
ANALOG INTEGRATED NEURAL-LIKE CIRCUITS FOR NONLINEAR PROGRAMMING

Angel Rodriguez-Vbzquez I , Rafael Dominguez-Castro I , Jose L. Huertas and Edgar Sbnchez-Sinencio *
Departamento de Electr6nica y Electromagnetismo, Universidad de Sevilla, 41012-Sevilla, SPAIN

Department of Electrical Engineering, Texas A&M University, College Station, TX 77843, USA

Abstract

A systematic approach is presented for the design of
analog ”neural” nonlinear programming solvers using
Switched-Capacitor (SC) integrated circuit techniques. The
method is based on formulating a dynamic gradient system
whose state evolves in time towards the solution point of the

, corresponding programming problem. A %euron” cell for
the linear and the quadratic problem suitable for monolithic
implementation is introduced. The design of this “neuron”
and its corresponding (‘s napses” using SC techniques are
considered in detail. A J C circuit architecture based on a
reduced set of basic building blocks with high modularity is
presented. Simulation resul ts using a mixed-mode
simulator (DIANA) [l] and experimental results from
breadboard prototypes are included, i l lustrat ing the
validity of the proposed techniques.

I. Introduction.

Linear and Nonlinear Programming Solvers are a class
of analog “neural” optimizers intended for the solution of
constrained optimization problems (also called nonlinear
programming problems) in real time. Tank and Hopfield [21
proposed a linear programming solver with a “neural”
organization. In more recent papers, [31 [41, i t i s
demonstrated that the network of Tank and Hopfield obeys
the same unifying stationary theorem as the canonical
nonlinear programming circuit previously reported by
Chua and Lin [51. Kennedy and Chua’s analysis, [31[41, also
yields a relationship between the solution of the network
and that of the optimization problem, thus providing the
foundations of a synthesis procedure for “neural” nonlinear
programming solvers.

The main drawback of the circuits by Kennedy and Chua
and Tank and Hopfield is that they rely on conventional RC-
active design techniques which are not the best suited for
monolithic implementation, special1 taking into account
that accurate resistor ratios and rarge RC values are
required. In this paper we try to overcome this drawback by
focusing on the design of programming solvers using
switched -ca mi t or tech n i q u es . T h e i n h e r e n t
programmabigty and reconfigurability of SC circuits
together with the maturity of this technique [61 in the field
of analog VLSI justify the interest of our approach.

II. Synthesis technique.

The unconstrained problem.

Multi arameter optimization can be defined as the
process offinding, in the parameter space, a point aT={z,,
zz, ..., XN} where a cost function Y(%) i s minimized.
Optimization in classical analog computers, [7] [8], was
accomplished by implementing the following companion
dynamic gradient system,

When d t ld t =i €or this system, implies that VY =i, that
is, the equilibrium of the gradient system coincides either
with a local extreme (minimum or maximum) or with an
inflection point of the corresponding cost function. On the
other hand, since, for T > O , dt ld t and VY are opposite
vectors, the time evolution of t will result in Y (t) becoming
smaller and smaller as time goes on. Therefore, the process
of seekin for equilibrium of the companion gradient system
of a cost knction, Y(i) , actually yields minimization of this
cost function.

The constrained problem.

Consider the following general nonlinear programming
problem [91,

Minimize 4 Y x , , x 2 ,.... X N)

(2)
subjectto theconstraints, Pk(x,,x p . . . , xN 2 0 ; 1 aks Q

where N and Q are two independent integers.
To solve this problem by a gradient scheme, like that in

(11, we convert i t in an e uivalent unconstrained problem.
The way to do this is to delne apseudo-cost function Y(f4 as
follows,

(3)

where a(%) is the original cost function, P(%) is referred to
as the penalty function and p is a real parameter called
penalt multiplier.

Diierent penalty function alternatives can be used in
rac t ice . For a function to qualify as a valid penalty
unction i t must monotonically increase as we move away

from the region defined by the constraints (feasibility
region), that is, i t must monotonically Increase as the
constraints Fa(*) decrease from zero [lo].

A drawback of the pseudocost function in (3) is thatathe
penalty multiplier p has to be made large enough to yield
penalty dominance outside the feasibility region and $US
guarantee that the minimum of the pseudo-cost function 1s
inside the feasibility region. Here, we propose a n
alternative pseudo-cost function which does not require
very large penalty parameter values,

(4a)

where we define,

(4b)

In (4a), the function @(e) is disconnected outside the
feasibility region. Hence, penalty dominance outside this
region is guaranteed no matter what the actual value of p
is. Besides, since the penalty gradient is different from zero
a t any point, the solution point is forced to be either inside
the feasibility region or just a t the boundaries.

1, if F k r O f u r e i r r y k

U(‘)= 1 0, o l b r w r a e

m. SC circuits for “neural” propramming solvers.

SC building blocks.

The basic SC “neuron”: Figure l a shows the basic
switched-capacitor “neuron” for quadratic programming.
The clock signals controlling the switches are shown in
Fig.lb.

Analysis of Fig.1 by using charge conservation principles
gives,

both polarities of the weighting factors can be obtained by

8 1 . 0 0 0 1990 IEEE

grounding the a
takingy, + - -0 y ie 8 s a j - th negative weight.

ropriate input terminals. For instance,

-
e - 0

VL +d--

.

,b) n n 1 J 2 n i l n 4 3 , 2

FIGURE 1: a) Basic switched-capacitor integrating “neuron”; b)
Required clock signals.

Constraint evaluation summers: Constraint evaluation
requires weighted summation. Figure 2 shows a switched-
capacitor circuit to carry out such an evaluation. Observe
that the input signals for this circuit are sensed during the
odd clock phase while the output are defined only during the
even clock phase. Analysis of Fig.2 allows us to obtain,

yZut(n + i) = o

As for Fig.1, both negative and positive weighting factors
can be easil obtained.

Threshord generation and feasibility region encoder:
This block is intended to generate the threshold functions
that codify constraint violations. Figure 3 shows one
implementation for this block. The threshold signals
codifying single constraint violations are obtained at the

0

“Id 1 h n r C e -

outputs of the comparators. On the other hand, the
threshold signal that codifies whether the point is or not
inside the feasibility region results as follows,

Q . F k > 0 Vk (7)
7’ii F) = z T,1- F,) ABo=

L= I

where A here holds for the logical-AND operation.

- = pF? ~ F I

6 P b d -FUi ‘P‘Pi-Fil 6 PPI-FI I
FIGURE 3: Circuit diagram for the threshold generator and

feasibility region encoder.

A “neural” Sc quadratic promamming solver.

Figure 4 shows a switched-capacitor implementation of
the quadratic programming solver “neural” network. To
simplif the circuit diagram, only the i-th “neuron” cell and
the k - t l constraint evaluator are shown. Furthermore, we
have arbitraril used absolute value penalties and have
assumed that a6 the coefficients of both the scalar function

FIGURE 4: A switched-capacitor ”neural” quadratic programming solver

235

and the constraint functions are positive. Analysis of Fig.4
by using (5), (6) and (7) gives,

which corresponds to the Forward-Euler simulation [l l] of
the gradient system for the quadratic problem using the
pseudo-cost function of (4) with absolute value penalties,

(9:

Other types of pseudo-cost functions and penalties can be
considered in a simple way [lo].

Parameter p in (8)-(9) controls the strength of the
penalty. On the other hand, parameter T,, controls the
integrator gain and hence the convergence speed of the
solver. In practice, choosin T, requires a tradeoff between
convergence speed and sta%ility. Although decreasing T,
increases the rate of convergence, i t may produce
instabilities.

B
Ym(x 1 = U(F)W x) + z: U(- P,)lFk(x)I

k= 1

Alternative SC building blocks.

Parasitic-insensitive “neuron” and summer: All
previously shown SC circuits are sensitive to parasitics [Il l .
Figure 5 shows a threshold-controlled “neuron” that is
insensitive to both parasitic capacitors and opam offset
voltage [121. Along with the figure we include a Formula
describing the operation of the circuit. Since appropriate
operation of the “neural” architecture re uires a half-period
delay in the operation of the “neuron”, oAy positive weights
are allowed for the circuit in Fig.5. Negative weights can be
realized by changin the sign of the input signals. I t
requires generation ofthe inverted version of the output of
each neuron, what is done by the second amplifier in Fig.5.

F

Idn++J=CUfs,) fh, / IJy“/n) +f..l(n)
,= l

I P W S U)

FIGURE 5: A parasitic-insensitive “neuron’..

Figure 6 shows a switched-capacitor summer which can
be used for arasitic- insensitive constraint evaluation. AS
for Fig.5, onpy positive weights are allowed for this summer.

The output signal of the “neuron” of Fig.5 is only valid a t
odd time instances. This imposes the necessity of changing
the “synapses” strategy. The new strategy is illustrated in
Fig.7. The integrator-summer E2 has to be implemented by
using Fig.5, while Fig.6 must be used for Z1. The rest of the
architectural concepts leading to Fig.4 are still valid for the
parasitic-insensitive building blocks.

ff, p A
A

PdF)

FIGURE 7: Stablishin “synapses” with parasitic-insensitive
swrtche8-capacrtor building blocks.

IV. Stability Properties

Computation in a “neural” programming solver is a
dynamical process of seeking equilibrium. For proper
computation, the equilibrium points of a programming
solver must correspond to solutions of the problem being
computed; moreover, these equilibria must be stable.

The dynamic behavior of a switched-capacitor
programming solver is determined by two factors, namely,

1) The reactive parasitics associated with the active

2) The parasitics introduced by the discretizing

However, since the proposed architectures do not exhibit
any global closed-loop during the computation cycle, there
is no possibility for instabilities due to continuous-time
parasitics to appear. Hence, only discrete-time parasitics
must be taken into account for stability analysis.

A switched-capacitor programming solver is a discrete-
time dynamic system which can be described by the
following difference state equation,

components and interconnection wires.

numerical integration algorithm.

x (n+ I) = C (x (n), Lo, p) (10)

where is a vector function and T, and p are positive real
parameters (these parameters are used in Fig.4 as capacitor
sizing parameters).

Equilibrium [13] occurs a t the point x* which is a
constant solution of (lo),

x * = G (x * , ~ ” , p) (11:

In general, the e uilibrium points of (10) can be either: 1)
inside the feasibhty region or 2) on the boundary of this
regon.

Solution inside the feasibility region. Local asymptotic
stability can be calculated by first linearizing (10) around
the equilibrium point and then taking the z-transform. In
order to obtain the equilibrium point to be stable, the root of
the characteristic equation must be inside the unit circle
[141. Hence, parameter T, has to be selected large enough for
the local stability condition to be fulfilled.

Solution on the boundary the feasibility region. It is
clear in this case that the system cannot stay static at x* .
However, the solution x(n), x(n + I) , x(n +2)....can be made
to stay inside an arbitrary small interval around this point.
In other words, this system can be made to be stable in the
sense that the variations of the solution remain bounded,
although i t is not asymptotically stable.

From (81, i t can be seen that the maximum deviation
from the equilibrium point towards the exterior of the
acceptability region, for the quadratic problem, is given by

while the maximum deviation towards the interior of this
region is given by,

236

where M is t h e number of cons t r a in t s t h a t a r e
simultaneously violated.

From the previous equations, i t can be seen t h a t
oscillations can be made as small as desired by simply
varying, in a suitable way, the values of T, and p and
provided that these values fulfill the ct~ndition of stability in
the acceptability region.

V. Practical results

Linear Programming.

The architecture
following two-di nwirsioiial linear p r d ~ l e ~ n

c’iy.4 has been breadboarded for the

A, = 30000
X I . 1%

Miiiiiniu: -. U , A + Up2

A,,= 100 Number of
* I . A:! clock periods

F - * t 5 2 0
4 1

F = - * t 5 C l J
3 1

Pig.8a,b correspond lu this problem with a1 = - 1 , a2=1.
The theoretical solution is a t x I = 7 , x 2 = 0 . The evolution
towards this point from two different initial points is
illustrated. In a similar way E’ig.8c,d correspond to ar = I ,
a2= - 1 , the theoretical solution being a t x I = -5,5=5. As
before, the dynamic route of the actual circuit towards the
theoretical equilibri um is observed for two different initial
points.

c , , = l o

C) d)
FJCURE 8: a,b) Oscilloscope pictures showing two trajectories for the

c,d) The (~!~l%%?(~~/$h‘:~ = !. y - 1
(horizontal signsl: xl,$V/dv; v e r t m s~gnal xz 2 /dvJ

-1.27, -0 71 -1.26, 0.72 100

-1 .03 , -0.97 -1.03, -0.97 200

-1.002 , -0.995 -1.002, -0.995 300

A Quadratic programming problem.

solve the following quadratic problem
We have used parasitic-insensitive building blocks to

L , = 5

Minimize

I

-0.999, -0.998 -0.999. -0.998 200

-0.998, -0.993 -0.998, -0.998 300

‘

9 - 1: t x; t x , x l + 3 x 1 t 3x2

subject to the eonslraints,
(15)

5 35 5 35
1 12 ’ 2 12 2 2 ’ 2 2

li’= - - x + I + - 2 1) I ’ = -* - x +-20

I ’ = x i - 5 2 0 v4- * , + 5 2 - 0 3 1

Table 1 shows the 01ANA-simulated values of the
variables x I and x2 as functions of different parameters,
namely: the time instant (measured as the number of clock
periods from the initial point, rightmost column in Table 1);
the DC gain of the opamps used in the integrating “neuron”
(parameter A, in the first row); and the size of the

integrating capacrtors (parameter L~, at the left of the Table).
In all the cases the initial point wab a t =x2=0. As can be
seen, the convergence speed increases as T” decreases.
Furthermore, decreasing the opanip DC gain does not
significantly influence the performance of the circuit.

100 -1.03 , -0.97 I -1.025 , -0.97 I 1

‘I’AHIA 1: Evolution of the solution point as
function of different circuit parameters

V L Conclusiuns

A unified systematic approach has been presented for
the design of “neural” quadratic programming solvers using
SC techniques. This architecture is based on a reduced set of
basic cells that are interconnected following a dense regular
pattern. The resul t ing circuits exhibit a very high
modularity and in this sense can be considered as members
of the general family of analog “neural” networks. The
proposed method is valid for both linear and quadratic
programming problems, and the basic network architecture
can be adapted to more general nonlinear problems.

111

121

131

References

G. Arnout, I’h. Reynaert, L. Claesen and D.
Dumlugol: “DIANA V7E user$ guide”. ESAT
Laboratory, Katholieke Universiteit Leuven, 1983.
D.A. Tank and J.J. Hopfield: “Simple Neural
Optimization Networks: An N D Converter, Signal
Decision Circuit , and a Linear Programming
Circuit”. IEEE Trans. Circuits Systems, Vol. 33, pp
533-541, May 1986.
M.P. Kennedy and LO. Chua: “Neural Networks for
Nonlinear Prugraniming”. IEEE Trans. Circuits and
Systems, Vol. 35 , pp 554-562, May 1988.
M.P. Kennedy and LO. Chua: “lJnifying the Tank
and Hopfield I.inear Programming Circuit and the
Canonical Nunlinear Programming Circuit of Chua
and Lin”. IEEE ?‘runs. Circuits arid Systems, Vol. 34,
pp 210-214, February 1987.
L.O. Chua and G.N. Lin?”Ww&n?ar Programming
without computation”. 1EE.h’ T m n s . Circuits
Systems, Vol. 3 I , pp 182-188, Feb. 1984.
C.W. Solomon: “Switched-Capacitor Filters”. IEEE
Spectrum, Vol25, pp 28-32, June 1988.
A. Hausner: “Analog and AnalogIHybrid Computer
Programming.:”. Prentice-Hall 1971.
G.A. Korn and T.M. Korn: %lectronrc Analog and
Hybrid Computers- 2nd Edition”. Mc Craw-Hill 1972.
G. V. Vanderplaats: ”Numerical Optimization
T e c h n i y u e s for E n ineer ing D e s i g n : w i t h
Applications”. Mc r a w h l l 1984.
R. DominguesCa&: “Switched-Capacitor Neural
Networks for Optimization Problems”. Master Thesis,
University of Seville 1989.
R. Gregorian and G.C,. ‘I‘emes: “Analog MOS
Integrated Circuits fbr Signal Processing”. Wiley-
Interscience 1986.
F. Maloberti: “Switched-Capacitor building blocks for
Analogue Signal Processiig”, Electronics Letters,

B.C. Kuo: “Digital Control Systems”. Holt, Rinehart
and Winston 1980.

Vol. 19, pp 263-265,1983

237

