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Abstract

Extensive facility location models on graphs deal with the location of a special type of subgraphs such as paths, trees 
or cycles and can be considered as extensions of classical point location models. Variance is one of the measures applied 
in models in which some equality requirement is imposed. In this paper the problem of locating a minimum variance path 
in a tree network is addressed, and an O(n2 log n) time algorithm is proposed.
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1. Introduction

During the last two decades there has been increasing attention paid to the application of balancing or equality objectives
in location analysis. Papers on equality location models can be roughly classi;ed into two groups: First, those dealing
with general aspects such as how to measure equality, how to de;ne and what properties should have equality measures
([2,3,10]), and secondly, those oriented to design e@cient algorithms for solving the corresponding problems ([5,8,9]).

On the other hand, when the facility to be located is too large to be modelled as a point, extensive facility location
models arise. Several papers have investigated the problem of locating, on a network, a path, tree or other types of
facilities which may not be considered as points (see [11,7] for a survey of this literature). Examples of problems in
which structures instead of points are required include the location of pipelines, evacuation routes, mass transit routes or
routing a highway through a road network. For the optimal selection of a site in which to locate an extensive facility the
criteria used are, in almost all cases, the minimax criterion, the minisum criterion or a covering model, (see [6,12–16]). In
addition, although most of these problems can be solved in polynomial time in tree networks, they are NP-hard in cyclic
networks (see [4] for an analysis of the complexity of these problems). For this reason the main eDort has been orientated
to design e@cient algorithms to solve the aforementioned problems in tree networks. In particular the path-center and the
path-median (or core) of a tree (which arise from the application of the minimax criterion and the minisum criterion,
respectively) can be found by means of linear time algorithms (see [15,13]).

The above discussion shows that the equity (as suitable objective) has not been considered in the criteria used hitherto
in the location of extensive facilities. However, in certain public sector problems, an equity criterion is needed to generate
acceptable decisions. The variance of distance travelled by all customers to the facility has been an equity criteria widely
studied in point location problems. The purpose of this work is to apply this criterion for locating a path-shaped facility in
a tree network. This problem, which will be called the Path-Variance Problem, will be studied in the continuous version
in which partial edges are allowed, that is, when the extreme points of the path can be interior points of an edge. In
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general these extreme points will belong to diDerent edges. However, the case in which both points are in the same edge
will be analyzed separately, since this gives rise to the particular case in which the path degenerates to a single point.

The remainder of the paper is organized as follows. In the next section the formulation of the problem is introduced and
properties of the objective function when the extreme points belong to diDerent edges are studied. Section 3 is devoted
to the case in which the extreme points of the path belong to the same edge. In order to design the algorithm for the
problem, a data structure to describe the tree is incorporated at the beginning of Section 4. In that section the algorithm
is also proposed, and its complexity is discussed.

2. The path-variance problem on di�erent edges

Let T =(V; E) be an undirected tree network with vertex set V ={v1; : : : ; vn}, edge set E, and edge lengths {lj : ej ∈E}.
Denote by T the set of points in T which comprises both set V and the set of all the points on edges. We will consider
paths not only containing complete edges but also partial edges, and they will be denoted as P(x1; x2) in which x1; x2 ∈T
are the end points of the path. If P(x1; x2) ⊂T is a path, then d(x; P) = miny∈P d(x; y), where d(x; y) : x; y∈T, is the
distance between points given by the length of the only path joining x and y, which makes T a metric space.

We suppose that demand originates at the vertices of the tree, and we associate a positive weight wi with each vertex
vi ∈V . Without loss of generality we may assume that

∑n
i=1 wi = 1 and interpret each wi as the fraction of demand

originated at vi. For a subset of vertices V ′ ⊂ V let W (V ′) =
∑

vi∈V ′ wi be the weight of V ′, and let W (V ′) =
∑

vi∈V\V ′

wi = 1−W (V ′) be the weight of the complement of V ′ in V .
For any point x∈T, the median function (distancesum) of x over V ′ ⊂ V is given by zm(x; V ′) =

∑
vi∈V ′ wid(vi; x).

Similarly the median function of a path P(x1; x2) in V ′ ⊆ V is given by zm(P(x1; x2); V ′) =
∑

vi∈V ′ wid(vi; P(x1; x2)). For
simplicity, when V ′ = V we will use zm(x) and zm(P(x1; x2)) instead of zm(x; V ) and zm(P(x1; x2); V ), respectively.

The variance function for a path P(x1; x2) is de;ned as

zs(P(x1; x2)) =
n∑
i=1

wi[d(vi; P(x1; x2))− zm(P(x1; x2)]
2:

The Continuous Path-Variance Problem (CPVP) consists of ;nding points x1; x2 such that the path joining these points
minimises the function zs on all the paths P ⊂T.

Given a pair of edges ej; ek the Continuous Path-Variance Problem Restricted to (ej; ek), (CPVP)jk , is that of min-
imising the restricted function zs(P(x1; x2)), where x1 ∈ ej , x2 ∈ ek , whose domain is [0; lj]×[0; lk ]. Consequently a solution
of the problem (CPVP)jk is a pair (x∗

1 ; x
∗
2 )∈ [0; lj]× [0; lk ] such that

zs(P(x∗
1 ; x

∗
2 ))6 zs(P(x1; x2)); ∀(x1; x2)∈ [0; lj]× [0; lk ]:

As usual when an edge ej is ;xed, any real number x∈ [0; lj] will denote the point on the edge whose exact location
is determined by its distance (along the edge) from a prescribed endpoint of the edge. In order to avoid a decomposition
into two cases, and therefore the subsequent case analysis, the reference vertices to measure distances between any two
points x1 ∈ ej = (uj; vj) and x2 ∈ ek = (uk ; vk) will be the farthest vertices among those of both edges. We will suppose
that uj and vk are these farthest vertices, consequently x1 ∈ ej means the length of subedge (uj; x1) and x2 ∈ ek means the
length of subedge (vk ; x2).

For a vertex u of edges ej; ek , let Vu denote the vertex set of the subtree Tu rooted at u which does not contain the
edge ej nor ek which is incident to u. W (Vu) =

∑
vi∈Vu wi is the total weight of Vu and W (Vu) = 1−W (Vu) is the weight

of the complementary vertex set. In accordance with this notation, Tuj and Tvk will represent the subtrees rooted at the
farthest vertices uj and vk respectively, and do not contain the edges ej and ek (and therefore neither do they contain the
path P(x1; x2)).

Likewise we denote by V (P(x1; x2)) the vertex set of the path P(x1; x2) and by T1; T2; : : : ; Tr the connected components
(subtrees) that result from the deletion of V (P(x1; x2)) and the corresponding incident edges from the tree T \ (Tuj ∪ Tvk ).

Then the median function for the path P(x1; x2) is

zm(P(x1; x2)) =
∑
vi∈V

wid(vi; P(x1; x2)) =
∑
vi∈Vuj

wi[d(vi; uj) + x1]

+
r∑
h=1


∑
vi∈Vh

wid(vi; P(x1; x2))


+

∑
vi∈Vvk

wi[d(vi; vk) + x2]

= zm(P(uj; vk)) +W (Vuj )x1 +W (Vvk )x2:



In the following we will denote by zm(P) the value zm(P(uj; vk)).
The variance of the path P(x1; x2) can be decomposed in the following manner:

zs(P(x1; x2)) =
∑
vi∈Vuj

wi[(d(vi; uj)− zm(P))2 + (W (Vuj ))
2x2

1

+ (W (Vvk ))
2x2

2 + 2(d(vi; uj)− zm(P))W (Vuj )x1

− 2(d(vi; uj)− zm(P))W (Vvk )x2 − 2W (Vuj )W (Vvk )x1x2]

+
r∑
h=1


∑
vi∈Vh

wi[(d(vi; P)− zm(P))2 + (W (Vuj ))
2x2

1 + (W (Vvk ))
2x2

2

− 2(d(vi; P)− zm(P))W (Vuj )x1 − 2(d(vi; P)− zm(P))W (Vvk )x2

+ 2W (Vuj )W (Vvk )x1x2]

)

+
∑
vi∈Vvk

wi[(d(vi; vk)− zm(P))2 + (W (Vuj ))
2x2

1 + (W (V vk ))
2x2

2

+ 2(d(vi; vk)− zm(P))W (V vk )x2 − 2(d(vi; vk)− zm(P))W (Vuj )x1

− 2W (V vk )W (Vuj )x1x2]:

By associating terms with equal degree,

zs(P(x1; x2)) =W (Vuj )W (Vuj )x
2
1 +W (V vk )W (Vvk )x

2
2

− 2W (Vuj )W (Vvk )x1x2

+ 2(zm(uj; Vuj )−W (Vuj )zm(P))x1

+ 2(zm(vk ; Vvk )−W (Vvk )zm(P))x2 + zs(P): (1)

By imposing the necessary conditions for stationary points the following system results:

W (Vuj )W (Vuj )x1 −W (Vuj )W (Vvk )x2 + (zm(uj; Vuj )−W (Vuj )zm(P)) = 0;

W (Vuk )W (Vuk )x2 −W (Vuj )W (Vvk )x1 + (zm(vk ; Vvk )−W (Vvk )zm(P)) = 0:

Let W (P) =
∑

vi∈V (P(x1 ;x2)) wi be the weight of the vertex set of the path P(x1; x2). Clearly W (P)¿ 0 since the set
V (P(x1; x2)) is not empty when the extreme points x1; x2 of the path belong to diDerent edges. By simplifying the unique
solution of the last system, we obtain

x1 =
1

W (P)

(
zm(P)− zm(vk ; Vvk )− zm(uj; Vuj )

W (V vk )
W (Vuj )

)

x2 =
1

W (P)

(
zm(P)− zm(uj; Vuj )− zm(vk ; Vvk )

W (Vuj )
W (Vvk )

)
: (2)

Furthermore, 06 x16 lj and 06 x26 lk must hold.
The Hessian matrix is

H =

(
2W (Vuj )W (Vuj ) −W (Vuj )W (Vvk )

−W (Vuj )W (Vvk ) 2W (Vvk )W (V vk )

)
:



Since W (Vuj ) =W (P) +W (Vuk ) and W (Vuk ) =W (P) +W (Vuj ), then

|H |=W (Vuj )W (Vvk )(4W (Vuj )W (V vk )−W (Vuj )W (Vvk ))¿ 0

and also 2W (Vuj )W (Vuj )¿ 0.
Therefore, the Hessian matrix is de;nite positive, which guarantees that the variance function is strictly convex on the

compact set [0; lj] × [0; lk ] and the stationary point given by (2) is the minimum, which implies that it is the solution
(x∗

1 ; x
∗
2 ) of the restricted problem (CPVP)jk .

When the minimum (x1; x2) does not belong to the above compact set then the optimum is reached in the boundary.
There are several cases.

(1) If x16 0 and 06 x26 lk then the minimum (x∗
1 ; x

∗
2 ) of the restricted problem is reached at the point(

0;
W (Vvk )zm(P)− zm(vk ; Vvk )

W (V vk )W (Vvk )

)
:

(2) If x1¿ lj and 06 x26 lk then the optimum is(
lj;
W (Vvk )(zm(P) +W (Vuj )lj)− zm(vk ; Vvk )

W (Vvk )W (V vk )

)
:

(3) If x26 0 and 06 x16 lj then the minimum is given by(
W (Vuj )zm(P)− zm(uj; Vuj )

W (Vuj )W (Vuj )
; 0

)
:

(4) If x2¿ lk and 06 x16 lj then(
W (Vuj )(W (Vvk )lk + zm(P))− zm(uj; Vuj )

W (Vuj )W (Vuj )
; lk

)
:

(5) Finally,

(x∗
1 ; x

∗
2 ) =




(lj; 0) if x1¿ lj and x26 0;

(0; 0) if x16 0 and x26 0;

(lj; lk) if x1¿ lj and x2¿ lk ;

(0; lk) if x16 0 and x2¿ lk :

3. The path-variance problem on an edge

In this section the path location problem, in which the two ends of the path are in the same edge, is considered.
We are looking for the path that minimises the variance function zs(P(x1; x2)) among those paths P(x1; x2) such that
x1; x2 ∈ ej = (uj; vj). Following the notation introduced in the previous section, uj and vj are now the farthest vertices.
Consequently x1, x2 represent the lengths of the subedges (uj; x1) and (vj; x2), respectively, and if Vuj , Vvj are the vertex
sets of the subtrees Tuj , Tvj rooted at uj , vj , respectively, which do not contain the edge ej , then they are complementary
vertex sets, i.e. Vuj ∪ Vvj = V . This implies that W (P) = 0, which justi;es a separate study of this case.

The expression for the median function is the same as in the previous case, zm(P(x1; x2)) = zm(P(uj; vj)) +W (Vuj )x1 +
W (Vvj )x2. By using the simpli;ed notation zm(P) and zs(P) instead of zm(P(uj; vj)) and zs(P(uj; vj)), respectively, and
taking into account that Vuj = Vvj , the variance function can be written as follows:

zs(P(x1; x2)) =W (Vuj )W (Vvj )x
2
1 +W (Vuj )W (Vvj )x

2
2

− 2W (Vuj )W (Vvj )x1x2 + 2{zm(uj; Vuj )−W (Vuj )zm(P)}x1

+ 2{zm(vj; Vvj )−W (Vvj )zm(P)}x2 + zs(P) =W (Vuj )W (Vvj )[x1 − x2]2

+ 2{zm(uj; Vuj )W (Vvj )− zm(vj; Vvj )W (Vuj )}[x1 − x2] + zs(P):



Fig. 1.

It can be seen that when x1 = x2 (i.e. the path degenerates to the medium point of the edge), then the value zs(P(x1; x2))
coincides with the variance zs(P) of the complete edge. Moreover, the edge variance also coincides with the variance of
any path centered at the medium point and contained in the edge. The necessary conditions for stationary points give rise
to the following system:

W (Vuj )W (Vvj )(x1 − x2) + (zm(uj; Vuj )−W (Vuj )zm(P)) = 0;

W (Vuj )W (Vvj )(x2 − x1) + (zm(vj; Vvj )−W (Vvj )zm(P)) = 0;

in which zm(uj; Vuj )−W (Vuj )zm(P)=W (Vvj )zm(P)−zm(vj; Vvj ), since zm(P)=zm(uj; Vuj )+zm(vj; Vvj ) and W (Vuj )+W (Vvj )=1.
This implies that the system is undetermined compatible, and it provides the only condition given by

x1 − x2 =
zm(P)
W (Vvj )

− zm(uj; Vuj )
W (Vuj )W (Vvj )

or equivalently

x1 − x2 =
zm(vj; Vvj )
W (Vvj )

− zm(uj; Vuj )
W (Vuj )

= K; (3)

with 06 x16 lj , 06 x26 lj , and 06 x1 + x26 lj .
Since the Hessian matrix is also de;nite positive the stationary points are minima. In accordance with these expressions,

the following cases can be considered (see Fig. 1).
Case 1: If −lj ¡K ¡lj then any path for which

x1 − x2 = K; 0¡x1 + x2¡lj; 0¡x16 x2¡lj

is a path of minimum variance whose variance value is:

zs(P(x1; x2)) = zs(P) + K2W (Vuj )W (Vvj )

+ 2K{W (Vvj )zm(uj; Vuj )−W (Vuj )zm(vj; Vvj )}

= zs(P)− [zm(vj; Vvj )W (Vuj )− zm(uj; Vuj )W (Vvj )]
2

W (Vuj )W (Vvj )

= zs(P)− K2W (Vuj )W (Vvj ):

Let us note that the point (x1; x2)∈ [0; lj]× [0; lj] such that

x1 + x2 = lj; x1 − x2 = K

is the point of minimum variance of this edge.
Case 2: If K¿ lj then the path degenerates to the point vj , which corresponds to the pair (lj; 0), and also is the point

of minimum variance of the edge.
Case 3: If K6− lj then the path reduces to the point of minimum variance of the edge, uj .



Fig. 2.

4. Algorithm and complexity

For each pair of edges ej , ek , the determination of the local optimum x1; x2 either by (2) and subsequent expressions
(if j = k) or by (3) and subsequent expressions (if j= k), requires the previous computation of a set of auxiliary values
associated to each vertex u as well as the evaluation of the function zm on the path joining the farthest vertices of the
edges ej and ek . In order to obtain all these values the recursive procedure designed by Maimon [9] will be applied.

Let vr be the root with sons v1; : : : ; vs, (s¿ 0), (i.e. there exists an edge (vi; vr)∈E for each i = 1; : : : ; s). A postorder
traversal of T is de;ned recursively as follows:

(1) Visit in postorder the subtrees with roots v1; : : : ; vs in that order.
(2) Visit the root vr .

The postorder de;ned in T induces the following order of edges of E:

(u1; vt(1)); (u2; vt(2)); : : : ; (un−1; vr);

where each vt(i) is the father of ui in the postorder, and for each two edges ej =(uj; vt( j)) and ek =(uk ; vt(k)), k ¿ j means
that vt(k) can be (not necessarily) a common ancestor of the remaining three vertices.

This fact provides an identi;cation of the farthest vertices of pair ej = (uj; vt( j)); ek = (uk ; vt(k)) (with k ¿ j) as follows
(see Fig. 2).

Case (i): If vt( j) is a descendant of uk (that is, vt( j) ∈Vuk in the de;ned postorder), then uj; vt(k) are the farthest vertices.
In this case, the vertices belonging to P=P(uj; vt(k)) can be found by successively adding the vertex father of each vertex
son (starting with the ;rst son uj , and ending with the last father vt(k)).

Case (ii): Otherwise, the farthest vertices are uj; uk . In this case, uj; uk have a common ancestor v∗, which can be either
one of the fathers vt( j); vt(k) (or both, if they coincide), or a vertex not in ej; ek . In this last case, the path P joining
uj; uk can be found by a binary search among the fathers of the vertices uj; uk as follows: starting with uj and uk , the
successive fathers are tested (and added to path P = P(uj; uk)) until a common father v∗ is found).

If vk denotes the farthest vertex from uj (where as we have already seen, vk can be either vt(k) or uk), the point x2 in
the edge ek is identi;ed by its distance from vk . Note that in case (i) the identi;cation of the second point when using
the postorder can be obtained from that used in Section 2, by applying the simple change x′

2 = lk − x2. However, the point
x1 in the edge ej is always identi;ed by its distance from the lower vertex uj of the edge.

If Tu = (Vu; Eu) denotes (in the postorder) the subtree rooted in each u∈V , the necessary vertex information for
computing the local optimum (x∗

1 ; x
∗
2 ) can be determined in a preprocessing phase, in which the tree is twice traversed

following the postorder (toward the root of the tree and conversely). By applying the recursive relationships of Maimon
[9], at the end of this phase the aforementioned vertex information is available. This information (accumulated in a vector
of auxiliary values associated to each vertex) is:

W (Vu); zm(u; Vu); zm(u); z(2)
m (u; Vu); z

(2)
m (u);

where z(2)
m (u; Vu) =

∑
vi∈Vu wid(vi; u)

2, and z(2)
m (u) = z(2)

m (u; V ). It is easy to see that for a path P

zs(P) =
∑
vi∈V

wid(vi; P)2 −
(∑
vi∈V

wid(vi; P)

)2

= z(2)
m (P)− (zm(P))2:

Therefore the aforementioned auxiliary values will be necessary for computing zs(P).



If Vu = V \ Vu, and Su is the set of sons of u and v its father, the set C(u) = Su ∪ {v} contains all the nearest
vertices (from u) in the connected components obtained by deleting u and the incident edges. The preprocessing phase
also provides the values associated to the connected components whose nearest vertices belong to Su:

{W (Vui ); zm(ui; Vui ); z
(2)
m (ui; Vui )∀ui ∈ Su}

as well as the values associated to the connected component father:

W (Vu) = 1−W (Vu);

zm(v; V u) = zm(u)− zm(u; Vu)− luv(1−W (Vu));

z(2)
m (v; V u) = z(2)

m (u)− z(2)
m (u; Vu)− l2uvW (Vu)− 2luvzm(v; V u):

The knowledge of these auxiliary values allows us to obtain zm(P) and z(2)
m (P) by means of a progressive procedure.

Let P = P(uj; vk) be the path joining the farthest vertices in the pair of edges {ej; ek}; k ¿ j, let V (P) be the vertex
set of the path P and let C(uj) = {uj1 ; : : : ; ujs};C(vk) = {vk1 ; : : : ; vkt} be the respective nearest vertices in the connected
components associated to uj; vk . Initially

zm(P) = zm(uj)−
∑

uji∈C(uj)∩V (P)

zm(uj; Tuji ) + zm(vk)−
∑

vki∈C(vk )∩V (P)

zm(vi; Tvkj ):

When a vertex v′ is added to P according to the aforementioned described cases (i) or (ii), the values of zm(P) and
z(2)
m (P) are successively updated by adding the corresponding auxiliary values of v′ in the connected components whose

nearest vertices are not in P:

zm(P)← zm(P) + zm(v′)−
∑

v′i∈C(v′)∩V (P)

zm(v′; Tv′i ):

Note that the cardinality of the set C(v′)∩ V (P) is bounded by 2 (since there exists at most two vertices in P which are
adjacents to v′). Likewise, z(2)

m (P) is obtained by the same procedure by considering z(2)
m instead of zm.

Finally, before describing the pseudocode of the algorithm, it is necessary to make some observations with respect to
the value W (V vk ) which appears in the expression (2). For a given pair of edges ej = (uj; vt( j)); ek = (uk ; vt(k)) whose
farthest vertices are uj; vk , for the case (ii) W (V vk ) coincides with the auxiliary value provided by the postorder, that
is : W (V vk ) = 1 − W (Vvk ). However, in the case (i) such a value represents the weight of the connected component
associated to vk whose nearest vertex is uk , that is, uk ∈C(vk) ∩ V (P). Therefore, in the case (i), W (V vk ) =W (V (Tuk )),
and W (Vvk ) = 1−W (V vk ). Thus, the pseudocode of the algorithm is as follows:

Input: A tree network given by a postorder traversal.
Preprocessing phase
For (u∈V ) do

Compute the auxiliary values.
endfor
Let Z be a suitable large number.

Main step
For (j = 1 to n− 1) do
For (k = j to n− 1) do
If (k ¿ j) then

By a binary search determine the vertex set of
P = P(uj; vk) and simultaneously compute
zm(P) and z(2)

m (P).
Compute zs(P) = z(2)

m (P)− (zm(P))2.
Compute the point (x∗

1 ; x
∗
2 ) (by applying (2) and

subsequent relationships).
Otherwise (k = j) then

Compute (x∗
1 ; x

∗
2 ) (by applying (3) and

subsequent relationships).
endif



Compute zs = zs(P(x∗
1 ; x

∗
2 )).

If (zs ¡Z) then
P∗ ← P(x∗

1 ; x
∗
2 ), Z ← zs.

endif
endfor

endfor
Output: The path P∗ = P(x∗

1 ; x
∗
2 ) that minimises the variance and Z = zs(P∗).

For each considered path, obtaining the optimum requires identifying and adding a set of auxiliary values associated
to the corresponding nodes of the path. By using the postorder structure, such nodes (and their auxiliary values) are
added by means of a binary search process over the set of fathers. Since the complexity of the binary search is O(log n)
(see [1]) and n2 paths are tested, the overall complexity of the algorithm is O(n2 log n) time.
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