LEIBNIZ ALGEBRAS OF HEISENBERG TYPE

A.J. CALDERÓN, L.M. CAMACHO, B.A. OMIROV

Abstract

We introduce and provide a classification theorem for the class of Heisenberg-Fock Leibniz algebras. This category of algebras is formed by those Leibniz algebras L whose corresponding Lie algebras are Heisenberg algebras H_{n} and whose H_{n}-modules I, where I denotes the ideal generated by the squares of elements of L, are isomorphic to Fock modules. We also consider the three-dimensional Heisenberg algebra H_{3} and study three classes of Leibniz algebras with H_{3} as corresponding Lie algebra, by taking certain generalizations of the Fock module. Moreover, we describe the class of Leibniz algebras with H_{n} as corresponding Lie algebra and such that the action $I \times H_{n} \rightarrow I$ gives rise to a minimal faithful representation of H_{n}. The classification of this family of Leibniz algebras for the case of $n=3$ is given.

AMS Subject Classifications (2010): 17A32, 17B30, 17 B 10.
Key words: Heisenberg algebra, Leibniz algebra, Fock representation, minimal faithful representation.

1. Introduction

The term Leibniz algebra was introduced in the study of a non-antisymmetric analogue of Lie algebras by Loday [35], being so the class of Leibniz algebras an extension of the one of Lie algebras. However this kind of algebras was previously studied under the name of D-algebras by D. Bloh [10, 11, 12]. Since the 1993 Loday's work many researchers have been attracted by this category of algebras, being remarkable the great activity in this field developed in the last years. This activity has been mainly focussed in the frameworks of low dimensional algebras, nilpotence and physics applications (see [2, 5, 6, 14, 15, 16, 17, 21, 22, 23, 25, 28, 33, 40, 41|).

Definition 1. A Leibniz algebra L is a linear space over a base field \mathbb{F} endowed with a bilinear product $[\cdot, \cdot]$ satisfying the Leibniz identity

$$
[[y, z], x]=[[y, x], z]+[y,[z, x]],
$$

for all $x, y, z \in L$.
In presence of anti-commutativity, Jacobi identity becomes Leibniz identity and therefore Lie algebras are examples of Leibniz algebras. Throughout this paper \mathbb{F} will be algebraically closed and with zero characteristic.

Let L be a Leibniz algebra. The ideal I generated by the squares of elements of the algebra L, that is I is generated by the set $\{[x, x]: x \in L\}$, plays an important role in the theory since it determines the (possible) non-Lie character of L. From the Leibniz identity, this ideal satisfies

$$
[L, I]=0
$$

The quotient algebra L / I is a Lie algebra, called the corresponding Lie algebra of L, and the map $I \times L / I \rightarrow I$, $(i,[x]) \mapsto[i, x]$, endows I of a structure of L / I-module (see [4, 37]). Observe that we can write

$$
\begin{equation*}
L=V \oplus I \tag{1}
\end{equation*}
$$

where V is a linear complement of I in L and V is isomorphic as linear space to L / I. From here, Leibniz algebras give us the opportunity of treating in an unifying way a Lie algebra together with a module over it.

On the other hand, we recall that Heisenberg (Lie) algebras play an important role in mathematical physics and geometry, in particular in Quantum Mechanics (see for instance [1, 8, 9, 19, 20, 24, 26, 27, 29, 30, 31, 32, 36, 42, 44]). Indeed, the Heisenberg Principle of Uncertainty implies the non-compatibility of position and momentum observables acting on fermions. This non-compatibility reduces to non-commutativity of the corresponding operators. If we represent by \bar{x} the operator associated to position and by $\frac{\bar{\partial}}{\partial x}$ the one associated to momentum (acting for instance on a space V of differentiable functions of a single variable), then $\left[\bar{x}, \frac{\bar{\partial}}{\partial x}\right]=\overline{1}_{V}$ which is non-zero. Thus we can identify the subalgebra generated by $\overline{1}, \bar{x}$ and $\frac{\bar{\partial}}{\partial x}$ with the three-dimensional

Heisenberg algebra whose multiplication table in the basis $\left\{\overline{1}, \bar{x}, \frac{\bar{\partial}}{\partial x}\right\}$ has as unique non-zero product $\left[\bar{x}, \frac{\bar{\partial}}{\partial x}\right]=$ $\overline{1}$.

For any non-negative integer k the Heisenberg algebra of dimension $n=2 k+1$ (denoted further by H_{n}) is characterized by the existence of a basis

$$
\begin{equation*}
B=\left\{\overline{1}, \bar{x}_{1}, \frac{\bar{\delta}}{\delta x_{1}}, \ldots, \bar{x}_{k}, \frac{\bar{\delta}}{\delta x_{k}}\right\} \tag{2}
\end{equation*}
$$

in which the multiplicative non-zero relations are

$$
\left[\bar{x}_{i}, \frac{\bar{\delta}}{\delta x_{i}}\right]=-\left[\frac{\bar{\delta}}{\delta x_{i}}, \bar{x}_{i}\right]=\overline{1}
$$

for $1 \leq i \leq k$.
In the present paper we are focusing in introducing and studying several classes of Leibniz algebras whose corresponding Lie algebras are Heisenberg algebras H_{n}. Recall that there is a unique irreducible representation of the Heisenberg algebra (at least a unique one that can be exponentiated). This is why physicists are able to use the Heisenberg commutation relations to do calculations, without worry about what they are being represented on. This representation is called the Fock (or Bargmann-Fock) representation (see [3, 7, 34, 38, 39, 43]). Physically this representation corresponds to an harmonic oscillator, with the vector $\overline{1} \in \mathbb{C}[x]$ as the vacuum state and \bar{x} the operator that adds one quantum to the vacuum state. This representation is also sometimes known as the oscillator representation. For a given Heisenberg algebra $H_{n}, n=2 k+1$, this representation gives rise to the so-called Fock module on H_{n}, the linear space $\mathbb{F}\left[x_{1}, \ldots, x_{k}\right]$ with the action induced by

$$
\begin{array}{ll}
\left(p\left(x_{1}, \ldots, x_{k}\right), \overline{1}\right) & \mapsto p\left(x_{1}, \ldots, x_{k}\right) \\
\left(p\left(x_{1}, \ldots, x_{k}\right), \bar{x}_{i}\right) & \mapsto x_{i} p\left(x_{1}, \ldots, x_{k}\right) \tag{3}\\
\left(p\left(x_{1}, \ldots, x_{k}\right), \frac{\bar{\delta}}{\delta x_{i}}\right) & \mapsto
\end{array} \frac{\delta}{\delta x_{i}}\left(p\left(x_{1}, \ldots, x_{k}\right)\right) \text {. }
$$

for any $p\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{F}\left[x_{1}, \ldots, x_{k}\right]$ and $i=1, \ldots, k$.
Taking now into account the above comments, we introduce in Section 2 the class of Heisenberg-Fock Leibniz algebras as those Leibniz algebras whose corresponding Lie algebras are H_{n} and whose H_{n}-modules I are isomorphic to Fock modules, and provide a classification theorem. Thus, we have the opportunity of considering Heisenberg Lie algebras together with their Fock representations in a unifying viewpoint. In this section we also consider a generalization of this class of algebras by means of a direct sum of Heisenberg algebras as corresponding Lie algebras, and provide also a classification theorem.

In Section 3, we center in the three-dimensional Heisenberg algebra H_{3} and study three classes of Leibniz algebras with H_{3} as corresponding Lie algebra by taking certain generalizations of the Fock module. We also note that Sections 2 and 3 allow us to introduce several new classes of infinite-dimensional Leibniz algebras.

Finally, in Section 4, we deal with the category of Leibniz algebras with H_{n} as corresponding algebra and such that the action $I \times H_{n} \rightarrow I$ gives rise to a minimal faithful representation of H_{n}. A description of this category of algebras is given and also a classification theorem when $n=3$.

2. Classification of Heisenberg-Fock type Leibniz algebras

2.1. Classification of $H F L_{n}$. Consider a Heisenberg algebra H_{n}, with $n=2 k+1$, and its Fock module $\mathbb{F}\left[x_{1}, \ldots, x_{k}\right]$ under the action (3). The Heisenberg-Fock Leibniz algebra $H F L_{n}$ is defined as the Leibniz algebra with corresponding Lie algebra H_{n} and such that the action $I \times H_{n} \rightarrow I$ makes of I the Fock module. Since $\mathbb{F}\left[x_{1}, \ldots, x_{k}\right]$ is infinite-dimensional we get a family of infinite-dimensional Leibniz algebras.
Theorem 1. The Heisenberg-Fock Leibniz algebra HF L_{n} admits a basis

$$
\left\{\overline{1}, \bar{x}_{i}, \frac{\bar{\delta}}{\delta x_{i}}, x_{1}^{t_{1}} x_{2}^{t_{2}} \ldots x_{k}^{t_{k}} \mid t_{i} \in \mathbb{N} \cup\{0\}, 1 \leq i \leq k\right\}
$$

in such a way that the multiplication table on this basis has the form:

$$
\begin{array}{ll}
{\left[\overline{x_{i}}, \frac{\bar{\delta}}{\delta x_{i}}\right]=\overline{1},} & 1 \leq i \leq k \\
{\left[\frac{\bar{\delta}}{\delta x_{i}}, \overline{x_{i}}\right]=-\overline{1},} & 1 \leq i \leq k
\end{array}
$$

$$
\begin{array}{ll}
\left.x_{1}^{t_{1}} x_{2}^{t_{2}} \ldots x_{k}^{t_{k}}, \overline{1}\right]=x_{1}^{t_{1}} x_{2}^{t_{2}} \ldots x_{k}^{t_{k}}, \\
{\left[x_{1}^{t_{1}} x_{2}^{t_{2}} \ldots x_{k}^{k_{k}}, \bar{x}_{i}\right]=x_{1}^{t_{1}} \ldots x_{i-1}^{i_{i-1}} x_{i}^{t_{i}+1} x_{i+1}^{t_{i+1}} \ldots x_{k}^{t_{k}},} & 1 \leq i \leq k, \\
{\left[x_{1}^{t_{1}} x_{2}^{t_{2}} \ldots x_{k}^{k_{k}}, \frac{\delta}{\delta x_{i}}\right]=t_{i} x_{1}^{t_{1}} \ldots x_{i-1}^{t_{i-1}} x_{i}^{t_{i}-1} x_{i+1}^{t_{i+1}} \ldots x_{k}^{t_{k}}, \quad 1 \leq i \leq k,}
\end{array}
$$

where the omitted products are equal to zero.
Proof. Taking into account Equations (1) and (3) we conclude that

$$
\left\{\overline{1}, \bar{x}_{i}, \frac{\bar{\delta}}{\delta x_{i}}, x_{1}^{t_{1}} x_{2}^{t_{2}} \ldots x_{k}^{t_{k}} \mid t_{i} \in \mathbb{N} \cup\{0\}, 1 \leq i \leq k\right\}
$$

is a basis of $H F L_{n}$ and

$$
\begin{aligned}
& {\left[x_{1}^{t_{1}} x_{2}^{t_{2}} \ldots x_{k}^{t_{k}}, \overline{1}\right]=x_{1}^{t_{1}} x_{2}^{t_{2}} \ldots x_{k}^{t_{k}},} \\
& {\left[x_{1}^{t_{1}} x_{2}^{t_{2}} \ldots x_{k}^{t_{k}}, \bar{x}_{i}\right]=x_{1}^{t_{1}} \ldots x_{i-1}^{t_{i}} x_{i}^{t_{i+1}} x_{i+1}^{t_{i+1}} \ldots x_{k}^{t_{k}},} \\
& {\left[x_{1}^{t_{1}} x_{2}^{t_{2}} \ldots x_{k}^{t_{k}}, \frac{\bar{\delta}}{\delta x_{i}}\right]=t_{i} x_{1}^{t_{1}} \ldots x_{i-1}^{t_{i-1}} x_{i}^{i_{i}-1} x_{i+1}^{t_{i+1}} \ldots x_{k}^{t_{k}},}
\end{aligned}
$$

for $1 \leq i \leq k$.
Observe that we can write

$$
\begin{array}{ll}
{\left[\overline{x_{i}}, \overline{1}\right]=p_{i}\left(x_{1}, x_{2}, \ldots, x_{k}\right),} & 1 \leq i \leq k, \\
{\left[\bar{\delta}, \overline{\delta x}, \overline{1}=q_{i}\left(x_{1}, x_{2}, \ldots, x_{k}\right),\right.} & 1 \leq i \leq k, \\
{[\overline{1}, \overline{1}]=r\left(x_{1}, x_{2}, \ldots, x_{k}\right),} &
\end{array}
$$

where $p_{i}, q_{i}, r \in \mathbb{F}\left[x_{1}, \ldots, x_{k}\right]$.
Taking the following change of basis,

$$
\begin{gathered}
{\overline{x_{i}}}^{\prime}=\overline{x_{i}}-p_{i}\left(x_{1}, x_{2}, \ldots, x_{k}\right), \quad 1 \leq i \leq k, \\
\frac{\bar{\delta}^{\prime}}{\delta x_{i}}=\frac{\bar{\delta}}{\delta x_{i}}-q_{i}\left(x_{1}, x_{2}, \ldots, x_{k}\right), \quad 1 \leq i \leq k, \\
\overline{1}^{\prime}=\overline{1}-r\left(x_{1}, x_{2}, \ldots, x_{k}\right),
\end{gathered}
$$

we derive

$$
\left[\overline{x_{i}}, \overline{1}\right]=0, \quad\left[\frac{\bar{\delta}}{\delta x_{i}}, \overline{1}\right]=0, \quad[\overline{1}, \overline{1}]=0, \quad 1 \leq i \leq k .
$$

Now denote

$$
\begin{array}{lll}
{\left[\overline{x_{i}}, \overline{x_{j}}\right]=a_{i, j}\left(x_{1}, x_{2}, \ldots, x_{k}\right),} & {\left[\frac{\bar{\delta}}{\overline{\delta x_{i}}}, \frac{\bar{\delta}}{\frac{\delta}{x_{j}}}\right]=b_{i, j}\left(x_{1}, x_{2}, \ldots, x_{k}\right),} & 1 \leq i, j \leq k, \\
{\left[\frac{\bar{\delta}}{\delta \delta_{i}}, \overline{x_{j}}\right]=c_{i, j}\left(x_{1}, x_{2}, \ldots, x_{k}\right),} & {\left[\overline{x_{i}}, \frac{\delta}{\delta x_{j}}\right]=d_{i, j}\left(x_{1}, x_{2}, \ldots, x_{k}\right),} & 1 \leq i, j \leq k, i \neq j, \\
{\left[\overline{x_{i}}, \frac{\bar{\delta}}{\delta x_{i}}\right]=\overline{1}+e_{i}\left(x_{1}, x_{2}, \ldots, x_{k}\right),} & {\left[\frac{\bar{\delta}}{\delta x_{i}}, \overline{x_{i}}\right]=-\overline{1}+f_{i}\left(x_{1}, x_{2}, \ldots, x_{k}\right),} & 1 \leq i \leq k, \\
{\left[\overline{1}, \overline{x_{i}}\right]=h_{i}\left(x_{1}, x_{2}, \ldots, x_{k}\right),} & {\left[\overline{1}, \frac{\bar{\delta}}{\delta x_{i}}\right]=g_{i}\left(x_{1}, x_{2}, \ldots, x_{k}\right),} & 1 \leq i \leq k .
\end{array}
$$

The Leibniz identity on the following triples imposes further constraints on the products.

Leibniz identity	Constraint
$\left\{\overline{x_{i}}, \overline{x_{j}}, \overline{1}\right\}$	$\Rightarrow \quad a_{i, j}\left(x_{1}, x_{2}, \ldots, x_{k}\right)=0, \quad 1 \leq i, j \leq k$,
$\left\{\frac{\bar{\delta}}{\bar{\delta} x_{i}}, \frac{\bar{\delta}}{\delta x_{j}}, \overline{1}\right\}$	$\Rightarrow \quad b_{i, j}\left(x_{1}, x_{2}, \ldots, x_{k}\right)=0, \quad 1 \leq i, j \leq k$,
$\left\{\frac{\bar{\delta}}{\bar{\delta} x_{i}}, \overline{j_{j}}, \overline{1}\right\}$	$\Rightarrow \quad c_{i, j}\left(x_{1}, x_{2}, \ldots, x_{k}\right)=0, \quad 1 \leq i, j \leq k, i \neq j$,
$\left\{\overline{x_{i}}, \frac{\bar{\delta}}{\delta x_{j}}, \overline{1}\right\}$	$\Rightarrow \quad d_{i, j}\left(x_{1}, x_{2}, \ldots, x_{k}\right)=0, \quad 1 \leq i, j \leq k, i \neq j$,
$\left\{\overline{x_{i}}, \frac{\bar{\delta}}{\delta x_{i}}, \overline{1}\right\}$	$\Rightarrow \quad e_{i}\left(x_{1}, x_{2}, \ldots, x_{k}\right)=0, \quad 1 \leq i \leq k$,
$\left\{\frac{\bar{\delta}}{\overline{\delta x}}, \overline{x_{i}}, \overline{1}\right\}$	$f_{i}\left(x_{1}, x_{2}, \ldots, x_{k}\right)=0, \quad 1 \leq i \leq k$,
$\left\{\overline{1}, \overline{x_{i}}, \overline{1}\right\}$	$h_{i}\left(x_{1}, x_{2}, \ldots, x_{k}\right)=0, \quad 1 \leq i \leq k$,
$\{\overline{1}, \bar{\delta}, \bar{\delta}\}$	$\Rightarrow \quad g_{i}\left(x_{1}, x_{2}, \ldots, x_{k}\right)=0, \quad 1 \leq i \leq k$.

The proof is complete.
2.2. Classification of generalized Heisenberg-Fock Leibniz algebras. In this subsection we are interested in classifying the class of (infinite-dimensional) Leibniz algebras formed by those Leibniz algebras L satisfying that their corresponding Lie algebras are finite direct sums of Heisenberg algebras and that the actions on I are induced by Fock representations.

Since

$$
\begin{equation*}
L / I \cong H_{2 k_{1}+1} \oplus H_{2 k_{2}+1} \oplus H_{2 k_{3}+1} \oplus \cdots \oplus H_{2 k_{s}+1} \tag{4}
\end{equation*}
$$

we easily get

$$
\begin{equation*}
\mathcal{B}_{i}:=\left\{\overline{1_{i}}, \overline{x_{1, i}}, \overline{x_{2, i}}, \ldots, \overline{x_{k_{i}, i}}, \frac{\bar{\delta}}{\delta x_{1, i}}, \frac{\bar{\delta}}{\delta x_{2, i}}, \ldots, \frac{\bar{\delta}}{\delta x_{k_{i}, i}}\right\} \tag{5}
\end{equation*}
$$

for the standard basis of $H_{2 k_{i}+1}, i \in\{1,2, \ldots, s\}$.
We put

$$
\begin{equation*}
I=\mathbb{F}\left[x_{1}, \ldots, x_{n}\right] \tag{6}
\end{equation*}
$$

where $n=k_{1}+k_{2}+\cdots+k_{s}$.
The action

$$
I \times L / I \rightarrow I
$$

given by

$$
\begin{array}{ll}
\left(p\left(x_{1}, \ldots, x_{n}\right), \overline{1_{i}}\right) & \mapsto p\left(x_{1}, \ldots, x_{n}\right) \\
\left(p\left(x_{1}, \ldots, x_{n}\right), \overline{x_{j, i}}\right) & \mapsto p\left(x_{1}, \ldots, x_{n}\right) x_{k_{1}+k_{2}+\cdots+k_{i-1}+j} \\
\left(p\left(x_{1}, \ldots, x_{n}\right), \frac{\bar{\delta}}{\delta x_{j, i}}\right) & \mapsto
\end{array} \frac{\delta}{\delta x_{k_{1}+k_{2}+\cdots+k_{i-1}+j}} p\left(x_{1}, \ldots, x_{n}\right)
$$

for any $p\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ and (i, j) with $i \in\{1,2, \ldots, s\}, j \in\left\{1, \ldots, k_{i}\right\}$, endows I of a structure of L / I-module. Hence, we get a new family of Heisenberg-Fock type Leibniz algebras which generalize the previous ones considered in $\S 2.1$ (case $s=1$), that we call generalized Heisenberg-Fock Leibniz algebras, by introducing the algebras $L=L / I \oplus I$ with L / I and I as in Equations (4) and (6). We will denote them as

$$
H F L_{2 k_{1}+1,2 k_{2}+1, \ldots, 2 k_{s}+1}
$$

Our aim is to classify this class of Leibniz algebras.
By taking into account the previous arguments, it is clear that for any $i \in\{1,2, \ldots, s\}$ we have [$\left.H_{2 k_{i}+1}, H_{2 k_{i}+1}\right] \subset H_{2 k_{i}+1}$ being the multiplication table among the elements in the basis \mathcal{B}_{i} as in Theorem 1 . Therefore, we only need to study the products $\left[H_{2 k_{i}+1}, H_{2 k_{j}+1}\right]$ with $i, j \in\{1,2, \ldots, s\}$ and $i \neq j$.
Lemma 1. Let $a \in \mathcal{B}_{i}$ and $b \in \mathcal{B}_{j}, i, j \in\{1,2, \ldots, s\}$ with $i \neq j$. Then $[a, b]=0$.
Proof. For $i \neq j$ we have $[a, b]=p$ and $\left[b, \overline{1_{i}}\right]=q$ for some $p, q \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$. Taking now into account Theorem 1 we derive $\left[a, \overline{1_{i}}\right]=0$ and so

$$
p=\left[[a, b], \overline{1_{i}}\right]=\left[\left[a, \overline{1_{i}}\right], b\right]+\left[a,\left[b, \overline{1_{i}}\right]\right]=0
$$

The next theorem is now consequence of Theorem 1 and Lemma 1
Theorem 2. The Leibniz algebra HFL $L_{2 k_{1}+1,2 k_{2}+1, \ldots, 2 k_{s}+1}$ admits a basis (see Equations (5) and (6))

$$
\mathcal{B}_{1} \dot{\cup} \mathcal{B}_{2} \dot{\cup} \cdots \dot{\cup} \mathcal{B}_{s} \dot{\cup}\left\{x_{1}^{t_{1}} x_{2}^{t_{2}} \cdots x_{n}^{t_{n}} \mid t_{i} \in \mathbb{N} \cup\{0\}, 1 \leq i \leq n\right\}
$$

where $n=k_{1}+k_{2}+\cdots+k_{s}$, and in such a way that the multiplication table on this basis has the form:

$$
\begin{aligned}
& {\left[\overline{x_{j, i}}, \frac{\bar{\delta}}{\delta x_{j, i}}\right]=\overline{1_{i}}, \quad\left[\frac{\bar{\delta}}{\delta x_{j, i}}, \overline{x_{j, i}}\right]=-\overline{1_{i}},} \\
& {\left[x_{1}^{t_{1}} x_{2}^{t_{2}} \ldots x_{n}^{t_{n}}, \overline{1_{i}}\right]=x_{1}^{t_{1}} x_{2}^{t_{2}} \ldots x_{n}^{t_{n}},} \\
& {\left[x_{1}^{t_{1}} x_{2}^{t_{2}} \ldots x_{n}^{t_{n}}, \bar{x}_{j, i}\right]=x_{1}^{t_{1}} \ldots x_{k_{1}+\cdots+k_{k_{-1}+j-1}^{t_{k_{1}}+\cdots+k_{i-1}+j-1}}^{t_{k_{1}+\cdots+k_{i-1}+j+1}^{t_{k_{1}+\cdots+k_{i-1}+j}^{t_{1}}} x_{k_{k_{1}+\cdots+k_{i-1}+j+1}^{t_{k_{1}+\cdots+k_{i-1}+j+1}} \ldots x_{n}^{t_{n}},}^{t_{k_{1}+\cdots+k_{i-1}+j-1}^{t_{k_{1}}}, \cdots+k_{i-1}+j-1} x_{t_{k_{1}+\cdots+k_{i-1}+j+1}}^{t_{k_{1}+\cdots}} \ldots x_{n}^{t_{n}},}} \\
& {\left[x_{1}^{t_{1}} x_{2}^{t_{2}} \ldots x_{k}^{t_{k}}, \frac{\bar{\delta}}{\delta x_{j, i}}\right]=t_{k_{1}+\cdots+k_{i-1}+j} x_{1}^{t_{1}} \ldots x_{k_{1}+\cdots+k_{i-1}+j-1} x_{k_{1}+\cdots+k_{i-1}+j} x_{k_{1}+\cdots+k_{i-1}+j+1},}
\end{aligned}
$$

for $1 \leq i \leq s, 1 \leq j \leq k_{i}$ and where the omitted products are equal to zero.

3. Several degenerations of the Fock representation for the 3-dimensional Heisenberg algebra

In this section we consider several degenerations of the Fock representation of the Heisenberg algebra H_{3}. First, we study when an extension of the Fock action $\mathbb{F}[x] \times H_{3} \rightarrow \mathbb{F}[x]$, (see Equation (3)), by allowing arbitrary polynomials as results of the action of a fixed element in the basis $\left\{\overline{1}, \bar{x}, \frac{\bar{\delta}}{\delta x}\right\}$ of H_{3} over the elements of $\mathbb{F}[x]$, makes of $\mathbb{F}[x]$ an H_{3}-module. Second, the new H_{3}-modules obtained in this way give rise to new classes of Leibniz algebras that will be described.

For any linear mapping $\Omega: \mathbb{F}[x] \rightarrow \mathbb{F}[x]$, consider the linear space $\mathbb{F}[x]$ with the action induced by the following applications:

$$
\begin{aligned}
& \psi_{1}: \mathbb{F}[x] \times H_{3} \rightarrow \mathbb{F}[x] \quad \psi_{2}: \mathbb{F}[x] \times H_{3} \rightarrow \mathbb{F}[x] \\
& (p(x), \overline{1}) \quad \mapsto \Omega(p(x)) \quad(p(x), \overline{1}) \quad \mapsto \quad p(x) \\
& (p(x), \bar{x}) \quad \mapsto x p(x) \quad(p(x), \overline{\bar{x}}) \quad \mapsto \quad \Omega(p(x)) \\
& \left(p(x), \frac{\bar{\delta}}{\delta x}\right) \quad \mapsto \frac{\delta}{\delta x} p(x) . \quad\left(p(x), \overline{\frac{\delta}{\delta x}}\right) \mapsto \frac{\delta}{\delta x} p(x) . \\
& \psi_{3}: \mathbb{F}[x] \times H_{3} \rightarrow \mathbb{F}[x] \\
& (p(x), \overline{1}) \quad \mapsto \quad p(x) \\
& (p(x), \bar{x}) \quad \mapsto \quad x p(x) \\
& \left(p(x), \frac{\bar{\delta}}{\delta x}\right) \mapsto \Omega(p(x))
\end{aligned}
$$

for any $p(x) \in \mathbb{F}[x]$.
From now on, let us denote by $\left\{x^{i}\right\}_{i \in \mathbb{N} \cup\{0\}}$ the canonical basis of $\mathbb{F}[x]$. By considering $\psi_{1}\left(p(x),\left[\bar{x}, \frac{\bar{\delta}}{\delta x}\right]\right)$, it is immediate to get that the first action ψ_{1} makes of $\mathbb{F}[x]$ an H_{3}-module if and only if $\Omega=1_{\mathbb{F}[x]}$. As consequence we have.

Proposition 1. The Leibniz algebras obtained from the first action ψ_{1} are the same as those obtained in Theorem [1]

Consider now the second action $\psi_{2}: \mathbb{F}[x] \times H_{3} \rightarrow \mathbb{F}[x]$.
Proposition 2. The action ψ_{2} makes of $\mathbb{F}[x]$ an H_{3}-module if and only if

$$
\begin{equation*}
\Omega\left(x^{i}\right)=x^{i+1}+\sum_{k=0}^{i} c_{k}\binom{i}{k} x^{i-k} \tag{7}
\end{equation*}
$$

where $\left\{c_{k}\right\}_{k \in \mathbb{N} \cup\{0\}}$ is a fixed sequence in \mathbb{F} and $\binom{i}{k}$ are binomial coefficients.
Proof. Suppose $\mathbb{F}[x]$ is an H_{3}-module through the action ψ_{2}. Then we have

$$
x^{i}=\left[x^{i}, \overline{1}\right]=\left[x^{i},\left[\bar{x}, \frac{\bar{\delta}}{\delta x}\right]\right]=\left[\left[x^{i}, \bar{x}\right], \frac{\bar{\delta}}{\delta x}\right]-\left[\left[x^{i}, \frac{\bar{\delta}}{\delta x}\right], \bar{x}\right]=\left[\left[x^{i}, \bar{x}\right], \frac{\bar{\delta}}{\delta x}\right]-\left[i x^{i-1}, \bar{x}\right]
$$

and so

$$
\begin{equation*}
\left[\left[x^{i}, \bar{x}\right], \frac{\bar{\delta}}{\delta x}\right]=x^{i}+\left[i x^{i-1}, \bar{x}\right] . \tag{8}
\end{equation*}
$$

Taking into account Equation (8), we can easily prove by induction (7). Indeed, for $i=0$ we get from (8) that $\left[[1, \bar{x}], \frac{\bar{\delta}}{\delta x}\right]=1$, which implies $[1, \bar{x}]=x+c_{0}=\Omega(1)$. For $i=1$ the same equation allows us to get $\left[[x, \bar{x}], \frac{\bar{\delta}}{\delta x}\right]=x+[1, \bar{x}]=2 x+c_{0}$ and so $[x, \bar{x}]=x^{2}+c_{0} x+c_{1}=\Omega(x)$.

Let the induction hypothesis true for $i=j$ and we will show it for $i=j+1$. Taking into account (8) we have

$$
\begin{aligned}
{\left[\left[x^{j+1}, \bar{x}\right], \frac{\bar{\delta}}{\delta x}\right] } & =x^{j+1}+\left[(j+1) x^{j}, \bar{x}\right]=x^{j+1}+(j+1)\left(x^{j+1}+\sum_{k=0}^{j} c_{k}\binom{j}{k} x^{j-k}\right)= \\
& =(j+2) x^{j+1}+\sum_{k=0}^{j} c_{k}(j+1)\binom{j}{k} x^{j-k}=
\end{aligned}
$$

$$
\begin{aligned}
& =(j+2) x^{j+1}+\sum_{k=0}^{j} c_{k}(j+1) \frac{j!}{k!(j-k)!} x^{j-k}= \\
& =(j+2) x^{j+1}+\sum_{k=0}^{j} c_{k} \frac{(j+1)!}{k!(j+1-k)!}(j+1-k) x^{j-k}
\end{aligned}
$$

From here

$$
\left[x^{j+1}, \bar{x}\right]=x^{j+2}+\sum_{k=0}^{j} c_{k} \frac{(j+1)!}{k!(j+1-k)!} x^{j+1-k}+c_{j+1}=x^{j+2}+\sum_{k=0}^{j+1} c_{k}\binom{j+1}{k} x^{j+1-k}
$$

that is,

$$
\Omega\left(x^{j+1}\right)=x^{j+2}+\sum_{k=0}^{j+1} c_{k}\binom{j+1}{k} x^{j+1-k}
$$

The converse is of immediate verification.
Proposition 3. Any Leibniz algebra obtained from the second action ψ_{2} admits a basis

$$
\left\{\overline{1}, \bar{x}, \frac{\bar{\delta}}{\delta x}\right\} \dot{\cup}\left\{x^{i}: i \in \mathbb{N} \cup\{0\}\right\}
$$

in such a way that the multiplication table on this basis has the form:

$$
\begin{array}{ll}
{\left[x^{i}, \overline{1}\right]=x^{i},} & {\left[x^{i}, \bar{x}\right]=\Omega\left(x^{i}\right),} \\
{\left[\bar{x}, \frac{\bar{\delta}}{\delta x}\right]=\overline{1},} & {\left[\frac{\left.x^{i}, \frac{\bar{\delta}}{\delta x}\right]=i x^{i-1}}{\delta x}, \bar{x}\right]=-\overline{1},}
\end{array}
$$

where the omitted products are equal to zero and $\Omega\left(x^{i}\right)$ satisfies Equation (7).
Proof. By Proposition 2 we have the restriction on $\Omega\left(x^{i}\right)$. On the other hand, we know

$$
\begin{array}{lll}
{\left[x^{i}, \overline{1}\right]=x^{i},} & {\left[x^{i}, \bar{x}\right]=\Omega\left(x^{i}\right),} & {\left[x^{i}, \frac{\bar{\delta}}{\delta x}\right]=i x^{i-1},} \\
{[\bar{x}, \overline{1}]=p(x),} & {\left[\bar{x}, \frac{\bar{\delta}}{\delta x}\right]=\overline{1}+q(x),} & {[\bar{x}, \bar{x}]=a(x),} \\
{\left[\frac{\bar{\delta}}{\delta x}, \overline{1}\right]=r(x),} & {\left[\frac{\bar{\delta}}{\delta x}, \frac{\bar{\delta}}{\delta x}\right]=b(x),} & {\left[\frac{\bar{\delta}}{\delta x}, \bar{x}\right]=-\overline{1}+s(x),} \\
{[\overline{1}, \bar{x}]=c(x),} & {[\overline{1}, \overline{1}]=d(x),} & {\left[\overline{1}, \frac{\bar{\delta}}{\delta x}\right]=e(x) .}
\end{array}
$$

By making the change of basis $\overline{1}^{\prime}=\overline{1}+q(x)$ we can suppose that $\left[\bar{x}, \frac{\bar{\delta}}{\delta x}\right]=\overline{1}$.
Now, from Leibniz identity we obtain the following equations:

Leibniz identity	Constraint	
	\Rightarrow	$c(x)=[d(x), \bar{x}]$,
$\{\overline{1}, \overline{1}, \overline{1}\}$	\Rightarrow	$e(x)=\frac{\delta}{\delta x}(d(x))$,
$\left\{\overline{1}, \overline{1}, \frac{\bar{\delta}}{\delta x}\right\}$	\Rightarrow	$[e(x), \bar{x}]=\frac{\delta}{\delta x}(c(x))-d(x)$,
$\left\{\overline{1}, \bar{x}, \frac{\delta}{\delta x}\right\}$	\Rightarrow	$a(x)=[p(x), \bar{x}]$,
$\{\bar{x}, \overline{1}, \bar{x}\}$	\Rightarrow	$d(x)=\frac{\delta}{\delta x}(p(x))$,
$\left\{\bar{x}, \overline{1}, \frac{\bar{\delta}}{\delta x}\right\}$	\Rightarrow	$p(x)+c(x)=\frac{\delta}{\delta x}(a(x))$,
$\left\{\bar{x}, \bar{x}, \frac{\delta}{\delta x}\right\}$	\Rightarrow	$s(x)=d(x)+[r(x), \bar{x}]$,
$\left\{\frac{\bar{\delta}}{\delta x}, \overline{1}, \bar{x}\right\}$	\Rightarrow	$b(x)=\frac{\delta}{\delta x}(a(x))$,
$\left\{\frac{\delta}{\delta x}, \overline{1}, \frac{\bar{\delta}}{\delta x}\right\}$	\Rightarrow	$[b(x), \bar{x}]=-e(x)-r(x)+\frac{\delta}{\delta x}(a(x))$.

By making the next change of basis:

$$
\begin{aligned}
& \overline{1}^{\prime}=\overline{1}-\frac{\delta}{\delta x}(p(x)), \\
& \bar{x}^{\prime}=\bar{x}-p(x), \\
& \frac{\bar{\delta}}{\delta x}=\frac{\bar{\delta}}{\delta x}-r(x),
\end{aligned}
$$

we obtain the family of the proposition.

Finally we consider the third action $\psi_{3}: \mathbb{F}[x] \times H_{3} \rightarrow \mathbb{F}[x]$, being then

$$
\begin{aligned}
& {\left[x^{i}, \overline{1}\right]=x^{i}} \\
& {\left[x^{i}, \bar{x}\right]=x^{i+1}} \\
& {\left[x^{i}, \frac{\bar{\delta}}{\delta x}\right]=\Omega\left(x^{i}\right), \quad i \in \mathbb{N} \cup\{0\}}
\end{aligned}
$$

By arguing in a similar way to Propositions 2 and 3 we can prove the next results.
Proposition 4. The action ψ_{3} makes of $\mathbb{F}[x]$ an H_{3}-module if and only if

$$
\begin{equation*}
\Omega\left(x^{i}\right)=i x^{i-1}+x^{i} c(x) \tag{9}
\end{equation*}
$$

for a fixed $c(x) \in \mathbb{F}[x]$ and $i \in \mathbb{N} \cup\{0\}$.
Proposition 5. Any Leibniz algebra obtained from the third action ψ_{3} admits a basis

$$
\left\{\overline{1}, \bar{x}, \frac{\bar{\delta}}{\delta x}\right\} \dot{\cup}\left\{x^{i}: i \in \mathbb{N} \cup\{0\}\right\}
$$

in such a way that the multiplication table on this basis has the form:

$$
\begin{array}{ll}
{\left[x^{i}, \overline{1}\right]=x^{i},} & {\left[x^{i}, \bar{x}\right]=x^{i+1},} \\
{\left[\bar{x}, \frac{\bar{\delta}}{\delta x}\right]=\overline{1},} & {\left[x^{i}, \frac{\bar{\delta}}{\delta x}\right]=\Omega\left(x^{i}\right),} \\
\delta x \\
\bar{\delta} & \bar{x}]=-\overline{1}
\end{array}
$$

where the omitted products are equal to zero and $\Omega\left(x^{i}\right)$ satisfies Equation (9).

4. Leibniz algebras of minimal faithful representation-Heisenberg type

4.1. General case. Let $H_{2 m+1}$ be a Heisenberg algebra of dimension $2 m+1$, then it is well-known that its minimal faithful representations have dimension $m+2$, (see [13]). From now on, for a more comfortable notation, we will denote by

$$
\left\{x_{1}, x_{2}, \ldots, x_{m}, y_{1}, y_{2}, \ldots, y_{m}, z\right\}
$$

the standard basis of $H_{2 m+1}$, (see Equation (2)), where the non-zero products are

$$
\left[y_{i}, x_{i}\right]=-\left[x_{i}, y_{i}\right]=z
$$

By [18], we can take as minimal faithful representation the linear mapping

$$
\varphi: H_{2 m+1} \rightarrow \operatorname{End}(I)
$$

where I is an $(m+2)$-dimensional linear space with a fixed basis $\left\{e_{1}, e_{2}, \ldots, e_{m+2}\right\}$, determined by

$$
\begin{array}{ll}
\varphi\left(x_{i}\right)=E_{1, i+1} & 1 \leq i \leq m \\
\varphi\left(y_{i}\right)=E_{i+1, m+2} & 1 \leq i \leq m \\
\varphi(z)=E_{1, m+2} &
\end{array}
$$

Here $E_{i, j}$ denotes the elemental matrix with 1 in the (i, j) slot and 0 in the remaining places and we have $\varphi([x, y])(e)=\varphi(y)(\varphi(x)(e))-\varphi(x)(\varphi(y)(e))$ for any $x, y \in H_{2 m+1}$ and $e \in I$. Observe that $H_{2 m+1}$ corresponds to the $(m+2) \times(m+2)$ matrices

$$
\left(\begin{array}{cccccc}
0 & a_{2} & a_{3} & \ldots & a_{m+1} & c \\
0 & 0 & 0 & \ldots & 0 & b_{2} \\
0 & 0 & 0 & \ldots & 0 & b_{3} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 0 & b_{m+1} \\
0 & 0 & 0 & \ldots & 0 & 0
\end{array}\right)
$$

This representation makes of I an $H_{2 m+1}$-module under the action

$$
\begin{array}{llll}
\phi: & I \times H_{2 m+1} & \rightarrow I \\
& \left(e_{i+1}, x_{i}\right) & \mapsto & \tag{10}\\
& \left(e_{m+2}, y_{i}\right) & \mapsto & 1 \leq i \leq m, \\
& \left(e_{m+2}, z\right) & \mapsto e_{1}, &
\end{array}
$$

being zero the remaining products among the bases elements in the action.

In this section we are going to study the Leibniz algebras $(L,[\cdot, \cdot])$ satisfying that $L / I \cong H_{2 m+1}$ and where the $H_{2 m+1}$-module I is isomorphic to the minimal faithful representation (I, ϕ). From the above, $\operatorname{dim} L=$ $3 m+3$ and $\left\{x_{1}, x_{2}, \ldots, x_{m}, y_{1}, y_{2}, \ldots, y_{m}, z, e_{1}, e_{2}, \ldots, e_{m+2}\right\}$ is a basis of L. We also have

$$
\begin{array}{ll}
{\left[e_{i+1}, x_{i}\right]=e_{1},} & 1 \leq i \leq m \\
{\left[e_{m+2}, y_{i}\right]=e_{i+1},} & 1 \leq i \leq m \\
{\left[e_{m+2}, z\right]=e_{1}}
\end{array}
$$

Theorem 3. Let L be a Leibniz algebra such that $L / I \cong H_{2 m+1}(m \neq 1)$ and I is the L / I-module with the minimal faithful representation given by Equation (10). Then L admits a basis

$$
\left\{x_{1}, x_{2}, \ldots, x_{m}, y_{1}, y_{2}, \ldots, y_{m}, z, e_{1}, e_{2}, \ldots, e_{m+2}\right\}
$$

in such a way that the multiplications table on this basis has the form

$$
\begin{array}{ll}
{\left[e_{i+1}, x_{i}\right]=e_{1},} & {\left[e_{m+2}, y_{i}\right]=e_{i+1},} \\
{\left[e_{m+2}, z\right]=e_{1},} & {\left[x_{i}, x_{j}\right]=\sum_{s=1}^{m+1} \alpha_{i, j}^{s} e_{s}} \\
{\left[x_{i}, y_{j}\right]=\gamma_{i, j} e_{1}, i \neq j,} & {\left[x_{i}, y_{i}\right]=-z+\delta_{i} e_{1}+\tau e_{2}+\sum_{s=2}^{m} \nu_{1, s}^{2} e_{s+1}} \\
{\left[y_{i}, y_{j}\right]=\beta_{i, j} e_{1},} & {\left[y_{1}, x_{1}\right]=z,} \\
{\left[y_{i}, x_{j}\right]=\sum_{s=1}^{m+1} \nu_{i, j}^{s} e_{s}, i \neq j,} & {\left[y_{i}, x_{i}\right]=z+\left(\nu_{i, 1}^{i+1}-\tau\right) e_{2}+\varepsilon_{i}^{i+1} e_{i+1}+\sum_{s=2}^{m}\left(\nu_{i, s}^{i+1}-\nu_{1, s}^{2}\right) e_{s+1}, i \neq 1,} \\
{\left[z, x_{1}\right]=\tau e_{1},} & {\left[z, x_{i}\right]=\nu_{1, i}^{2} e_{1}, i \neq 1,}
\end{array}
$$

for $1 \leq i, j \leq m$, where any $\alpha_{p, q}^{r}, \gamma_{p, q}, \delta_{p}, \tau, \nu_{p, q}^{r}, \beta_{p, q}, \varepsilon_{p}^{r} \in \mathbb{F}$ and where the omitted products are equal to zero.

Proof. We consider the following products:

$$
\left[y_{i}, x_{i}\right]=z+\sum_{k=1}^{m+2} \varepsilon_{i}^{k} e_{k}, \quad 1 \leq i \leq m
$$

Putting $z^{\prime}=z+\sum_{k=1}^{m+2} \varepsilon_{1}^{k} e_{k}$ we can assume $\left[y_{1}, x_{1}\right]=z$. Thus, we have

$$
\begin{array}{lll}
{\left[e_{i+1}, x_{i}\right]=e_{1},} & {\left[e_{m+2}, y_{i}\right]=e_{i+1},} & {\left[e_{m+2}, z\right]=e_{1},} \\
{\left[x_{i}, x_{j}\right]=\sum_{k=1}^{m+2} \alpha_{i, j}^{k} e_{k},} & {\left[x_{i}, y_{j}\right]=\sum_{k=1}^{m+2} \gamma_{i, j}^{k} e_{k}, \quad i \neq j} & {\left[x_{i}, y_{i}\right]=-z+\sum_{k=1}^{m+2} \delta_{i}^{k} e_{k},} \\
{\left[x_{i}, z\right]=\sum_{k=1}^{m+2} \eta_{i}^{k} e_{k},} & {\left[y_{i}, y_{j}\right]=\sum_{k=1}^{m+2} \beta_{i, j}^{k} e_{k},} & {\left[y_{i}, x_{j}\right]=\sum_{k=1}^{m+2} \nu_{i, j}^{k} e_{k}, i \neq j,} \\
{\left[y_{i}, z\right]=\sum_{k=1}^{m+2} \theta_{i}^{k} e_{k},} & {\left[y_{1}, x_{1}\right]=z,} & {\left[y_{i}, x_{i}\right]=z+\sum_{k=1}^{m+2} \varepsilon_{i}^{k} e_{k}, i \neq 1,} \\
{\left[z, x_{i}\right]=\sum_{k=1}^{m+2} \tau_{i}^{k} e_{k},} & {\left[z, y_{i}\right]=\sum_{k=1}^{m+2} \lambda_{i}^{k} e_{k},} & {[z, z]=\sum_{k=1}^{m+2} \mu^{k} e_{k},}
\end{array}
$$

with $1 \leq i, j \leq m$.

We compute all Leibniz identities using the software Mathematica and we get the following restrictions:

Leibniz identity

Constraint

From here,

$$
\begin{array}{ll}
{\left[e_{i+1}, x_{i}\right]=e_{1},} & 1 \leq i \leq m \\
{\left[e_{m+2}, y_{i}\right]=e_{i+1},} & 1 \leq i \leq m \\
{\left[e_{m+2}, z\right]=e_{1},} & 1 \leq i, j \leq m, \\
{\left[x_{i}, x_{j}\right]=\sum_{s=1}^{m+1} \alpha_{i, j}^{s} e_{s},} & 1 \leq i, j \leq m, \\
{\left[y_{i}, y_{j}\right]=\beta_{i, j}^{1} e_{1}+\theta_{i}^{1} e_{j+1},} & 1 \leq
\end{array}
$$

$$
\begin{array}{ll}
{\left[x_{i}, y_{j}\right]=\gamma_{i, j}^{1} e_{1}+\eta_{i}^{1} e_{j+1},} & 1 \leq i, j \leq m, i \neq j \\
{\left[x_{1}, y_{1}\right]=-z+\delta_{1}^{1} e_{1}+\left(\eta_{1}^{1}+\tau_{1}^{1}\right) e_{2}+\sum_{s=2}^{m} \nu_{1, s}^{2} e_{s+1},} & 1 \leq i \leq m, \\
{\left[x_{i}, y_{i}\right]=-z+\delta_{i}^{1} e_{1}+\tau_{1}^{1} e_{2}+\left(\eta_{i}^{1}+\nu_{1, i}^{2}\right) e_{i+1}+\sum_{s=2}^{m} \nu_{s \neq i}^{2} e_{1, s} e_{s+1},} & 2 \leq i \leq m, \\
{\left[y_{1}, x_{1}\right]=z,} & 1 \leq i, j \leq m, i \neq j \\
{\left[y_{i}, x_{i}\right]=z+\varepsilon_{i}^{1} e_{1}+\left(\nu_{i, 1}^{i+1}-\tau_{1}^{1}\right) e_{2}+\varepsilon_{i}^{i+1} e_{i+1}+\sum_{s=2}^{m}\left(\nu_{i, s}^{i+1}-\nu_{1, s}^{2}\right) e_{s+1},} & 2 \leq i \leq m, \\
{\left[y_{i}, x_{j}\right]=\sum_{s=1}^{m+1} \nu_{i, j}^{s} e_{s},} & 1 \leq i \leq m, \\
{\left[x_{i}, z\right]=\eta_{i}^{1} e_{1},} & 1 \leq i \leq m, \\
{\left[y_{i}, z\right]=\theta_{i}^{1} e_{1},} & 2 \leq i \leq m, \\
{\left[z, x_{1}\right]=\tau_{1}^{1} e_{1},} & 1 \leq 2
\end{array}
$$

with the following restrictions

$$
\begin{array}{ll}
\alpha_{i, j}^{k+1}=\alpha_{i, k}^{j+1}, & 1 \leq i, j, k \leq m \\
\nu_{i, j}^{k+1}=\nu_{i, k}^{j+1}, & 1 \leq i, j, k \leq m, j \neq i \neq k
\end{array}
$$

Only rest to make the next change of basis

$$
\begin{cases}x_{i}^{\prime}=x_{i}-\eta_{i}^{1} e_{m+2}, & 1 \leq i \leq m \\ y_{1}^{\prime}=y_{1}-\theta_{1}^{1} e_{m+2} & \\ y_{j}^{\prime}=y_{j}-\varepsilon_{j}^{1} e_{j+1}-\theta_{j}^{1} e_{m+2}, & 2 \leq j \leq m\end{cases}
$$

and we obtain the family of the theorem (renaming the parameters).
4.2. Particular case: Classification of Leibniz algebras when $m=1$. In this subsection we classify the Leibniz algebras such that $L / I \cong H_{3}$ and I is the L / I-module with the minimal faithful representation given by Equation (10). Let us fix $\left\{x, y, z, e_{1}, e_{2}, e_{3}\right\}$ as basis of L. All computations have been made by using the software Mathematica.

We have the following products:

$$
\begin{array}{lll}
{\left[e_{2}, x\right]=e_{1},} & {\left[e_{3}, y\right]=e_{2},} & {\left[e_{3}, z\right]=e_{1},} \\
{[x, x]=\alpha_{1} e_{1}+\alpha_{2} e_{2}+\alpha_{3} e_{3},} & {[x, y]=-z+\delta_{1} e_{1}+\delta_{2} e_{2}+\delta_{3} e_{3},} & {[x, z]=\eta_{1} e_{1}+\eta_{2} e_{2}+\eta_{3} e_{3}} \\
{[y, y]=\beta_{1} e_{1}+\beta_{2} e_{2}+\beta_{3} e_{3},} & {[y, x]=z,} & {[y, z]=\theta_{1} e_{1}+\theta_{2} e_{2}+\theta_{3} e_{3}} \\
{[z, x]=\tau_{1} e_{1}+\tau_{2} e_{2}+\tau_{3} e_{3},} & {[z, y]=\lambda_{1} e_{1}+\lambda_{2} e_{2}+\lambda_{3} e_{3},} & {[z, z]=\mu_{1} e_{1}+\mu_{2} e_{2}+\mu_{3} e_{3}}
\end{array}
$$

The Leibniz identity on the following triples imposes further constraints on the products.

Leibniz identity	Constraint
	$\Rightarrow \quad-\eta_{1}=\tau_{1}-\delta_{2}, \alpha_{3}-\eta_{2}=\tau_{2}, \quad-\eta_{3}=\tau_{3}$,
$\{x, x, y\}$	$\Rightarrow \alpha_{3}=\eta_{2}$,
$\{x, x, z\}$	$\Rightarrow \mu_{1}=\delta_{3}, \mu_{2}=-\eta_{3}, \quad \mu_{3}=0$,
$\{x, y, z\}$	$\Rightarrow \beta_{3}=\theta_{3}=0$,
$\{y, y, z\}$	$\Rightarrow-\theta_{1}=\lambda_{1}-\beta_{2},-\theta_{2}=\lambda_{2},-\theta_{3}=\lambda_{3}$,
$\{y, x, y\}$	$\Rightarrow \mu_{1}=\theta_{2}, \quad \mu_{2}=0$,
$\{y, x, z\}$	$\Rightarrow \mu_{1}=\lambda_{2}, \quad \mu_{2}=\tau_{3}$,
$\{z, x, y\}$	$\Rightarrow \mu_{2}=\tau_{3}$,
$\{z, x, z\}$	$\Rightarrow \lambda_{3}=0$,
$\{z, y, z\}$	$\Rightarrow \eta_{2}=\alpha_{3}$,
$\{x, z, x\}$	$\Rightarrow \mu_{1}=\delta_{3}, \quad \mu_{2}=-\eta_{3}$.

Thus, we get the following family of algebras, $L\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \beta_{1}, \beta_{2}, \delta_{1}, \delta_{2}, \eta_{1}, \theta_{1}\right)$:

$$
\left\{\begin{array}{lll}
{\left[e_{2}, x\right]=e_{1},} & {\left[e_{3}, y\right]=e_{2},} & {\left[e_{3}, z\right]=e_{1}} \\
{[x, x]=\alpha_{1} e_{1}+\alpha_{2} e_{2}+\alpha_{3} e_{3},} & {[x, y]=-z+\delta_{1} e_{1}+\delta_{2} e_{2},} & {[x, z]=\eta_{1} e_{1}+\alpha_{3} e_{2}} \\
{[y, y]=\beta_{1} e_{1}+\beta_{2} e_{2},} & {[y, x]=z,} & {[y, z]=\theta_{1} e_{1}} \\
{[z, x]=\left(\delta_{2}-\eta_{1}\right) e_{1}-2 \alpha_{3} e_{2},} & {[z, y]=\left(\beta_{2}-\theta_{1}\right) e_{1}} &
\end{array}\right.
$$

Theorem 4. Let L be a Leibniz algebra such that $L / I \cong H_{3}$ and I is the L / I-module with the minimal faithful representation given by Equation (10). Then L is isomorphic to one of the following pairwise non-isomorphic algebras:

$$
\begin{array}{lll}
L(0,1,0,1,0,0,0,1, \lambda), \lambda \in \mathbb{F}, & L(0,1,0,1,0,0,0,0,1), & L(0,1,0,1,0,0,0,0,0), \\
L(0,1,0,0,0,0,0,1, \lambda), \lambda \in \mathbb{F}, & L(0,1,0,0,0,0,0,0,1), & L(0,1,0,0,0,0,0,0,0), \\
L(0,0,0,1,0,0,0,1,1), & L(0,0,0,1,0,0,0,1,0), & L(0,0,0,1,0,0,0,0,1), \\
L(0,0,0,1,0,0,0,0,0), & L(0,0,0,0,0,0,0,1,1), & L(0,0,0,0,0,0,0,1,0), \\
L(0,0,0,0,0,0,0,0,1), & L(0,0,0,0,0,0,0,0,0), & L(0,0,1,1,0,0,0,1, \lambda), \lambda \in \mathbb{F}, \\
L(0,0,1,1,0,0,0,0,1), & L(0,0,1,1,0,0,0,0,0), & L(0,0,1,0,0,0,0,1,1), \\
L(0,0,1,0,0,0,0,1,0), & L(0,0,1,0,0,0,0,0,1), & L(0,0,1,0,0,0,0,0,0)
\end{array}
$$

Proof. We can distinguish two cases:
Case 1: $e_{3} \in[L, L]$. Then $\alpha_{3}=0$.
Applying the general change of basis generators:
$x^{\prime}=A_{1} x+A_{2} y+A_{3} z+\sum_{k=1}^{3} P_{i} e_{i}, y^{\prime}=B_{1} x+B_{2} y+B_{3} z+\sum_{k=1}^{3} Q_{i} e_{i}, e_{3}^{\prime}=C_{1} x+C_{2} y+C_{3} z+\sum_{k=1}^{3} R_{i} e_{i}$ we derive the expressions of the new parameters in the new basis:

$$
\begin{array}{ll}
\alpha_{1}^{\prime}=\frac{\alpha_{1} A_{1}^{2} B_{2}-\alpha_{2} A_{1}^{2} B_{3}+\delta_{2} A_{1} A_{3} B_{2}+A_{1} B_{2} P_{2}+A_{3} B_{2} P_{3}}{A_{1} B_{2}^{2}}, & \alpha_{2}^{\prime}=\frac{\alpha_{2} A_{1}^{2}}{B_{2} R_{3}} \\
\beta_{1}^{\prime}=\frac{\beta_{1} B_{2}}{A_{1} R_{3}}, & \beta_{2}^{\prime}=\frac{\beta_{2} B_{2}+Q_{3}}{R_{3}} \\
\delta_{1}^{\prime}=\frac{\beta_{2} A_{3} B_{2}+\delta_{1} A_{1} B_{2}+A_{1} Q_{2}+A_{3} Q_{3}}{A_{1} B_{2} R_{3}}, & \delta_{2}^{\prime}=\frac{\delta_{2} A_{1}+P_{3}}{R_{3}} \\
\eta_{1}^{\prime}=\frac{\eta_{1} A_{1}+P_{3}}{R_{3}}, & \theta_{1}^{\prime}=\frac{\theta_{1} B_{2}+Q_{3}}{R_{3}}
\end{array}
$$

and the following restrictions:

$$
\left\{\begin{array}{l}
C_{1}=C_{2}=C_{3}=B_{1}=A_{2}=0 \\
R_{5}=-\frac{A_{3} R_{3}}{A_{1}} \\
A_{1} B_{2} R_{3} \neq 0
\end{array}\right.
$$

We set

$$
\begin{array}{ll}
P_{3}=-\delta_{2} A_{1} & \Rightarrow \delta_{2}^{\prime}=0 \\
Q_{3}=-\beta_{2} B_{2} & \Rightarrow \beta_{2}^{\prime}=0 \\
Q_{2}=-\delta_{1} B_{2} & \Rightarrow \delta_{1}^{\prime}=0 \\
P_{2}=-\frac{\left(\alpha_{1} B_{2}-\alpha_{2} B_{3}\right) A_{1}}{B_{2}} & \Rightarrow \alpha_{1}^{\prime}=0
\end{array}
$$

then we get

$$
\begin{array}{lll}
{\left[e_{2}, x\right]=e_{1},} & {\left[e_{3}, y\right]=e_{2},} & {\left[e_{3}, z\right]=e_{1},} \\
{[x, x]=\alpha_{2}^{\prime} e_{2},} & {[x, y]=-z,} & {[x, z]=\eta_{1}^{\prime} e_{1}} \\
{[y, y]=\beta_{1}^{\prime} e_{1},} & {[y, x]=z,} & {[y, z]=\theta_{1}^{\prime} e_{1},} \\
{[z, x]=-\eta_{1}^{\prime} e_{1},} & {[z, y]=-\theta_{1}^{\prime} e_{1},} &
\end{array}
$$

where

$$
\alpha_{2}^{\prime}=\frac{\alpha_{2} A_{1}^{2}}{B_{2} R_{3}}, \quad \beta_{1}^{\prime}=\frac{\beta_{1} B_{2}}{A_{1} R_{3}}, \quad \eta_{1}^{\prime}=\frac{\left(\eta_{1}-\delta_{2}\right) A_{1}}{R_{3}}, \quad \theta_{1}^{\prime}=\frac{\left(\theta_{1}-\beta_{2}\right) B_{2}}{R_{3}}
$$

We observe that the nullities of $\alpha_{2}, \beta_{1}, \eta_{1}, \theta_{1}$ are invariant. Thus, we can distinguish the following nonisomorphic cases. An appropriate choice of the parameter values $\left(A_{1}, B_{2}\right.$ and $\left.R_{3}\right)$ allows us to obtain the following algebras or families of algebras.

Case	Algebra
$\alpha_{2} \neq 0, \beta_{1} \neq 0, \eta_{1} \neq 0$,	$L(0,1,0,1,0,0,0,1, \lambda), \lambda \in \mathbb{F}$,
$\alpha_{2} \neq 0, \beta_{1} \neq 0, \eta_{1}=0, \theta_{1} \neq 0$,	$L(0,1,0,1,0,0,0,0,1)$,
$\alpha_{2} \neq 0, \beta_{1} \neq 0, \eta_{1}=0, \theta_{1}=0$,	$L(0,1,0,1,0,0,0,0,0)$,
$\alpha_{2} \neq 0, \beta_{1}=0, \eta_{1} \neq 0$,	$L(0,1,0,0,0,0,0,1, \lambda), \lambda \in \mathbb{F}$,
$\alpha_{2} \neq 0, \beta_{1}=0, \eta_{1}=0, \theta_{1} \neq 0$,	$L(0,1,0,0,0,0,0,0,1)$,
$\alpha_{2} \neq 0, \beta_{1}=0, \eta_{1}=0, \theta_{1}=0$,	$L(0,1,0,0,0,0,0,0,0)$,
$\alpha_{2}=0, \beta_{1} \neq 0, \eta_{1} \neq 0, \theta_{1} \neq 0$,	$L(0,0,0,1,0,0,0,1,1)$,
$\alpha_{2}=0, \beta_{1} \neq 0, \eta_{1} \neq 0, \theta_{1}=0$,	$L(0,0,0,1,0,0,0,1,0)$,
$\alpha_{2}=0, \beta_{1} \neq 0, \eta_{1}=0, \theta_{1} \neq 0$,	$L(0,0,0,1,0,0,0,0,1)$,
$\alpha_{2}=0, \beta_{1} \neq 0, \eta_{1}=0, \theta_{1}=0$,	$L(0,0,0,1,0,0,0,0,0)$,
$\alpha_{2}=0, \beta_{1}=0, \eta_{1} \neq 0, \theta_{1} \neq 0$,	$L(0,0,0,0,0,0,0,1,1)$,
$\alpha_{2}=0, \beta_{1}=0, \eta_{1} \neq 0, \theta_{1}=0$,	$L(0,0,0,0,0,0,0,1,0)$,
$\alpha_{2}=0, \beta_{1}=0, \eta_{1}=0, \theta_{1} \neq 0$,	$L(0,0,0,0,0,0,0,0,1)$,
$\alpha_{2}=0, \beta_{1}=0, \eta_{1}=0, \theta_{1}=0$,	$L(0,0,0,0,0,0,0,0,0)$.

Case 2: $e_{3} \notin[L, L]$. Then $\alpha_{3} \neq 0$. Making the following change of basis in $L\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \beta_{1}, \beta_{2}, \delta_{1}, \delta_{2}, \eta_{1}, \theta_{1}\right)$

$$
\left\{\begin{array}{l}
e_{3}^{\prime}=\alpha_{1} e_{1}+\alpha_{2} e_{2}+\alpha_{3} e_{3} \\
e_{2}^{\prime}=\alpha_{3} e_{2} \\
e_{1}^{\prime}=\alpha_{3} e_{1}
\end{array}\right.
$$

we obtain $L\left(0,0,1, \beta_{1}, \beta_{2}, \delta_{1}, \delta_{2}, \eta_{1}, \theta_{1}\right)$:

$$
\left\{\begin{array}{lll}
{\left[e_{2}, x\right]=e_{1},} & {\left[e_{3}, y\right]=e_{2},} & {\left[e_{3}, z\right]=e_{1}} \\
{[x, x]=e_{3},} & {[x, y]=-z+\delta_{1} e_{1}+\delta_{2} e_{2},} & {[x, z]=\eta_{1} e_{1}+e_{2},} \\
{[y, y]=\beta_{1} e_{1}+\beta_{2} e_{2},} & {[y, x]=z,} & {[y, z]=\theta_{1} e_{1}} \\
{[z, x]=\left(\delta_{2}-\eta_{1}\right) e_{1}-2 e_{2},} & {[z, y]=\left(\beta_{2}-\theta_{1}\right) e_{1} .} &
\end{array}\right.
$$

Analogously to the previous case, by making the general change of basis of generators

$$
x^{\prime}=A_{1} x+A_{2} y+A_{3} z+\sum_{k=1}^{3} P_{i} e_{i}, \quad y^{\prime}=B_{1} x+B_{2} y+B_{3} z+\sum_{k=1}^{3} Q_{i} e_{i}
$$

we derive the expressions of the new parameters in the new basis:

$$
\begin{array}{ll}
\beta_{1}^{\prime}=\frac{\beta_{1} B_{2}}{A_{1}^{3}}, & \beta_{2}^{\prime}=\frac{\beta_{2} B_{2}+Q_{3}}{A_{1}^{2}}, \\
\delta_{1}^{\prime}=\frac{\beta_{2} A_{3} B_{2}^{2}+A_{1} B_{3}^{2}+\delta_{1} A_{1} B_{2}^{2}+A_{1} B_{2} Q_{2}+A_{3} B_{2} Q_{3}}{A_{1}^{3} B_{2}^{2}}, & \delta_{2}^{\prime}=\frac{-A_{1} B_{3}+\delta_{2} A_{1} B_{2}+B_{2} P_{3}}{A_{1}^{2} B_{2}} \\
\eta_{1}^{\prime}=\frac{-A_{1} B_{3}+\eta_{1} A_{1} B_{2}+B_{2} P_{3}}{A_{1}^{2} B_{2}}, & \theta_{1}^{\prime}=\frac{\theta_{1} B_{2}+Q_{3}}{A_{1}^{2}},
\end{array}
$$

with the restriction:

$$
\left\{\begin{array}{l}
A_{2}=B_{1}=0 \\
A_{1} B_{2} \neq 0
\end{array}\right.
$$

By putting

$$
\begin{array}{lll}
P_{3}=\frac{A_{1}\left(B_{3}-\delta_{2} B_{2}\right)}{B_{2}} & \Rightarrow & \delta_{2}^{\prime}=0 \\
Q_{3}=-\beta_{2} B_{2} & \Rightarrow & \beta_{2}^{\prime}=0 \\
Q_{2}=-\frac{B_{3}^{2}+\delta_{1} B_{2}^{2}}{B_{2}} & \Rightarrow & \delta_{1}^{\prime}=0
\end{array}
$$

we deduce

$$
\begin{array}{lll}
{\left[e_{2}, x\right]=e_{1},} & {\left[e_{3}, y\right]=e_{2},} & {\left[e_{3}, z\right]=e_{1},} \\
{[x, x]=e_{3},} & {[x, y]=-z,} & {[x, z]=\eta_{1}^{\prime} e_{1}+e_{2}} \\
{[y, y]=\beta_{1}^{\prime} e_{1},} & {[y, x]=z,} & {[y, z]=\theta_{1}^{\prime} e_{1}} \\
{[z, x]=-\eta_{1}^{\prime} e_{1}-2 e_{2},} & {[z, y]=-\theta_{1}^{\prime} e_{1},} &
\end{array}
$$

where

$$
\beta_{1}^{\prime}=\frac{\beta_{1} B_{2}}{A_{1}^{3}}, \quad \eta_{1}^{\prime}=\frac{\eta_{1}-\delta_{2}}{A_{1}}, \quad \theta_{1}^{\prime}=\frac{\left(\theta_{1}-\beta_{2}\right) B_{2}}{A_{1}^{2}} .
$$

We observe that the nullities of $\beta_{1}, \eta_{1}, \theta_{1}$ are invariant. Thus, we can distinguish the following nonisomorphic cases. An appropriate choice of the parameter values (A_{1} and B_{2}) allows us to obtain the following algebras or families of algebras.

Case	Algebra
$\beta_{1} \neq 0, \eta_{1} \neq 0$,	$L(0,0,1,1,0,0,0,1, \lambda), \lambda \in \mathbb{F}$,
$\beta_{1} \neq 0, \eta_{1}=0, \theta \neq 0$,	$L(0,0,1,1,0,0,0,0,1)$,
$\beta_{1} \neq 0, \eta_{1}=0, \theta=0$,	$L(0,0,1,1,0,0,0,0,0)$,
$\beta_{1}=0, \eta_{1} \neq 0, \theta \neq 0$,	$L(0,0,1,0,0,0,0,1,1)$,
$\beta_{1}=0, \eta_{1} \neq 0, \theta=0$,	$L(0,0,1,0,0,0,0,1,0)$,
$\beta_{1}=0, \eta_{1}=0, \theta \neq 0$,	$L(0,0,1,0,0,0,0,0,1)$,
$\beta_{1}=0, \eta_{1}=0, \theta=0$,	$L(0,0,1,0,0,0,0,0,0)$.

The proof is complete.

REFERENCES

[1] Abdesselam, B.: The twisted Heisenberg algebra $U_{h, w}(H(4))$. J. Math. Phys. 38, no.12, (1997), 6045-6060.
[2] Abdykassymova, S., Dzhumaldil'daev, A.: Leibniz algebras in characteristic p. C. R. Acad. Sci. Paris Sér. I Math. 332(12), (2001), 1047-1052.
[3] Accardi, L. and Boukas, A.: Fock representation of the renormalized higher powers of white noise and the centreless Virasoro (or Witt)-Zamolodchikov- ω_{∞}^{*}-Lie algebra. J. Phys. A 41 no. 30, (2008), 304001, 12 pp.
[4] Albeverio, S., Ayupov, Sh.A. and Omirov, B.A.: On nilpotent and simple Leibniz algebras. Comm. Algebra. (2005), 159-172.
[5] Ayupov, Sh.A. and Omirov, B.A.: On some classes of nilpotent Leibniz algebras. Siberian Math. Journal 42(1), (2001), 18-29.
[6] Baraglia, D.: Leibniz algebroids, twistings and exceptional generalized geometry. J. Geom. Phys. 62 no. 5, (2012), 903-934.
[7] Basarab-Horwath, P.: Displaced Fock representations of the canonical commutation relations. J. Phys. A 14 no. 6, (1981), $1431-1438$.
[8] Bende, C.M. and Kalveks, R.J.: Extending PT symmetry from Heisenberg algebra to $E 2$ algebra. Internat. J. Theoret. Phys. 50, no. 4, (2011), 955-962.
[9] Berrada, K., El Baz, M. and Hassouni, Y.: Generalized Heisenberg algebra coherent states for power-law potentials. Phys. Lett. A 375, no. 3, (2011), 298-302.
[10] Bloh, A.: On a generalization of the concept of Lie algebra. Dokl. Akad. Nauk SSSR 165, (1965), 471-473.
[11] Bloh, A.: Cartan-Eilenberg homology theory for a generalized class of Lie algebras. Dokl. Akad. Nauk SSSR 175, (1967), 266-268, tranlated as Soviet Math. Dokl. 8, (1967), 824-826.
[12] Bloh, A.: A certain generalization of the concept of Lie algebra. Algebra and number theoy. Moskov. Gos. Ped. Inst. Ucen. Zap. No. 375 (1971), 9-20.
[13] Burde, D.: On a refinement of Ado's theorem. Arc. Math. 70 (1998), 118-127.
[14] Cabezas, J.M., Camacho, L.M. and Rodriguez, I.M.: On filiform and 2-filiform Leibniz algebras of maximum length. J. Lie Theory 18(2), (2008), 335-350.
[15] Coll, B., Ferrando, J.J.: On the Leibniz bracket, the Schouten bracket and the Laplacian. J. Math. Phys. 45 no. 6, (2004), $2405-2410$.
[16] Camacho, L.M., Casas, J.M., Gómez, J.R., Ladra, M. and Omirov, B.A.: On nilpotent Leibniz n-algebras. J. Algebra Appl. 11, no. 3, (2012), 1250062, 17 pp .
[17] Camacho, L.M.; Gómez, J.R. and Omirov, B.A.: Naturally graded ($n-3$)-filiform Leibniz algebras. Linear Algebra Appl. 433, no. 2, (2010), 433-446.
[18] Corwin L.J. and Greenleaf, F.P.: Representations of nilpotent Lie groups and their applications. Cambridge Universesity Press. 1990.
[19] Daoud, M. and Kibler, M.R.: Bosonic and k-fermionic coherent states for a class of polynomial Weyl-Heisenberg algebras. J. Phys. A 45 no. 24, (2012), 244036, 22 pp.
[20] de Jeu, M., Svensson, C. and Silvestrov, S.: Algebraic curves for commuting elements in the q-deformed Heisenberg algebra. J. Algebra 321, no. 4, (2009), 1239-1255.
[21] Fialowski, A. and Mandal, A.: Leibniz algebra deformations of a Lie algebra. J. Math. Phys. 49, no. 9,(2008), $093511,11 \mathrm{pp}$.
[22] Fialowski, A., Khudoyberdiyev, A.Kh. and Omirov, B.A.: A Characterization of Nilpotent Leibniz Algebras. Algebr. Represent. Theory 16, no. 5, (2013), 1489-1505.
[23] Fulop, B. and Labos, E.: Boolean-Lie algebras and the Leibniz rule. J. Phys. A 39 no. 22, (2006), 6871-6876.
[24] Geloun, B., Hounkonnou J. and Mahouton, N.: q-graded Heisenberg algebras and deformed supersymmetries. J. Math. Phys. 51 (2010), no. 2, 023502, 14 pp.
[25] Guha, P.: Euler-Poincare flows and Leibniz structure of nonlinear reaction-diffusion type systems. J. Geom. Phys. 56 no. 9, (2006), 1736-1751.
[26] Hengyun, Y. and Naihong, H. Heisenberg Lie color algebras. Comm. Algebra 39(5), (2011), 1782-1795.
[27] Kaplain, A.: Fundamental solutions for a class of hipoelliptic PDE generated by compositions of quadratic forms. Trans. Amer. Math. Soc. 259, (1980), 145-153.
[28] Khudoyberdiyev, A.K. and Omirov, B.A.: Infinitesimal deformations of null-filiform Leibniz superalgebras. J. Geom. Phys. 74 (2013), 370-380.
[29] Konstantina, C.: Whittaker modules for Heisenberg algebras and imaginary Whittaker modules for affine Lie algebras. J. Algebra 320, no. 7, (2008), 2871-2890.
[30] Konstein, S.E.: Supertraces on some deformations of Heisenberg superalgebra . Supersymmetry and quantum field theory, 305-311, Lecture Notes in Phys., 509, Springer, Berlin, 1998.
[31] Korbelar, M. and Tolar, J.: Symmetries of the finite Heisenberg group for composite systems. J. Phys. A 43 no. 37, (2010), 375302, 15 pp .
[32] Korbelar, M. and Tolar, J.: Symmetries of finite Heisenberg groups for multipartite systems. J. Phys. A 45 no. 28, (2012), 285305,18 pp.
[33] Ladra, M., Omirov, B.A. and Rozikov, U.A.: Classification of p-adic 6-dimensional filiform Leibniz algebras by solutions of $x^{q}=a$. Cent. Eur. J. Math. 11, no. 6, (2013), 1083-1093.
[34] Liu, X.F. and Qian, M.: Bosonic Fock representations of the affine-Virasoro algebra. J. Phys. A 27 no. 5, (1994), 131-136.
[35] Loday, J.L.: Une version non commutative des algébres de Lie: les algébres de Leibniz. L’Ens. Math. 39, (1993), $269-293$.
[36] Maslowski, T., Nowicki, A. and Tkachuk, V.M.: Deformed Heisenberg algebra and minimal length. J. Phys. A 45 no. 7, (2012), 075309, 5 pp .
[37] Omirov, B.A., Rakhimov, I.S. and Turdibaev, R.M.: On description of Leibniz algebras corresponding to $s l_{2}$. Algbr. Represent. Theor. 16 (2013), 1507-1519.
[38] Palev, T.D., Stoilova, N.I., and Van der Jeugt, J.: Fock representations of the superalgebra $s l(n+1 \mid m)$, its quantum analogue $U_{q}[s l(n+1 \mid m)]$ and related quantum statistics. J. Phys. A 33 no. 13, (2000), 2545-2553.
[39] Palev, T. and Van der Jeugt, J.: Fock representations of the Lie superalgebra $q(n+1)$. J. Phys. A 33 no. 13, (2000), 2527-2544.
[40] Rakhimov, I.S. and Atan, Kamel A.M.: On contractions and invariants of Leibniz algebras. Bull. Malays. Math. Sci. Soc. (2) 35, (2012), no. 2A, 557-565.
[41] Rakhimov, I.S. and Hassan, M.A. On low-dimensional filiform Leibniz algebras and their invariants. Bull. Malays. Math. Sci. Soc. (2) 34, no. 3, (2011), 475-485.
[42] Semmes, S.: An Introduction to Heisenberg Groups in Analysis and Geometry. Notices of the AMS. Vol. 50(6), (2003), 640-646.
[43] Thienel, H.P. A generalization of the Bargmann-Fock representation to supersymmetry. J. Phys. A 29 no. 21, (1996), 6983-6989.
[44] Thurston, W.: Three-dimensional Geometry and Topology. S. Levy, ed., Princeton University Press, 1997.

Antonio J. Calderón. Dpto. Matemáticas. Universidad de Cádiz. 11510 Puerto Real, Cádiz. (Spain), e-mail: ajesus.calderon@uca.es

Luisa M. Camacho. Dpto. Matemática Aplicada I. Universidad de Sevilla. Avda. Reina Mercedes, s/n. 41012 Sevilla. (Spain), e-mail: lcamacho@us.es

Bakhrom A. Omirov. Institute of Mathematics. National University of Uzbekistan, F. Hodjaev str. 29, 100125, Tashkent (Uzbekistan), e-mail: omirovb@mail.ru

