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Abstract. The n-dimensional p-filiform Leibniz algebras of maximum length
have already been studied with 0 ≤ p ≤ 2. For Lie algebras whose nilindex is
equal to n− 2 there is only one characteristic sequence, (n − 2, 1, 1), while in
Leibniz theory we obtain two possibilities: (n−2, 1, 1) and (n−2, 2). The first
case (the 2-filiform case) is already known. The present paper deals with the
second case, i.e., quasi-filiform non Lie Leibniz algebras of maximum length.
Therefore this work completes the study of maximum length of Leibniz algebras
with nilindex n− p with 0 ≤ p ≤ 2.
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1. Introduction

The notion of length of a Lie algebra was introduced by Gómez, Jiménez-Merchán
and Reyes in [10]. In this work they distinguished a very interesting family: algebras
admitting a graduation with the greatest possible number of non-zero subspaces,
the so-called algebras of maximum length.

Leibniz algebras appear as a natural generalization of Lie algebras (Loday, [12]
and [13]) and the concept of length can be defined in a similar way in this setting.
It is therefore expected that Leibniz algebras of maximum length will play a similar
role to the Lie case. The cohomological properties of Leibniz algebras have been
widely studied (see for example [7]- [9] and [14]). A remarkable fact of the algebras
of maximum length is the relative simplicity of the study of these properties [5].

The study of the classification of non associative nilpotent Lie algebras is too
complex. In fact, it appeared two centuries ago and it still remains unsolved. As to
Leibniz algebras the problem is analogous thus we will restrict our attention to two
important families of Leibniz algebras: p-filiform and quasi-filiform (see Definitions
1.4 and 1.5).

The classification of filiform and 2-filiform Lie algebras of maximum length is
given in [10] and [11] (note that in this case there are no null-filiform algebras
and the concepts of 2-filiform and quasi-filiform agree). In a Leibniz setting, the
null-filiform case was studied in [1], whereas the cases filiform and 2-filiform are
developed in [2].

We will focus our attention on quasi-filiform Leibniz algebras. Let L be an n-
dimensional quasi-filiform non Lie Leibniz algebra, then its characteristic sequence
is (n− 2, 1, 1) or (n− 2, 2). The first case (the 2-filiform case) has been dealt with
in [2]. In this work we consider the second case, i.e., algebras with characteristic
sequence (n−2, 2). Our main goal is to complete the study of algebras of maximum
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length with nilindex n− 2. For the study of these algebras we extend the naturally
graded quasi-filiform Leibniz algebras and we prove that if we consider the extension
of naturally graded quasi-filiform Lie algebras then we obtain Lie algebras.

Our main results (see Theorems 3.1 and 3.2 for the precise statement) will be
proved in Section 3 and the following definitons will be used throughtout the present
paper:

Definition 1.1. An algebra L over a field F is called Leibniz algebra if it verifies
the Leibniz identity: [x, [y, z]] = [[x, y], z] − [[x, z], y] for any elements x, y, z ∈ L
and where [, ] is the multiplication in L.

Note that if in L the identity [x, x] = 0 holds, then the Leibniz identity coincides
with the Jacobi identity. Thus, Leibniz algebras are a generalization of Lie algebras.
For a given Leibniz algebra L we defined the following sequence: L1 = L and
Lk+1 = [Lk,L]. From now on we will consider the complex number field. Let L be
a nilpotent algebra for which the index of nilpotency is equal to k. Let us define
the naturally graded algebras as follows:

Definition 1.2. Let us take Li = Li/Li+1, 1 ≤ i ≤ n−k− 1 and grL = L1⊕L2⊕
· · ·⊕Lk. Then [Li,Lj ] ⊆ Li+j and we obtain the graded algebra grL. If grL and L
are isomorphic, in notation grL ∼= L, we say that L is a naturally graded algebra.

The above constructed graduation is called natural graduation.
The set R(L) = {x ∈ L : [y, x] = 0, ∀y ∈ L} is called the right annihilator of L.

Note that for any x, y ∈ L the elements [x, x] and [x, y] + [y, x] are in R(L).
The set Cent(L) = {z ∈ L : [x, z] = [z, x] = 0, ∀x ∈ L} is called the center of L.

Note that R(L) is an ideal of L.
We define the set I(L) =< [x, x] : ∀x ∈ L >. Note that I(L) is an ideal of L.
Let x be a nilpotent element of the set L\L2. For the nilpotent operator of rigth

multiplication Rx we define a decreasing sequence C(x) = (n1, n2, . . . , nk), which
consists of the dimensions of Jordan blocks of the operator Rx. In the set of such
sequences we consider the lexicographic order, that is, C(x) = (n1, n2, . . . , nk) ≤
C(y) = (m1,m2, . . . ,ms) ⇐⇒ there exists i ∈ N such that nj = mj for any j < i
and ni < mi.

Definition 1.3. The sequence C(L) = maxC(x)x∈L\L2 is called characteristic
sequence of the algebra L.

Example 1.1. If C(L) = (1, 1, . . . , 1), then evidently, the algebra L is abelian.

Let L be an n-dimensional nilpotent Leibniz algebra and p a non negative integer
(p < n).

Definition 1.4. The Leibniz algebra L is called p-filiform if C(L) = (n−p, 1, . . . , 1
︸ ︷︷ ︸

p

).

If p = 1, L is called filiform algebra and if p = 0 null-filiform algebra.

Definition 1.5. A Leibniz algebra L is called quasi-filiform if its nilindex is equal
to n− 2, namely, Ln−2 6= {0} and Ln−1 = {0}, where n = dim(L).

A Leibniz algebra L is Z-graded if L = ⊕i∈ZVi, where [Vi, Vj ] ⊆ Vi+j for any
i, j ∈ Z with a finite number of non null spaces Vi.

We will say that a nilpotent Leibniz algebra L admits the connected graduation
L = Vk1

⊕ · · · ⊕ Vkt
if Vki

6= 0 for any i (1 ≤ i ≤ t).
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Definition 1.6. The number l(⊕L) = l(Vk1
⊕ · · · ⊕ Vkt

) = kt − k1 + 1 is called the
length of graduation. A graduation is called of maximum length if l(⊕L) = dim(L).

We define the length of an algebra L by
l(L) = max{l(⊕L) such that L = Vk1

⊕ · · · ⊕ Vkt
is a connected graduation}.

Definition 1.7. A Leibniz algebra L is called of maximum length if l(L) = dim(L).

2. Naturally graded quasi-filiform Leibniz algebras

The following theorem gives the classification of naturally graded n-dimensinal
quasi-filiform Lie algebras (see [6]).

Theorem 2.1. Let g be a complex n-dimensional naturally graded quasi-filiform
Lie algebra. Then there exists a basis {x0, x1, . . . , xn−2, y} of g, such that the mul-
tiplication in the algebra has the following form:

L(n, r) (n ≥ 5, 3 ≤ r ≤ 2⌊n−1
2

⌋ − 1, r odd) : Q(n, r)(n ≥ 7, n odd, 3 ≤ r ≤ n− 4, r odd) :

{
[x0, xi] = xi+1, 1 ≤ i ≤ n− 3
[xi, xr−i] = (−1)i−1y, 1 ≤ i ≤ r−1

2







[x0, xi] = xi+1, 1 ≤ i ≤ n− 3
[xi, xr−i] = (−1)i−1y, 1 ≤ i ≤ r−1

2

[xi, xn−2−i] = (−1)i−1xn−2, 1 ≤ i ≤ n−3
2

τ (n, n− 3) (n ≥ 6, n even) :







[x0, xi] = xi+1, 1 ≤ i ≤ n− 3

[xn−1, x1] =
(n−4)

2
xn−2,

[xi, xn−3−i] = (−1)i−1(xn−3 + xn−1), 1 ≤ i ≤ n−4
2

[xi, xn−2−i] = (−1)i−1 (n−2−2i)
2

xn−2, 1 ≤ i ≤ n−4
2

τ (n, n− 4) (n ≥ 7, n odd) :







[x0, xi] = xi+1, 1 ≤ i ≤ n− 3

[xn−1, xi] =
(n−5)

2
xn−4+i, 1 ≤ i ≤ 2

[xi, xn−4−i] = (−1)i−1(xn−4 + xn−1), 1 ≤ i ≤ n−5
2

[xi, xn−3−i] = (−1)i−1 (n−3−2i)
2

xn−3, 1 ≤ i ≤ n−5
2

[xi, xn−2−i] = (−1)i(i− 1) (n−3−i)
2

xn−2, 2 ≤ i ≤ n−3
2

ε(7, 3) :






[x0, xi] = xi+1, 1 ≤ i ≤ 3
[y, xi] = xi+3, 1 ≤ i ≤ 2
[x1, x2] = x3 + y,
[x1, xi] = xi+1, 3 ≤ i ≤ 4

ε1(9, 5) : ε2(9, 5) :







[x0, xi] = xi+1, 1 ≤ i ≤ 5
[y, xi] = 2xi+5, 1 ≤ i ≤ 2
[x1, x4] = x5 + y,

[x1, x5] = 2x6,

[x1, x6] = 3x7,

[x2, x3] = −x5 − y,

[x2, x4] = −x6,

[x2, x5] = −x7.







[x0, xi] = xi+1, 1 ≤ i ≤ 5
[y, xi] = 2xi+5, 1 ≤ i ≤ 2
[x1, x4] = x5 + y,

[x1, x5] = 2x6,

[x1, x6] = x7,

[x2, x3] = −x5 − y,

[x2, x4] = −x6,

[x2, x5] = x7,

[x3, x4] = −2x7.
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Ln−1 ⊕ C (n ≥ 4) : Qn−1 ⊕ C (n ≥ 7, n odd) :

{
[x0, xi] = xi+1, 1 ≤ i ≤ n− 3.

{
[x0, xi] = xi+1, 1 ≤ i ≤ n− 3,
[xi, xn−2−i] = (−1)i−1xn−2, 1 ≤ i ≤ n−3

2
.

Let L be an n-dimensional (n ≥ 6) naturally graded quasi-filiform non Lie Leibniz
algebra which has the characteristic sequence (n−2, 1, 1) or (n−2, 2). The first case
(case 2-filiform) has been studied in [4] and the second in [2]. In this work, we will
extend this study so we will consider every Leibniz algebras with C(L) = (n−2, 2).

From the definition of the characteristic sequence it follows the existence of a
basis element e1 ∈ L\L2 such that the operator of right multiplication Re1 has one
of the following forms:

(
Jn−2 0

0 J2

) (
J2 0

0 Jn−2

)

A quasi-filiform Leibniz algebra is called of the type I if the operator Re1 is like
the first matrix and of the type II in another case.

In the following theorems we summarize the results obtained in [3].

Theorem 2.2. Let A be a naturally graded Leibniz algebra of the first type. Then
it is isomorphic to one algebra of the following pairwise non isomorphic families:

A1,λ : A2,λ :







[yi, y1] = yi+1, 1 ≤ i ≤ n− 3

[yn−1, y1] = yn,

[y1, yn−1] = λyn.







[yi, y1] = yi+1, 1 ≤ i ≤ n− 3

[yn−1, y1] = yn,

[y1, yn−1] = λyn, λ ∈ {0, 1}

[yn−1, yn−1] = yn.

A3,λ : A4,λ :






[yi, y1] = yi+1, 1 ≤ i ≤ n− 3

[yn−1, y1] = yn + y2,

[y1, yn−1] = λyn, λ ∈ {−1, 0, 1}.







[yi, y1] = yi+1, 1 ≤ i ≤ n− 3

[yn−1, y1] = yn + y2,

[yn−1, yn−1] = λyn, λ 6= 0.

A5,λ,µ : A6 :







[yi, y1] = yi+1, 1 ≤ i ≤ n− 3

[yn−1, y1] = yn + y2,

[y1, yn−1] = λyn, (λ, µ) = (1, 1) or (2, 4)

[yn−1, yn−1] = µyn.







[yi, y1] = yi+1, 1 ≤ i ≤ n− 3

[yn−1, y1] = yn,

[y1, yn−1] = −yn,

[yn−1, yn−1] = y2,

[yn−1, yn] = y3.

Theorem 2.3. Let A be a naturally graded Leibniz algebra of the second type. Then
it is isomorphic to one algebra of the following pairwise non isomorphic families:

n even

A1 : A2 :







[y1, y1] = y2,

[yi, y1] = yi+1, 3 ≤ i ≤ n− 1

[y1, yi] = −yi+1, 3 ≤ i ≤ n− 1.







[y1, y1] = y2,

[yi, y1] = yi+1, 3 ≤ i ≤ n− 1

[y1, y3] = y2 − y4,

[y1, yj ] = −yj+1, 4 ≤ j ≤ n− 1.
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A3 : A4 :







[y1, y1] = y2,

[yi, y1] = yi+1, 3 ≤ i ≤ n− 1

[y3, y3] = y2,

[y1, yi] = −yi+1, 3 ≤ i ≤ n− 1.







[y1, y1] = y2,

[yi, y1] = yi+1, 3 ≤ i ≤ n− 1

[y1, y3] = 2y2 − y4,

[y3, y3] = y2,

[y1, yj ] = −yj+1, 4 ≤ j ≤ n− 1.

n odd, A1,A2,A3,A4

A5 : A6,λ :







[y1, y1] = y2,

[yi, y1] = yi+1, 3 ≤ i ≤ n− 1

[y1, yi] = −yi+1, 4 ≤ i ≤ n− 1

[yi, yn+2−i] = (−1)iyn, 3 ≤ i ≤ n− 1.







[y1, y1] = y2,

[yi, y1] = yi+1, 3 ≤ i ≤ n− 1

[y1, y3] = λy2 − y4, λ ∈ {1, 2}

[y1, yj ] = −yj+1, 4 ≤ j ≤ n− 1

[yi, yn+2−i] = (−1)iyn, 3 ≤ i ≤ n− 1.

A7,λ : A8,λ,µ :







[y1, y1] = y2,

[yi, y1] = yi+1, 3 ≤ i ≤ n− 1

[y3, y3] = λy2, λ 6= 0

[y1, yi] = −yi+1, 3 ≤ i ≤ n− 1

[yi, yn+2−i] = (−1)iyn, 3 ≤ i ≤ n− 1.







[y1, y1] = y2,

[yi, y1] = yi+1, 3 ≤ i ≤ n− 1

[y1, y3] = λy2 − y4,

[y3, y3] = µy2,

[y1, yj ] = −yj+1, 4 ≤ j ≤ n− 1

[yi, yn+2−i] = (−1)iyn, 3 ≤ i ≤ n− 1.

with (λ,µ) = (−2, 1), (2, 1) or (4, 2)

The study of Leibniz algebras of maximum length can be simplified by following
the reasoning in the proof of theorems 2.2 and 2.3, see [3]. The next proposition
gives the structure of a naturally graded n-dimensional Leibniz algebra:

Proposition 2.1. Let L be a naturally graded quasi-filiform Leibniz algebra, then
it is isomorphic to one algebra of the pairwise non isomorphic families:

NG1 : NG2 :







[e1, e1] = e2,

[ei, e1] = ei+1, 3 ≤ i ≤ n− 1

[e1, e3] = λe2 − e4,

[e3, e3] = µe2, λ, µ ∈ C

[e1, ei] = −ei+1, 4 ≤ i ≤ n− 1.







[e1, e1] = e2,

[ei, e1] = ei+1, 3 ≤ i ≤ n− 1

[e1, e3] = λe2 − e4,

[e3, e3] = µe2, λ, µ ∈ C

[e1, ei] = −ei+1, 4 ≤ i ≤ n− 1

[ei, en+2−i] = (−1)ien, 3 ≤ i ≤ n− 1.
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NG3 : NG4 :







[ei, e1] = ei+1, 1 ≤ i ≤ n− 3

[en−1, e1] = en + αe2,

[e1, en−1] = βen,

[en−1, en−1] = γen, α, β, γ ∈ C.







[ei, e1] = ei+1, 1 ≤ i ≤ n− 3

[en−1, e1] = en,

[e1, en−1] = −en,

[en−1, en−1] = e2,

[en−1, en] = e3.
where NG1 and NG2 correspond to algebras of the type II and NG3 and NG4 to
algebras of the type I.

3. Quasi-filiform Leibniz algebras of maximum lenght

Let L be an n-dimensional (n ≥ 6) quasi-filiform non Lie Leibniz algebra with
the characteristic sequence (n−2, 2). The proposition 3.1 shows a structure of these
algebras and requires the previous result.

Proposition 3.1. Let L be an n-dimensional quasi-filiform Leibniz algebra. Then
L is isomorphic to one algebra of the following pairwise non isomorphic families:

ÑG1 :







[e1, e1] = e2,

[ei, e1] = ei+1, 3 ≤ i ≤ n− 1

[e1, e3] = λe2 − e4 + µnen,

[e3, e3] = µe2 + γnen,

[e1, ei] = −ei+1 + γi,nen, 4 ≤ i ≤ n− 1

[ei, ej ] = (∗)ei+j−1 + (∗)ei+j + · · ·+ (∗)en, ∀(i, j) 6= (1, 1), (1, 3), (3, 3), (3, 1), (i, 1), (1, i)

[e2, ei] = zien, i 6= 2, n.

ÑG2 :







[e1, e1] = e2 + αnen,

[ei, e1] = ei+1, 3 ≤ i ≤ n− 1

[e1, e3] = λe2 − e4 + (∗)en,

[e3, e3] = µe2 + (∗)en,

[e1, ei] = −ei+1 + (∗)en, 4 ≤ i ≤ n− 1

[ei, en+2−i] = (−1)nen, 3 ≤ i ≤ n− 1

[ei, ej ] = (∗)ei+j−1 + · · ·+ (∗)en, ∀(i, j) 6= (1, 1), (1, 3), (3, 3), (3, 1), (k, n+ 2− k)

3 ≤ k ≤ n− 1.

ÑG3 :







[ei, e1] = ei+1 + (∗)ei+2 + · · ·+ (∗)en−2, 1 ≤ i ≤ n− 3

[en−1, e1] = en + αe2 + (∗)e3 + · · ·+ (∗)en−2,

[e1, en−1] = βen + (∗)e3 + · · ·+ (∗)en−2,

[en−1, en−1] = γen + (∗)e3 + · · ·+ (∗)en−2,

[ei, en−1] = (∗)ei+2 + · · ·+ (∗)en−2, 2 ≤ i ≤ n− 3

[en, en−1] = (∗)e4 + · · ·+ (∗)en−2.
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ÑG4 :







[ei, e1] = ei+1 + (∗)ei+2 + · · ·+ (∗)en−2, 1 ≤ i ≤ n− 3

[en−1, e1] = en + (∗)e3 + · · ·+ (∗)en−2,

[e1, en−1] = −en + (∗)e3 + · · ·+ (∗)en−2,

[en−1, en−1] = e2 + (∗)e3 + · · ·+ (∗)en−2,

[en−1, en] = e3 + (∗)e4 + · · ·+ (∗)en−2,

[ei, ej ] = (∗)ei+j+1 + · · ·+ (∗)en, 2 ≤ i, j ≤ n− 2

[ei, en−1] = (∗)ei+2 + · · ·+ (∗)en−2, 2 ≤ i ≤ n− 2

[en, en−1] = (∗)e4 + · · ·+ (∗)en−2,

[ej , en] = (∗)e5 + · · ·+ (∗)en−2, j = 2, 5

[ei, en] = (∗)ei+3 + · · ·+ (∗)en−2, i = 1 ∧ 3 ≤ i ≤ n− 2

[en, en] = (∗)e5 + · · ·+ (∗)en−2.

where the asterisks (*) denote appropiate coefficients at the basis elements.

Proof: These families are obtained from the structure of the naturally graded quasi-
filiform Leibniz algebras (see Proposition 2.1) considering its natural graduations.

�

Since the study on quasi-filiform Lie algebras of maximum length has been done
in [10], we shall restrict ourselves to Leibniz algebras which are non Lie. Moreover,
the classification of 2-filiform Leibniz algebras of maximum length is given in [2].
Thus, the following results close the study of maximum length for Leibniz algebras
with nilindex n− 2, where n is the dimension of L and verified n ≥ 6.

Theorem 3.1. Let L be an n-dimensional quasi-filiform non Lie Leibniz algebra
of maximum length of the type I. Then the algebra L is isomorphic to one algebra
of the following pairwise non isomorphic families:

M1,δ : M2,λ :






[y1, y1] = yn,

[yn−1, y1] = y2,

[yi, y1] = yi+1, 2 ≤ i ≤ n− 3

[yn−1, yn−1] = δy4, δ ∈ {0, 1}

[yi, yn−1] = δy3+i, 2 ≤ i ≤ n− 5.







[yi, y1] = yi+1, 1 ≤ i ≤ n− 3

[yn−1, y1] = yn,

[y1, yn−1] = λyn, λ ∈ C.

Proof: Let < e1, e2, . . . , en > be the basis used in proposition 3.1. We can consider
the following cases:
Case 1: Let en /∈ R(L) be.

In this cases we have the family ÑG4, where {e2, e3, . . . , en−2} ⊆ R(ÑG4).

In order to study the length of the algebras from the family ÑG4, let us take

xs = e1 +
n∑

i=2

aiei xt = en−1 +
n∑

k=1;k 6=n−1

bkek, where an−1b1 6= 1

and

[xs, xs] = (1 + a2n−1)e2 + (∗)e3 + · · ·+ (∗)en,

[xt, xt] = (1 + b21)e2 + (∗)e3 + · · ·+ (∗)en,
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[xt, xs] = (b1 + an−1)e2 + (∗)e3 + · · ·+ (∗)en−1 + (1− an−1b1)en,

[xs, xt] = (b1 + an−1)e2 + (∗)e3 + · · ·+ (∗)en−1 + (an−1b1 − 1)en.

We will assume two subcases:
Subcase 1.1: If 1 + a2n−1 6= 0. Let us consider

[[xs, xs], xs], ..., xs
︸ ︷︷ ︸

i times

] = (1 + a2n−1)ei + (∗)ei+1 + · · ·+ (∗)en

and the new basis {y1, . . . , yn}, defined as:

y1 = xs, yi = [yi−1, xs], with 2 ≤ i ≤ n− 2, yn−1 = xt, yn = [xs, xt]

with the graduation of maximum length: Vks
⊕V2ks

⊕· · ·⊕V(n−2)ks
⊕Vkt

⊕Vks+kt
.

This basis verifies the following product:

[yi, y1] = yi+1, 1 ≤ i ≤ n− 3
[y1, yn−1] = yn.

Furthermore,

yn /∈ R(ÑG4), [y1, yn−1] + [yn−1, y1] ∈ R(ÑG4), and [yn−1, y1] = Ayn

then A = −1. Let us check the others products.
We shall consider







[yn−1, y1] = [xt, xs] = (b1 + an−1)e2 + (∗)e3 + · · ·+ (∗)en−1 + (1− b1an−1)en,

[y1, yn−1] = [xs, xt] = (b1 + an−1)e2 + (∗)e3 + · · ·+ (∗)en−1 + (b1an−1 − 1)en,

[yn−1, y1] = −[y1, yn−1],

therefore b1 = −an−1.
From an−1 = −b1 and an−1b1 6= 1, one has a2n−1 6= −1, and so [yn−1, yn] =

= −(a2n−1 + 1)e3 + (∗)e4 + · · · + (∗)en is obtained. Hence [yn−1, yn] = By3 where
B 6= 0. Therefore







[yn−1, yn] = By3, B 6= 0,

[yn−1, yn] ⊆ V2kt+ks
,

y3 ⊆ V3ks
.

Thus, we prove that ks = kt, which is a contradiction of the definition of maxi-
mum length.

Subcase 1.2: If 1 + a2n−1 = 0. Since






[xt, xs] = (b1 + an−1)e2 + (∗)e3 + · · ·+ (∗)en−1 + (1− b1an−1)en = Ayn 6= 0,

[xs, xt] = (b1 + an−1)e2 + (∗)e3 + · · ·+ (∗)en−1 + (b1an−1 − 1)en = yn 6= 0,

[xt, xs] + [xs, xt] ∈ R(ÑG4),

and by the property of maximum length we have (A+1)yn = 0, i.e, A = −1, hence
b1 = −an−1 and an−1b1 6= 1, it implies that a2n−1 6= −1. But it is a contradiction
of the hypothesis 1 + a2n−1 = 0.

Thus, we can conclude the algebra ÑG4 does not have maximum length.

Case 2: Let en ∈ R(L) be.

In this case we have the family ÑG3, where {e2, e3, . . . , en−2, en} ⊆ R(ÑG3).
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Let us take the previous basis, we have the products:

(1)







[xs, xs] = (1 + an−1α)e2 + (∗)e3 + · · ·+ (∗)en−2 + (an−1β + an−1 + a2
n−1γ)en,

[xt, xt] = (b21 + b1α)e2 + (∗)e3 + · · ·+ (∗)en−2 + (b1 + b1β + γ)en,
[xt, xs] = (b1 + α)e2 + (∗)e3 + · · ·+ (∗)en−2 + (1 + b1an−1β + an−1γ)en,
[xs, xt] = (b1 + an−1b1α)e2 + (∗)e3 + · · ·+ (∗)en−2 + (b1an−1 + β + an−1γ)en,
[[xs, xs], xs]..., xs
︸ ︷︷ ︸

i−times

] = (1 + an−1α)ei + (∗)ei+1 + · · ·+ (∗)en−2.

Subcase 2.1: If 1 + an−1α = 0.

If b1(b1+α) 6= 0, then in a similar way to previous cases, we can prove that there is
not any algebra of maximum length. Therefore we shall assume that b1(b1+α) = 0.

Note that indeed if b1 + α = 0, then we will have 1 + an−1α = 0 and hence
an−1b1 = 1, which would be impossible. Therefore b1 = 0. In this case we obtain

[xs, xs] = (∗)e3 + · · ·+ (∗)en−2 + (an−1β + an−1 + a2n−1γ)en,

[xt, xt] = (∗)e3 + · · ·+ (∗)en−2 + γen,

[xt, xs] = αe2 + (∗)e3 + · · ·+ (∗)en−2 + (1 + an−1γ)en,

[xs, xt] = (∗)e3 + · · ·+ (∗)en−2 + (β + an−1γ)en,

[[[xt, xs], xs], ..., xs]
︸ ︷︷ ︸

(i−1)−times

= αei + (∗)ei+1 + · · ·+ (∗)en−2, 3 ≤ i ≤ n− 2.

Since [xs, xt] = D[xt, xs], it implies that Dα = 0 as α 6= 0 we have D = 0. Thus,
β + an−1γ = 0 is achieved and [y1, yn−1] = 0.

Put y1 = xs, y2 = [xt, xs], yn−1 = xt, yi = [yi−1, y1] with 3 ≤ i ≤ n − 2 and
yn = [y1, y1].

This basis has the following graduation of maximum length: Vks
⊕ Vkt+ks

⊕
Vkt+2ks

⊕ · · · ⊕ Vkt+(n−3)ks
⊕ Vkt

⊕ V2ks
.

We have that [yn−1, yn−1] = [xt, xt] = (∗)e3 + · · · + (∗)en−2 + γen = Aym,
where m /∈ {1, 2, n − 1}. On the other hand [yn−1, yn−1] ∈ V2kt

. Therefore 2kt ∈
{2ks, kt + (m− 1)ks} with 3 ≤ m ≤ n− 2. If 2kt = 2ks then this is a contradiction
of the definition of maximum length. As ym = αem +(∗)em+1 + · · ·+(∗)en−2 with
3 ≤ m ≤ n− 2 then γ = 0. Hence the form β + an−1γ = 0, we get β = 0.

The casesm = 3 and 5 ≤ m ≤ n−3 are impossible considering the connectedness
of the graduation of maximum length. Thus let us see m = 4 and m = n− 2.

Let m = n − 2, and n > 6. It is impossible to find a connected graduation of
maximum length. If n = 6, then we have m = 4.

Let m = 4. We have [yn−1, yn−1] = δy4 and by using the Leibniz identity
[yi, yn−1] = δyi+1 with 2 ≤ i ≤ n− 5 and [yn, yn−1] = 0 are achieved.

In order to find the table of multiplications of the algebra it is enough to show
[yn, y1] since {y2, y3, . . . , yn−2, yn} ⊆ R(L) and yn−2 ∈ Cent(L). By the construc-
tion, [yn, y1] = (1 + an−1α)e3 + (∗)e4 + · · ·+ (∗)en−2. As 1 + an−1α 6= 0 it implies
that [yn, y1] = By3. Hence, by the properties of the graduation, kt = ks which is a
contradiction of the definition of maximum length. Thus [yn, y1] = 0.

Note that if δ 6= 0, we can consider δ = 1 using an easy change of basis. Therefore,
the algebraM1,δ with δ = 0 or δ = 1 is achieved. M1,0 andM1,1 are non isomorphic
because dim(R(M1,0)) 6= dim(R(M1,1)).
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To see its maximum length it is enough to consider the graduation V1⊕V2⊕· · ·⊕
⊕Vn, where V1 =< y1 >, V2 =< yn >, V3 =< yn−1 > and Vi =< yi−2 > with
4 ≤ i ≤ n.

Subcase 2.2: If 1 + an−1α 6= 0.

Using the multiplications of (1) we can distinguish the following cases:

1) If b1 + b1β + γ 6= 0 ∧ det

(
1 + an−1α an−1β + an−1 + a2

n−1γ

b21 + b1α b1 + b1β + γ

)

6= 0

Since the determinant is not equal to zero, we have that [xs, xs] and [xt, xt]
are linearly independent. We define a new basis: y1 = xs, yi = [yi−1, y1] with
2 ≤ i ≤ n − 2, yn−1 = xt and yn = [xt, xt]. Making the following graduation:
Vks

⊕ V2ks
⊕ · · · ⊕ V(n−2)ks

⊕ Vkt
⊕ V2kt

and if [xt, xs] 6= 0 then we have that
[xt, xs] ∈ Vkt+ks

and kt+ks /∈ {ks, kt, 2ks, 2kt}. It implies [xt, xs] = Aym with A 6= 0
and 3 ≤ m ≤ n− 2 ⇒ kt = (m− 1)ks. If ks > 0 then 2ks ≤ kt ≤ (n− 2)ks and that
is a contradiction. Thus, [xt, xs] = 0 hence b1+α = 0 and 1+an−1b1β+an−1γ = 0.
Analogously for [xs, xt], we have b1 + an−1b1α = 0 and an−1b1 + β + an−1γ = 0.

We have b1 = α = 0, β = 1, an−1γ 6= 0. We know that {y2, . . . , yn−2, yn} ⊆

R(ÑG3) and the products [yi, y1] = yi+1 with 1 ≤ i ≤ n − 3 and [yn−1, yn−1] =
yn. Using the properties of the graduation [yn−1, y1], [y1, yn−1] and [yn, yn−1] are
obtained and it is archived that there is not any Leibniz algebras of maximum
length.

2) If an−1b1+β+an−1γ 6= 0 ∧ det

(
1 + an−1α an−1β + an−1 + a2

n−1γ

b1(1 + an−1α) b1an−1 + β + an−1γ

)

6= 0,

then we can take the basis {y1, . . . , yn}, defined as: y1 = xs, yi = [yi−1, y1], with
2 ≤ i ≤ n − 2, yn−1 = xt, and yn = [y1, yn−1], and its graduation of maximum
length: Vks

⊕ V2ks
⊕ · · · ⊕ V(n−2)ks

⊕ Vkt
⊕ Vkt+ks

.

Since the determinant does not vanish, we get β + an−1γ 6= 0. Therefore, {e2,
. . . , en−2, en} ⊆ R(L) and en−2 ∈ Cent(L), hence {y2, . . . , yn−2, yn} ⊆ R(L), and
yn−2 ∈ Cent(L). Let us define Ry1

and Ryn−1
.

If [yn, y1] 6= 0 then [yn, y1] ∈ V2ks+kt
. Therefore 2ks + kt /∈ {2ks, kt, kt + ks, 3ks}

because ks 6= 0 6= kt and ks 6= kt. Moreover, it is evident that 2ks + kt 6= ks, other-
wise kt = −ks and this implies [yn, y1] = Ay1 with A 6= 0, but it is a contradiction
since [yn, y1] ∈ L3 and y1 ∈ L1. On the other hand we can assume 2ks + kt 6= mks
for 4 ≤ m ≤ n− 2, (otherwise we will obtain a contradiction of maximum length).
As a result we can conclude that [yn, y1] = 0.

A similar study for [yi, yn−1], with 2 ≤ i ≤ n− 3 permits to prove that [yi, yn−1] =
0 2 ≤ i ≤ n−3, [yn, yn−1] = 0, [yn−1, yn−1] = 0 and so b1(b1+α) = b1+b1β+γ = 0.
Moreover, we have







[y1, yn−1] = B[yn−1, y1],

[y1, yn−1] = b1(b1 + an−1b1α)e2 + (∗)e3 + · · ·+ (∗)en,

[yn−1, y1] = (b1 + α)e2 + (∗)e3 + · · ·+ (∗)en.
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it implies that b1 = 0, γ = 0 and B = β 6= 0. Thus α = 0.

Finally we have found the family defined as:

[yi, y1] = yi+1, 1 ≤ i ≤ n− 3

[yn−1, y1] = Byn, B ∈ C \ {0}

[y1, yn−1] = yn.

Taking y
′

n = Byn, the family M2,λ is achieved, with λ ∈ C \ {0}. To get
maximum length it is enough to consider the following graduation:

L = V1 ⊕ V2 ⊕ · · · ⊕ Vn, where Vi =< yi > 1 ≤ i ≤ n.

3) If 1+ an−1b1β+ an−1γ 6= 0 ∧ det

(
1 + an−1α an−1β + an−1 + a2

n−1γ

b1 + α 1 + b1an−1β + an−1γ

)

6= 0

By following similar arguments as in the previous cases, we obtain the maximum
length family M2,λ, with λ ∈ C.

Note thatM1,0 andM2,λ with λ 6= 0 are non isomorphic because dim(R(M1,0)) 6=
dim(R(M2,λ)). Analogously, M1,0 ≇ M2,0 can be proved using change of basis and

M1,1 ≇ M2,λ with λ ∈ C because dim(I(M1,1)) 6= dim(I(M2,λ)).
�

Theorem 3.2. Let L be an n-dimensional quasi-filiform non Lie Leibniz algebra
of maximum length of the type II. Then the algebra L is isomorphic to one algebra
of the family

M3,α :







[y1, y1] = y2,

[yi, y1] = yi+1, 3 ≤ i ≤ n− 1,

[y1, yi] = −yi+1, 4 ≤ i ≤ n− 1,

[y3, y3] = αy6, α = 0 if n > 6, α ∈ {0, 1} if n = 6.

Proof: Let {e1, e2, . . . , en} be the basis used in the proposition 3.1. In this case we
have e4 /∈ R(L).

Let us consider two cases:

• Case 1: Let n be even.
In this case we have the algebra ÑG1 and we are going to study its

length. Analogously to the previous theorem, if n 6= 6, then we obtain
M3,0 (which has maximum length) and if n = 6 the family of maximum
length M3,α with α ∈ C.

• Case 2: Let n be odd.
In the same way, when we study the length of ÑG2, we can prove that

any maximum length algebra does not exist in this family.

�

It remains to prove that if we consider the extension of naturally graded quasi-
filiform Lie algebras, then we obtain Lie algebras too (see Theorem 3.4) and their
study of maximum length can be found in [10]. The next theorem and their corollary
will be used to prove the Theorem 3.4.

Theorem 3.3. Let L be an n-dimensional Leibniz algebra and let {y0, y1, . . . , yn−1}
be a basis. Let {y0, y1, . . . , ys} be the generators of L. If the following property is
true [yi, yj ] = −[yj , yi] for all yj ∈ L, with 0 ≤ i ≤ s, then L is a Lie algebra.
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Proof: It is enough to prove that the rest of the multiplication is antisymmetric, i.e.,
to prove that [yi, ym] = −[ym, yi] where i,m ∈ {s + 1, . . . , n− 1}. Let us consider
two steps

• Step 1: If ym = [yi0 , yj0 ], where i0, j0 ∈ {0, 1, . . . , s}, then from the Leibniz
identity and the hypothesis of the theorem we have: [yi, ym] = −[ym, yi]
with 0 ≤ i ≤ n− 1.

• Step 2: If ym = [yp, yi0 ] with i0 ∈ {0, 1, . . . , s} and p ∈ {s+ 1, . . . , n− 1},
then from the Leibniz identity, the hypothesis of the theorem and the step
before we have: [yi, ym] = −[ym, yi] with 0 ≤ i ≤ n− 1.

Note that yi is an arbitrary element of L.
�

In order to make the proof of Theorem 3.4 easier, we will need the following
corollaries.

Corollary 3.1. Let L be an n-dimensional Leibniz algebra and B = {y0, y1, . . . ,
yn−1} a basis. Let {y0, y1, . . . , ys} be the generators of L. If B satisfies the following
conditions:

i) [yi, yj ] = −[yj , yi] ∀i, j ∈ {0, 1, . . . , s},

ii) yi = [yi0 , yi−1] s+ 1 ≤ i ≤ n− 1,

iii) [yi, yi0 ] = −[yi0 , yi] 1 ≤ i0 ≤ s, s+ 1 ≤ i ≤ n− 1.

then L is a Lie algebra.

Proof: We shall prove [yi, ym] = −[ym, yi] with s+ 1 ≤ i ≤ n− 1, which is directly
obtained from the above theorem.

�

Corollary 3.2. Let L be an n-dimensional Leibniz algebra and {y0, y1, . . . , yn−1}
a basis. Let {y0, y1} be the generators of L. If the following assertions are achieved

i) [yi, yj] = −[yj, yi] ∀i, j ∈ {0, 1},

ii)

{

yi = [y0, yi−1] 2 ≤ i ≤ n− 1,

yn−1 = [y1, yp] 2 ≤ p ≤ n− 2.

iii)

{

[yi, y0] = −[y0, yi] 2 ≤ i ≤ n− 1

[yn−1, y1] = −[y1, yn−1].

then L is a Lie algebra.

Proof: It is sufficient to show the following products

• Let us see [y1, yi] = −[yi, y1] with 2 ≤ i ≤ n− 2.
Since 2 ≤ i ≤ n− 2, then we can write yi = [y0, yi−1]. By using the Leibniz
identity and the hypothesis of the corollary we have [y1, yi] = −[yi, y1].

• Let us see [yj , yi] = −[yi, yj] with 2 ≤ i, j ≤ n− 2.
It is enough to apply the Corollary 3.1.

�

We are now in a position to prove that it is impossible to obtain a Leibniz
non-Lie algebra of maximum length from the generalization of naturally graded
quasi-filiform Lie algebras by using natural graduation.
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Theorem 3.4. Every quasi-filiform Leibniz algebra obtained by natural graduation
extension of naturally graded quasi-filiform Lie algebra is a Lie algebra.

Proof: Since all of the above algebras are quasi-filiform, [x0, xi] = xi+1, where
1 ≤ i ≤ n− 3, is satisfied. Then, when we extend them using natural graduations,
it can be considered a new basis with the following generators:

xs = x0 +

n−1∑

i=1

aixi; xt = x1 +

n−1∑

j=0,j 6=1

bjxj ; xu = xn−1 +

n−2∑

k=0

ckxk,

and the following products are obtained:

[xs, xs] = (∗)x3 + · · ·+ (∗)xn−1,

[xt, xt] = (∗)x3 + · · ·+ (∗)xn−1,

[xu, xu] = (∗)x3 + · · ·+ (∗)xn−1,

Moreover, we will only work with the products [xs, xt], [xs, xu] and [xt, xu],
because [xi, xj ] = −[xj , xi] ∀xi, xj ∈ L1.

The generalization of that naturally graded quasi-filiform Lie algebras always
verifies:

[x0, xi] = xi+1 + (∗)xi+2 + · · ·+ (∗)xn−1,

[xi, x0] = −xi+1 + (⋄)xi+2 + · · ·+ (⋄)xn−1.

Then, if we take the products:

[[xs, . . . , [xs, [xs,
︸ ︷︷ ︸

i-times

xt]]] = (1− a1b0)xi+1 + (∗)xi+2 + · · ·+ xn−1

or

[[xs, . . . , [xs, [xs,
︸ ︷︷ ︸

i-times

xu]]] = (c1 − c0a1)xi+1 + (∗)xi+2 + · · ·+ (∗)xn−1,

or

[[xs, . . . , [xs
︸ ︷︷ ︸

(i-1)-times

, [xu, xt]]] = (c0 − c1b0)xi+1 + (∗)xi+2 + · · ·+ (∗)xn−1

with 2 ≤ i ≤ n− 4, the basis b1 can be constructed:

b1 = {y0 = xs, y1 = xt, yi = [y0, yi−1], 2 ≤ i ≤ n− 3, yn−2 =?, yn−1 =?}

or b2 if there are three generators:

b2 = {y0 = xs, y1 = xu, yn−1 = xt, yi = [y0, yi−1], with 2 ≤ i ≤ n− 3, yn−2 =?} .

From its very definition and taking into account property [xi, xj ] = −[xj , xi]
with xi, xj ∈ L1 it can be affirmed [yi, y0] = −[y0, yi] = −yi+1 with 2 ≤ i ≤ n− 3.
Hence, it is enough to choose yn−2 and yn−1 (when yn−1 is not the generator) and
to prove the corresponding corollary in each case.

Let us study two main algebras which allow us to prove the other ones.

The algebra L̃n−1 ⊕ C. (Analogously for Q̃n−1 ⊕ C ).

If we consider the natural graduation L1 =< x0, x1, xn−1 > and Li =< xi >
for 2 ≤ i ≤ n− 2, then the generalization of Ln−1 is defined by:
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





[x0, xi] = xi+1 + (∗)xi+2 + · · ·+ (∗)xn−2,

[xi, x0] = −xi+1 + (⋄)xi+2 + · · ·+ (⋄)xn−2,

[xi, xj ] = (∗)xi+j+1 + · · ·+ (∗)xn−2 (i, j) 6= (0, j), (i, 0).

Three cases can be considered by using the maximum length study:

Case 1: If 1− a1b0 6= 0.
Let us take the basis b1 with yn−2 = [y0, yn−3, yn−1 = xu and its graduation of

maximum length: Vks
⊕ Vkt

⊕ Vkt+ks
⊕ Vkt+2ks

⊕ · · · ⊕ Vkt+(n−3)ks
⊕ Vku

.
By the corollary 3.1 and the similar arguments to Theorem 3.1, we can conclude

that the algebra is a Lie algebra.
Case 2: If c0a1 − c1 6= 0, 1− a1b0 = 0.
Let us take the basis b2 with yn−2 = [y0, yn−3]. In order to prove that the algebra

is a Lie algebra, it is sufficient to show that the hypotheses of Corollary 3.1 are true.
That is obtained by a similar argument to the previous one.

Case 3: If c0 − c1b0 6= 0, c0a1 − c1 = 1− a1b0 = 0.
This case is impossible.

The algebra ˜τ(n,n−3). (Analogously for ˜τ(n,n−4)).

The natural graduation of τ(n,n−4) is formed by the subset L1 =< x0, x1 >,
Li =< xi > with 2 ≤ i ≤ n− 4, Ln−3 =< xn−3, xn−1 > and Ln−2 =< xn−2 >. Its
natural generalization is defined by the following products::







[x0, xi] = xi+1 + (∗)xi+2 + · · ·+ (∗)xn−1, 1 ≤ i ≤ n− 5,
[x0, xn−4] = xn−3 + (∗)xn−2,
[x0, xn−3] = xn−2,
[xi, x0] = −xi+1 + (∗)xi+2 + · · ·+ (∗)xn−1, 1 ≤ i ≤ n− 5,
[xn−4, x0] = −xn−3 + (∗)xn−2,
[xn−3, x0] = −xn−2,
[xn−1, x1] =

n−4
2 xn−2,

[x1, xn−1] = −n−4
2 xn−2,

[xi, xn−3−i] = (−1)i−1(xn−3 + xn−1) + (∗)xn−2, 1 ≤ i ≤ n−4
2 ,

[xn−3−i, xi] = (−1)i(xn−3 + xn−1) + (∗)xn−2, 1 ≤ i ≤ n−4
2 ,

[xi, xn−2−i] = (−1)i−1 n−2−2i
2 xn−2, 1 ≤ i ≤ n−4

2 ,
[xn−2−i, xi] = (−1)i n−2−2i

2 xn−2, 1 ≤ i ≤ n−4
2 ,

[xi, xj ] = (∗)xi+j+1 + · · ·+ (∗)xn−2, in other cases.

We consider the basis b1. It follows from the independence of the generator of
the basis that 1− a1b0 6= 0.

We will need to choose yn−3, yn−2 and yn−1 and to prove the hypotheses of
Corollary 3.1. We can consider two cases to choose these vectors.

Case 1: If 1 + n−2
2 a1 6= 0, then yn−2 = [y0, yn−3] and yn−1 = [y1, yn−4] can be

constructed.
Case 2: If 1 + a1

n−2
2 = 0, then yn−1 = [y1, yn−4] and yn−2 = [y0, yn−1] can be

constructed.
We can use the same argument applied in the previous cases to prove that the

hypotheses of Corollary 3.1 are true, hence the algebra is a Lie algebra.
�
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4. 4-dimensional and 5-dimensional quasi-filiform Leibniz algebras of

maximum length

In order to classify quasi-filiform Leibniz algebras of maximum length the di-
mension n must be ≥ 6. Consequently, in this section we will show the result of
n = 4 and n = 5. We follow the same method as in the general case.

Theorem 4.1. Let L be a 4-dimensional Leibniz algebra of maximum length, then
L is isomorphic to one algebra of the following pairwise non isomorphic families:

N1,α : N2 :






[y1, y1] = y2,

[y3, y1] = y4,

[y1, y3] = αy4, α ∈ C.

{

[y1, y1] = y2,

[y1, y3] = y4.

Theorem 4.2. Let L be a 5-dimensional Leibniz algebra of maximum length, then
L is isomorphic to one algebra of the following pairwise non isomorphic families:

M1,0 : M2,λ : M3,0 :






[y1, y1] = y5,

[y4, y1] = y2,

[y2, y1] = y3.







[yi, y1] = yi+1, 1 ≤ i ≤ 2

[y4, y1] = y5,

[y1, y4] = λy5, λ ∈ C.







[y1, y1] = y2

[yi, y1] = yi+1 3 ≤ i ≤ 4

[y1, y4] = −y5

Let us remark that the previous theorems complete the study of Leibniz algebras
of maximum length with nilindex up to n− 2 with n ≥ 4.
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[2] Cabezas J.M., Camacho L.M., Rodŕıguez I.M. On filiform and 2-filiform Leibniz algebras of

maximum length, Journal of Lie Theory, vol. 18, 2008, p. 335–350.
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[5] Camacho L.M., Gómez J.R., Navarro R.M. Algebra of derivations of Lie algebras, Linear

Algebra and its Applications, vol 332-334, 2001, p. 371-380.
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