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Abstract - This paper presents a 2.4pm CMOS IC 
prototype which includes a programmable chaotic 
generator and some interface circuitry for chaotic en- 
cryption. It realizes a member of the family of the ca- 
nonical Chua’s state equation. It exhibits several 
bifurcation parameters by changing a few external 
bias currents and can be used for the chaotic encryp- 
tion of audio signals. 

1.Introduction 

This paper follows a previous paper of the au- 
thors in [l]. There the fundamentals to design chaotic 
oscillators using Gm-C techniques were established 
and a IC prototype of the Chua’s circuit built. It was 
able to generate a number of chaotic oscillators by the 
first time using a fully monolithic continuous time IC. 
However, its controllability was rather tricky. Hence, 
it was neither convenient for experimental demon- 
stration of chaotic phenomena nor for chaotic encryp- 
tion. 

This paper presents a new chaotic CMOS chip al- 
so in 2.4pm technology. The new chip has much bet- 
ter controllability than the previous. We present its 
architecture and a number of measurements to illus- 
trate its performance. 

II.Chip Architecture 

ses the following blocks: 
Fig. 1 shows the chip architecture which compris- 

A core Gm-C chaotic oscillator. 
A Gm-C reference integrator. 
Three voltage buffers. 

As Fig. 1 illustrates, the chip has 14 pins grouped 

2 supply voltages. 
1 analog ground. 
3 control inputs (low impedance). 
2 tuning pins. 
3 unbuffered output pins (one per state vari- 

3 buffered output pins (one per state variable). 

as follows: 

able). 

As stated in [l], the design of the monolithic 
Chua’ s oscillator is reduced to transistor level imple- 
mentation of one single transconductance amplifier of 
g,, gain and a nonlinear transconductor. The 
transconductor unit has a folded-cascode structure, 
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FIGURE 1. Chip architecture. 

whose input stage presents a linearization scheme 
through source degeneration [2] characterized by an 
ample range of linearity in the voltage-current con- 
version, low systematic offset, and very high output 
resistance. The transconductance value is controlled 
by the biasing current Icont ,  applied to pin cantl. The 
nonlinearity of the characteristics is less than 1 .O% er- 
ror in the input voltage ranging from - 1 . 5  to 1.5v, 
assuming a symmetrical biasing of +. 2 . 5 ~ .  Obviously, 
proper operation of the circuit implies that the chaotic 
attractor be comprised inside this range. 

The nonlinear transconductor has been imple- 
mented via the cascaded connection of a unit trans- 
conductor and a current-mode PWL block, as 
explained in [l] and [3]. Fig.2(a) and (b) show the 
variation of the nonlinear characteristics for different 
slopes so and s1 of the central and outer pieces, re- 
spectively. They can be externally controlled through 
biasing currents Icont2 and Icont3 applied to pins 
contz and cont, . The values of these currents can be 
regarded as the cryptographic key for the secure com- 
munication scheme. 

III.Chip Measurements 
Figs.6 and 7 show a biffurcation sequence ob- 

tained by changing the biasing current Icont2.  A dou- 
ble scroll is obtained through a period-doubling route 
to chaos. A Rossler-like chaotic attractor and several 
periodic windows are observed as well. 

Fig.3 and Fig.4 demonstrate the feasibility of 
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FIGURE 2. Nonlinear Transconductor. Variation of the PWL 
characteristics with: (a) the central slope, so (control variable 
!cont2); and (b) the outer slopes, s1 (control variable 
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chaotic synchronization between two of the manufac- 
tured IC prototypes. Fig.3(a) considers a linear diffu- 
sion coupling between equivalent state variables of 
the two chaotic oscillators [4]. It shows the phase 
plots obtained from a y-coupled experimental set-up, 
built in practice by inserting an Ry linear resistor be- 
tween the y terminals of both prototypes (see Fig.1). 
It was found that whenever the coupling resistance is 
Ry < 27k0 ,  the (xl, x2) phase plot follows a nearly 
perfect straight line, thus confirming synchronization 
in spite of the chaotic behavior exhibited by the oscil- 
lators, as the (xl, 21) phase plot illustrates. A similar 
set-up was built by inserting an R,  linear resistor be- 
tween the x terminals of the oscillators, thus leading 
to an x-coupled system. In this case, trajectories of 
both circuits approach each other asymptotically if 
R,  < 745 k 0 ,  for the same internal configurations as 
before. A z-coupled configuration was also built in 
the laboratory, but, in this case, the system exhibits 
sporadic losses of synchronization. 

Fig.T)(b) considers a drive-response scheme as 
originally proposed by Pecora and Carroll [4]. It 
shows the phase plots obtained from a x-drive exper- 
imental set-up, built by inserting a voltage buffer 
from the x terminal of the driving prototype to the 
same terminal at the receiving system. As can be seen 
from the (yl, y2) phase plot, nearly ideal synchroniza- 
tion is obtained. The same conclusion also applies 
when considering a y-drive scheme, but not for a z- 

(a) (b) 
FIGURE 3. (a) y-coupled synchronization results. 
Hor. axis: xl. Vert. axis: xz at the top, z1 at the bottom. 
(b) r-drive synchronization results. 
Hor. axis: yp Vert. axis: y z  at the top, rl at the bottom. 

drive configuration as predicted by theory [4]. Fig.4 
illustrates the performance of the whole secure com- 
munication scheme. Input signal (FigA(a)) consists of 
a segment of speech. The worst-case signal to noise 
ratio of the recovered signal (Fig.4(b)) is greater than 
+40dB (this occurs at very low frequencies) with less 
than -0.2dB loss of the input signal power. At higher 
frequencies, the signal-to-noise ratio rises up to 
+60dB, while retaining similar losses at the receiver. 
As can be seen from Fig.4, the transmitted signal 
(Fig.4(c)) keeps no resemblance to the information 
content. 

1V.References 
[ 11 A. Rodriguez-VBzquez and M. Delgado-Restitu- 

to: “CMOS Design of Chaotic Oscillators Using 
State Variables: A Monolithic Chua’s Circuit”. 
IEEE Transactions on Circuits and Systems II, 

[2] E Krummenacher and N. Joehl: “A 4MHz 
CMOS Continuous-Time Filter with On-Chip 
Automatic Tunings”. IEEE J.  Solid-state Cir- 
cuits, SC-23, pp. 750-758, 1988. 

[3] M. Delgado-Restituto and A. Rodriguez-VBzqu- 
ez: “Switched-Current Chaotic Neurons”. Elec- 
tronics Letters, Vo1.30, N.5, pp. 429-430. 

[4] M. Ogorzalek: “Taming Chaos--Part I: Synchro- 
nization”. IEEE Transactions on Circuits and 
Systems I, Vol. 40, N.lO, pp. 693-699, Oct. 1993. 

V01.40, N.lO, pp. 596-613, Oct. 1993. 

Chaotic Encryption 

-5.0 1 ‘ f , . . -  

O.0ms 100.0ms 200.0ms 
Time (20msldiv) 

FIGURE 4. Audio Transmission System. 
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FIGURE 5. Experimental Lissajous figures (projections onto the (x, y) and (x,z) planes), and power spectra for: 
(a) Icont2 = 1.0 PA ; (b) = 1.05 PA ; (c) Icont2 = 1.125 PA ; (d) Icont2 = 1.2 PA ;(e) Iconr2 = 1.35 P A .  
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FIGURE 6. Experimental Lissajous figures (projections onto the (x, y) and (x,z) planes), and power spectra for: 
(0 Zcont2 = 1.52 pA ; (g) Zcont2 = 1.67 pA ;(h) Zcont2 = 1.7 pA ; (i) Zcont2 = 1.912 pA ; (j) = 1.97 P A .  
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