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Abstract 

A systematic approach is presented for the design of 
analog ”neural” nonlinear programming solvers using 
Switched-Capacitor (SC) integrated circuit techniques. The 
method is based on formulating a dynamic gradient system 
whose state evolves in time towards the solution point of the 

, corresponding programming problem. A %euron” cell for 
the linear and the quadratic problem suitable for monolithic 
implementation is introduced. The design of this “neuron” 
and its corresponding (‘s napses” using SC techniques are 
considered in detail. A J C  circuit architecture based on a 
reduced set of basic building blocks with high modularity is 
presented. Simulation resul ts  using a mixed-mode 
simulator (DIANA) [l] and experimental results from 
breadboard prototypes are  included, i l lustrat ing the 
validity of the proposed techniques. 

I. Introduction. 

Linear and Nonlinear Programming Solvers are a class 
of analog “neural” optimizers intended for the solution of 
constrained optimization problems (also called nonlinear 
programming problems) in real time. Tank and Hopfield [21 
proposed a linear programming solver with a “neural” 
organization. In  more recent papers, [31 [41, i t  i s  
demonstrated that the network of Tank and Hopfield obeys 
the same unifying stationary theorem as  the canonical 
nonlinear programming circuit previously reported by 
Chua and Lin [51. Kennedy and Chua’s analysis, [31[41, also 
yields a relationship between the solution of the network 
and that  of the optimization problem, thus providing the 
foundations of a synthesis procedure for “neural” nonlinear 
programming solvers. 

The main drawback of the circuits by Kennedy and Chua 
and Tank and Hopfield is that they rely on conventional RC- 
active design techniques which are not the best suited for 
monolithic implementation, special1 taking into account 
that  accurate resistor ratios and rarge RC values are 
required. In this paper we try to overcome this drawback by 
focusing on the design of programming solvers using 
switched -ca mi t or  tech n i q u es .  T h e  i n  h e r e  n t 
programmabigty and reconfigurability of SC circuits 
together with the maturity of this technique [61 in the field 
of analog VLSI justify the interest of our approach. 

II. Synthesis technique. 

The unconstrained problem. 

Multi arameter optimization can be defined as  the 
process offinding, in the parameter space, a point aT={z,, 
zz, ..., XN} where a cost function Y(%) i s  minimized. 
Optimization in classical analog computers, [7] [8], was 
accomplished by implementing the following companion 
dynamic gradient system, 

When d t ld t  =i €or this system, implies that VY =i, that 
is, the equilibrium of the gradient system coincides either 
with a local extreme (minimum or maximum) or with an 
inflection point of the corresponding cost function. On the 
other hand, since, for T > O ,  dt ld t  and VY are opposite 
vectors, the time evolution of t will result in Y ( t )  becoming 
smaller and smaller as time goes on. Therefore, the process 
of seekin for equilibrium of the companion gradient system 
of a cost knction, Y(i) ,  actually yields minimization of this 
cost function. 

The constrained problem. 

Consider the following general nonlinear programming 
problem [91, 

Minimize 4 Y x , , x 2  ,.... X N )  

(2) 
subjectto theconstraints, Pk(x,,x p . . . , xN  2 0 ; 1 aks Q 

where N and Q are two independent integers. 
To solve this problem by a gradient scheme, like that in 

(11, we convert i t  in an e uivalent unconstrained problem. 
The way to do this is to delne apseudo-cost function Y(f4 as  
follows, 

(3) 

where a(%) is the original cost function, P(%) is referred to 
as the penalty function and p is a real parameter called 
penalt multiplier. 

Diierent penalty function alternatives can be used in 
rac t ice .  For a function to qualify as  a valid penalty 
unction i t  must monotonically increase as we move away 

from the region defined by the constraints (feasibility 
region), that  is, i t  must monotonically Increase as  the 
constraints Fa(*) decrease from zero [lo]. 

A drawback of the pseudocost function in (3) is thatathe 
penalty multiplier p has to be made large enough to yield 
penalty dominance outside the feasibility region and $US 
guarantee that  the minimum of the pseudo-cost function 1s 
inside the  feasibility region. Here, we propose a n  
alternative pseudo-cost function which does not require 
very large penalty parameter values, 

(4a) 

where we define, 

(4b) 

In (4a), the function @(e) is disconnected outside the 
feasibility region. Hence, penalty dominance outside this 
region is guaranteed no matter what the actual value of p 
is. Besides, since the penalty gradient is different from zero 
a t  any point, the solution point is forced to be either inside 
the feasibility region or just a t  the boundaries. 

1,  if F k r O  f u r e i r r y k  

U(‘)=  1 0, o l b r w r a e  

m. SC circuits for “neural” propramming solvers. 

SC building blocks. 

The basic SC “neuron”: Figure l a  shows the basic 
switched-capacitor “neuron” for quadratic programming. 
The clock signals controlling the switches are shown in 
Fig.lb. 

Analysis of Fig.1 by using charge conservation principles 
gives, 

both polarities of the weighting factors can be obtained by 
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FIGURE 1: a) Basic switched-capacitor integrating “neuron”; b) 
Required clock signals. 

Constraint evaluation summers: Constraint evaluation 
requires weighted summation. Figure 2 shows a switched- 
capacitor circuit to carry out such an evaluation. Observe 
that the input signals for this circuit are sensed during the 
odd clock phase while the output are defined only during the 
even clock phase. Analysis of Fig.2 allows us to obtain, 

yZut(n + i ) = o  

As for Fig.1, both negative and positive weighting factors 
can be easil obtained. 

Threshord generation and feasibility region encoder: 
This block is intended to generate the threshold functions 
that  codify constraint violations. Figure 3 shows one 
implementation for this block. The threshold signals 
codifying single constraint violations are obtained at the 

0 

“Id 1 h n r C e  - 

outputs of the comparators. On the other hand, the 
threshold signal that codifies whether the point is or not 
inside the feasibility region results as follows, 

Q . F k > 0  Vk ( 7 )  
7’ii F) = z T,1- F,)  ABo= 

L= I 

where A here holds for the logical-AND operation. 

- = pF? ~ F I  

6 P b d  -FUi ‘P‘Pi-Fil 6 PPI-FI I  
FIGURE 3: Circuit diagram for the threshold generator and 

feasibility region encoder. 

A “neural” Sc quadratic promamming solver. 

Figure 4 shows a switched-capacitor implementation of 
the quadratic programming solver “neural” network. To 
simplif the circuit diagram, only the i-th “neuron” cell and 
the k - t l  constraint evaluator are shown. Furthermore, we 
have arbitraril used absolute value penalties and have 
assumed that  a6 the coefficients of both the scalar function 

FIGURE 4: A switched-capacitor ”neural” quadratic programming solver 
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and the constraint functions are positive. Analysis of Fig.4 
by using (5), (6) and (7) gives, 

which corresponds to the Forward-Euler simulation [ l l ]  of 
the gradient system for the quadratic problem using the 
pseudo-cost function of (4) with absolute value penalties, 

(9: 

Other types of pseudo-cost functions and penalties can be 
considered in a simple way [lo]. 

Parameter p in (8)-(9) controls the strength of the 
penalty. On the other hand, parameter T,, controls the 
integrator gain and hence the convergence speed of the 
solver. In practice, choosin T, requires a tradeoff between 
convergence speed and sta%ility. Although decreasing T, 
increases the rate  of convergence, i t  may produce 
instabilities. 

B 
Ym( x 1 = U( F )W x ) + z: U(- P,)lFk( x )I 

k=  1 

Alternative SC building blocks. 

Parasitic-insensitive “neuron” and summer: All 
previously shown SC circuits are sensitive to parasitics [Il l .  
Figure 5 shows a threshold-controlled “neuron” that is 
insensitive to both parasitic capacitors and opam offset 
voltage [121. Along with the figure we include a Formula 
describing the operation of the circuit. Since appropriate 
operation of the “neural” architecture re uires a half-period 
delay in the operation of the “neuron”, oAy positive weights 
are allowed for the circuit in Fig.5. Negative weights can be 
realized by changin the sign of the input signals. I t  
requires generation ofthe inverted version of the output of 
each neuron, what is done by the second amplifier in Fig.5. 

F 

Idn++J=CUfs,) fh, / IJy“/n)  +f..l(n) 
,= l  

I P W S U )  

FIGURE 5: A parasitic-insensitive “neuron’.. 

Figure 6 shows a switched-capacitor summer which can 
be used for arasitic- insensitive constraint evaluation. AS 
for Fig.5, onpy positive weights are allowed for this summer. 

The output signal of the “neuron” of Fig.5 is only valid a t  
odd time instances. This imposes the necessity of changing 
the “synapses” strategy. The new strategy is illustrated in 
Fig.7. The integrator-summer E2 has to be implemented by 
using Fig.5, while Fig.6 must be used for Z1. The rest of the 
architectural concepts leading to Fig.4 are still valid for the 
parasitic-insensitive building blocks. 

ff, p A 
A 

PdF) 

FIGURE 7: Stablishin “synapses” with parasitic-insensitive 
swrtche8-capacrtor building blocks. 

IV. Stability Properties 

Computation in a “neural” programming solver is a 
dynamical process of seeking equilibrium. For proper 
computation, the equilibrium points of a programming 
solver must correspond to solutions of the problem being 
computed; moreover, these equilibria must be stable. 

The  dynamic behavior of a switched-capacitor 
programming solver is determined by two factors, namely, 

1) The reactive parasitics associated with the active 

2) The parasitics introduced by the discretizing 

However, since the proposed architectures do not exhibit 
any global closed-loop during the computation cycle, there 
is no possibility for instabilities due to continuous-time 
parasitics to appear. Hence, only discrete-time parasitics 
must be taken into account for stability analysis. 

A switched-capacitor programming solver is a discrete- 
time dynamic system which can be described by the 
following difference state equation, 

components and interconnection wires. 

numerical integration algorithm. 

x (n+ I ) = C  (x (n), Lo, p) (10) 

where is a vector function and T, and p are positive real 
parameters (these parameters are used in Fig.4 as capacitor 
sizing parameters). 

Equilibrium [13] occurs a t  the point x* which is a 
constant solution of (lo), 

x * = G ( x * , ~ ” , p )  (11: 

In general, the e uilibrium points of (10) can be either: 1) 
inside the feasibhty region or 2) on the boundary of this 
regon. 

Solution inside the feasibility region. Local asymptotic 
stability can be calculated by first linearizing (10) around 
the equilibrium point and then taking the z-transform. In 
order to obtain the equilibrium point to be stable, the root of 
the characteristic equation must be inside the unit circle 
[141. Hence, parameter T, has to be selected large enough for 
the local stability condition to be fulfilled. 

Solution on the boundary the feasibility region. It is 
clear in this case that the system cannot stay static at x* . 
However, the solution x(n), x(n + I ) ,  x(n +2)....can be made 
to stay inside an arbitrary small interval around this point. 
In other words, this system can be made to be stable in the 
sense that the variations of the solution remain bounded, 
although i t  is not asymptotically stable. 

From (81, i t  can be seen that the maximum deviation 
from the equilibrium point towards the exterior of the 
acceptability region, for the quadratic problem, is given by 

while the maximum deviation towards the interior of this 
region is given by, 
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where M is t h e  number  of  cons t r a in t s  t h a t  a r e  
simultaneously violated. 

From the previous equations, i t  can be seen t h a t  
oscillations can be made as  small as desired by simply 
varying, in a suitable way, the values of T, and p and 
provided that  these values fulfill the ct~ndition of stability in 
the acceptability region. 

V.  Practical results 

Linear Programming. 

The architecture 
following two-di nwirsioiial linear p r d ~ l e ~ n  

c’iy.4 has been breadboarded for the 

A, = 30000 
X I .  1% 

Miiiiiniu: -. U ,  A + Up2 

A,,= 100 Number of 
* I .  A:! clock periods 

F - * t 5 2 0  
4 1  

F = - *  t 5 C l J  
3 1  

Pig.8a,b correspond lu this problem with a1 = - 1 ,  a2=1. 
The theoretical solution is a t  x I = 7 ,  x 2 = 0 .  The evolution 
towards this point from two different initial points is  
illustrated. In a similar way E’ig.8c,d correspond to ar = I ,  
a2= - 1 ,  the theoretical solution being a t  x I  = -5,5=5. As 
before, the dynamic route of the actual circuit towards the 
theoretical equilibri um is observed for two different initial 
points. 

c , , = l o  

C) d) 
FJCURE 8: a,b) Oscilloscope pictures showing two trajectories for the 

c,d) The (~!~l%%?(~~/$h‘:~ = !. y - 1  
(horizontal signsl: xl,$V/dv; v e r t m  s~gnal xz 2 /dvJ 

-1.27, -0 71 -1.26, 0.72 100 

-1 .03 ,  -0.97 -1.03, -0.97 200 

-1.002 , -0.995 -1.002, -0.995 300 

A Quadratic programming problem. 

solve the following quadratic problem 
We have used parasitic-insensitive building blocks to 

L , = 5  

Minimize 

I 

-0.999, -0.998 -0.999. -0.998 200 

-0.998, -0.993 -0.998, -0.998 300 

‘ 

9 - 1: t x; t x , x l +  3 x 1  t 3x2 

subject to the eonslraints, 
(15) 

5 35 5 35 
1 12 ’ 2 12 2 2 ’  2 2 

li’= - - x  + I  + - 2 1 )  I ’ =  -* - x  +-20 

I ’ = x  i - 5 2 0  v4- * , + 5 2 - 0  3 1  

Table 1 shows the 01ANA-simulated values of the 
variables x I  and x2 as functions of different parameters, 
namely: the time instant (measured as the number of clock 
periods from the initial point, rightmost column in Table 1); 
the DC gain of the opamps used in the integrating “neuron” 
(parameter A, in the first row); and the  size of the 

integrating capacrtors (parameter L~, at  the left of the Table). 
In all the cases the initial point wab a t  =x2=0. As can be 
seen, the convergence speed increases as  T” decreases. 
Furthermore, decreasing the opanip DC gain does not 
significantly influence the performance of the circuit. 

100 -1.03 , -0.97 I -1.025 , -0.97 I 1 

‘I’AHIA 1: Evolution of the solution point as 
function of different circuit parameters 

V L  Conclusiuns 

A unified systematic approach has been presented for 
the design of “neural” quadratic programming solvers using 
SC techniques. This architecture is based on a reduced set of 
basic cells that  are interconnected following a dense regular 
pattern. The resul t ing circuits exhibit  a very high 
modularity and in this sense can be considered as  members 
of the general family of analog “neural” networks. The 
proposed method is valid for both linear and quadratic 
programming problems, and the basic network architecture 
can be adapted to more general nonlinear problems. 
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