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1. INTRODUCTION

We know that Lie algebras are generalized in several ways. We may change 
the Jacobi identity to the Malcev identity (in this case, we get Malcev algebras [16]). 
We may also omit the skew-symmetric identity, and transforming the Jacobi identity 
we get Leibniz algebra [6, 15]. If we consider the graded skew-symmetric and Jacobi 
identities, we can derive Lie superalgebras. The concept of Leibniz superalgebra and 
its cohomology was first introduced by Dzhumadil’daev in [7]. In the present article, 
that we study nilpotent Leibniz superalgebras. Recall that Leibniz superalgebras 
are constructed by the graded Leibniz identity and therefore they include Leibniz 
algebras and Lie superalgebras.

Since nilpotent Leibniz superalgebras are defined by the descending central 
sequence, it is natural to consider the descending filtration which consists of degrees 
of the superalgebra. When the length is equal to two, i.e., the numbers of the 
members of filtration are equal to two, we get the trivial superalgebra. For an 
�n + m�-dimensional Leibniz superalgebra the maximum length of the filtration is 
equal to n + m + 1 with n and m are the dimensions of the even and odd parts of 
the superalgebra, respectively. Such Leibniz superalgebras have a simple structure 
(see [1]), and they are single-generated. It should be noted that Lie superalgebras 
have more than one generator. Note that the structure of superalgebras is simpler



when the length of the filtration is bigger than when it is smaller. Indeed, the
problem of the classification of complex 5-dimensional associative algebras with
the length of the filtration is equal to three is still open. It should be noted that
many important properties of Leibniz algebras depend on the operator of right
multiplications, which is a derivation. In [11] the authors show that the adjoint
operators of a general algebra are derivations if and only if the algebra is a Leibniz
algebras.

In other words, the nilindex is nothing else but the length of the descending
filtration. Therefore, it is natural to consider Leibniz superalgebras of nilindex
n+m.

The set of all nilpotent �n+m�-dimensional Leibniz superalgebras forms a
variety [1]. From algebraic geometry it is known that the variety is a union of
finite numbers of irreducible components [13]. The representatives of the irreducible
components are the so-called rigid superalgebras, from which we can construct its
irreducible component [2, 10]. In fact, the first candidates to rigid superalgebras
are those superalgebras which have the biggest nilindex. Lie superalgebras with the
length of the filtration equal to n+m lead to the existence of only one superalgebra
[9]. The study of non Lie Leibniz superalgebras involves serious difficulties because
we do not have the graded skew-symmetric identity. That is why we need to add
some additional restrictions. Nilpotent Leibniz superalgebras are studied in papers
[4, 5, 8]. The even part of such superalgebras have maximal length of the filtration
and in each dimension there exists a unique non Lie Leibniz algebra [3]. In order to
study Leibniz superalgebras of nilindex n+m, we start by those with characteristic
sequence �n �m1�m2� � � � � mk�.

Taking into account the results of papers [5, 8], where some cases of
nilpotent Leibniz superalgebras were described, we investigate the remaining cases.
Thus, the present article completes the classification of Leibniz superalgebras with
characteristic sequence �n �m1� � � � � mk� and nilindex n+m.

Throughout this article, we consider linear spaces and algebras over the field
of complex numbers.

2. PRELIMINARIES

Lie and Leibniz superalgebras are defined as follows.

Definition 2.1 ([14]). A �2-graded vector space � = �0 ⊕ �1 is called a Lie
superalgebra if it is equipped with a product �−�−� which satisfies the following
conditions:

1. ������� ⊆ ��+�;
2. �x� y� = −�−1����y� x� – graded skew-symmetric identity;
3. �−1��	�x� �y� z��+ �−1����y� �z� x��+ �−1��	�z� �x� y�� = 0 – Jacobi superidentity

for any x ∈ ��, y ∈ ��, z ∈ �	, and �� �� 	 ∈ �2.

Definition 2.2 ([1]). A �2-graded vector space � = �0 ⊕�1 is called a Leibniz
superalgebra if it is equipped with a product �−�−� which satisfies the following
conditions:

1. ������� ⊆ ��+�;



2. �x� �y� z�� = ��x� y�� z�− �−1�����x� z�� y�− Leibniz superidentity, for all x ∈ �, y ∈
��, z ∈ ��, and �� � ∈ �2.

The vector spaces �0 and �1 are said to be the even and odd parts of the
superalgebra �, respectively.

Note that if in � the graded skew-symmetric identity holds, then the Leibniz
superidentity and the Jacobi superidentity coincide. Thus, Leibniz superalgebras are
a generalization of Lie superalgebras.

For examples of Leibniz superalgebras see [1].
We denote by Leibn�m the set of Leibniz superalgebras with the dimensions of

the even part and the odd part equal to n and m, respectively.

Definition 2.3. Let � and �′ be Leibniz superalgebras. A linear map f 
 � → �′

is called a homomorphism of Leibniz superalgebras if:

1. f��0� ⊆ �′
0 and f��1� ⊆ �′

1;
2. f��x� y�� = �f�x�� f�y�� for all x� y ∈ ��

Moreover, if f is a bijection, then it is called an isomorphism of Leibniz
superalgebras � and �′.

For a given Leibniz superalgebra �, we define the descending central sequence
as follows:

�1 = �� �k+1 = ��k��1�� k ≥ 1�

Definition 2.4. A Leibniz superalgebra � is called nilpotent, if there exists t ∈ �
such that �t = 0. The smaller number t with this property is called the nilindex of
the superalgebra �.

Note that the nilindex of the nilpotent superalgebra of Leibn�m is less or equal
to n+m+ 1.

Definition 2.5. The sets

���� = �z ∈ � � ��� z� = 0� and ���� = �z ∈ � � ��� z� = �z��� = 0�

are called the right annihilator and the center of a superalgebra �, respectively.

It is easy to check that ���� is an ideal of the superalgebra � and the
elements of the form �a� b�+ �−1����b� a�, (a ∈ ��� b ∈ ��) belong to ����.

The following theorem describes nilpotent Leibniz superalgebras with maximal
nilindex.

Theorem 2.6 ([1]). Let � be a nilpotent Leibniz superalgebra of the variety Leibn�m

with nilindex equal to n+m+ 1� Then � is isomorphic to one of the following non-



isomorphic superalgebras:

�ei� e1� = ei+1� 1 ≤ i ≤ n− 1


{
�ei� e1� = ei+1� 1 ≤ i ≤ n+m− 1�

�ei� e2� = 2ei+2� 1 ≤ i ≤ n+m− 2�

(where the products equal to zero are omitted).

It should be noted that for the second superalgebra we have m = n when
n+m is even and m = n+ 1 if n+m is odd. Moreover, the Leibniz superalgebra
(algebra) has the maximal nilindex if and only if it has only one generator.

Let � = �0 ⊕�1 be a complex nilpotent Leibniz superalgebra. For an
arbitrary element x ∈ L0, the operator of right multiplication Rx 
 � → � (defined
by Rx�y� = �y� x�) is a nilpotent endomorphism of the space Li, where i ∈ �0� 1�.
Taking into account the property of complex field, we can consider the Jordan form
for Rx. Denote by Ci�x� (i ∈ �0� 1�) the descending sequence of the Jordan blocks
dimensions of Rx. Consider the lexicographical order on the set Ci��0� = �Ci�x� � x ∈
L0�� i ∈ �0� 1�. Let us define the notion of characteristic sequence for nilpotent
Leibniz superalgebras, which is first introduced for the nilpotent Lie algebras in [12].

Definition 2.7. A sequence

C��� =
(

max
x∈�0\��0��0�

C0�x�

∣∣∣∣ max
x̃∈�0\��0��0�

C1 �x̃�

)

is said to be the characteristic sequence of the Leibniz superalgebra ��

For Leibniz superalgebras, we introduce the analogue of the zero-filiform
Leibniz algebras.

Definition 2.8. A Leibniz superalgebra � ∈ Leibn�m is called zero-filiform if
C��� = �n �m�.

Denote by �� n�m the set of all zero-filiform Leibniz superalgebras from
Leibn�m.

From [3] it can be concluded that the even part of zero-filiform Leibniz
superalgebras is a zero-filiform Leibniz algebra; therefore, zero-filiform
superalgebras are not Lie superalgebras.

Further, we need the following result on the existence of an adapted basis for
zero-filiform Leibniz superalgebras.



Theorem 2.9 ([8]). In an arbitrary superalgebra from �� n�m there exists a basis
�x1� x2� � � � � xn� y1� y2� � � � � ym�, which satisfies the following conditions:



�xi� x1� = xi+1� 1 ≤ i ≤ n− 1�

�xn� x1� = 0�

�xi� xk� = 0� 1 ≤ i ≤ n� 2 ≤ k ≤ n�

�yj� x1� = yj+1� 1 ≤ j ≤ m− 1�

�ym� x1� = 0�

�yj� xk� = 0� 1 ≤ j ≤ m� 2 ≤ k ≤ n�

From Theorem 2.9, it is not difficult to see that, for the zero-filiform Leibniz
algebra,

C��� = �C0�x1� �C1�x1���

But in general, in the definition characteristic sequence C��� the elements x and x̃
are distinct.

3. ZERO-FILIFORM LEIBNIZ SUPERALGEBRAS OF LEIBn�m WITH
NILINDEX n +m

This section is devoted to the description of zero-filiform Leibniz
superalgebras of Leibn�m with nilindex equal to n+m.

Let � ∈ �� n�m with nilindex equal to n+m. Note that the Leibniz
superalgebras in Theorem 2.6 are zero-filiform, which have nilindex equal to n+
m+ 1, and therefore, they are one-generated superalgebras. Thus, the Leibniz
superalgebras with nilindex n+m, have at least two generators. If the number of
generators is more than two, then the superalgebra has nilindex less than n+m.
Hence, we have that � has exactly two generators. Moreover, from Theorem 2.9, it
follows that one generator lies in �0, and the second generator lies in �1. Without
loss of generality, it can be assumed that in the adapted basis the generators are x1
and y1. Then we have �2 = �x2� x3� � � � � xn� y2� y3� � � � � ym�.

In the adapted basis of �, we introduce the notations:

�xi� y1� =
m∑
j=2

�i�jyj� 1 ≤ i ≤ n� �yi� y1� =
n∑

j=2

�i�jxj� 1 ≤ i ≤ m�

Thus, the following lemma holds.

Lemma 3.1.

�yi� yj� =
min�i+j−1�m�−i∑

s=0

�−1�sCs
j−1

n−j+s+1∑
t=2

�i+s�txt+j−s−1� (1)

where 1 ≤ i� j ≤ m and Cs
j−1 = �j−1�!

s!�j−1−s�! are the binomial coefficients.

Proof. The proof is deduced by j induction for any value of i. �



Since the set �� n�2 was already described in [8], we consider the set �� n�m

with m ≥ 3.
Case �� 2�m �m ≥ 3�.

Theorem 3.2. Let � ∈ �� 2�m �m ≥ 3� with nilindex m+ 2. Then m is odd and � is
isomorphic to the following superalgebra:



�x1� x1� = x2�

�yi� x1� = yi+1� 1 ≤ i ≤ m− 1�

�x1� yi� = −yi+1� 1 ≤ i ≤ m− 1�

�yi� ym+1−i� = �−1�j+1x2� 1 ≤ i ≤ m− 1�

Proof. From (1), we easily obtain

�yi� yj� = �−1�j−1�i+j−1�2x2� 2 ≤ i+ j ≤ m+ 1�
(2)

�yi� yj� = 0� m+ 2 ≤ i+ j ≤ 2m�

It should be noted that �m�2 	= 0. Indeed, if �m�2 = 0, then �m−1 =
�x2� ym−1� ym�, �

m = �x2� ym�, and �m+1 = �ym�, which implies that �ym−1� y1� = ax2
and �x2� y1� = bym, where ab 	= 0.

The chain of the equalities

abym = �ax2� y1� = ��ym−1� y1�� y1� =
1
2
�ym−1� �y1� y1�� = 0

contradicts the property ab 	= 0� Therefore, �m�2 	= 0.
The simple analysis of the products leads to x2 ∈ ���� (since x2 ∈ �m+1 ⊆

����).
Using the Leibniz superidentity, we have

�x1� yi� = �1�2yi+1 + · · · + �1�m−i+1ym� 1 ≤ i ≤ m− 1�

The expression �y1� x1�+ �x1� y1� lies in ����. Hence

�1+ �1�2�y2 + �1�3y3 + · · · + �1�mym (3)

belongs to ����, as well.
If either �1�2 	= −1 or there exists �3 ≤ i ≤ m� such that �1�i 	= 0, we deduce

ym ∈ ���� multiplying (3) by x1 conveniently from the right side. However, by
(2) we have �y1� ym� = �−1�m−1�m�2x2, which implies that �m�2 = 0, and we get a
contradiction with condition �m�2 	= 0.

If �1�2 = −1 and �1�i = 0 �3 ≤ i ≤ m�, then by applying the Leibniz
superidentity for the basis elements �x1� yi� yi�, we obtain �2i�2 = 0 for 1 ≤ i ≤ �m2 �.

Note that if m is even, then we obtain �m�2 = 0, which is a contradiction.
Therefore, m is odd.



Let us introduce some new notations:

	s = �2s−1�2� 1 ≤ s ≤ m+ 1
2

�

Then we obtain the family L�	1� 	2� � � � � 	 m+1
2
�:



�x1� x1� = x2�

�yi� x1� = yi+1� 1 ≤ i ≤ m− 1�

�x1� yi� = −yi+1� 1 ≤ i ≤ m− 1�

�yi� yj� = �−1�j−1	 i+j
2
x2� i+ j is even� 2 ≤ i+ j ≤ m+ 1�m is odd�

Make the following general transformation of the generators:

x′1 = b1x1� y′1 =
m+1
2∑

s=1

a2s−1y2s−1�

Then x′2 = b21x2 and

y′2i−1 = b
2�i−1�
1

m−2�i−1�+1
2∑

s=1

a2s−1y2s+2i−3� 1 ≤ i ≤ m+ 1
2

�

y′2i = b2i−1
1

m−2�i−1�−1
2∑

s=1

a2s−1y2s+2i−2� 1 ≤ i ≤ m− 1
2

�

We obtain �y′m� y
′
1� = x′2 and �y′i� y

′
1� = 0 for 1 ≤ i ≤ m− 1, choosing the

parameters ai as follows:

a1 =
√

1

bm−3
1 	m+1

2

� a3 = −a1	m−1
2

2	m+1
2

�

ai = −a2
1	m−i+2

2
+ 2a1a3	m−i+4

2
+ · · · + �2a1ai−2 + · · · + 2a i−3

2
a i+1

2
�	m−1

2

2a1	m+1
2

−
2a3ai−2 + · · · + 2a i−3

2
a i+5

2
+ a2

i+1
2

2a1

� if
i+ 1
2

odd and 4 ≤ i ≤ m�

ai = −
a2
1	m−i+2

2
+ 2a1a3	m−i+4

2
+ · · · + �2a1ai−2 + · · · + 2a i−5

2
a i+3

2
+ a2

i−1
2
�	m−1

2

2a1	m+1
2

− 2a3ai−2 + · · · + 2a i−1
2
a i+3

2

2a1

� if
i+ 1
2

even and 4 ≤ i ≤ m�

Then applying the Leibniz superidentity, we get the remaining brackets

�y′i� y
′
j� = 0� 1 ≤ i� j ≤ m� i+ j 	= m+ 1�

�y′i� y
′
j� = �−1�j−1x′2� 1 ≤ i� j ≤ m� i+ j = m+ 1�



Thus, we obtain the superalgebra of the theorem. �

Case �� n�m �n ≥ 3�m ≥ 3��

Lemma 3.3. Any Leibniz superalgebra from �� n�m �n ≥ 3�m ≥ 3� has nilindex less
than n+m.

Proof. Let � ∈ �� n�m �n ≥ 3�m ≥ 3� be. Let us assume that � has nilindex n+m.
Then we have the following in the adapted basis

� = �x1� x2� � � � � xn� y1� y2� � � � � ym��

�2 = �x2� � � � � xn� y2� � � � � ym��

�3 ⊃ �x3� � � � � xn� y3� � � � � ym��

Let us suppose that �3 = �x3� � � � � xn� y2� � � � � ym�, i.e., x2 � �3 and y2 ∈ �3.
Then there exists i0 (2 ≤ i0 ≤ n) such that �xi0� y1� = �i0�2y2 + · · · + �i0�mym with
�i0�2 	= 0. Since xi ∈ ���� for 2 ≤ i ≤ n and ���� is an ideal, then �i0�2y2 + · · · +
�i−0�mym ∈ ����.

Multiplying the product �xi0� y1� on the right side by x1 �m− 1�−times, we
easily obtain y2� y3� � � � � ym ∈ ����, that is �2 = ����.

By induction one can prove the following

�xi� y1� =




m+1−i∑
j=2

�1�jyj+i−1� if i+ 1 ≤ m�

0� if i+ 1 > m�

(4)

Since �2 = ����, then y2 can appear only in the products �xi� y1� for 2 ≤
i ≤ n or �yj� x1� for 2 ≤ j ≤ m− 1. However, from (4) we conclude that y2 does
not lie in �3 in the first case and in the second case the element y2 cannot be
obtained, i.e. in both cases we have a contradiction with the assumption �3 =
�x3� � � � � xn� y2� � � � � ym�.

Thus, �3 = �x2� � � � � xn� y3� � � � � ym�. Let s be a natural number such that x2 ∈
�s\�s+1.

Suppose s ≤ m� Then we have

�i = �x2� � � � � xn� yi� � � � � ym�� 2 ≤ i ≤ s�

�s+1 = �x3� � � � � xn� ys� � � � � ym�

and in the equality �ys−1� y1� =
∑n

j=2 �s−1�jxj the coefficient �s−1�2 is not zero.
From Lemma 3.1, we have

�y1� ys� =
s−1∑
i=0

�−1�iCi
s−1

n−s+i+1∑
t=2

�1+i�txt+s−i−1�

in which the coefficient �s−1�2 occurs. Taking into account the equality �ys� y1� =∑n
j=2 �s�jxj , we conclude that x3 ∈ ��y1� ys�� �ys� y1�� x4� � � � � xn�. Therefore, �s+2 =

�x3� � � � � xn� ys+1� � � � � ym�, i.e., ys ∈ �s+1\�s+2 and �2�s 	= 0.



Consider the equalities

�ys−1� �y1� y1�� = 2��ys−1� y1�� y1�

= 2�s−1�2�x2� y1�+
n∑

t=3

�s−1�t�xt� y1�

≡ 2�s−1�2�2�sys�mod Vs+1��

where Vj = �yj� yj+1� � � � � ym� with 1 ≤ j ≤ m.
On the other hand, �ys−1� �y1� y1�� = 0, because �y1� y1� ∈ ����. Hence we have

that �s−1�2�2�sys ≡ 0�mod Vs+1�, which implies �s−1�2�2�s = 0. This contradicts the
assumption s ≤ m.

Let us consider now the case s = m+ 1� Then we have

� = �x1� x2� � � � � xn� y1� y2� � � � � ym��

�i = �x2� x3� � � � � xn� yi� yi+1 � � � � ym�� 2 ≤ i ≤ m�

�m+i−1 = �xi� xi+1 � � � � xn�� 2 ≤ i ≤ n�

Since x2 ∈ �m+1 we have �ym� y1� =
∑n

i=2 �m�ixi with �m�2 	= 0.
The sum �y1� x1�+ �x1� y1� lies in ���� since �y1� x1�+ �x1� y1� = �1+ �1�2�y2 +

�1�3y3 + · · · + �1�mym ∈ ����.
If �y1� x1�+ �x1� y1� = 0, then using the Leibniz superidentity we have

�x1� �ym� y1�� = ��x1� ym�� y1�+ ��x1� y1�� ym� = −�y2� ym� ≡ �m�2x3�modU4��

where Ui = �xi� xi+1� � � � � xn�� 1 ≤ i ≤ n.
On the other hand,

�x1� �ym� y1�� =
n∑

i=2

�m�i�x1� xi� = 0�

Hence, �m�2 = 0, which is a contradiction.
Thus, �y1� x1�+ �x1� y1� 	= 0� Continuing the same argumentation as in the

proof of Theorem 3.2 we obtain ym ∈ ����. Therefore,

�y1� ym� =
m−1∑
i=0

�−1�iCi
m−1

n−m+i+1∑
t=2

�1+i�txt+m−i−1 = 0�

The minimal value of the expression t +m− i− 1 is reached when i = m− 1
and t = 2. Thus, �y1� ym� ≡ �−1�m−1Cm−1

m−1�m�2x2 �modU3� which implies that �m�2 = 0.
That is a contradiction with the assumption that the nilindex of � is equal to n+m.

�

4. LEIBNIZ SUPERALGEBRAS WITH CHARACTERISTIC SEQUENCE
�n �m1�m2� � � � �mk� AND NILINDEX n +m

Leibniz superalgebras with characteristic sequence �n �m− 1� 1� and with
nilindex n+m were examined in [5]. Therefore, in this section we shall consider



the Leibniz superalgebras � of nilindex n+m with characteristic sequence
�n �m1�m2� � � � � mk� with the condition m1 ≤ m− 2.

From the characteristic sequence, there exits a basis
�x1� x2� � � � xn� y1� y2� � � � ym� where the operator Rx1�L1 has the following form:

Rx1��1
=



Jm1

0 · · · 0
0 Jm2

· · · 0
· · · · · · · · · · · ·
0 0 · · · Jmk


 �

It means that the basis �x1� x2� � � � xn� y1� y2� � � � ym� satisfies the following
conditions:

�xi� x1� = xi+1� 1 ≤ i ≤ n− 1�

�yj� x1� = yj+1� for j � �m1�m1 +m2� � � � � m1 +m2 + · · · +mk�� (5)

�yj� x1� = 0� for j ∈ �m1�m1 +m2� � � � � m1 +m2 + · · · +mk��

It is clear that the two generators cannot lie in �0. In fact, in [3] the table of
multiplication of the Leibniz algebra �0 is presented, and it has only one generator.

Theorem 4.1. Let � be a Leibniz superalgebra of nilindex n+m with characteristic
sequence �n �m1�m2� � � � � mk�, where m1 ≤ m− 2. Then both generators cannot belong
to �1 simultaneously.

Proof. Let � = �0 ⊕�1 be a Leibniz superalgebra with nilindex n+m. Let
�x1� x2� � � � � xn� and �y1� y2� � � � � ym� be a basis of �0 and �1 defined in (5). Suppose
that the two generators belong in �1. Without loss of generality, we can assume that
these generators are �y1� ym1+1�.

Consider the following cases:

Case 1. Let �y1� y1� ∈ �0\�2
0 be.

Then consider the Leibniz superalgebra 
y1� generated by the vector y1.
Since �y1� y1� ∈ �0\�2

0 , we can assume �y1� y1� = x1. Then from (5), we deduce
�x1� x2� � � � � xn� y2� y3� � � � � ym1

� ⊆ 
y1�. It is easy to see that ym1+1 � 
y1�. Indeed,
if ym1+1 ∈ 
y1�, then �ym1+2� � � � � ym1+m2

� ⊆ 
y1� which implies C��� ≥ �n �m1 +
m2�m3� � � � � mk�. That is a contradiction with the condition of characteristic
sequence of �, because C��� = �n �m1�m2� � � � � mk�. Thus, the Leibniz superalgebra

y1� is the vector space generated by �x1� x2� � � � � xn� y1� y2� � � � � ym1

�.
Since the superalgebra 
y1� is single-generated, then from Theorem 2.6, we

have that either m1 = n or m1 = n+ 1, and the multiplication in 
y1� has the
following form:

�xi� x1� = xi+1� 1 ≤ i ≤ n− 1�

�yj� x1� = yj+1� 1 ≤ j ≤ m1 − 1�

�xi� y1� =
1
2
yi+1� 1 ≤ i ≤ m1 − 1�

�yj� y1� = xj� 1 ≤ j ≤ n�



Case m1 = n. Since y1 and yn+1 are the generators, we have

� = �x1� x2� � � � � xn� y1� � � � � yn� yn+1� � � � � ym��

�2 = �x1� x2� � � � � xn� y2� � � � � yn� yn+2� � � � � ym��

The vector x1 is not in �3. In fact, if x1 ∈ �3, then there exists z ∈ �1 such
that z ∈ �2\�3. Thereby z ∈ ��y1� y1�� �y1� yn+1�� �yn+1� y1�� �yn+1� yn+1�� and taking
into account that �yi� yj� ∈ �0, we obtain z ∈ �0, which is a contradiction. Thus,
�3 = �x2� � � � � xn� y2� � � � � yn� yn+2� � � � � ym�.

If �2k = �xi� xi+1� � � � � xn� yj� � � � � yn� yn+2� � � � � ym�, then one can prove that
�2k+1 = �xi+1� � � � � xn� yj� � � � � yn� yn+2� � � � � ym�. In fact, if z ∈ �2k\�2k+1, then z has
to be generated by 2k products of the generators (but they are from �1). Hence this
products belong to �0, and we have z ∈ �0.

Applying a similar argument, we get �2k+2 = �xi+1� � � � � xn� yj+1� � � � � yn�
yn+2� � � � � ym�.

Finally, we obtain �2n+1 = �yi1� yi2� � � � � yik� and �2n+2 = 0.
Since dim��2n+1\�2n+2� = 1, then �2n+1 = �yn+2�, and the nilindex should be

equal to 2n+ 2. Thus, m = n+ 2, and we have

� = �x1� x2� � � � � xn� y1� � � � � yn� yn+1� yn+2��

�2k = �xk� � � � � xn� yk+1� � � � � yn� yn+2�� 1 ≤ k ≤ n− 1�

�2k+1 = �xk+1� � � � � xn� yk+1� � � � � yn� yn+2�� 1 ≤ k ≤ n− 1�

�2n = �xn� yn+2�� �2n+1 = �yn+2�� �2n+2 = �0��

Furthermore, �2n = ��2n−1��� = ��xn� y1�, �xn� yn+1�, �yn� y1�, �yn� yn+1�,
�yn+2� y1�, �yn+2� yn+1��. We have �xn� y1� = 0; otherwise we get a contradiction with
characteristic sequence. Thus, the element yn+2 can only be obtained from the
product �xn� yn+1�. However,

�xn� yn+1� = ��xn−1� x1�� yn+1� = �xn−1� �x1� yn+1��+ ��xn−1� yn+1�� x1� = 0�

and hence �2n = �xn�, which is a contradiction with the nilindex.

Case m1 = n+ 1. In this case, we also get a contradiction.

Case 2. Let �y1� y1� � �0\�2
0 and �ym1+1� ym1+1� ∈ �0\�2

0 be.
Then applying the same arguments for ym1+1 as for y1 in Case 1, this

contradicts the fact that both generators lie in �1, as well.

Case 3. Let �y1� y1� � �0\�2
0 and �ym1+1� ym1+1� � �0\�2

0 be.
Then, without loss of generality, we can assume that

�y1� ym1+1� = x1�

�ym1+1� y1� =
n∑

i=1

bixi�

If b1 = 1, then making the change of basis y′1 = y1 + ym1+1, we obtain �y′1� y
′
1� ∈

�0\�2
0 . Therefore, this case can be reduced to Case 1.



If b1 	= 1, then �y1� ym1+1�− �ym1+1� y1� = �1− b1�x1 + b2x2 + · · · + bnxn ∈
���� and since xi ∈ ���� (2 ≤ i ≤ n) we get x1 ∈ ����. From the Leibniz
superidentity, we obtain �3 = �0� and, therefore, n = 1�m = 2. �

According to Theorem 4.1, one generator lies in �0, and another one belongs
to �1. Evidently, x1 is a generator, and we can choose y1 as the other generator.

Put

�xi� y1� =
m∑
t=2

�i�tyt� 1 ≤ i ≤ n�

�yj� y1� =
n∑

s=2

�j�sxs� 1 ≤ j ≤ m�

The following equality can be proved by induction:

�yi� yj� =
min�i+j−1�m1�−i∑

s=0

�−1�sCs
j−1

n−j+s+1∑
t=2

�i+s�txt+j−s−1� (6)

where 1 ≤ i� j ≤ m1.

Theorem 4.2. Let � be a Leibniz superalgebra with characteristic sequence equal to
�n �m1�m2� � � � � mk�, where m1 ≤ m− 2. Then the nilindex of � is less than n+m.

Proof. Let us suppose the opposite, i.e., the nilindex of � is n+m.
Then dim��k� = n+m− k with 2 ≤ k ≤ n+m. In the adapted basis
�x1� x2� � � � � xn� y1� y2� � � � � ym�, we have the following products

�xi� x1� = xi+1� 1 ≤ i ≤ n− 1�

�yj� x1� = yj+1� j � �m1�m1 +m2� � � � � m1 +m2 + · · · +mk��

�yj� y1� = �j�2x2 + · · · + �j�nxn� 1 ≤ j ≤ m�

�xi� y1� = �i�2y2 + · · · + �i�mym� 1 ≤ i ≤ n�

Suppose that x2 ∈ �3, i.e. �3 = �x2� � � � � xn� y3� � � � � ym�. Then x2 is generated
from the products �yj� y1�, i.e., there exists j0 �2 ≤ j0 ≤ m� such that �j0�2

	= 0 in the
product �yj0� y1� =

∑n
i=2 �j0�i

xi.
Taking the change of basis x′1 = 1

�j0�2
�
∑n

s=2 �j0�s
xs−1�, we can assume that

�yj0� y1� = x2.
The equalities

�yj0� �y1� y1�� = 2��yj0� y1�� y1� = 2�x2� y1��

and

�yj0� �y1� y1�� = �yj0�
n∑

i=2

�1�ixi� = 0

imply �x2� y1� = 0.



Since �3 = n+m− 3, we have �3 = �x2� x3� � � � � xn� y3� � � � � ym1
� A1�1y2 +

A1�2ym1+1+ · · ·+A1�kym1+m2+···+mk−1+1� ym1+2� � � � � ym1+m2
� A2�1y2+A2�2ym1+1 + · · · + A2�k

ym1+m2+···+mk−1+1� � � �� ym1+m2+···+mk−1
� � � � � Ak−1�1y2+Ak−1�2y3+ · · ·+Ak−1�kym1+m2+···+mk−1+1�

� � � � ym�.
If there exists i such that

�xi� y1� ≡ c2�Ai�1y2 + Ai�2ym1+1 + · · · + Ai�kym1+···+mk−1+1� �mod V3�

with c2 	= 0, then applying the Leibniz superidentity for the elements �xi� x1� y1�
inductively, we obtain Ai�1 = 0 for all i �1 ≤ i ≤ k− 1�.

Thus,

�3 = �x2� x3� � � � � xn� y3� � � � � ym−1� ym��

Consider the product �x1� y1� =
∑n

i=2 �1�iyi.

Case 1. Let �1�2 	= 0 be. Let us suppose that there exists s for 3 ≤ s ≤ m1 such
that

�s = �x2� � � � � xn� ys� � � � � ym��

�s+1 = �x3� � � � � xn� ys� � � � � ym��

Note that �s−1�2 	= 0, because x2 ∈ �s\�s+1. The equality �x2� y1� = 0 implies
that the element ys must be generated by the products �xi� y1� for 3 ≤ i ≤ n.
Therefore,

�s+2 = �x4� � � � � xn� ys� � � � � ym−1� ym��

The parameters �s�2� �s�3 are equal to zero because ys ∈ �s+2. Thus, we have

�ys−1� y1� =
n∑

i=2

�s−1�ixi and �ys� y1� =
n∑

i=4

�s�ixi�

From Eq. (6), we get

�y2� ys−1� ≡ �−1�s−1�s−1�2x3 �modU4��

The following chain of the equalities

0 = �x1� �y1� ys−1�� = ��x1� y1�� ys−1�+ ��x1� ys−1�� y1�

=
[ n∑

i=2

�1�iyi� ys−1

]
+

[ n∑
i=s

	1�iyi� y1

]
≡ �1�2�s−1�2x3 �modU4�

implies �1�2�s−1�2 = 0, which contradicts with the assumption s ≤ m1.
Thus, we have s > m1� Then

�m1 = �x2� � � � � xn� ym1
� � � � � ym��

�m1+1 = �x2� � � � � xn� ym1+1� � � � � ym��



Since �m1+2 = ��m1+1���, then using Eq. (6), we conclude that

�m1+2 = �x3� � � � � xn� ym1+1� � � � � ym��

Therefore, s = m1 + 1 and �ym1
� y1� =

∑n
i=2 �m1�2

x2 with �m1�2
	= 0. From (6),

we get �y2� ym1
� ≡ �m1�2

x3 �modU4� and using the Leibniz superidentity, we obtain
�m1�2

= 0, but it is a contradiction. Hence this case is not possible.

Case 2. Let �1�2 = 0 be. Then we have

�x1� y1� = �1�3y3 + · · · + �1�mym�

�y1� x1� = y2�

�y1� x1�+ �x1� y1� = y2 + �1�3y3 + · · · + �1�mym ∈ �����

As in the previous case, we obtain yi ∈ ���� �2 ≤ i ≤ m�. Applying the
Leibniz superidentity for the elements �yj−1� x1� y1�, we have

�yj� y1� =
n+1−j∑
i=2

�j�ixi+j−1� 2 ≤ j ≤ m1�

which implies �i�2 = 0 for all i with 2 ≤ i ≤ m1.
Since ym1+···+ms−1+1 (2 ≤ s ≤ k) is generated from the products �xt� y1� with 1 ≤

t ≤ n, then we get �i�2 = 0 for 2 ≤ i ≤ m, from the equality

��xt� y1�� y1� =
1
2
�xt� �y1� y1�� =

[
xt�

n∑
i=2

�1�ixi

]
= 0�

and applying the Leibniz superidentity for the elements �yj−1� x1� y1�� It contradicts
assumption x2 ∈ �3.

Thus, we have x2 � �3, i.e.,

�3 = �x3� x4� � � � � xn� y2� y3� � � � � ym��

Since �y2� ym1
� ym1+m2

� � � � � ym1+m2+···+mk
� ∈ �3, then there exist i1� i2� � � � � ik ≥ 2,

such that ∣∣∣∣∣∣∣∣∣∣

�i1�2 �i1�m1+1 �i1�m1+m2+1 · · · �i1�m1+m2+···+mk−1+1

�i2�2 �i2�m1+1 �i2�m1+m2+1 · · · �i2�m1+m2+···+mk−1+1

���
���

���
���

�ik�2 �ik�m1+1 �ik�m1+m2+1 · · · �ik�m1+m2+···+mk−1+1

∣∣∣∣∣∣∣∣∣∣
	= 0� (7)

Without loss of generality, we can assume that �i1�2 	= 0. Consider

�xi1� y1�+ �y1� xi1 � =
m∑
t=2

�i1�tyt ∈ ��L��



We obtain yi ∈ ���� with 2 ≤ i ≤ m multiplying by x1 conveniently from the
right side and taking into account condition (7).

Furthermore, proceeding with the computation of the brackets

�x2� y1� = ��x1� y1�� x1� = �1�2y3 + · · · + �1�m−1ym�

�x3� y1� = ��x2� y1�� x1� = �1�2y4 + · · · + �1�m−2ym�

���

�xn� y1� = ��xn−1� y1�� x1� = �1�2yn+1 + · · · + �1�n−m+1ym�

we obtain y2 � �3.
Thus, the superalgebra � with characteristic sequence C��� =

�n �m1�m2� � � � � mk� and m1 ≤ m− 2 has a nilindex less than n+m� �

Combining the assertion of Theorem 3.2 and the classifications in [5, 8],
we complete the classification of Leibniz superalgebras where the even part is a
zero-filiform Leibniz algebra and with nilindex n+m� The obtained result allows
us to consider the classification of Leibniz superalgebras of nilindex n+m as an
attainable problem.
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