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Some of the features of the biological retina can be modelled by a cellular neural network (CNN)
composed of two dynamically coupled layers of locally connected elementary nonlinear processors. In
order 10 explore the possibilities of these complex spatio-temporal dynamics in image processing, a
prototype chip has been developed implementing this CNN model with analog signal processing
blocks. This chip has been designedina 0.5um CMOS technol(t)_]gy. Design challenges, trade-offs and
the building blocks of such a high-complexity system (0.5 x 10" transistors, most of them operating
in analog mode) are presented in this paper®.

1 CNN-UM chip architecture

1.1 CNN-based analogy of the biological retina

The vertebrate retina is composed of several layers of horizontal and amacrine cells !
These layers, coupled by means of bipolar cells, end, on one side, in a layer of photodetec-
tors and, on the other, in a layer of ganglion cells. The photodetectors capture the visual
stimuli and translate it into activation patterns. The ganglion cells, at the other end of the
retina, convert the continuous activation signals into pulse-like action potential signals that
can be transmitted over longer distances by the nervous system. The activation signals in
the retina are weighted and promediated to bias photodetectors and to inhibit the vertical
pathway. Patterns of activity are formed dynamically by the presence or absence of visual
stimuli. In this description, similarities can be found with the CNNs 2. not only in the
topology, but also in that we have 2D aggregations of continuous signals, local connectiv-
ity between elementary nonlinear processors and analog weighted interactions between
them. Motivated by these coincidences, a model for the operations of the biological retina
based on CNNs has been develeped 3 It contains two coupled CNN layers plus an addi-
tional layer incorporating analog arithmetics to combine the outputs of the dynamically
linked layers. This can be realized by a CNN Universal Machine (CNN-UM)
architecture 4 in which each cell contains two first-order cores, common local analog and
logic memories (LAMs and LI Ms) and common logic and communication units (LLU
and LAOU). The evolution law of each cell, C(i, j), is given by two coupled equations:
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where the nonlinear losses term and the output function in each layer are those of the Full-
Signal-Range (FSR) CNN model ®, which, having a limitation on the cell state voltage
allows for identifying state and output:
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1.2 Prototype chip floorplan

The proposed chip consists in an analog parallel array processor {APAP) of 32 x 32 iden-
tical cells (Fig. 4). It is surrounded by the circuits implementing the boundary conditions
for the CNN dynamics. There is also an /O interface, a timing and control unit and a pro-
gram memory. The I/O interface consists in a serializing-deserializing analog multi-
plexor. The program memory is composed of 24 blocks of SRAM of 64 bytes of capacity,
1kB dedicated to the analog program, and 0.5kB to the logic program. In addition, the
analog instructions and reference signals need to be transmitted to every cell in the net-
work in the form of analog voltages. Thus, a bank of D/A converters interfaces the analog
program memory with the processing array. Finally, the timing unit is composed by an
internal clock/counter and a set of finite-state- machines that generate the internal signals
that enable the processes of image up/downloading and program memory accesses.

1.3 Basic cell scheme

The elementary processor of the CNN includes two coupled continuous-time cores
(Fig. 1(a)). Each one belongs tc one of the two different layers of the network. The synap-
tic connections between processing elements of the same or different layer are represented
by arrows in the diagram. The basic processor contains also the LLU, and the LAMs and
LILMs to store intermediate results. All the blocks in the cell communicate via an intra-cell
data bus, which is multiplexed to the array /0O interface. Control bits and switch configu-
ration are passed to the cell directly from the global programming unit.

The internal structure of each CNN core is depicted in the diagram of Fig. 1{b). Each
core receives contributions from the rest of the processing nodes in the neighbourhood,
and these contributions are summed and integrated in the state capacitor. The two layers
differ in that the first layer has a scalable time constant, controlled by the appropriate
binary code, while the second layer has a fixed time constant. The evolution of the state
variable is also driven by self-feedback and by the feedforward action of the stored input
and bias patterns. There is a voltage limiter for implementing the FSR CNN model. The
state variable is transmitted in voltage form to the synaptic blocks, in the periphery of the
cell, where weighted contributions to the neighbours® are generated. There is also a cur-
rent memory that will be employed for cancellation of the offset of the synaptic blocks.
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Figure 1. (a) Conceptual diagram of the basic cell and (b) the CNN layers” nodes.

Initialization of the state, input and/or bias voltages is done through a mesh of multiplex-
ing analog switches that connect to the cell’s internal data bus.

2 Analog building blocks for the basic cell

2.1 Single-transistor synapse

The synapse is a four-quadrant analog multiplier. Their inputs will be the cell state (V' )—
identified with the cell output in the FSR model— or input and the weight voltages (¥, ),
while the output (/) will be the cell’s current contribution to a neighbouring cell. It can
be achieved by a single transistor biased in the chmic region 8. For a PMOS with gate volt-
age Vy = V, +V,,and the p-diffusion terminals at V', = V', + ¥, and ¥, —where
V,, and ¥, are the reference central values for the state and weight voltages, that allow
signals ¥, and V', to have either sign— the drain-to-source current is:
. |4

Lie = BV =BV Vo# [Pr) V-5 @

which is a four-quadrant multiplier with an offset term that is time-invariant —at least dur-

ing the evolution of the network— and not depending on the cell state. This offset that can
be eliminated by a calibration step, with the help of a current memory.

2.2 Current conveyor and level shifting

For the synapse to operate properly, the input node of the CNN core must be kept at con-
stant voltage, independently of what current is entered. This is achieved by a current con-
veyor (Fig. 2(a)). Any difference between the voltage at node @ and the reference Vo, is
amplified and the negative feedback corrects the deviation. Notice that a voltage offset in
the amplifier will result in an error of the same order. An offset cancellation mechanism is
provided (Fig. 2(b)). Signal ¢, shorts the Operational Transconductance Amplifier
(OTA) inputs and enables diode-mode operation of transistor M .. , that will conduce a
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Figure 2. {(a) Current conveyor and (b) OTA realization with offset-correction mechanism.

current . such as to cancel out the current offset. Once ¢, is turned off, the total cur-
rent injected into the load capacitor is offset-free:

L=1+1 -1, = g,v, %)

2.3 S°1current memory

As referred, the offset term of the synapse current must be removed for its output current
to represent the result of a four-quadrant multiplication. For this purpose all the synapses
areresetto ¥y = V, . Then, the resulting current, which is the sum of the offset currents
of all the synapses concurrently connected to the same node, is memorized. This value
will be substracted on-line from the input current when the CNN loop is closed, resulting
in a one-step cancellation of the errors of all the synapses. The validity of this method
relies in the accuracy of the current memory. For instance, in this chip, the sum of all the
contributions wilt range, for the applications for which it has been designed, from 18uA
to 46LA . On the other side, the maximum signal to be handled is 1A . If a signal resolu-
tion of 8b is pretended, then 0.5LSB = 2nA . Thus, our current memory must be able to
distinguish 2nA out of 46 LA . This represents an equivalent resolution of 14.5b . In order
to achieve such accuracy level, a S’ current memory is used. It is composed by three
stages (Fig. 3), each one consisting in a switch, a capacitor and a transistor. 3 is the cur-
rent to be memorized. After memorization the only error left corresponds to the last stage.
The former stages do not contribute to the error in the memorized current. If the S*1 block
is designed so as to store the most significant bits in the first capacitor, and the less signif-
icant bits in the last one, this error can be made quite small.

2.4 Time-constant scaling

The differential equation that governs the evolution of the network, Eq. 1, can be written
as a sum of current contributions injected to the state capacitor. Scaling up/down this sum
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of currents is equivalent to scaling the capacitor and, thus, speeding up/down the network
dynamics. Therefore, scaling the input current with the help of a current mirror, for
instance, will have the effect of scaling the time-constant. A circuit for continucusly
adjusting the current gain of a mirror can be designed based on a regulated-Cascode cur-
rent mirror in the ohmic region. But the strong dependence of the chmic-region biased
transistors on the power rail voltage causes mismatches in T between cells in the same
layer. An alternative to this is a binary programmable current mirror. It trades resolution in
T for robustness, hence, the mismatch between the time constants of the different cells is
now fairly attenuated.

A new problem arises, though, because of current scaling. If the input current is
allowed to be reshaped to a 16-times smaller waveform, then the current memory is
obliged to operate over a wider dynamic range. But, if designed to operate on large cur-
rents, the current memory will not work for the tiny currents of the scaled version of the
input. On the contrary, if it is designed to run on small input currents, long transistors will
be needed, and the operation will be unreliable for the larger currents. One way of avoid-
ing this situation is to make the s’ memory to work on the original unscaled version of
the input current. Therefore, the adjustable-time-constant CNN core consists in a current
conveyor, followed by the S’ current memory and then the binary weighted current mir-
ror. The problem now is that the offsets introduced by the scaling block add up to the sig-
nal and the required accuracy levels can be lost. Our proposal is depicted in Fig. 3. It
consists in placing the scaling block (programmable mirror) between the current conveyor
and the current memory. In this way, any offset error will be cancelled at the auto-zeroing
phase. In the picture, the voltage reference generated with the current conveyor, the regu-
lated-Cascode current mirrors and the S°I memory can be easily identified. The inverter,
A;, driving the gates of the transistors of the current memory is required for stability.
Without it, the output node, @, will diverge from the equilibrium.
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Figure 3. Input block with current scaling, $31 memory and offset-corrected OTA schematic,
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Figure 4. Prototype chip photograph

3 Chip data and simulations

A prototype chip has been designed and fabricated in a 0.5um single-poly triple-metal
CMOS technology. Its dimensions are 9.27 X 8.45 sq. mm (photograph in Fig. 4). The
cell density achieved is 29.24cells/mm’ . The programmable dynamics of the chip permit
the observation of different phenomena of the type of propagation of waves, pattern gener-
ation, etc. Fig. 5 displays the evolution of the state variable in a reduced network, 1x 8
cells, in which the propagation of a wave front in 1-D has been programmed. It is triggered
by a marker in the first layer of cell C|, and induced in the second layer as can be seen.
By controlling the network dynamics and combining the results with the help of the built-
in local logic and arithmetic operators, rather involved image processing tasks can be pro-
grammed, for instance, grayscale contour detection, skeletonization, etc. 2.

4 Conclusions

The proposed approach supposes a promising alternative to conventional digital image
processing for applications related with early-vision and low-level focal-plane image pro-
cessing. Based on a simple but precise model of part of the real biological system, a feasi-
ble efficient implementation of an artificial vision device has been designed. The peak
operation speed of the chip will outdo its digital counterparts due to the fuily paralilel
nature of the processing, which is, once more, based on the analogy not on the simulation.
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Figure 5. 1-D wave propagation.
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