, but now in the entire volume. For CE

0 to be very
small, it is necessary that C0 ≪ 1 because the value of the Onsager
function is not small in this limit. Then, the source term in the Pois-
son equation (28) is very small and the nondimensional electric field
is very close to 1, the value corresponding to no net charge in the
volume. The electric field can be expanded in powers of the small
parameter C0,30

E(x) ≃ 1 + 2C2
0F0(x2

− x +
1
6
). (56)

For completeness, this expression is derived in the Appendix.
In the limit C0 ≪ 1, Eqs. (41)–(43) become

±
dn±
dx
= 2C0F0 (57)

with boundary conditions

n+(0) = 0, n−(1) = 0. (58)

Solving these equations, we find

n+(x) = 2C0F0x, n−(x) = 2C0F0(1 − x). (59)

These are linear functions on x spanning all the volume between
electrodes.

From (56) and (59), the generated pressure is

ΔPe =

RRRRRRRRRRRRRR

1/2

∫

0

(n+ − n−)Edx

RRRRRRRRRRRRRR

≃
1
2
C0F0. (60)

In the limit C0 ≪ 1, the argument of the Onsager function, w0,
is large. The Bessel function can be substituted by the Hankel
asymptotic expansion.40 Thus, the value of F0 in this limit is

F0 ≃
1

4
√

2πβ3/2
C3/4

0 e4βC−1/2
0 . (61)

The generated pressure using this asymptotic expression is

ΔP a
e ≃

C7/4
0 e4βC−1/2

0

8
√

2πβ3/2
. (62)

For the electric current density, we have

J ≃ n−(0)E(0) = 2C0F0, (63)

and the asymptotic expression is

J a ≃
C7/4

0 e4βC−1/2
0

2
√

2πβ3/2
. (64)

If no Onsager-Wien effect is included, we get

ΔPa
e ≃ −

1
2
C0, Ja ≃ 2C0. (65)

In this case, the corresponding dimensional magnitudes, ΔPdim
e and

Jdim, are independent of E0, that is, independent of the applied
potential.

D. Discussion on the conduction regimes
The first plot in Fig. 9 (top) shows the behavior of the computed

dimensional electric current, I∝ J/C0, with the dimensional average
electric field, E0 ∝ C−1

0 . The values in these plots have been obtained
solving numerically Eqs. (41)–(43) along with boundary conditions
(44). The line β = 0 corresponds to the case where the Onsager-
Wien effect has been discarded. In this situation, the regimes are
fully characterized by the value of C0. The ohmic regime, C−1

0 ≪ 1,
corresponds to low values of the electric field. Here, the electric cur-
rent is proportional to the electric field. In the saturation regime,
C−1

0 ≫ 1, the dimensional electric current reaches a saturation value,
independent of the applied electric field.

When the enhanced dissociation is considered, we have β > 0.
For small values of β, the effect of the enhanced dissociation is to
increase the current in the saturation regime. As β increases, the
saturation regime disappears. The current increases always with the
electric field. For all values of β, the current becomes proportional
to the electric field for small enough values of E0. This behavior can
be explained observing the second plot in Fig. 9 (bottom). There,
we plot the value of CE

0 = C0
√
F0 as a function of C0 for different

values of β. For high values of β, it is always CE
0 > 2. Then, sat-

uration regime is never attained. This means that the structure of
heterocharge layers and electroneutral bulk depicted in the first plot
of Fig. 7 (top) exists even for high values of the electric field, that is,
for C0 small. The enhanced dissociation is able to create enough ions
in the volume to compensate the ions leaving the domain.

For small values of β, when decreasing C0 (which means
increasing E0), the system goes from the ohmic to the saturation
regime. The dashed lines in the second plot (bottom) correspond
to the approximation given in the saturation regime by (64) for each
value of β. The asymptotic expression for F0 in (61) is valid up to a
5% of the real value when

βC−1/2
0 = O1/2

> 2Ô⇒ C0 < β2
/4. (66)

Then, as β increases, the maximum value of C0 for which the asymp-
totic expression is accurate increases. Although, for the sake of clar-
ity, it is not shown in the plot, if the integral in (60) is used to
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FIG. 9. The first plot (top) shows the behavior of the dimensional current vs the
dimensional average electric field for different values of β. The dashed lines cor-
respond to the asymptotic expression (64). The second plot (bottom) shows the
value of CE

0 vs C0. In both cases, β = 0 corresponds to nonenhanced dissociation.
Although the magnitudes represented in both axes are nondimensional, they have
been chosen to be proportional to the dimensional current and the dimensional
electric field.

compute the generated pressure, the match is excellent for all values
of β while in the saturation regime.

The first plot in Fig. 10 (top) shows the absolute value of the
generated pressure as a function of C0. For the case β = 0, the gener-
ated pressure is proportional to C0 in the saturation regime (C0≪ 1)
and to C−1

0 in the ohmic regime (C0 ≫ 1). When the Onsager-Wien
effect is included, and in the ohmic regime, the generated pressure is
proportional to C−1

0 for small and moderate values of β. The reason
is that in the approximate expression (52), the factor E2

bF0/Fe is very
close to one for all values of β. For higher values of β, we observe
a deviation; although if the value of C0 is high enough, the same
dependency is recovered. Similarly to what is observed in the cur-
rent, for β > 1, there is no saturation regime. The generated pressure
keeps increasing when the applied field E0 is increased. The second
plot (bottom) shows how the dimensional pressure depends on the
applied electric field for the same values of β.

When β is small, a saturation regime is observed for small val-
ues of C0. Here, the approximated expression (65) is valid only for

FIG. 10. The first plot (top) shows the generated pressure vs C0 for different val-
ues of β. The dashed lines correspond to the asymptotic expression (64). The line
β = 0 corresponds to nonenhanced dissociation. The second plot (bottom) shows
the behavior of the dimensional generated pressure vs E0. Although the magni-
tudes represented in both axes are dimensionless, they have been chosen to be
proportional to the dimensional generated pressure and the dimensional electric
field.

very small values of β and for C0 not much smaller than 1. The
dashed lines correspond to the asymptotic values given by (62). As
it was the case with the electric current, the maximum value of C0
for this expression to be accurate increases with β. Again, although
it is not included in the plot, if the approximate value given by (60) is
used to compute the generated pressure the match is excellent, while
we stay in the saturation regime.

This analysis shows that the working regime of an EHD con-
duction pump, including enhanced dissociation by the electric field,
can be characterized by two nondimensional parameters: β and C0.
For a given system, β only depends on the physical properties of
the liquid and the size of the system and the temperature, not on
the applied electric potential. For β ⪆ 1, the system remains always
in the ohmic regime and the generated pressure is proportional to
C−1

0 for high enough values of E0. We can explain this in terms of
the structure of the heterocharge layers. The ohmic regime is char-
acterized by the existence of two heterocharge layers separated by

Phys. Fluids 31, 113601 (2019); doi: 10.1063/1.5121164 31, 113601-12

Published under license by AIP Publishing

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

an electroneutral bulk. When the applied field increases (decreas-
ing C0), the heterocharge layers tend to become thicker and overlap.
The ions have time to recombine before leaving the liquid. However,
the Onsager-Wien effect increases the number of ions. For β ≥ 1,
the enhanced dissociation produces enough ions to preserve the
structure of nonoverlapping heterocharge layers with an electroneu-
tral bulk. For small β (small systems and/or nonconducting liquids),
the enhanced dissociation cannot preserve this structure, the het-
erocharge layers overlap, and a saturation regime arises, although
somewhat affected by the enhanced dissociation.

It must be pointed out that, for a given system, with fixed β,
not all the values of C0 plotted in Fig. 10 can be reached experimen-
tally. In typical conditions, the applied electric field cannot be greater
than 15 MV/m, approximately. For greater values, injection of elec-
tric charge at the electrodes occurs, and the model has to be modified
in order to account for charge injection.

E. Influence of the motion of the fluid
The discussions in Secs. III A–III D did not include the fluid

motion. Furthermore, real EHD conduction pumps have a more
complicated geometry. We have performed some simulations com-
puting the whole flow to explore the applicability of the regime
discussion when the motion of the fluid is included and a more real-
istic geometry is considered. We have used a computational domain
similar to the one discussed in Sec. II F with d = 50 μm. We have
computed the maximum generated pressure for three liquids with
electrical conductivities σ = 10−6, 10−7, and 10−8 S/m. The first value
is quite high, but it was chosen to get a high value of the parame-
ter β for this given value of d. The dynamic viscosity of the liquid
was μ = 2 × 10−3 Pa s. We choose a high value of the viscosity in
order to assure a small value of the Reynolds number. As we have
discussed in Sec. II F, in this way, the structure of the flow changes
very little when an increasing adverse pressure gradient is imposed.
The ionic mobility was computed from the Walden rule to be K
= 5 × 10−9 m2/V s. The simulations were done with an applied elec-
tric field E0 ranging from 1 to 15 MV/m. These values correspond
to the micropump experiment discussed in Ref. 10. The results of
these simulations are shown in Fig. 11. This figure has to be com-
pared with the first plot in Fig. 10 (top). We can see that the trends
are similar. In particular, for high values of β in the ohmic regime, we

FIG. 11. Dimensionless maximum generated pressure vs applied electric field
computed with fluid motion. The trend line for the ohmic regime is included.

get ΔPe
∝ C−1

0 with a good approximation. For β = 3.68, the system
never enters the saturation regime. For β = 1.16, there is a slight satu-
ration, but the Onsager-Wien effects quickly compensate the charge
depletion. The curve for β = 0.37 is quite similar to the line for β =
0.3 in Fig. 10. The pump enters the saturation regime quickly, and
only for higher values of the applied electric field, the Onsager-Wien
effect is able to change the trend.

These simulations have been performed for a small pump,
where the velocity of the liquid is not very high. For larger pumps,
the velocity of the liquid can overcome the electric drift velocity of
the ions and perturb significantly the heterocharge layers. Anyway,
in this case, both β and C0 are very high. The pumps will always
operate in an approximate ohmic regime with a clearly defined
electroneutral region between each electrode pair. In that case, the
dependence of the generated pressure with respect to C0 predicted
in Sec. III B should still be valid.

IV. CONCLUSIONS
In this paper, we have examined EHD conduction pumping in

liquids with low conductivity. We have built a model of EHD con-
duction pumping that can be applied to pumps of all sizes, down
to some tens of micrometers. The model assumes a weakly disso-
ciated symmetric electrolyte with two species with the same ionic
mobility and diffusivity. The enhanced electric field dissociation, the
Onsager-Wien effect, is also included. At the electrodes, the electri-
cal boundary conditions are given by the imposed voltage. On the
nonconductive surfaces, the electrical boundary condition consists
of a fixed surface charge, representing the Stern layer of the electri-
cal double layer. The value of this surface charge can be estimated
from experimental measurements of the ζ potential when the exter-
nal applied electric field has no normal component to the substrate.
The value of ζ is characteristic of a given combination of substrate-
liquid. The inclusion of this surface charge in our model introduces
a new nondimensional number, Λ, the ratio between the magni-
tudes of the natural electric field in the electrical double layer and
the external applied field.

There are two typical regimes in EHD conduction pumping: the
ohmic regime and the saturation regime. When electric enhanced
dissociation is taken into account, the number CE

0 = C0
√
F(w0)

determines which one dominates, with C0 being the conduction
number, w0 = βC−1/2

0 , and F(w0) being the Onsager function for w0.
These regimes have already been discussed in previous works. How-
ever, here we have highlighted how the generated pressure behaves
in each regime. Two dimensionless numbers, β and C0, characterize
this behavior. The number β depends on liquid physical properties,
the size of the system, and the temperature. The number C0 includes
the influence of the applied electric field. When β ⪆ 1, the system
is always in the ohmic regime even for high values of E0 (low val-
ues of C0). In this case, the Onsager-Wien effect is able to replenish
the ions extracted from the liquid when the applied electric field is
very high. Therefore, there are always two heterocharge layers and
an electroneutral bulk. In this regime, the nondimensional gener-
ated pressure is proportional to C−1

0 for all values of β for a high
enough value of E0. Then, the dimensional generated pressure is pro-
portional to E2

0. For small values of β, the Onsager-Wien effect is not
able to preserve the electroneutral bulk, and when the applied elec-
tric field is increased, the system enters into the saturation regime.
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In that case, the dimensionless generated pressure is approximately
proportional to C0. The dimensional pressure would become inde-
pendent of the applied electric field, but the enhanced dissociation
introduces a small deviation. For intermediate values of β, there is no
saturation, although the increase in the generated pressure with the
applied electric field is slower than in the ohmic regime. Although
the regime analysis has been performed without fluid motion, we
have performed several computations to verify the predictions of the
analysis when the motion of the fluid is considered.
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APPENDIX: DERIVATION OF E(x) FOR SMALL VALUES
OF CO

We show here how to obtain the expression (56) for the elec-
tric field in the saturation regime. We provide a simplified version
of the derivation described in Ref. 30. In this regime, it is C0 ≪ 1.
The ions leave the liquid before they have time to recombine. There-
fore, we can neglect recombination in Eqs. (41)–(43). In addition,
the electric field must be close to 1, as the source term in the Poisson
equation is very small. Then, we can take F(w(E)) ≈ F0. With these
approximations, these equations can be written

d(n+E)
dx

= 2C0F0, (A1)

d(n−E)
dx

= −2C0F0, (A2)

dE
dx
= C0 (n+ − n−). (A3)

Subtracting (A2) from (A1) and introducing (A3), we get

dE2

dx
= A + 8C2

0F0x. (A4)

Here, A is a constant. In order to get boundary conditions for this
equation, we multiply (A3) by E. Then, using (58), we get

dE2

dx
∣

x=0
= −2C0n−(0)E(0) = −2C0J, (A5)

dE2

dx
∣

x=1
= 2C0n+(1)E(1) = 2C0J. (A6)

Here, J = n−(0)E(0) = n+(1)E(1) is the stationary current density.
From (A4)–(A6), we obtain

J = 2C0F0, A = −4C2
0F0. (A7)

Introducing the value of A in (A4) and integrating, we obtain the
electric field

E(x) =
√

B + 4C2
0F0(x2 − x). (A8)

The constant B is obtained imposing that the nondimensional
potential drop between the electrodes is 1. Expanding E(x) in powers
of C0 ≪ 1, we get

1

∫

0

E(x)dx =
√
B −

F0C2
0

3
√
B
= 1. (A9)

Solving for B up to order C2
0 , it is

B = 1 +
2
3
F0C2

0 . (A10)

Introducing this expression in (A8) and expanding again in powers
of C0 ≪ 1, we obtain (56).
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