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Abstract. The descriptions (up to isomorphism) of naturally graded p-filiform Leibniz algebras
and p-filiform (p ≤ 3) Leibniz algebras of maximum length are known. In this paper we study
the gradation of maximum length for p-filiform Leibniz algebras. The present work aims at the
classification of complex p-filiform (p ≥ 4) Leibniz algebras of maximum length.
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1. Introduction

Leibniz algebras were introduced at the beginning of the 90s by J.-L. Loday in [14], which are a
“non-commutative” generalization of Lie algebras. The right multiplication operator on an element of
a Leibniz algebra is a derivation, which is a property inherited from Lie algebras.

Active investigation on Leibniz algebra theory shows that many results of the theory of Lie algebras
can be extended to Leibniz algebras. Distinctive properties of non-Lie Leibniz algebras have also been
studied [2, 3]. For a Leibniz algebra there is a corresponding associated Lie algebra, which is the
quotient algebra by the two-sided ideal generated by squares of elements of a Leibniz algebra (denoted
by I).

From the theory of Lie algebras it is well known that the study of finite dimensional Lie algebras was
reduced to the nilpotent ones, due to Levi’s theorem and Mal’cev’s decomposition (see [13, 15]). The
case of Leibniz algebras is analogous to Levi’s theorem [3]. Namely, a Leibniz algebra is decomposed
into a semidirect sum of its solvable radical and a semisimple Lie algebra.

The structure of solvable Lie algebra can be obtained from the structure of its nilradical [16]. This
approach has recently been extended to the case of Leibniz algebras [10]. Therefore, the main problem
when describing of finite-dimensional Leibniz algebras is the nilpotent radical. Thus, the study of
nilpotent Leibniz algebras is a crucial problem.

Since the description of the set of n-dimensional nilpotent Leibniz algebras is an unsolvable task
(even in the case of Lie algebras), we have to study nilpotent Leibniz algebras under certain conditions
(conditions on index of nilpotency, various types of gradation, characteristic sequence etc.).

The well-known gradations of nilpotent Lie and Leibniz algebras are very helpful when investigating
of the properties of those algebras without restrictions on the gradation. Indeed, we can always choose
an homogeneous basis and thus the gradation allows to obtain more explicit conditions for the structural
constants. Moreover, such gradation is useful for the investigation of cohomologies for the considered
algebras, because it induces the corresponding gradation of the group of cohomologies.

The concept of length of a Lie algebra was introduced by Gómez, Jiménez-Merchán and Reyes
in [11], [12]. Where, they distinguished an interesting family: algebras admitting a gradation with
the greatest possible number of non-zero subspaces. Actually, the gradations with a large number of
non-zero subspaces enable us to describe the multiplication on the algebra more exactly. They called
such algebras algebras of maximum length. In fact, they only consider the connected gradation. There
exist non connected algebras with the greatest possible number of non-zero subspaces. Nevertheless,
according to Gómez et al. the notion of algebras of maximum length has already been used.

In [1], [5] - [7] the classification of p-filiform Leibniz algebras of maximum length for 0 ≤ p ≤ 3 is
already closed.

The present paper aims at classification of n-dimensional p-filiform Leibniz algebras of maximum
length with n and p generic.
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Throughout the paper we consider finite-dimensional vector spaces and non-split algebras over the
field of the complex numbers. Moreover, we have omitted null products in the multiplication table of
an algebra.

2. Preliminares

Recall [14] that an algebra L over a field F is called a Leibniz algebra if it satisfies the following
Leibniz identity:

[x, [y, z]] = [[x, y], z]− [[x, z], y], ∀x, y, z ∈ L

where [−,−] denotes the multiplication of an algebra L.
Let L be a Leibniz algebra, then L is naturally filtered by the descending central sequence

L1 = L, Lk+1 = [Lk,L], k ≥ 1.

An nilpotent Lebniz algebra L has nilindex equal to s if s is the minimum integer such that Ls 6= {0}
and Ls+1 = {0}.

We denote by Rx the operator of right multiplication on element x, i.e., Rx : L → L such that
Rx(y) = [y, x] for any y ∈ L.

Let x be an element of the set L\L2. For the nilpotent operator Rx we define a descending sequence
C(x) = (n1, n2, . . . , nk), which consists of the dimensions of the Jordan blocks of the operator Rx. In
the set of such sequences we consider the lexicographic order, that is, C(x) = (n1, n2, . . . , nk) < C(y) =
(m1,m2, . . . ,ms) if and only if there exists i ∈ N such that nj = mj for some j < i and ni < mi.

Definition 2.1. The sequence C(L) = maxC(x)x∈L\L2 is called the characteristic sequence of the

algebra L.

Let L be an n-dimensional nilpotent Leibniz algebra and p be an non negative integer (p < n).

Definition 2.2. The Leibniz algebra L is called p-filiform if C(L) = (n− p, 1, . . . , 1︸ ︷︷ ︸
p

).

A Leibniz algebra L is Z-graded if L = ⊕i∈ZVi, where [Vi, Vj ] ⊆ Vi+j for some i, j ∈ Z with a finite
number of non null spaces Vi.

We will say that a Z-graded nilpotent Leibniz algebra L admits a connected gradation if L =
Vk1

⊕ Vk1+1 ⊕ · · · ⊕ Vk1+t and Vk1+i 6=< 0 > for some i (0 ≤ i ≤ t).

Definition 2.3. The number l(⊕L) = l(Vk1
⊕ Vk1+1 ⊕ · · · ⊕ Vk1+t) = t + 1 is called the length

of the gradation, where ⊕L is a connected gradation. The gradation ⊕L has maximum length if

l(⊕L) = dim(L).

We define the length of an algebra L as follows

l(L) = max{l(⊕L) such that ⊕ L = Vk1
⊕ · · · ⊕ Vkt

is a connected gradation}.

An algebra L is called of maximum length if l(L) = dim(L).
Thus, we resume the properties of gradation of maximum length:

(1)





[Vi, Vj ] ⊆ Vi+j ,

the subspaces of the gradation are not empty,

the dimension of each subspace of the gradation equals 1,

all subindices are different from each other.

We define another type of gradation below.
Given an n-dimensional Leibniz algebra L with nilindex s, put Li = Li/Li+1 with 1 ≤ i ≤ s and

grL = L1 ⊕ L2 ⊕ · · · ⊕ Ls. Then [Li,Lj ] ⊆ Li+j and we obtain the graded algebra grL. If grL and L
are isomorphic, grL ∼= L, we say that L is naturally graded.

The classification of naturally graded p-filiform Lie algebras was done by Cabezas y Pastor in [4],
which is given below.

Theorem 2.1. Let L be a n-dimensional naturally graded p-filiform Lie algebra, with p > 1, n ≥
max{3p− 1, p+ 8} and 3 ≤ r1 < r2 < · · · < rp−1 ≤ n− p odds. Therefore:

• If rp−1 = n− p, then L is isomorphic to L(n, r1, r2, . . . , rp−2, n− p),
• If rp−1 = n− p− 1, then L is isomorphic to L(n, r1, r2, . . . , rp−2, n− p− 1) or τ (n, r1, r2, . . . , rp−2, n−

p− 1),
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• If rp−1 = n−p−2, then L is isomorphic to L(n, r1, r2, . . . , rp−2, n−p−2), Q(n, r1, r2, . . . , rp−2, n−p−2)
or τ (n, r1, r2, . . . , rp−2, n− p− 2),

• If 2p− 1 ≤ rp−1 ≤ n− p− 3, then
– if n− p is odd, then L is isomorphic to L(n, r1, r2, . . . , rp−1) or Q(n, r1, r2, . . . , rp−1),
– if n− p is even, then L is isomorphic to L(n, r1, r2, . . . , rp−1).

where

L(n, r1, r2, . . . , rp−1) :{
[x0, xi] = xi+1, 1 ≤ i ≤ n− p− 1,

[xi, xrj−i] = (−1)i−1yj , 1 ≤ i ≤
rj−1

2
, 1 ≤ j ≤ p− 1.

Q(n, r1, r2, . . . , rp−1) :



[x0, xi] = xi+1, 1 ≤ i ≤ n− p− 1,

[xi, xrj−i] = (−1)i−1yj , 1 ≤ i ≤
rj−1

2
, 1 ≤ j ≤ p− 1,

[xi, xn−p−i] = (−1)i−1xn−p, 1 ≤ i ≤ n−p−1
2

.

τ (n, r1, r2, . . . , rp−2, n− p− 1) :



[x0, xi] = xi+1, 1 ≤ i ≤ n− p− 1,

[xi, xrj−i] = (−1)i−1yj , 1 ≤ i ≤
rj−1

2
, 1 ≤ j ≤ p− 2,

[xi, xn−p−1−i] = (−1)i−1(xn−p−1 + yp−1), 1 ≤ i ≤ n−p−2
2

,

[xi, xn−p−i] = (−1)i−1 n−2i−p

2
xn−p, 1 ≤ i ≤ n−p−2

2
,

[x1, yp−1] =
p+2−n

2
xn−p.

τ (n, r1, r2, . . . , rp−2, n− p− 2) :



[x0, xi] = xi+1, 1 ≤ i ≤ n− p− 1,

[xi, xrj−i] = (−1)i−1yj , 1 ≤ i ≤
rj−1

2
, 1 ≤ j ≤ p− 2,

[xi, xn−p−2−i] = (−1)i−1(xn−p−2 + yp−1), 1 ≤ i ≤ n−p−3
2

,

[xi, xn−p−1−i] = (−1)i−1 n−p−1−2i
2

xn−p−1, 1 ≤ i ≤ n−p−3
2

,

[xi, xn−p−i] = (−1)i(i− 1)n−p−1−i

2
xn−p, 2 ≤ i ≤ n−p−1

2
,

[xi, yp−1] =
p+3−n

2
xn−p−2+i, 1 ≤ i ≤ 2.

with {x0, x1, . . . , xn−p, y1, . . . , yp−1} a basis.

For naturally graded p-filiform non-Lie Leibniz algebras the result obtained is the following.

Theorem 2.2. [8] Let L be a n-dimensional p-filiform non-Lie Leibniz algebra, with n− p ≥ 4. Then
L is isomorphic to one of the following algebras

If p is even:

M1 :=

{
[ei, e1] = ei+1, 1 ≤ i ≤ n− p− 1,

[e1, fj] = f p

2
+j , 1 ≤ j ≤ p

2 .

M2 :=





[ei, e1] = ei+1, 1 ≤ i ≤ n− p− 1,

[e1, f1] = e2 + f p

2
+1,

[ei, f1] = ei+1, 1 ≤ i ≤ n− p− 1,

[e1, fj ] = f p

2
+j , 2 ≤ j ≤ p

2 .

If p is odd:

M3 :=





[ei, e1] = ei+1, 1 ≤ i ≤ n− p− 1,

[e1, fj ] = f⌊ p

2
⌋+j , 1 ≤ j ≤ ⌊p

2⌋,

[ei, f⌊ p

2
⌋ + 1] = ei+1, 1 ≤ i ≤ n− p− 1.

with {e1, . . . , en−p, f1, . . . , fp} a basis.
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3. p-filiform Leibniz algebras of maximum length

In order to achieve our goal we use the following algorithm:
1. Firstly, we extend the naturally graded p-filiform Leibniz algebras by using the natural gradations.

In this way, we can distinguish two cases: the natural graded p-filiform Lie algebras and the natural
graded p-filiform non-Lie Leibniz algebras.

2. After that, we construct an homogeneous basis of a graded algebra of maximum length with
respect to the basis of naturally gradation.

3. Finally, we classify the p-filiform Leibniz algebra in an homogeneous basis of maximum length.

3.1. Extension of Lie algebras.

In this subsection we prove that there is no n-dimensional p-filiform Leibniz algebra of maximum
length in the non split case, for p ≥ 4 and n ≥ max{3p−1, p+8}.Note that the study of the particular
case for n < max{3p− 1, p+ 8} can be found in [9].

Further we will denote by L̃ the extension of L, that is, the family of algebras with the table of
multiplication whose naturally graded algebra is L.

Theorem 3.1. Let L be a n-dimensional p-filiform Leibniz algebra, whose naturally graded associated

algebra is isomorphic to L(n, r1, r2, . . . , rp−1) or Q(n, r1, r2, . . . , rp−1), with p ≥ 4, n ≥ max{3p−1, p+
8} and 3 ≤ r1 < r2 < · · · < rp−1 ≤ n− p. Then the algebra L does not admit a gradation of maximum

length.

Proof: Note that, we have p ≥ 4, n ≥ 11 and 3 ≤ r1 < r2 · · · < rp−1 ≤ n− p, where all ri are odds.
Let us suppose that L admits a gradation of maximum length.

Study of the extension L̃(n, r1, r2, . . . , rp−1).

It is easy to see that natural gradation of the algebra L(n, r1, r2, . . . , rp−1 is L1 = 〈x0, x1〉, Li = 〈xi〉
with 2 ≤ i ≤ n − p and i 6= rj and Lrj = 〈xrj , yj〉 with 1 ≤ j ≤ p − 1. Therefore the law of

L̃(n, r1, r2, . . . , rp−1) is defined by the following products, where the asterisks (*) denote the corre-
sponding structural constants:




[x0, x0] = (∗)x3 + · · ·+ (∗)xn−p + (∗)y1 + · · ·+ (∗)yp−1,

[x0, xi] = xi+1 + (∗)xi+2 + · · ·+ (∗)xn−p + (∗)y1 + · · ·+ (∗)yp−1, 1 ≤ i ≤ r1 − 2,

[x0, xi] = xi+1 + (∗)xi+2 + · · ·+ (∗)xn−p + (∗)y2 + · · ·+ (∗)yp−1, r1 − 1 ≤ i ≤ r2 − 2,
...

...

[x0, xi] = xi+1 + (∗)xi+2 + · · ·+ (∗)xn−p + (∗)yp−1, rp−2 − 1 ≤ i ≤ rp−1 − 2,

[x0, xi] = xi+1 + (∗)xi+2 + · · ·+ (∗)xn−p, rp−1 − 1 ≤ i ≤ n− p− 1,

[xi, x0] = −xi+1 + (∗)xi+2 + · · ·+ (∗)xn−p + (∗)y1 + · · ·+ (∗)yp−1, 1 ≤ i ≤ r1 − 2,

[xi, x0] = −xi+1 + (∗)xi+2 + · · ·+ (∗)xn−p + (∗)y2 + · · ·+ (∗)yp−1, r1 − 1 ≤ i ≤ r2 − 2,
...

...

[xi, x0] = −xi+1 + (∗)xi+2 + · · ·+ (∗)xn−p + (∗)yp−1, rp−2 − 1 ≤ i ≤ rp−1 − 2,

[xi, x0] = −xi+1 + (∗)xi+2 + · · ·+ (∗)xn−p, rp−1 − 1 ≤ i ≤ n− p− 1,

[xi, xrj−i] = (∗)xrj+1 + · · ·+ (∗)xn−p + (−1)i−1yj + (∗)yj+1 + · · ·+ (∗)yp−1, 1 ≤ i ≤
rj−1

2
,

1 ≤ j ≤ p− 1, rj + 1 ≥ 4,

[xrj−i, xi] = (∗)xrj+1 + · · ·+ (∗)xn−p + (−1)iyj + (∗)yj+1 + · · ·+ (∗)yp−1, 1 ≤ i ≤
rj−1

2
,

1 ≤ j ≤ p− 1, rj + 1 ≥ 4,

[xi, xj ] = (∗)xi+j+1 + . . . (∗)xn−p + (∗)yrk + · · ·+ (∗)yp−1, 1 ≤ i+ j ≤ rk,

1 ≤ k ≤ p− 1,

[xi, yj ] = (∗)xi+rj+1 + · · ·+ (∗)xn−p + (∗)yrk + · · ·+ (∗)yp−1, 0 ≤ i ≤ n− p− 1,

1 ≤ j ≤ p− 1

[yi, yj ] = (∗)xri+rj+1 + · · ·+ (∗)xn−p + (∗)yrk + · · ·+ (∗)yp−1, 1 ≤ i, j ≤ p− 4,

7 ≤ rk ≤ p− 1,

ri + rj + 1 ≤ rk ≤ p− 1.



P-FILIFORM LEIBNIZ ALGEBRAS OF MAXIMUM LENGTH 5

Without loss of generality, one can assume that the general form of homogeneous generators of the
gradation of maximum length are

(2) x̃s = x0 +

n−p∑

i=1

aixi +

p−1∑

j=1

bjyj and x̃t = A0x0 + x1 +

n−p∑

i=2

Aixi +

p−1∑

j=1

Bjyj ,

where det

(
1 a1
A0 1

)
6= 0.

Below we present the straightforward consequences of the generated elements of L̃(n, r1, r2, . . . , rp−1)
via the above two vectors:

[x̃s, x̃s] = (∗)x3 + · · ·+ (∗)xn−p + (∗)y1 + · · ·+ (∗)yp−1,

[x̃t, x̃t] = (∗)x3 + · · ·+ (∗)xn−p + (∗)y1 + · · ·+ (∗)yp−1,

[x̃s, x̃t] = (1− a1A0)x2 + (∗)x3 + · · ·+ (∗)xn−p + (∗)y1 + · · ·+ (∗)yp−1,

[[[x̃s, x̃t], x̃s], . . . x̃s︸ ︷︷ ︸
i−times

] = (−1)i(1− a1A0)xi+2 + (∗)xi+3 + · · ·+ (∗)xn−p + (∗)y1 + · · ·+ (∗)yp−1

for 1 ≤ i ≤ r1 − 3,

[[[x̃s, x̃t], x̃s], . . . x̃s︸ ︷︷ ︸
i−times

] = (−1)i(1− a1A0)xi+2 + (∗)xi+3 + · · ·+ (∗)xn−p + (∗)y2 + · · ·+ (∗)yp−1

for r1 − 1 ≤ i ≤ r2 − 3,

[[[x̃s, x̃t], x̃s], . . . x̃s︸ ︷︷ ︸
i−times

] = (−1)i(1− a1A0)xi+2 + (∗)xi+3 + · · ·+ (∗)xn−p + (∗)yj + · · ·+ (∗)yp−1

for rj−1 − 1 ≤ i ≤ rj − 3, 2 ≤ j ≤ p− 1,

[[[x̃s, x̃t], x̃s], . . . x̃s︸ ︷︷ ︸
i−times

] = (−1)i(1− a1A0)xi+2 + (∗)xi+3 + · · ·+ (∗)xn−p

for rp−1 − 1 ≤ i ≤ n− p− 2.

[[[x̃s, x̃t], x̃s], . . . x̃s︸ ︷︷ ︸
(rk−2)−times

] = (−1)rk−2(1− a1A0)xrk + (∗)xi+3 + · · ·+ (∗)xn−p + (−1)rk−2(1− a1A0)a1yk+

+ (∗)yk+1 + · · ·+ (∗)yp−1 for 1 ≤ k ≤ p− 1.

Let us take the new homogeneous basis constructed by the following vectors:

z0 = x̃s, z1 = x̃t,
z2 = [z0, z1],
zi = [zi−1, z0], 3 ≤ i ≤ n− p,
pj = [z1, zrj−1], 1 ≤ j ≤ p− 1,

where
pj = [z1, zrj−1] = (−1)rj−3(1− a1A0)A0xrj + (∗)xrj+1 + · · ·+ (∗)xn−p+

+ (−1)r1−3(1 − a1A0)yj + (∗)yj+1 + (∗)yp−1.

The matrix of the change of basis is
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L
.M

.
C
A
M

A
C
H
O
,
E
.M

.
C
A
Ñ
E
T
E
,
J
.R

.
G
Ó
M

E
Z
,
B
.A

.
O
M

IR
O
V




1 a1 a2 a3 . . . ar1 . . . ar2 . . . arp−1 . . . an−p b1 b2 . . . bp−1

A0 1 A2 A3 . . . Ar1 . . . Ar2 . . . Arp−1 . . . An−p B1 B2 . . . Bp−1

0 0 C2 (∗) . . . (∗) . . . (∗) . . . (∗) . . . (∗) (∗) (∗) . . . (∗)

0 0 0 C3 . . . (∗) . . . (∗) . . . (∗) . . . (∗) (∗) (∗) . . . (∗)

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 . . . Cr1 . . . (∗) . . . (∗) . . . (∗) Cr1a1 (∗) . . . (∗)

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 . . . 0 . . . Cr2 . . . (∗) . . . (∗) 0 Cr2a1 . . . (∗)

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 . . . 0 . . . 0 . . . Crp−1 . . . (∗) 0 0 . . . Crp−1

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 . . . 0 . . . 0 . . . 0 . . . Cn−p 0 0 . . . 0

0 0 0 0 . . . −Cr1A0 . . . (∗) . . . (∗) . . . (∗) −Cr1 (∗) . . . (∗)

0 0 0 0 . . . 0 . . . −Cr2A0 . . . (∗) . . . (∗) 0 −Cr2 . . . (∗)

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 . . . 0 . . . 0 . . . −Crp−1A0 . . . (∗) 0 0 . . . −Crp−1



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where Ci = (−1)i(1− a1A0), for 2 ≤ i ≤ rp − 1.
Note that this matrix has rank equal to n (because of 1− a1A0 6= 0).
We put z0 ∈ Vks

and z1 ∈ Vkt
. Then, according to the definition of gradation of maximum length,

we derive:

L = Vks
⊕ Vkt

⊕ Vkt+ks
⊕ · · · ⊕ Vkt+(n−p−1)ks

⊕ V2kt+(r1−2)ks
⊕ · · · ⊕ V2kt+(rp−1−2)ks

.

This gradation is connected if and only if ks = ±1. Since the cases ks = 1 and ks = −1 are equivalent,
one can assume ks = 1.

To make the reasoning simple, we sometimes shall continue the notation ks, even though that ks = 1.
Our next objective is to analyze the value of kt. We distinguish the following cases:

• Let kt > 0. Then the properties (1) are satisfied if and only if kt = 2. In this case we conclude
kt+ks < 2kt+(r1−2)ks < kt+(n−p−1)ks, that is, V2kt+(r1−2)ks

= 〈p1, zm〉 with 2 ≤ m ≤ n−p,
giving rise to a contradiction with the assumption of maximum length.

• Let kt < 0. Then we consider the following subcases:
– If kt = −n + p + 1, then 2kt + (ri − 2)ks ≤ 2(−n + p + 1) + n − p − 2 = −n + p ≤ 0

for 1 ≤ i ≤ p − 1. Hence we can affirm that all subspaces V2kt+(ri−2)ks
have negative

subindices. Therefore, due to the connectedness of the gradation, we obtain:

distance(pi, pi+1) = distance(2kt + ri − 2, 2kt + ri+1 − 2) = 1,
⇒ distance(ri, ri+1) = 1,

which is impossible since the parameters are odd ri for 1 ≤ i ≤ p− 1.
– If kt > −n+ p+ 1, then there exists an zt, with 1 ≤ t ≤ n− p, such that zt ∈ V1 = 〈z0〉.

However, it is impossible because of zt is generator. Hence we get a contradiction.
– If kt < −n+ p+ 1, then it is easy to see that V0 = 〈0〉, which contradicts the properties

(1).

Thus, it has been proved that there is no algebra of maximum length among the extension of the
family L(n, r1, r2, . . . , rp−1).

Furthermore, the above arguments can be used for some admissible value of rp−1, that is, this

proof includes the particular cases L̃(n, r1, r2, . . . , rp−2, n − p), L̃(n, r1, r2, . . . , rp−2, n − p − 1) and

L̃(n, r1, r2, . . . , rp−2, n− p− 2).

Study of the extension Q̃(n, r1, r2, . . . , rp−1).

This case is analogous to case L̃(n, r1, r2, . . . , rp−1). The difference is only in the construction of the
homogeneous basis of gradation of maximum length.

Let us consider the following cases:

Case 1: 1 + a1 6= 0. Then we take as a basis the following vectors:

z0 = x̃s,

z1 = x̃t,

z2 = [z0, z1],

zi = [zi−1, z0], for 3 ≤ i ≤ n− p,

pj = [z1, zrj−1], for 1 ≤ j ≤ p− 1,

where

pj = A0(−1)rj−3(1− a1A0)xrj + (∗)xrj+1 + · · ·+ (∗)xn−p+

(−1)r1−3(1 − a1A0)yj + (∗)yj+1 + + · · ·+ (∗)yp−1.

Since the chosen basis is the same as in the study of the extension L̃(n, r1, r2, . . . , rp−1), for the
same reasons we conclude that there is not any algebra of maximum length in this case.
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Case 2: 1 + a1 = 0. It is clear that A0 6= −1 (because of 1 − a1A0 6= 0). Therefore, we can take

the new basis defined by the following vectors:

z0 = x̃s,

z1 = x̃t,

z2 = [z0, z1],

zi = [zi−1, z0], for 3 ≤ i ≤ n− p− 1,

zn−p = [zn−p−1, z1] = (−1)n−p−2(1− a1A0)(1 +A0)xn−p,

pj = [z1, zrj−1], for 1 ≤ j ≤ p− 1.

It is not difficult to check that the matrix of basis transformation is non-singular.
The associated gradation of maximum length is

Vks
⊕ Vkt

⊕ Vkt+ks
⊕ · · · ⊕ Vkt+(n−p−2)ks

⊕ V2kt+(n−p−2)ks
⊕ V2kt+(r1−2)ks

⊕ · · · ⊕ V2kt+(rp−1−2)ks
.

Note that this gradation also satisfies the properties (1). As stated above, without loss of generality,
we can assume ks = 1. We consider the following subcases:

• Let kt > 0. Then, by considering the properties (1), we conclude kt = 2. So, we have ks = 1,
kt = 2 and 3 ≤ r1 < n− p− 2, that is, 5 ≤ 2kt + (r1 − 2)ks < n− p. Thus, one can assert the
existence of zt with 4 ≤ t ≤ n− p− 1, such that V2kt+(r1−2)ks

= 〈p1, zt〉, which contradicts the
assumption of maximum length (see the properties (1)).

• Let kt < 0. Then from the properties of gradation of maximum length we get kt = −n+ p+2.
Moreover, since r1 and r2 are odd we conclude

distance(p1, p2) = distance(2kt + (r1 − 2)ks, 2kt + (r2 − 2)ks) = r2 − r1 > 1.

Therefore, we obtain a contradiction with the assumption of maximum length again.

�

The next theorem is proved by applying the same methods and arguments as in the proof of Theorem
3.1.

Theorem 3.2. Let L be a n-dimensional p-filiform Leibniz algebra, whose naturally gradation leads

to an algebra isomorphic to τ(n, r1, r2, . . . , n − p − 1) or τ(n, r1, r2, . . . , n − p − 2), with p ≥ 4 and

n ≥ max{3p− 1, p+ 8}. Then L does not admit a gradation of maximum length.

3.2. Extension of Leibniz algebras.

In this subsection we study the description of p-filiform Leibniz algebras of maximum length from
the extensions of naturally graded p-filiform non-Lie Leibniz algebras. The classification of Theorem
2.2 leads to considerate the extensions of the algebras M1 −M3.

Firstly, we analyze the extension of the algebras M1 and M2.

Theorem 3.3. Let L be a n-dimensional p-filiform Leibniz algebra, with n− p ≥ 4, p ≥ 4 and p even.

Then, the algebra L is isomorphic to the one of the following pairwise non-isomorphic algebras:

M4(α) :





[xi, x1] = xi+1, 1 ≤ i ≤ n− p− 1,

[x1, yi] = zi, 1 ≤ i ≤ p

2 ,

[z1, y2] = [z2, y1] = αxn−p, α ∈ {0, 1}.

M5 :





[xi, x1] = xi+1, 1 ≤ i ≤ n− p− 1,

[x1, yi] = zi, 1 ≤ i ≤ p

2 ,

[y1, y2] = xn−p.

where n is even and n
n−p

∈ N in the algebra M4(1).

Proof: Similarly as above the generators of maximum length gradation of the algebra L have the form:

x̃s = e1 +

n−p∑

i=2

aiei +

p∑

i=1

bjfj ,

yj = fj +

n−p∑

k=1

ckjek +

p

2∑

k=1,k 6=j

dkjfk for 1 ≤ j ≤
p

2
.
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Study of the extension M̃1.

By considering the law of the algebra M1 and the natural gradation we have:

L1 = 〈e1, f1, . . . , f p

2
〉 ⊕ L2 = 〈e2, f p

2
+1, . . . , fp〉 ⊕ L3 = 〈e3〉 ⊕ · · · ⊕ Ln−p = 〈en−p〉.

We construct the following new adapted basis:

x1 = x̃s, xi = [xi−1, x1], 2 ≤ i ≤ n− p, yi, 1 ≤ i ≤
p

2
, zi = [x1, yi], 1 ≤ i ≤

p

2
,

whose associated gradation is

Vks
⊕ V2ks

⊕ · · · ⊕ V(n−p)ks
⊕ Vk1

⊕ Vk2
⊕ · · · ⊕ Vk p

2

⊕ Vk1+ks
⊕ Vk2+ks

⊕ · · · ⊕ Vk p
2
+ks

.

Let us assume that this gradation has maximum length.
We consider the products [zi, x1] with 1 ≤ i ≤ n−p−1. Due to the law of the algebra M1 we obtain

[zi, x1] = c1ie3 + (∗)e4 + · · ·+ (∗)en−p, i.e., we can assume that [zi, x1] = c1ix3, 1 ≤ i ≤ n− p− 1.
On the other hand, by using the properties of the gradation we derive

{
[zi, x1] ∈ V2ks+ki

, for 1 ≤ i ≤ n− p− 1,

x3 ∈ V3ks
, ks 6= ki, for 1 ≤ i ≤ n− p− 1.

Therefor, c1i = 0, 1 ≤ i ≤ n− p− 1.
By induction on a fixed i and any j and using the Leibniz identity, one can prove that

[xi, xj ] = 0, 3 ≤ i, j ≤ n− p.

Let us analyze the products [xi, yj ], [yj , xi] for 1 ≤ i ≤ n− p, 1 ≤ j ≤ p
2 and (i, j) 6= (1, j).

According to the law of the algebra M1 we get [x2, yj ] = (∗)e4+ · · ·+(∗)en−p, that is, [x2, yj ] = Axm

with 1 ≤ j ≤ p

2 , 4 ≤ m ≤ n− p and some coefficient A.
On the other hand, the properties of the gradation of maximum length deduce

{
[x2, yj ] ∈ V2ks+kj

,

xm ∈ Vmks
.

Therefore, 2ks ≤ kj ≤ (n−p−2)ks, which is only possible for A = 0, that is, [x2, yj] = 0, 1 ≤ i ≤ p

2 .
By applying the similar argumentations it can be proved that

[xi, yj ] = 0 = [yj, xi], 1 ≤ i ≤ n− p, 1 ≤ j ≤ p

2 , (i, j) 6= (1, j),
[xj , zi] = 0 = [zi, xj ], 1 ≤ j ≤ n− p, 1 ≤ i ≤ p

2 ,
[yi, zj ] = 0, 1 ≤ i, j ≤ p

2 .

Thanks to the Leibniz identity we get [[zi, yj], x1] = 0. Since [xi, x1] = 0 if and only if xi = xn−p,
then taking into account the product [zi, yj ] = (∗)e4 + · · ·+ (∗)en−p, we obtain [zi, yj ] = Aijxn−p for
some coefficients Aij .

Furthermore we obtain [zi, yi] = 0, 1 ≤ i ≤ p
2 by the properties of the gradation. Thanks to the

Leibniz identity we derive Aij = Aji, 1 ≤ i, j ≤ p

2 .
By following the same reasons we conclude [yi, yj ] = Bijxn−p with Bii = 0.
Finally, it is trivial to check that [zi, zj ] = 0 for 1 ≤ i, j ≤ p

2 , by using the Leibniz identity.
Summarizing, the law of the algebra is determined by the following products:

L :





[xi, x1] = xi+1, 1 ≤ i ≤ n− p− 1,

[x1, yi] = zi, 1 ≤ i ≤ p
2 ,

[yi, yj ] = Bijxn−p, 1 ≤ i, j ≤ p

2 , i 6= j,

[zi, yj ] = Aijxn−p, 1 ≤ i, j ≤ p

2 , i 6= j, Aij = Aji,

with the conditions:

(3)

{
if Bi0j0 6= 0 for some i0, j0, then Bi0k = 0 for all 6= j0 and Bsj0 = 0 for all s 6= i0,

if Ai0j0 6= 0 for some i0, j0, then Ai0k = 0 for all k 6= j0 and Asj0 = 0 for all s 6= i0.
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Case 1: Bij = 0 for all i, j. Then the law of L has the following form:

L :





[xi, x1] = xi+1, 1 ≤ i ≤ n− p− 1,

[x1, yi] = zi, 1 ≤ i ≤ p
2 ,

[zi, yj ] = Aijxn−p, 1 ≤ i, j ≤ p

2 , i 6= j, Aij = Aji,

where the parameters Aij satisfy the previous hypothesis.
If all the parameters Aij are equal to zero, then it is easy to see that the algebra L has maximum

length. Indeed, putting

Vi = 〈xi〉, 1 ≤ i ≤ n− p, Vn−p+2j−1 = 〈yj〉, 1 ≤ j ≤
p

2
, Vn−p+2j = 〈zj〉, 1 ≤ j ≤

p

2
,

we get

L = V1 ⊕ V2 ⊕ · · · ⊕ Vn−p ⊕ Vn−p+1 ⊕ Vn−p+2 ⊕ Vn−p+3 ⊕ Vn−p+4 ⊕ · · · ⊕ Vn−1 ⊕ Vn.

Thus we get the algebra M4(0).
Let us assume now that there exists Ai0j0 6= 0. Without loss of generality, we can suppose A12 = 0.
Taking the following change of basis

y′i = y1 − yi, y′i+1 = y2 + yi+1, z′i = [x1, y
′
i], z′i+1 = [x1, y

′
i+1], 3 ≤ i ≤

p

2
− 1,

we obtain the algebra, which is defined by the following products

L :





[xi, x1] = xi+1, 1 ≤ i ≤ n− p− 1,

[x1, yi] = zi, 1 ≤ i ≤ p
2 ,

[z1, y2] = xn−p,

[z2, y1] = xn−p.

Using the maximum length gradation properties and connectedness it is not difficult to check that
this algebra admits the gradation of maximum length only for the cases of ks =

n
n−p

∈ N and n even.

The associated gradation is decomposed into direct sum of the following spaces:

xi ∈ Viks, 1 ≤ i ≤ n− p,
y1 ∈ V1, y2 ∈ V(n−p−1)ks−1,
z1 ∈ Vks+1, z2 ∈ V(n−p)ks−1,
yi ∈ Vi−1, 3 ≤ i ≤ ks,
zi ∈ Vks+i−1, 3 ≤ i ≤ ks,

yq(ks−1)+i ∈ V2qks−1+i, 1 ≤ q ≤ n−p−4
2 , 2 ≤ i ≤ ks,

zq(ks−1)+i ∈ V(2q+1)ks−1+i, 1 ≤ q ≤ n−p−4
2 , 2 ≤ i ≤ ks,

yn−p−2

2
(ks−1)+i ∈ V(n−p−2)ks−1+i, 2 ≤ i ≤ ks − 1,

zn−p−2

2
(ks−1)+i ∈ V(n−p−1)ks−1+i, 2 ≤ i ≤ ks − 1.

Case 2: ∃i0, j0 such that Bi0j0 6= 0. Making the basis transformation y′1 = yi0 , y
′
2 = yj0 ,

without loss of generality, one can assume that B12 6= 0. Further, applying the properties of gradation
of maximum length, the conditions (3) and the changes of basis, we arrive to the algebra of maximum
length with the following table of multiplication:

L :





[xi, x1] = xi+1, 1 ≤ i ≤ n− p− 1,

[x1, yi] = zi, 1 ≤ i ≤ p

2 ,

[y1, y2] = xn−p,

whose associated graded spaces are

V−1 = 〈y1〉, V0 = 〈z1〉, Vi = 〈xi〉, 1 ≤ i ≤ n− p,

Vn−p+2k+1 = 〈yk+2〉, 0 ≤ k ≤
p

2
− 2, Vn−p+2k = 〈zk+1〉, 1 ≤ k ≤

p

2
− 1.

The description of the extension M̃2 is carried out in a similar way as for the extension M̃1.
�

In the following theorem we prove that there is no algebra of maximum length among algebras from

extension M̃3.
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Theorem 3.4. Let L be a n-dimensional p-filiform Leibniz algebra with n− p ≥ 4, p ≥ 4 and p odd.

Then L does not admit a gradation of maximum length.

Proof: First of all, we shall denote q = ⌊p

2⌋ for simplicity. Recall, the natural gradation of M3 is

L1 = 〈e1, f1, f2, . . . , fq+1〉 ⊕ L2 = 〈e2, fq+2, . . . , fp〉 ⊕ Li = 〈ei〉, 3 ≤ i ≤ n− p.

By considering the law of M3 we denote by new generators the following:

x̃s = e1 +

n−p∑

i=2

aiei +

p∑

i=1

bjfj,

yj = fj +

n−p∑

k=1

ckjek +

p
2∑

k=1,k 6=j

dkjfk for 1 ≤ j ≤ q + 1.

Then we get

[x̃s, x̃s] = (1 + bq+1)e2 + (∗)e3 + · · ·+ (∗)en−p + b1fq+2 + · · ·+ bqfp,

[[x̃s, x̃s] . . . , x̃s]︸ ︷︷ ︸
i−times

= (1 + bq+1)
i−1

ei + (∗)ei+1 + · · ·+ (∗)en−p, 3 ≤ i ≤ n− p.

[x̃s, y1] = (c11 + dq+11)e2 + (∗)e3 + · · ·+ (∗)en−p + fq+2 + d21fq+3 + · · ·+ dq1fp,

[y1, x̃s] = c11[x̃s, x̃s],

[x̃s, yi] = (c1i + dq+1i)e2 + (∗)e3 + · · ·+ (∗)en−p + d1ifq+2 + · · ·+ fq+i+1 + · · ·+ dqifp, 2 ≤ i ≤ q,

[yi, x̃s] = c1i[x̃s, x̃s], 2 ≤ i ≤ q + 1,

[y1, y1] = c11[x̃s, y1],

[yi, yj ] = c1i[x̃s, yj ], 1 ≤ i, j ≤ q + 1, (i, j) 6= (1, 1).

Without loss of generality, one can assume 1 + bq+1 6= 0. Then the homogeneous basis of L is defined by
the following vectors:

x1 = x̃s,

xi = [xi−1, x̃s], 2 ≤ i ≤ n− p,

yi, 1 ≤ i ≤ q + 1,
zi = [x1, yi], 1 ≤ i ≤ q.

The matrix of the change of basis is as follows:



1 a2 a3 a4 . . . an−p b1 b2 . . . bq+1 bq+2 . . . bp
0 D1 (∗) (∗) . . . (∗) 0 0 . . . 0 b1 . . . bq
0 0 D2 (∗) . . . (∗) 0 0 . . . 0 0 . . . 0
0 0 0 D3 . . . (∗) 0 0 . . . 0 0 . . . 0
0 0 0 0 . . . Dn−p−1 0 0 . . . 0 0 . . . 0
c11 c21 c31 c41 . . . cn−p1 1 d21 . . . dq+11 dq+21 . . . dp1
c12 c22 c32 c42 . . . cn−p2 d12 1 . . . dq+12 dq+22 . . . dp2
...

...
...

... . . .
...

...
... . . .

...
... . . .

...
c1q+1 c2q+1 c3q+1 c4q+1 . . . cn−pq+1 d1q+1 d2q+1 . . . 1 dq+2q+1 . . . dpq+1

0 E1 (∗) (∗) . . . (∗) 0 0 . . . 0 1 . . . dq1
...

...
...

... . . .
...

...
... . . .

...
... . . .

...
0 Eq (∗) (∗) . . . (∗) 0 0 . . . 0 d1q . . . 1




where Di = (1 + bq+1)
i, 1 ≤ i ≤ n− p− 1 and Ei = c1i + dq+1i, 1 ≤ i ≤ q.

The gradation associated to the above basis is

Vks ⊕ V2ks ⊕ · · · ⊕ V(n−p)ks
⊕ Vk1

⊕ · · · ⊕ Vkq+1
⊕ Vk1+ks ⊕ · · · ⊕ Vkq+ks .

Let us assume that this gradation has maximum length.
Consider

[x2, yi] = (1 + bq+1)(c1i + dq+1i)e3 + (∗)e4 + · · ·+ (∗)en−p, 1 ≤ i ≤ q.

Therefore we conclude that [[x1, x1], yi] = Ax3, with A ∈ C.

On the other hand, by considering the properties of the gradation we have
{
[x2, yi] ∈ V2ks+ki

, for 1 ≤ i ≤ q,

x3 ∈ V3ks ,
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that is, we have either A = 0 or ks = ki. The last equality contradicts the assumption of maximum length,
thus A = 0, i.e, we obtain

(4) c1i + dq+1i = 0, 1 ≤ i ≤ q.

From the product

[x2, yq+1] = (1 + bq+1)(c1q+1 + 1)e3 + (∗)e4 + · · ·+ (∗)en−p,

we conclude c1q+1 = −1.
Finally, it contradicts the assumption of maximum length by comparison with the following equalities:

[yq+1, x1] = −(1 + bq+1)e2 + (∗)e3 + +̇(∗)en−p − b1fq+2 − · · · − bqfp = −x2.

By means of the gradation, it leads to Vks+kq+1
= V2ks , i.e, ks = kq+1, which contradicts the properties (1).

�
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