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ABSTRACT. The paper deals with the classification of a subclass of finite-dimensional Zinbiel algebras:
the naturally graded p-filiform Zinbiel algebras. A Zinbiel algebra is the dual to Leibniz algebra in
Koszul sense. We prove that there exists, up to isomorphism, only one family of naturally graded
p-filiform Zinbiel algebras under hypothesis n — p > 4.

1. INTRODUCTION.

Non associative algebras appear at the beginning of the twentieth century due to the development
of quantum mechanics. As McCrimmon mentioned in [I3], physicists needed new mathematics objects
different from the associative algebras, that is, objects different from complex matrix. In this direction
we would highlight many important algebras as Lie, Jordan, alternative, Leibniz algebras and others.

A Leibniz algebra, as introduced by Loday [10], is a vector space together with a bilinear binary
operation [—, —| for which [—, z] is a derivation for every z in the vector space. Thus, Leibniz algebras
are noncommutative version of Lie algebras, which are Leibniz algebras whose brackets are skew-
symmetric.

Koszul algebras were originally defined by Priddy in 1970 [I6] and have since revealed important
applications in algebraic geometry, Lie theory, quantum groups, algebraic topology and, recently,
combinatorics [9]. The rich structure and long history of Koszul algebras are clearly detailed in [15].
There exist numerous equivalent definitions of a Koszul algebra (see for instance [4]). Such an algebra
may be understood as a positively graded algebra that is as close to semisimple as it can possible
be (see [5] for more details). Many nice homological properties of Koszul algebras have been shown
in research areas of commutative and noncommutative algebras, such as algebraic topology, algebraic
geometry, quantum group and Lie algebra ([3], [B], etc.).

The Leibniz algebras form a Koszul operad in the sense of V. Ginzburg and M. Kapranov [§]. Under
the Koszul duality the operad of Lie algebras is dual to the operad of associative and commutative
algebras. The notion of dual Leibniz algebra defined by J.-L. Loday [I1] is precisely the dual operad
of Leibniz algebras in this sense.

In this paper we will study algebras which are the dual to Leibniz algebras in Koszul sense. J.-
L. Loday studied in [6] categorical properties of Leibniz algebras and considered in this connection
a new object — Zinbiel algebras (Leibniz is written in reverse order). Since the category of Zinbiel
algebras is Koszul dual to the category of Leibniz algebras, sometimes they are also called dual Leibniz
algebras. Any dual Leibniz algebra with respect to the symmetrization axb = ab+ ba is an associative
and commutative algebra. For more details we refer to reader to [II [I2]. This define a functor
(dual Leibniz) — (Com) between the categories of algebras, which is dual to the inclusion functor
(Lie) — (Leibniz).

The notion of associative dialgebra defines an algebraic operad Dias, which is binary and quadratic.
By the theory of Ginzburg and Kapranov [8], there is a well-defined “dual operad” Dias'. In [12] Loday
and others show that this is precisely the operad Dend of the “dendriform algebras”. Moreover in this
paper [§] shows that As' = As, Com' = Lie and Lie' = Com.

These interrelations are showed in the following categorical diagram, where the main property is
that the categories which lie symmetrically with respect to vertical linea crossing the category of as-
sociative algebras are Koszul dual categories.

Dend Dias

V4 N\ e e
Zinb As Leib

hV é hV a
Com Lie
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The symbol A = B means that the algebra of category A is in the category B and the symbol
A — B indicates that the algebra of category A with a special operation gives an algebra of the
category B.

In the works [2] [7, 4] some interesting properties of Zinbiel algebras were obtained. In particu-
lar, the nilpotency of an arbitrary complex finite-dimensional Zinbiel algebra was proved. Thus, the
classification of finite-dimensional complex Zinbiel algebras is reduced to nilpotent ones. However, the
study of the non-associative nilpotent algebras, in particular of the Zinbiel algebras, is too complex.
In fact, the same study in Lie case was appeared two centuries ago and it is still unsolved. Therefore
we reduce our attention to an important family: the naturally graded p-filiform Zinbiel algebras, since
it gives a really crucial information about p-filiform algebras without gradation restriction.

Let us introduce some definitions and notations, all of them necessary for the understanding of this
work.

Definition 1.1. A Leibniz algebra over K is a vector space L equipped with a bilinear map, called
bracket,
[—,—]:LxL—=L
satisfying the Leibniz identity:
[IE, [yv Z]] = [[Ia y]a Z] - [[xv Z]a y]a
for all x,y,z € L.

Example 1.2. Any Lie algebra is a Leibniz algebra.

[

Definition 1.3. A wvector space Z with a bilinear operation “o” is called Zinbiel algebra if for any
x,y,z € Z the following identity

(xoy)oz=wmzo(yoz)+xo(zoy)
holds.

Examples of Zinbiel algebras can be found in [2] [7, [1].
For a given Zinbiel algebra Z we define the following sequence

Zl=2z zZMHl=2z02F k>1.

Definition 1.4. A Zinbiel algebra Z is called nilpotent if there exists s € N such that Z° # 0 and
ZstL = 0. The minimal number s satisfying this property is called the index of nilpotency or nilindex

of the algebra Z.

It is not difficult to see that the nilindex of an arbitrary n-dimensional nilpotent algebra does not
exceed the number n.

The set R(Z) = {z € Z | x oy = 0 for any y € Z} is called the right annihilator of the Zinbiel
algebra Z, the set L(Z) = {x € Z | yox = 0 for any y € Z} is the left annihilator and Cent(Z) =
{r,y€ Z | zoy=yox =0 for any y € Z} is the center of Z.

Let us denote by L, the left operator L, : Z — Z such that L,(y) = [z,y] for any y € Z.

Let = be a nilpotent element of the set Z\ Z2. For the nilpotent operator L, we define a descending
sequence C(z) = (n1,n2,...,nk), which consists of the dimensions of the Jordan blocks of the operator
L. In the set of such sequences we consider the lexicographic order, that is, C'(z) = (n1,na,...,ng) <
C(y) = (m1,ma,...,ms) if and only if there exists ¢ € N such that n; = m; for any j < i and n; < m;.

Definition 1.5. The sequence C(Z) = max{C(z) : x € Z\ Z?} is called the characteristic sequence
of the algebra Z.

Let Z be an n-dimensional nilpotent Zinbiel algebra and p a non negative integer (p < n).

Definition 1.6. The Zinbiel algebra Z is called p-filiform if C(Z) = (n —p,1,...,1). If p=0, Z is
——

called null-filiform and if p = 1 it is called filiform.

Let Z be a finite-dimensional nilpotent Zinbiel algebra. Put Z; = Zi/Zi‘|rl with 1 < ¢ < s—1, where
s is the nilindex of the algebra Z and denote gr(Z) = Z21® Z2@...® Z;_1. The graded Zinbiel algebra,
gr(Z), is obtained where [Z;, Z;] C Z;4;. An algebra Z is called naturally graded if Z = gr(Z).

Let Z be a naturally graded Zinbiel algebra with characteristic sequence (n — p,1,...,1). By de-
finition of characteristic sequence there exists a basis {e1,es,...,e,} in the algebra Z such that the
operator L., has one block J,,_, of size n — p and the others blocks J; of size one.
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The aim of this work is to continue the study of naturally graded Zinbiel algebras. Since the null-
filiform, filiform and 2-filiform cases are solved in [I] 2], we give a step further and we obtain the
classification in the general case of p-filiform algebras. Moreover, the thesis of Adashev [I] allows us
to reduce our discussion to the case n —p > 4.

The paper is divided into two sections. In the first one we establish the natural gradation of the
naturally graded p-filiform Zinbiel algebras. In addition, we obtain main information on the structural
constants of the law of our algebras. In the second section we present the classification of these kind of
algebras (Theorem B.7)), where we have proved that there is only one family of n-dimensional naturally
graded p-filiform Zinbiel algebras with n —p > 4.

2. NATURAL GRADATION OF p-FILIFORM ZINBIEL ALGEBRAS

The classification of the naturally graded p-filiform Zinbiel algebras presented in this work is esta-
blished using the characteristic sequence as the principal invariant. Let Z be a graded p-filiform n-

dimensional Zinbiel algebra. Then there exists a basis {e1, €2, ..., €n—p, f1,..., fp} such that e; € Z\Z?
and C'(e1) = (n—p, 1,...,1). By the definition of characteristic sequence the operator L., in the Jordan
—
p—times

form has one block J,,_, of size n — p and p blocks J; (where J; = {0}) of size one, that is, the left
operator L., is isomorphic to one of the following matrix:

Jp—p 0 ... 0 Ji 0 ... 0 J ... 0 0

0 Jl “e. O O J’ﬂ—p “e. 0 : . : :

: SRR I B S T AR

0 0o ... N 0 0 R 1 0 ... 0 Jnyp
Making basis shift one can assume that there are only two following types:

Jop 0 ... 0 J1 0 ... 0
0 J ... 0 0 Jop ... O
0 0 ... .1 0 0 RO [}

A p-filiform Zinbiel algebra is called of first type if the operator L., is isomorphic to the first matrix.
Otherwise it is called of second type.

It is worthwhile to consider the following result since it allow us to reduce our study to the algebras
of first type.

Proposition 2.1. Let Z be a p-filiform n-dimensional Zinbiel algebra of second type. Then n—p < 3.

Proof. The proof is straightforward by definition of second type algebras. Let us see it. By definition
of second type algebras there exists a basis {e1, e2,...,en—p, f1,..., fp} of Z such that

etoe; =0,

ejoe; =e€jy1, 2<i<n—p-—1,

€10en—p = f1,

elofj:Oa 1§j§p7
and the other products equal zero. Therefore, the natural gradation of Z is

<€15627f25' "7fp> g Zl; <63> g ZQ;' --7<€n7p> g Z’n,fpflv <f1> g Z’n,fp-

n—p P
Assume that n —p > 4 and let us write es 0 e; = aeg + Z Yi€; + Z Bifi-
i=4 i=1
Then,
n—p
0=(e1o0e1)oey =ejo(egoey)+ejo(ezoer) =epoes+ aer oeg—l—z%-eloei:
e i=4
= (Il +a)es + Y yieit,
i=4

which implies a = —1, v, = 0, with 4 < k < n — p. Hence we have

esoe; = (e1oeg)oe; =ero(eaoer)tero(eroes) =(ego0er)oey =0.
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Therefore, 0 = (e; oe1) oez =ej o (eg oe3z) + ey 0 (e30eq) = es, which is a contradiction.
O

The aim of this section is obtain the expression of the natural gradation of the naturally graded
p-filiform Zinbiel algebras of first type. These information will be useful to come to the classification
of our algebras.

From now on we denote by Cf the combinatorial numbers Cf ="

J
The following result holds for each naturally graded p-filiform Zinbiel algebras of first type.

Lemma 2.2. Let Z be a Zinbiel algebra such that ey oe; = e;1 for 1 <14 < k—1, with respect to the
adapted basis {e1,..., €k, €xt1,...,€nt. Then
eioejog+j_1ei+j for 2<i+j<k. (1)

Proof. In order to get (1), it is convenient to prove the equality e; 0oe; = ie;4q for 1 <4 < k—1, which
is clear by induction.
Assume that (1) holds for j such that j < k—1and 1 <4 < k—j and let us prove it for j+ 1. Since

€;0€j41 = €;0 (61 o ej) = (ei o 61) o€e; —€;0 (ej o 61) = i€i+1 o€y _jei O€j+1 = ’L'OZ-J+J»€Z'+J‘+1 —jei O€j+1,
where C is the corresponding combinatory number, we conclude that

i i e B (i 4+ 7)! . B
Ui Citjt1 = 7oy Cit il =
j41 i (G 4+ DG — 1)

Therefore, (1) holds for all 2 < i+ 5 < k. O

— j+1
€i 0 €jy1 = Cisj Eivgt1-

Let Z be a naturally graded p-filiform Zinbiel algebra of first type of dimension equals n and let
{e1,...,en—p, f1,....fp} be an adapted bases such that e; is a characteristic vector of Z. Due to the
above lemma and the definition of an algebra of first type we know the following products:

etoe;=¢ejp1, 1<i<n—-p-—1,
etofi=0, 1<i<p,
e;oej = f+j_1€i+j, 2<i+j<n-—p,
and the following information on the gradation: (e1) C Z1,(e2) C Za,..., (€n—p) C Zn_p.
Denote by r; the number such that f; € Z,.,, for 1 <4 < p. Then one can assume that 1 < r; <
rg < -+ <7y <n —p. Otherwise we can make a change of basis and to interchange the roles of f;.

Theorem 2.3. Let Z be a n-dimensional naturally graded p-filiform Zinbiel algebra of first type. Then
rs <s foralll <s<p.

Proof. First of all, note that 1 = 1. Indeed if ; > 1 then Z would be one-generated, that is Z would
be null-filiform Zinbiel algebra. That implies that its characteristic sequence is C(Z) = (n), which
contradicts our hypothesis.

We now proceed by induction on s. Let us see the restriction on ry. Let us suppose ro > 2, then
Zl = <€1,f1>, ZQ = <62>, RPN ;ng = <€7«2,f2> which implies ng = Zl o ngfl = <€1,f1> @) <€7«271> =
<6T27 fl © €T2*1>'

Consider fioeq,_1 = fio(e10em,_2)=(fioe1)oem,_2— fio(er_20e1). Since f1oe; € Z5 we
put f1 oe; = aes for some a € C.

Then

fioem—1 =aesoen,_o— (re—2)fioe,_1= OéCTTj:lzem —(rg—2)fr0ep,_1 =

= a(TQ - 1)6T2 - (7'2 - 2)f1 O €ry—1
which implies (r2 — 1)f1 0 €yy—1 = a(r2 — 1)e,,, such that Z,., = (e,,) which contradicts fo € Z,,.
Thus, ro < 2.
Assume that rp, < k for all 1 < k < s — 1 for some s € N; we will prove that r; < s. Suppose,
contrary to our claim, that r; > s. To come to a contradiction, we first show that

ftoers—rt g <er3>u 1§t§5_1 (2)

Ift = s—1 then fsfloersfrs,l = fsflo(eloersfrs,lfl) = (fsflOel)oersfrs,lfl_fsflo(ersfrs,lflo
e1). Moreover since fs_10e1 € Z,,_, 021 C Z,. 11 = (€, ,+1) We can write fs_1 0e1 = fBep, 41
for some B € C. Therefore,

|
fS,1 CCro—ro_1 = ﬂc:ssffs ! €r, — (Ts —Ts—1 — 1)f571 O€Cry—re_ 1>
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that is

(Ts - Tsfl)fsfl O€r,—r,_y = Ber,_111,
which satisfies the inclusion (2) when ¢ = s — 1. We now see that froe, _,, C (e,,) with 1 <t < s—2.
Since ftoers—rt = fto(eloers—rt—l) = (ftoel)oers—rt—l_fto(ers—rt—loel) and fioe; € Zrtozl c Z’r‘t-‘rlu
it is necessary distinguish the following cases:

o Case 1: If r, + 1 = ryyy we have Z,,41 = (€., ,, ft+1). From this we conclude that fi 1 o
€r.—ro—1 € (ey.) and ep,41 0 €r ,_pr,—1 € (€r,), hence that (rs —ry)froer,_r, € {er,). And, in
consequence, fyo(e1oep, _r,—1) = fry10€r,—r, € (€r,). Therefore we assert that f;oe, _,, €

<ers>'

e Case 2: If r; +1 < r441 then froer € {er,41) = Zr,+1 and by using similar arguments than
above case we obtain f;oe, _,, € (e,,).

Therefore (2) is proved.
Now Z1 02,1 = Z,, = {e1, f1,-.., fq) 0 {er,_,) and since r; = --- = r, = 1 by (2) we obtain
fioer,—1 € {e,) for 1 <i < gq. This implies that Z,, = {e,,), a contradiction. Consequently, s < s.
O

An important property of our gradation is showed in the following lemma: it is not possible that
all f; with 1 <14 < p are generators, otherwise the algebra would be split.

Lemma 2.4. Letn—p >3 andr; =1 for 1 <i < p. Then Z is split.

Proof. Under these hypothesis we have

Zl = <elaf17' "7fp>7 Z? = <€2>, R Zn—p = <en—p>7

where ejoe; =e;q1, for 1 <i<m—p—1land ejofj=0for1<j<p.

Let us prove that f; € Cent(Z) for 1 < i < p. By properties of the gradation we can write
fioer = ajez and f; o fj = Bijeq for 1 <i4,5 < p. Since n — p > 3 we have

0= (61 ofi)oer=el o(fioel)+el 0(61 sz') =e1 O(fioel) = (€3,

hence a; =0 for 1 < i < p.

Now f;oejy1 = fio(e1oej) = (ficer)oe;— fio(ejoer) = —jfioe;jr1 which implies fioe;p1 =0
forl1<j<n-—-p-1.

From (fio fj)oer = fio(fjoe1)+ fio(e1 0 f;) =0 it follows that 28;;e3 = 0, that is 5;; =
0 forall 1 <i,j<p.

Finally it is clear that e; o f; = 0 by induction on j, because e; o f; = 0 for all ¢ by nilpotence. That
implies that Z = NF,,_, # CP, where C? =C @ --- ¢ C= (f1) & --- & (fp) and NF,,_, is a naturally
graded p-filiform Zinbiel algebra of dimension n — p. 0

An easy computation, make it obvious the following result.

Lemma 2.5. Let Z be a p-filiform Zinbiel algebra of first type. Assume that fj oe; = 0 for some

1<i<n—-p—2and1<j<p. Then fjoejp1 == fjoen_p_1=0.
It is worthwhile to use the notation Z; = (e1, f1,..., fs,) and Z; = (€4, fsytotsi141r -5 Fortts:)
for 2 < ¢ < n — p, where sq,...,5,_, are non-negative integers such that s; +--- + s,_, = p and

dim(Z;) = s; + 1 for 1 <1i < n —p. The existence of r; > 1 in this terms is equivalent to s; < p.
The distribution of the vectors f; in the natural gradation is given by the following result.

Proposition 2.6. Let Z be an n-dimensional p-filiform Zinbiel algebra of first type. Then 0 < s,_,, <
o< sg <81 < p.

Proof. We have divided the proof into four steps.
e Step I: First of all we will deal with the proof of the following affirmations, where the two first
will be proved by induction on ¢
eqo f; =0, 1<g<n-p 1<j<s
fioeq € (fsi41s-- 5 fp) 1<g¢g<n—-p—-2,1<j5<s (3)
fioen—p-1€ (€nps for41s---, fp>7 1<j<s
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For ¢ =1 it is clear that e; o f; =0 for 1 < j < p by properties of nilpotence. Moreover by
means of the natural gradation it is true that f; oe; € 23 for 1 < j < s1, then

2
fioelr=ajes+ Zﬂj,ifshLiv 1<j< s
i=1

Let us see aj = 0 for any j. Since 0 = (ej o f;)oer = e1o(fjoer)+e1o(erofj) =

s2
e1 0 (o o0eq) + Zﬂiﬁjfslﬂ-) = ojes, hence aj = 0 for 1 < j < s;1. Therefore, we obtain
i=1

S2
fioer =" Bjifsiti € (foart1s s fortss) for 1< j <su.
i=1

Assuming (3) to hold for ¢, we will prove it for ¢ + 1. Then we obtain
s2
egr10fj=(e10eg)o fj=ero(egofy)+ero(fjoe) =D Bjiero fo4i=0.
i=1

Moreover the property f; o eqi1 € (fs,+1,--.,fp) is obtained by considering the following
product: 0= (e 0 fj)oeqr1 =e10(fjoeqt1) +e10(egr10fj) =e10(fjoeqr1). Therefore it
is clear that f; oeqt1 € Le,, that is fj o eg+1 € (en—p, fs1+1-- -, fp) for 1 < j < s1. Note that,
ifg+1#n—p—1,then fjoegri € (fo1+1,---,[p)-

By similar way we prove that e,—,—1 0 f; =0 and fj o en—p_1 € {€n—p, fs1+1,--., fp) for
1 < j < s;. Obviously e,—p o f; = 0 because e,,—, € Cent(Z). Hence (3) is proved.

Step I11: The goal in this step is to check the antisymmetric property of the products f; o f;.
pb—s1
Let us denote f; o fj = yije2 + Z nfijSl, for 1 <1i,j < s1, then we can write
t=1
0 =(e1ofi)ofj=ero(fiofj)+ero(fjofi)=
p—s1 p—s1
= Yije1 0 ez + Z ijel O fits, +ji€1 0 €2+ Z 77;-1-61 O fiys, =
t=1 t=1
= (vij +ji)es,
and so y;; = —7;; holds for 1 < 4,5 <'s5.

Step III: Our next objective is to prove that f; o f; € (e2) for all 7,7, that is, so < s7. On
the contrary, suppose that there exists ¢, j,¢ € N such that nfj # 0, in the case 1 < 4,5 < s7.
Then making the basis transformation €] = Ae; + Bf; with A # 0 and B # 0 we obtain the
following linearly independent vectors:
el2 = 6/1 © 6/1 = A2€2 +gl(A7B7f51+17 . 'afp)a
/

€, = 6/1 oelifl = Aiei +g’i*1(A5BafSl+1a' "afp)a

where g;1 is a polynomial with dega(gi—1) <i—1 for 3 <i <n—p. Note that, e;oe],_, =0
p—s1

and ¢} o f; = (Ae1 + Bf;) o f; = Aex o f; + Bfio f; = Byijes + B > mj; fo, 4. 11l # 0,
t=1

then the rank of L., would be greater than n — p — 1, which contradicts the assumption
C(Z)=(n—p,1...,1). Hence,

insz—ijfizvijeg for 1§l,]§81 (4)
Analogously one can establish
fiofj=—fjofi€(eppr)for1<i<syandsi+---+sp-1+1<j<s14+-+sz. (5)

Now from (3), (4) and (5) we have Z; = Z1027 = (eq, fi0€1,..., fs;0e1) C (€2, fo;41,---+ [p)
therefore, dim Z5 < dim Z; = s1 + 1 and s3 < s7.
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e Step IV: It is worthwhile to check s1 + -+ + s < p yields sx4+1 # 0 to prove the proposition.
On the one hand let us see for k = 1. Indeed, if s; = 0 it is clear that f;oe; =0 for 1 <i < s7.
Moreover by Lemma we assert fjoe; =0foralll1 <¢<n-—p and 1 <j < s;. Hence
Zg3 = 21029 ={e1, f1,---, [s,) 0 {(e2) = {e3), which implies Z; = (e;) for 3 <i <n — p. From
these assertions one concludes that s; = p, which is not possible.

On the other hand, let us prove that s; + - + s < p yields sp11 # 0, since otherwise
Ziy1 = {ept1). As Zpy1 = Z1 0 25, we obtain f; o ey = viepy1,1 < i < s1. Then by using
(3) we obtain viery2 = e; o (fioer) = (e10 fi) oer — ey o (ex o f;) = 0, which implies
v; =0, ie, fioep = 0 for all 1 < i < s;. Now by Lemma 25 we have f; oe; = 0 for
1<i<s; and k<j<n—p—1. Thus Zxia = Z1 0 Zy1 = {€kt2), Zk+3 = {€k+3),... and
Zp—p = (eén—p). However, if we had these equalities the vector f, would not be obtained.

Since Zi41 = Z102; = (ej41,/10¢€i,...,fs, 0e;) and i(fj oe;) = (fj 0o e;—1) o ey for
1< j < sy, it follows that dim({f; o e;,..., fs; 0 €;)) < dim({f1 0 €;_1,..., fs, 0 €;—1)), that is,
dim 2,11 <dim Z; for 1 <43 <n —p— 1. Hence it is proved that s,_, < --- < s < 51, which
is the desired conclusion.

O

Note that we have actually proved that the natural gradation of our algebras is as follows:

zZ = <615f17'- 'afs1>a Zy = <627f51+17'- 'af51+52>a' ERR) Z; = <eiaf5i—1+1a' ")fSi—1+5i>

and we have written f; o f; = oy es for 1 <4,5 < sq.

3. MAIN RESULT

Due to the above section we actually know the gradation of our algebra and we have obtained
information on some structural constants. Next results complete the information on the structural
constants come to there are only one family in the classification of these kind of Zinbiel algebras.

The following proposition presents additional multiplication law for Zinbiel algebra from Proposition

Proposition 3.1. Under the above assumptions the following multiplications hold for all1 <t < n—p:

f ol = Jsitotsiti for 1 <i < spiq
1t se-14e 0 forsir1 +1<i<s
Proof.
Since Z9 = Z1 021 = (e, f1oe€1,..., fs, 0€1,..., fs, 0€1), there exist 1 < ny,...,n,;, < s1 such

that <f711 O€1,..., fnsz o 61> = <f51+17 Tt f81+52>'

On the one hand consider the basis permutation fi(l) = fn; ,(11) = f; for all 1 < i < s9, where the
remaining vectors stay unchanged. Then (fl(l) oeq,..., fs(zl) oe1) = (foyt1s---s [s1tsa)-

On the other hand we can make the following basis transformation:

f(l) = f-(l) oe for 1 <4 < s9.

S1+1 7

52
Finally, if fi(l) oe; = Z O‘kfs(llik for so +1 < i < s1, let us make next transformation
k=1

52
17 =10 =3 anf iy forse + 120 < s
k=1

52
(2) _ ¢ 1) _
Hence we obtain f,”" oe; = f; " oe; — E Ozkfler,C oe; = 0.
k=1
Once these basis transformations are done, we can assert

. _ fs1+i for 1 <i< sy
f1061_{ 0 fOI’SQ—i-lSiSSl

Analogously, by means of appropriate basis transformation we come to

f - Tsitots+i for 1 <i<spy
s1tetse—1e 0 for s;01 +1<i < s

foralll<t<mand1<m<n-—p-—2.
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Moreover since

(em+2, fortotsmptls s fortotsmpa) = Zme2 2 Zmy10 21 =
= <6m+2, f51+"'+8m+1 o€1,-. -, f51+"'+5m+s7n+1 ° €1>
there exist n1,...,ns,,., with 1 <ng,...,ng, ., < Spmy1 such that
<f51+'”+5m+7l1 SECS PR fS1+~'+Sm+nsm+2 o €1> = <f81+"'+8m+1+17 ce f81+"'+8m+2>'

It suffices to make some basis transformations more to prove the lemma. Once the following vectors
are changed

1 _ ®  _ ) _
f_j - f’n«j7 fsl+j - f51+nja o sy s+ T f81+---+sm+nj7
1) _ n (€)) —
7(1j) - fj7 f51+nj - f51+j’ ) fsl+-~~+sm+nj - f51+"'+3m+ja
for 1 < j < s;41, we obtain

1 1 ,
fS(li"'+Sk71+’L‘ oep = fs(12r~~-+s;€+i for 1 <i< sk and 1<k <m.

1 1
Therefore <fs(12r~~~+sm+l O€ly..., '9(1')‘1'"'+S7n+s7n+2 @) 61> = <f81+"'+5m+1+17 ceey f81+"'+5m+2>'

After this other one fs(llzr,,,ﬂm“ﬂ = vs(ll‘)‘l’""i’vsm“l”i oey for 1 <i < sp,42 we have

fs(ll-)',-----l-sk,l—i-i cep = fs(lll,,,+sk+i for 1 <i< sk and forall 1 <k<m+1.
Asniy,...,ns,, 42 < Sm1 the following zero multiplications stay unchanged:

fsit-tsn_1tspqptioer =0for 1 <i <sp— sy andforall 1<k <m.

Sm+42
Now if fo,4...4s,,+i0€1 = E Ok for 4 dsmyritk fOr Spypo +1 <17 < 5,11 We take

k=1

Sm+4-2
T = = > ouf
sidtsmti  Jsittsmti Ak Jsi4-+sm+k
k=1
. 1 .
yields fs(lzl‘”"‘l‘sm"l‘i oe; =0 for spio+1<i< 8my1- O

The following result is the generalization of the previous proposition.
Proposition 3.2. Let Z be an n-dimensional p-filiform Zinbiel algebra of first type. Then
Sor+tsp4i0€ = %f51+"'+sk+j+i for 1<i< Sktj+1
! k J 0 for sprjir +1 <0< spyy
when 1 <j<n—p—k.
Proof. We proceed by induction on j. For j = 1 the products are directly obtained by Proposition 3.1l
Assume that

1 .
f e — ﬁf51+"'+5k+j+i for 1 <1< Sk4j+1
siteodsett T 5 0 for spyjr1+1 <7 < spyy

when 1 <j<n—p—Fkandforeach2<k<n—p—2. Notethat forj >2andn—p—-1<k<n-—p
the product fs, t...4s5,+: © €j = 0 by properties of the natural gradation. We will prove these products
for j + 1.

foirotsiri 0 €jr1 = forpopsri 0 (€10 €5) = (fsy 4o topti ©€1) 0 €5 — fo 4t til€j 0 €1).
Due to Proposition 2.1l we can write:

Fsittsiti €41 = fordotsiir+i © €5 = Jfortotsiti © €511
and by induction hypothesis we have:

+f ;o for 1< < spyy

. _ _ i +eoFSkpjp1te or S Sk+j+2

1+ ;0€iy] = joe; =4¢ U J )

( ) st +sp+i © €+ Jsi+ +spy1+i © € 0 for spajiz+1<i< Spyjo

Therefore we obtain

1 .
Wfsl+"'+5k+j+1+i for 1 <4< Sk+j+2

i O€it1 .
f51+ Fonte It { 0 for Sk+4+j+2 +1 S (3 S Sk4j+1

and the lemma is proved. O
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The following lemmas present the rest of multiplications among the elements of the basis.

Lemma 3.3. Let Z be an n-dimensional p-filiform Zinbiel algebra of first type. Then f; o f; =0 for
1<i<syand sp—p—1+1 <5 < sy,

Proof. From (4) we have f;o f; = y;jea for 1 <4, j < sy. If we consider s,_,—1+1 < j < s1, then there
exists 1 < ¢ <n —p— 2 such that sq11 +1 < j < s4. Moreover, by Lemma [3.2] we have f; oe, = 0.
Therefore, for any 1 < i < s; we have

Yi;CFji1€q42 = Yijea o eq = (fio fj) oeq = fio (fjoeq) + fio(ego f;) =0,
which implies v;; = 0 for 1 <7 < 59, 5g41 +1 < j < 54 and the lemma follows.

Lemma 3.4. Let Z be an algebra under the above conditions. Then

1)eofj=0forl1<i<n—pandl <j<p,
2) fiofsy+i =0 for 1 <i< ss.

Proof. Proposition 2.6, Proposition 3.1l and the properties of the nilpotent algebras make obvious the
proof.
O

Lemma 3.5. Under the above conditions, the following products are true:
fsitotsiti © forpotsers = Yig(t+ Ek+ 1lerpie
for 0<k+t<n—p—2 1<i<sp42 and 1< j < sgyo.

Proof. We first prove that fio fs, 4+ s.+5 = Vij(k+1)lext2, 0 <k <n—p—2,1<i<s1, 1 <j < spqo,
by using induction on k. For kK = 1 we have:
fiofsivj=fio(fjoer) = (fiofj)oer— fio(erof;) = ijea0er = 2ves

and fo,4;0fi=(fjoer)ofi=fjolerofi)+ fio(fioer)= fjo fs,+i =27jie3 = —27v;;e3. Hence we
conclude by Lema B4l that f; o fs,4; = 27y;5e3 for 1 < j < sp and 53 +1 <7 < s5.

Assume f; o fs,4oqstj = Vij(k+ Dlegyo for 1 <k <m—p—2, 1 <i<sj,and 1 <j < spqq; we
will prove it for k£ + 1, that is:

fio fsl+»~+sk+1+j = fio (fsittsptjoer) = (fio fsl+---+sk+j) o€ = %‘j(k +1)legy20er =
=75 (k+ Dk + 2)exts.

It is remains to prove that fs, 4 ..hs,4i © fsitootsnts = Vij(E +k+ 1)lepypqo for 1 < j < spi0 and
st42 +1 <4 < s, but this is trivial by considering the product fg, 4. .5, ,,+j© fi-
Finally let us see fs, i © fo,+ 45,15 = Vij(k +2)lexts.

fsiviofsittsits = (fioe1)o foipopsirs = fio(for4tsitioer) = fio foirotsiir i = Vij (K +2)leks.
Thus, the proof is completed. O
Lemma 3.6. Under the condition stated above, f;o f; = —fjofi forall 1<4,5<p.

Proof. Due to the previous results we only need to prove that the products fs,+...4s,4i © fsg+-tsptj
are antisymmetric for 1 < k;t <n—p—-1,1 <4 < 5441 and 1 < j < s41. In this direction it is
worthwhile to check the following property:

Jorttsi+i © fi = fortetsp14i © foy i for 1 <@ < sp + 1.

Since fo 4 tsp+i0fi = (fortetsn1+i0€1)0 fi = forrotop_1+i0(fio€1) = forotop_14i0 fsi4i, for
1 S 1 S Sk+1, hence f81+'“+5t+’i o f51+"'+5k+j = f51+"'+8m+i @) f51+"'+st+k—m+j' Accordmg to Lemma
[B.5l we assert that this expression equals to v;;(m+t+k—m+1)lempiqh—mt2 = Vij (E+E+1)lesrpro.
Therefore

Fsitotsoti © foitotsits = Vgt + kb + Dlevpyr = =it + &k + 1)leryiro

with 1 < 4,5 < s1. Finally by using again Lemma [3.5] it follows the proof. O
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Theorem 3.7. Let Z be a naturally graded p-filiform n-dimensional Zinbiel algebra of first type such
that n —p > 4. Then Z is isomorphic to one algebra of the family M*(s1, ..., Sn—p,T) :

S 5+j—1€i+j, 2<i+j<n-p

fioer = fs 44, 1<i<s

Ssitotspti©€1 = foyrtspiitis 1<i<spyo, 1<k<n-—-p-—2

fio fir1 = aes, 1<i<r-—1

fsi4gspti0€j = %f51+...+sk+j+i7 1<i<sppjr1, 1<k+7<n—-p-1
fio fsittsptitr = alk +1)lexta, 1<i<s

Fsitotsiti © fortotsorivr = alk +t+ Dlegypo, 2<k+t<r—-1, 1<i<r-1

with a € {0,1}.

Proof. Once the structural constants 7;;, with 1 <4,5 <'s,,_,_1 are determined, the classification will
be obtained due to previous propositions and lemmas. Note that it is enough determinate ~;; with
1<4i<j<sp_p1, since in Lemma [3.6 we have proved that ~;; = —vji Vi, j. That it, the matrix of
the unknown structural constants is:

0 Y12 713 . Vsn_p2 Msn—p1
—M2 0 V23 . V250 _p_2 V25 —p_1
—M3 —723 0 . V35 _p—2 V35m—p_1

_7157171)72 _’7257171)72 _7357171)72 t O 75n7p728717p71
_7187l7p71 _’7257171)71 _7357171)71 e _/stfprSnfpfl O

It is useful distinguish the following cases:

If 7;; = 0 for all 4, j then the algebra M%(s1,...,s,_p,0) is obtained.

If there exist ip and jo such that v, j, # 0, we proceed in the following way:
There is no loss of generality in assuming 12 # 0 (use the basis change f{ = f;, and f5 = f;,.) Let
us first prove that 1, = 0 for 3 <i < s,_,_1. Take the basis change:

e =e; for 1<i<mn-—p,
fl=mafi—mif2 for 3<i<sp_p1,
fi=1fi for 1<i<2 and sp—p-1+1<i<sy.

The only significant changes in the law of Z with respect to the new basis are the products f! o fi
and fi o f/. When 3 < < s,_,_1 these products are zero since:

f{ o f{ = f1 o (712fi - ’Ylif2) = 712f1 o fi - ’Ylifl o f2 = Y1271i€2 — Y1i7Y12€2 = 0.

As we know that v1; = —~;1, we conclude that f/ o f{ are also zero.
Therefore the matrix of the structural constants is simplified as:
0 Y12 0 N 0 0
0 0 V23 e V2 8n-po2 V2 8n—p1
0 —723 0 e V3 5n—pos2 V3 8n—p1
0 — Snop-2  V3sp_p-a - 0 Ysn-—p-25n—p_1
0 “V2sn—p-1 T V3Sp_p-1 - T VSn—p—2Sn—p-1 0

Reiterating the same reasoning s,,—,—o-times by using the basis change:
= kkt1fi — ifesr for k+2 <i<sp_p_1,
we come to 7y;; # 0 if and only if j =7 + 1.
1

It is clear that one can take 7;,11 = 1 by using the basis change f! = — fifor 1 <i<s,_po.
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In this direction, we have obtain the family M*(s1,..., Sn—p,7), where r is the subindex such that

Yij+1 #0if 1 <5<,
Yij+1 = 0if r <3< Sn—p—2.

Finally we prove that all the obtained algebras are pairwise non isomorphic.

Of course, two isomorphic algebras have equal the first n — p parameters. Otherwise their natural
gradation would be different. Hence we are going to focus our attention in the parameter r to study
the isomorphic property.

Let us consider M?®1:5n=»"1 and MS1»S»-»72 guch that r; # 7o and let us denote M' and
M? respectively for convenience. Suppose, contrary to our claim, that these algebras are isomor-
phic. Consequently dim(Cent(Ms1:$n=»"1)) = dim(Cent(M515-»72)) that is dim(Cent(M')) —
dim(Cent(M?)) = 0.

By the properties of the gradation we can assert that

{en—p; fortsattsnprtls s fortoototsnpoitsnp}
are in the center of the two algebras. Moreover by the law of the two algebras we deduce that
{f52+17 ) f817f51+83+17 B f51+527 fs1+52+s4+17 ) fS1+82+537 ey
fsl+52+'"+Snfp73+snfp71+l7 EER f51+52+"'+5717p71+5717p}

are elements of the center of them. Then it suffices to study if

fsl +tSpop_2FtSn_ptlycc s fS1 ++Sn—p—2+Sn—p—1

are in the center of M' and M?2.

By the properties of the gradation and the law of the considered algebras we can assert that the
products of the above vectors might be no equal to zero if and only if we consider the vector f; for
1 < i < s1. In other words, we only need to calculate the following products:

fio fsitotsnpotsnpti = Yro—1re (W=D = D Vrp—1mVij — Yr—15%ire = Vru—1iVry §)€n—p> (6)

such that r, = r; if we are working with M, and ry = ry otherwise. In order to know these products
it is convenient to distinguish the following cases:

If all these products are equal zero since:

Jre—10 fsittsn_potsnpti =
= VYrp—1rg (n —pP— 1)!(’7rk—1 reYre—17 = Vre—15Yre—1rr — Vry—1ry—17rg j)en—p -
= VYrp—1rs (n —pP— 1)!(’7rk—1j - er—lj)en—p =0
for each j.
If we can take j =1y or j # rg.
On the one hand if j = r; we also have every products equal zero since:
('Wk*lmkﬁ)/im = Vre—1rg Yiry FYTk*Li'YTka) = VYrp—1,r Yiry = Vre—1,r Virg

and we know that i # rp, — 1 and i # r, + 1.
On the other hand, when j # 7, it is worthwhile to consider the following cases:

o If i = ry, we conclude from (6) that the product is equal to zero.

o If i # 7y then v —1 v (=D = D) (Vop—1,0.Yij — Vr—1,5Yiry — Yra—1,iVrj)- As @ # 11, j # 11, and
i < j yields vp, —1,;%r, = 0 and vy, —1,47r,; = 0. Hence the products can be rewrite as follows:

2
fi o f51+'”+5n—p—2+5n—p+j = er—l,rk/yij (n —Db—- 1)!671—10'

Moreover we have proved that v;; = 0if i > 7, — 1 and j # i + 1 (remain r; for M* and 7o
for M?), hence:

fi0 fortoton_potsnptitt = Vo1 Yig(m—p—Dlen_p 0 for 1 <i <rp —2.
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Note that we have actually proved that:

an

1
< fsl+"'+snfp72+sn—p+17 RN f51+"'+5717p72+7‘1_2 >¢— Cent(M )7
1
< f51+"'+sn—p—2+’r‘1717 fsl+"'+5n—p72+7"l7 SRR f51+"'+sn7p72+5n7p71 >C Oent(M )a
2
< fsl+"'+snfp72+sn—p+17 RN f51+"'+5717p72+7‘2_2 >G Cent(M )7
2
< f51+"'+sn—p—2+’r‘2717 fsl+"'+5n—p72+7"27 SRR f51+"'+sn7p72+5n7p71 >C Oent(M )
Therefore we conclude
1 —
Cent(M ) =< €n—p, f82+1a B f517f81+53+17 SERE) f81+827f81+82+54+1a B
fS1+S2+835 B fS1+S2+"'+Sn—p—3+sn—p—1+1a R fS1+S2+"'+Sn—p—3+Sn—p—2a

f51+”'+5n7p72+7‘1_17 f51+"'+5717p72+7‘17 s f51+"'+snfp72+snfpfl ) f51+”'+5n7p71+17 RS
Fortoton, >
d

Cent(M2) =< €n—p, f52+1a R f517f51+53+17 SRR f51+827f81+82+34+15 B
fS1+S2+835 RS fsl+S2+"'+Sn—p—3+sn—p—l+1’ RS f51+52+"'+sn—p—3+sn—p—2’
f51+"'+5n7p72+r271’ f51+"'+8n7p72+7“25 s fsl+"'+sn—p—2+sn—p—l’ f51+“'+5n7p71+15 )
f51+"'+5n—p >

It follows that

dim(Cent(M"Y)) — dim(Cent(M?)) = s,—p-1 =71 +2—8Sp_p-1+19 —2 =19 — 11 #0,

which contradicts the initial assumption and proves the theorem. O
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