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Abstract. In this work we study subdivisions of k-rotationally symmet-
ric planar convex bodies that minimize the maximum relative diameter
functional. For some particular subdivisions called k-partitions, consisting
of k curves meeting in an interior vertex, we prove that the so-called stan-

dard k-partition (given by k equiangular inradius segments) is minimizing
for any k ∈ N, k > 3. For general subdivisions, we show that the previous
result only holds for k 6 6. We also study the optimal set for this problem,
obtaining that for each k ∈ N, k > 3, it consists of the intersection of the
unit circle with the corresponding regular k-gon of certain area. Finally,
we also discuss the problem for planar convex sets and large values of k,
and conjecture the optimal k-subdivision in this case.

1. Introduction

The study of the classical geometric magnitudes associated to a planar com-
pact convex set (perimeter, area, inradius, circumradius, diameter and min-
imal width) is one of the main points of interest for Convex Geometry, and
these magnitudes have been considered since ancient times. They appear in
the origin of this mathematical field, and in fact, there is a large variety of
related problems, providing a more complete understanding of these geometric
measures.

One of the most common problems involving these magnitudes consists of
finding precise relations between some of them (and not only in the convex
framework). For instance, the well-known isoperimetric inequality relates the
perimeter and the area functionals, stating that, among all planar sets with
fixed enclosed area, the circle is the one with the least possible perimeter [15,
14]. In the same direction, the isodiametric inequality asserts that the circle
is also the planar compact convex set of prescribed area with the minimum
possible diameter [2]. Another example is given by the equilateral triangle,
which is the planar compact convex set with minimum enclosed area for fixed
minimal width [16]. We point out that these relations are usually established
by means of appropriate general inequalities, with the characterization of the
equality case providing then the optimal set for the corresponding functionals
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(that is, the set attaining the minimum possible value for the functional). A
nice detailed description of the relations between two (and three) of these
classical magnitudes can be found in [17].

Apart from the above approach, these geometric functionals can be studied
in a large range of different related problems. One of these problems, which has
been considered in several works during the last years, is the so-called fencing

problem, or more generally, the partitioning problem. For these problems, the
main interest is determining the division of the given set into k connected sub-
sets (of equal or unequal areas) which minimizes (or maximizes) a particular
geometric magnitude [7]. The relative isoperimetric problem is one of these
questions, where the goal is minimizing the perimeter of the division curves
for fixed enclosed areas. For this problem, the general geometric properties
satisfied by the minimizing divisions can be deduced by using a variational ap-
proach, and particular results characterizing the solutions have been obtained
for some regular polygons and for the circle, see [18, 1, 4, 5].

Regarding the diameter functional, the partitioning problem can be studied
by means of the maximum relative diameter functional. We recall that for
a planar compact convex set C and a decomposition of C into k connected
subsets C1, . . . , Ck, the maximum relative diameter associated to the decom-
position is defined as the maximum of the diameters of the subsets Ci, for
i = 1, . . . , k (this means that it measures the largest distance in the subsets
provided by the decomposition). In this setting, the partitioning problem
seeks the decomposition of C into k subsets with the least possible value for
the maximum relative diameter. This problem has been recently studied for
k = 2 and k = 3 under some additional symmetry hypotheses [11, 3], and the
results therein constitute the main motivation for our work.

In [11], the previous problem is treated for centrally symmetric planar com-
pact convex sets, and for decompositions into two subsets of equal areas, prov-
ing that the minimizing division for the maximum relative diameter is always
given by a line segment passing through the center of symmetry of the set [11,
Prop. 4]. We point out that a more precise characterization of such a minimiz-
ing segment is not provided. Furthermore, the optimal set for this problem
(that is, the centrally symmetric planar compact convex set attaining the min-
imum possible value for the maximum relative diameter) is also determined
up to dilations, consisting of a certain intersection of two unit circles and a
strip bounded by two parallel lines, see [11, Th. 5].

In [3], the problem is considered for 3-rotationally symmetric planar com-
pact convex sets, and for divisions into three subsets of equal areas. The main
result establishes that the so-called standard trisection, determined by three
equiangular inradius segments, minimizes the maximum relative diameter [3,
Th. 3.5 and Prop. 5.1] for any set of that class. In addition, the optimal set
for this problem is also characterized, up to dilations, as the intersection of
the unit circle with a certain equilateral triangle [3, Th. 4.7]. We remark that,
although the results in [3] are stated for divisions into three subsets of equal
areas, all of them also hold in the case of unequal areas.
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This paper is inspired precisely in these last two references involving the
maximum relative diameter [11, 3]. As a natural continuation, we shall focus
on the class Ck of k-rotationally symmetric planar convex bodies (that is,
compact convex sets) for each k ∈ N, k > 3. And for each set in Ck, we shall
investigate the divisions into k connected subsets minimizing the maximum
relative diameter functional. In this setting we shall consider two different
types of divisions, namely k-subdivisions and k-partitions. For a given set
C ∈ Ck, a k-partition of C will be a decomposition of C into k connected
subsets by k curves starting at different points of ∂C, and with all of them
meeting at an interior point in C. On the other hand, a k-subdivision of C will
be a general decomposition of C into k connected subsets, with no additional
restrictions.

The goal of this paper is studying the minimizing k-partitions and minimiz-
ing k-subdivisions for the maximum relative diameter, for any k-rotationally
symmetric planar convex body. In fact, we shall see that the so-called standard

k-partition (consisting of k inradius segments symmetrically placed) is a min-
imizing k-partition for the maximum relative diameter, for any k ∈ N, k > 3
(Theorem 4.5), being also minimizing among k-subdivisions only when k 6 6
(Theorem 4.6). For k > 7 we shall provide some examples showing that the
standard k-partition is not a minimizing k-subdivision, which suggests that, in
those cases, a complete characterization is a difficult question. In addition, we
point out that the uniqueness of the minimizing k-partition does not hold for
this problem, as explained in Subsection 4.1, since proper slight deformations
of a minimizing k-partition are also minimizing.

Another interesting result in this paper is the characterization of the opti-

mal bodies for this problem. For each k ∈ N, k > 3, we are able to determine
the k-rotationally symmetric planar convex body attaining the minimum pos-
sible value for the maximum relative diameter, when considering k-partitions.
Taking into account the previous Theorem 4.5, for each set of this class, that
minimum value will be provided by the corresponding standard k-partition.
In Section 5 we give the description of these optimal bodies for each k > 3,
which, in general, consist of the intersections of the unit circle with a certain
regular k-gon, up to dilations.

We remark that the case k = 2 (treating the decompositions into two subsets
for centrally symmetric planar convex bodies and previously studied in [11])
presents some differences with respect to the other situations, as explained in
Remark 3.6, and cannot be treated as for k > 3. The main reason for this par-
ticular behaviour lies in the following technical fact: the associated standard
2-partition of a set of this class, which is provided by two inradius segments
placed symmetrically, is just a line segment passing through the center of sym-
metry of the set, and so the computation of the maximum relative diameter
associated to this standard 2-partition cannot be done by using Lemma 3.2,
which is fundamental when k > 3.

We have organized this paper as follows. Section 2 contains the precise
definitions and the setting of the problem, and in Section 3 we describe the
standard k-partition for any k-rotationally symmetric planar convex body.
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This k-partition is constructed by applying successively the existing rotational
symmetry to an inradius segment of the set. We remark that Lemma 3.2
establishes how to compute the maximum relative diameter for the standard
k-partition.

In Section 4 we obtain the main results of this paper. Due to Lemmata 3.2, 4.1
and 4.4, we prove our Theorem 4.5:

For any k-rotationally symmetric planar convex body, the asso-

ciated standard k-partition is a minimizing k-partition for the

maximum relative diameter.

Furthermore, regarding general k-subdivisions, we obtain Theorem 4.6:

For any k-rotationally symmetric planar convex body, the as-

sociated standard k-partition is a minimizing k-subdivision for

the maximum relative diameter, when k 6 6.

Figure 1. The standard 3-partition for the equilateral trian-
gle, the standard 4-partition for the square, and the standard
8-partition for the regular octagon

When k > 7, Examples 4.7 and 4.8 show that the standard k-partition is
not a minimizing k-subdivision in general, suggesting that the characterization
of such minimizing k-subdivisions is a difficult task which will depend on the
particular considered set. We also point out that, for k = 3, the minimizing
3-partition and 3-subdivision in this setting have been previously obtained,
see [3, Th. 3.5 and Prop. 5.1].

Moreover, in Subsection 4.1 we discuss the uniqueness of the solutions for
this problem. We will show with some examples that slight modifications of a
minimizing k-partition in a proper way (preserving the value of the maximum
relative diameter) will produce minimizing k-partitions as well, and so we do
not have uniqueness in this setting (as in most of the problems involving the
diameter functional). This subsection concludes by posing some necessary
conditions for a given k-partition to be minimizing, derived from Lemma 3.2
and Theorem 4.5.

In Section 5 we study the optimal bodies for this problem. More precisely,
for each k ∈ N, k > 3, we characterize the k-rotationally symmetric planar
convex body for fixed area attaining the lowest possible value for the maximum
relative diameter when considering k-partitions. Notice that, in view of Theo-
rem 4.5, we have to focus on the standard k-partitions, and as a consequence
of Lemma 3.2 we are able to prove our Theorem 5.1:
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For any k ∈ N, k > 3, the minimum value for the maximum

relative diameter for k-partitions in the class of k-rotationally
symmetric planar convex bodies is uniquely attained by the stan-

dard k-partition associated to the intersection of the unit circle

and the regular k-gon with inradius equal to 1/(2 sin(π/k)), up
to dilations.

The previous Theorem 5.1 characterizes the optimal body, for each k ∈ N,
k > 3, as the intersection of the unit circle with a particular regular k-gon.
In Subsection 5.1 we analyze these intersections in each case, obtaining the
precise optimal sets: for k = 3 and k = 5, the optimal bodies are respectively
an equilateral triangle and a regular pentagon with rounded vertices, for k = 4
we have a square, and for k > 6 the best set in this setting is the unit circle.
We remark that the optimal body for k = 3 was already characterized in [3,
Th. 4.7] by means of a constructive procedure.

Figure 2. Optimal sets for k = 3, k = 4, k = 5, and k > 6

Finally, in Section 6 we complete our study by considering large values of
k ∈ N, discussing our problem for k-subdivisions (focusing on planar convex
bodies). Recall that Theorem 4.5 establishes that the standard k-partitions are
minimizing k-partitions for any k ∈ N, k > 3, and minimizing k-subdivisions
only when k 6 6, for any k-rotationally symmetric planar convex body. In
Corollary 6.4 we obtain a lower bound for the maximum relative diameter
functional when considering k-subdivisions of a planar convex body, involving
a negligible addend when k is large enough. However, we think that such
lower bound can be improved, and some reasonings in this section lead us to
Conjecture 6.8: for large values of k ∈ N, a minimizing k-subdivision will be
given by a decomposition induced by a planar tiling of regular hexagons.

2. Preliminaries

In this paper we will consider, for any given k ∈ N, k > 3, the class Ck of
k-rotationally symmetric planar convex bodies (assuming therefore the com-
pactness of the sets). We recall that, in this setting, each set C in the class
Ck has a center of symmetry p, and then, the k-rotationally symmetry means
that C is invariant under the rotation centered at p with angle ϕk := 2π/k.
Some examples of sets belonging to Ck are the regular k-gon and the Reuleaux
k-gon.

Given a planar compact set C, we shall denote by r(C) the inradius of
C (that is, the radius of the largest ball contained in C), and by R(C) the



6 A. CAÑETE, U. SCHNELL, AND S. SEGURA GOMIS

Figure 3. Some examples of k-rotationally symmetric planar
convex bodies: the equilateral and Reuleaux triangles are 3-
rotationally symmetric, the regular octogon is 8-rotationally
symmetric (and also 4-rotationally symmetric), and the circle
is k-rotationally symmetric for any k ∈ N.

circumradius of C (radius of the smallest ball containing C). If no confusion
may arise, we shall simply denote them by r and R, respectively. For k-
rotationally symmetric planar convex bodies, we have the following Lemma,
which provides a metric characterization for the inradius and the circumradius.

Lemma 2.1. Let C ∈ Ck, and let p be its center of symmetry. Then, the

inradius r coincides with the minimal Euclidean distance between p and a

point in ∂C, and the circumradius R coincides with the maximal Euclidean

distance between p and a point in ∂C.

Proof. It is known that the set I of centers of all largest balls contained in
C is a convex set with empty interior [13]. As C is k-rotationally symmetric,
this implies that I = {p} (note that for any c ∈ I, c 6= p, the images of c by
the existing rotations would belong to I, and so p would be an interior point
of I). Then there is a unique largest ball contained in C, which is centered at
p. This immediately yields the statement for the inradius.

On the other hand, as the smallest ball containing C is unique, its center has
to coincide with p (otherwise, an analogous rotation argument will contradict
that uniqueness). This implies trivially the statement for the circumradius.

�

R

r

Figure 4. The inradius r and the circumradius R of an equi-
lateral triangle.

We now define the notions of k-subdivision and k-partition of a planar com-
pact set, which will be considered along this work. Notice that these defini-
tions can be generally done without assuming additional hypotheses regarding
convexity or symmetry.
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Definition 2.2. Let C be a planar compact set. A k-subdivision S of C is a

decomposition of C into k connected subsets {C1, . . . , Ck}, not necessarily of

equal areas, satisfying:

i) C =

k⋃

i=1

Ci,

ii) int(Ci) ∩ int(Cj) = ∅, for i, j ∈ {1, . . . , k}, i 6= j.

In addition, if a k-subdivision S is given by k curves meeting at a point

c ∈ int(C), and the other endpoints of the curves are different points in ∂C,

then S will be called a k-partition of C. In this case, c is called the common

point of the k-partition and the endpoints of the curves meeting ∂C will be

called the endpoints of the k-partition.

We stress that k-subdivisions are general decompositions of the original set
C into k connected subsets, and that k-partitions are k-subdivisions with a
particular topological structure: they consist of k curves converging to an
interior point, each of them meeting the boundary of C at a different point.

Figure 5. Three different 5-subdivisions for the regular pentagon.

Figure 6. Three different 5-partitions for the regular pentagon.

Remark 2.3. In this work, we are focusing on the class Ck of k-rotationally
symmetric planar convex bodies since the lack of the rotational symmetry
prevents a general study of this question. Moreover, for any set C ∈ Ck,
its center of symmetry is a remarkable point in the interior of C, and so it
seems natural to consider k-partitions, which are precisely the k-subdivisions
determined by interior points of C.

We now recall the definition of the maximum relative diameter for a k-
subdivision of a planar compact set.

Definition 2.4. Let C be a planar compact set, and let S be a k-subdivision
of C into subsets {C1, . . . , Ck}. We define the maximum relative diameter
associated to S as

dM (S,C) = max{D(Ci) : i = 1, . . . , k},
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where D(Ci) = max{d(x, y) : x, y ∈ Ci} denotes the Euclidean diameter of Ci.

Remark 2.5. Along this work, we shall usually write dM (S) instead of dM (S,C),
if no confusion may arise.

Remark 2.6. For a given planar compact set C and a k-subdivision S of C,
the existence of dM (S,C) is assured due to the continuity of the Euclidean
distance d : R2 → R, and the compactness of C.

Remark 2.7. By a standard argument it is clear that dM (S,C) is attained
by points lying in the boundary of one of the subsets Ci determined by the
k-subdivision S. Moreover, it is well-known that the diameter of a convex
polygon is given by the distance between two of its vertices.

In the forthcoming sections, we shall investigate the k-partitions and the
k-subdivisions of a given k-rotationally symmetric planar convex body which
minimize the maximum relative diameter functional. In other words, for a
given set C ∈ C, we shall look for

min{dM (P,C) : P is a k-partition of C },
and

min{dM (S,C) : S is a k-subdivision of C }.
The k-partitions and k-subdivisions attaining those minimum values will be

called minimizing. As usual in this kind of optimization problems involving
the diameter functional, we point out that the uniqueness of the minimizing
k-subdivision is not expected, as we shall see in Subsection 4.1.

3. Standard k-partition

In this section we shall describe a particular k-partition for the sets of our
class Ck, called the standard k-partition, by means of a simple geometrical
intrinsic construction. This k-partitions will play an important role along this
work.

For C ∈ Ck, let x1 ∈ ∂C be a point in ∂C with minimal distance to the
center of symmetry p. In view of Lemma 2.1, this implies that d(p, x1) is the
inradius of C, and so the segment p x1 will be referred to as an inradius segment

of C (notice that for regular polygons, such a segment is called apothem). By
applying k − 1 times the rotation centered at p with angle ϕk = 2π/k to
the point x1, we shall finally obtain a set of points {x1, . . . , xk} ⊂ ∂C, all
of them minimizing the distance to p. If we join these points to p, we shall
get k inradius segments dividing C into k connected congruent subsets. This
k-partition will be called standard k-partition of C, and will be denoted by
Pk(C), or simply Pk.

Remark 3.1. In general, the previous construction of the standard k-partition
associated to a k-rotationally symmetric planar convex body C is not uniquely
determined. In fact, if there are more than k points in ∂C attaining the mini-
mal distance to the center of symmetry of C, then the associated standard k-
partition is not unique (for instance, this happens for the standard 3-partition
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Figure 7. Standard k-partitions for different k-rotationally
symmetric planar bodies

of the regular hexagon, or for the standard k-partition of the circle for any
k > 2). In any case, all the standard k-partitions associated to C will be
k-rotationally congruent by construction.

For the standard k-partition of a given set C in Ck, the associated maximum
relative diameter can be easily computed in terms of the inradius and the
circumradius of C, as proved in the following Lemma 3.2.

Lemma 3.2. Let C be a k-rotationally symmetric planar convex body, with

inradius r and circumradius R. Let Pk be the standard k-partition associated

to C. Then,

dM (Pk, C) = max{R, 2 r sin(ϕk/2)}.
Remark 3.3. Recall that ϕk/2 = π/k.

Proof. We can assume that dM (Pk, C) = D(C1), where C1 is one of the con-
gruent subsets determined by Pk. Call x1, x2 ∈ ∂C1 the endpoints of the two
inradius segments bounding C1. Any pair of points realizing D(C1) cannot
be contained in the relative interior of an inradius segment (in that case, the
diameter could be clearly increased by considering some proper point along
the segment). As the maximal distance between two points on ∂C ∩ ∂C1 is
d(x1, x2) = 2 r sin(π/k), and the maximal distance between p and ∂C equals
R, the statement follows. �

The following examples show that both possibilities from Lemma 3.2 may
occur.

Example 3.4. (Circle) Any circle is a k-rotationally symmetric planar convex
body for any k ∈ N, k > 2, whose inradius r coincides with its circumradius R.
Consequently, in view of Lemma 3.2, it is immediate checking that dM (Pk) =
2 r sin(ϕk/2) for k ∈ {3, 4, 5, 6}, and dM (Pk) = R for k > 6.

Example 3.5. (Regular polygons) For a regular k-gon Ek, Lemma 3.2 yields
that dM (Pk, Ek) = R(Ek), for k ∈ N, k > 3, due to the well-known relation
r(Ek) = R(Ek) cos(ϕk/2).

Remark 3.6. Lemma 3.2 does not hold for k = 2 (it can be easily checked by
considering the square or the circle). The reason of this fact is that the stan-
dard 2-partition P2 will divide any centrally symmetric planar convex body C
into two subsets whose boundaries do not contain the center of symmetry p
as a vertex. Notice that p will belong to the line segment x1x2 (being x1, x2



10 A. CAÑETE, U. SCHNELL, AND S. SEGURA GOMIS

the endpoints of P2), and so p will not be relevant for computing dM (P2, C).
In fact, it can be checked that

dM (P2, C) = max{d(x1, x) : x ∈ ∂C}.
The main difficulty in this case is that the quantity d(x1, x), when x ∈ ∂C,
cannot be estimated in general, which prevents using the arguments from
this paper for k = 2. We recall that this case was studied in [11], where it
is proved that the minimizing 2-partition for dM is given by a line segment
passing through the center of symmetry of the set, without a more precise
description [11, Prop. 4].

4. Main results

In this section, we aim to compare the maximum relative diameters as-
sociated to the standard k-partition Pk and an arbitrary k-partition P of a
given k-rotationally symmetric planar convex body C, when k > 3. By means
of Lemmata 4.1 and 4.4, we will conclude that dM (Pk, C) 6 dM (P,C), and
so the standard k-partition always provides a minimizing k-partition for the
maximum relative diameter functional. Furthermore, if we consider general k-
subdivisions, we will see that the same previous result holds only when k 6 6
(Theorem 4.6), showing also some counterexamples for k > 7. Finally, in
Subsection 4.1 we will see that the uniqueness of the minimizing k-partition
cannot be expected for this problem.

Lemma 4.1. Let C be a k-rotationally symmetric planar convex body, with

circumradius R, for k > 3. Let P be a k-partition of C. Then dM (P ) > R.

Proof. Let c be the common point of P , and C1, . . . , Ck the corresponding

subsets of C given by P . Note that c ∈ ⋂k
i=1Ci. Call p the center of symmetry

of C, and let y1, . . . , yk be points in ∂C such that d(p, yi) = R (we can assume
they are placed k-symmetrically along ∂C). Then, it is not difficult to check

that p =
∑k

i=1 yi/k is the unique minimum for the functional S : C → R given
by

S(x) =

k∑

i=1

d(x, yi)
2,

and so

S(c) =

k∑

i=1

d(c, yi)
2
> S(p) = kR2.

This necessarily implies that some yj satisfies d(c, yj) > R, yielding dM (P ) >
d(c, yj) > R, as desired. �

The above Lemma 4.1 also holds for k-subdivisions, when k 6 6. Notice
that the proof is different from the one of Lemma 4.1, since k-subdivisions do
not have a common interior point as k-partitions.

Lemma 4.2. Let C be a k-rotationally symmetric planar convex body, with

circumradius R, for 3 6 k 6 6. Let S be a k-subdivision of C. Then dM (S) >
R.
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Proof. Let y1, . . . , yk be points in ∂C such that d(p, yi) = R. We can assume
they are placed k-symmetrically along ∂C, and so they will determine a regular
k-gon Ek with edge length equal to 2R sin(π/k) > 2R sin(π/6) = R, since
k 6 6. Then we have that p, y1, . . . , yk are k+ 1 points with mutual distances
greater than or equal to R. Since at least two of these points will be contained
in a same subset given by the subdivision S, it follows that dM (S) > R. �

Remark 4.3. The previous Lemma 4.2 does not hold when k > 6. For
instance, for k = 7, consider a regular heptagon H with circumradius R = 1
and center of symmetry p, and the 7-subdivision S shown in Figure 8 (which
is a modification of the 7-partition of H whose endpoints are the vertices of H
with p as common point). This 7-subdivision is given by eleven line segments
meeting in threes at five inner points (placed at the same distance from p), with
congruent subsets H2, H7, congruent subsets H3, H4, H5, H6, and p ∈ H1. In
this case, we have checked that dM (S) = D(H2) = d(a, b) = 0.9892 < R = 1,
and so Lemma 4.2 is not satisfied.

Figure 8. A 7-subdivision of the regular heptagon with max-
imum relative diameter striclty less than the circumradius

The following Lemma 4.4 is true not only for k-partitions, but also for
general k-subdivisions.

Lemma 4.4. Let C be a k-rotationally symmetric planar convex body, with in-

radius r, for k > 3 . Let S be a k-subdivision of C. Then dM (S) > 2 r sin(π/k).

Proof. Let x1, . . . , xk be points in ∂C with d(p, xi) = r. We can assume
that they are placed k-symmetrically, and so they determine a regular k-gon
with edge length 2 r sin(π/k). Call C1, . . . , Ck the subsets of C given by the
k-subdivision S.

If two (consecutive) points xα, xβ belong to a same subset Ci, then dM (S) >
D(Ci) > d(xα, xβ) = 2 r sin(π/k), and the result follows. So we will assume
that each point xi only belongs to Ci, for i = 1, . . . , k.

Let p be the center of symmetry of C, and let K be the circle with center
p and radius r. Clearly x1, . . . , xk ∈ ∂K. Since any pair of consecutive points
xi−1, xi are contained in different subsets Ci−1, Ci, respectively, there must be
a point qi ∈ ∂K between them, with qi ∈ Ci−1 ∩ Ci. Let αi denote the angle
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at p determined by the segments p qi and p qi+1. We have that αi ∈ (0, 2ϕk) =
(0, 4π/k), and α1 + . . . + αk = 2π. Then it follows that at least one angle αj

satisfies 2π/k 6 αj < 4π/k. This implies that d(qj , qj+1) = 2 r sin(αj/2) >

2 r sin(π/k), and so dM (S) > D(Cj) > d(qj , qj+1) > 2 r sin(π/k), which proves
the statement. �

We can now state the main results of this section, asserting that for any k-
rotationally symmetric planar convex body, the associated standard k-partition
is a minimizing k-partition for the maximum relative diameter functional, and
also a minimizing k-subdivision when k 6 6. Both results are immediate
consequences of the previous Lemmata.

Theorem 4.5. Let C be a k-rotationally symmetric planar convex body, and

Pk the associated standard k-partition of C. Let P be any k-partition of C.

Then, dM (P ) > dM (Pk).

Proof. From Lemma 3.2, we have that dM (Pk) = max{R, 2 r sin(π/k)}, where
R and r are the circumradius and the inradius of C. By using Lemmata 4.1
and 4.4, we conclude that dM (P ) > dM (Pk). �

Theorem 4.6. Let C be a k-rotationally symmetric planar convex body, and

Pk the associated standard k-partition of C, with k 6 6. Let S be any k-
subdivision of C. Then dM (S) > dM (Pk).

Proof. Taking into account Lemmata 3.2, 4.2 and 4.4, the result follows. �

We point out that the previous Theorem 4.6 is the best result we can obtain
for minimizing k-subdivisions, since it does not hold for k > 7, as shown in
the following examples.

Example 4.7. In Remark 4.3 we considered a regular heptagon H with cir-
cumradius R = 1, and described a 7-subdivision S with dM (S) = 0.9892. As
dM (P7) = R = 1 for the standard 7-partition P7 associated to H (see Exam-
ple 3.5), it follows that P7 is not a minimizing 7-subdivision for the maximum
relative diameter.

Example 4.8. Consider the unit circle C and the 8-subdivision S shown in
Figure 9, given by an inner subset C1 bounded by a circle of radius 0.43,
and seven congruent subsets C2, . . . , C8 determined by 7-symmetric segments
joining ∂C and ∂C1. Straightforward computations yield that D(C1) = 0.86
and D(C2) = 0.86, and so dM (S) = 0.86. Thus the corresponding standard
8-partition P8 is not a minimizing 8-subdivision for the circle, since dM (P8) =
R(C) = 1, see Example 3.4.

Example 4.9. The following idea suggests that when k ∈ N is large enough,
the corresponding standard k-partition will not be a minimizing k-subdivision
for the maximum relative diameter. Consider the unit circle, which satisfies
dM (Pk) > 1 for any k ∈ N, k > 3, where Pk is the standard k-partition, see
Example 3.4. It is clear that, when k > k0 for k0 ∈ N large enough, we can
divide the unit circle into k small subsets, each one with diameter strictly
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Figure 9. A 8-subdivision of the circle

less than 1, thus obtaining a k-subdivision with maximum relative diameter
strictly less than 1. This implies that Pk is not minimizing for k > k0. This
reasoning can be probably applied for regular k-gons when k is large enough
(and then close to be a circle). In Section 6 we shall study the minimizing
k-subdivision for a planar convex body, for large values of k ∈ N.

Remark 4.10. We remark that Theorems 4.5 and 4.6 were already obtained
in [3] for the case k = 3.

4.1. Uniqueness of the minimizing k-partition. The uniqueness of the
solution is also an interesting question for these kinds of optimization prob-
lems. In our setting, where the considered functional is the maximum relative
diameter, the uniqueness of the minimizing k-partition does not hold, as we
can see in the example from Figure 10. For the regular hexagon H, we exhibit
three different minimizing 6-partitions: the associated standard 6-partition P6

(which is minimizing by Theorem 4.5), and two others 6-partitions obtained
by slight modifications of P6, keeping invariant the value of the maximum
relative diameter dM (P6,H). Other similar examples can be constructed for
the regular hexagon and, in general, for any k-rotationally symmetric planar
convex body (see Figure 11). This shows that the minimizing k-partition for
any set of our class is not unique, being not possible to obtain a complete
classification of all of them.

Figure 10. Three different minimizing 6-partitions for the
regular hexagon. The first one is the corresponding standard
6-partition P6, and the others are slight modifications.

However, some necessary conditions for being a minimizing k-partition can
be derived from a deeper analysis of Lemmata 4.1 and 4.4. More precisely, let
C be a k-rotationally symmetric planar convex body, with center of symmetry
p, and let P be a minimizing k-partition. From Theorem 4.5 and Lemma 3.2 we
have that dM (P ) = dM (Pk) = max{R, 2 r sin(π/k)}, where Pk is the standard
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Figure 11. Three different minimizing 4-partitions for the cir-
cle. The first one is the corresponding standard 4-partition P4,
and the others are slight modifications.

k-partition associated to C, and R and r are the circumradius and the inradius
of C, respectively. By discussing the two different possibilities, we shall obtain
conditions that the minimizing k-partition P must satisfy. If dM (Pk) = R,
from the proof of Lemma 4.1 we can deduce that the common point of P has
to coincide necessarily with p (otherwise, dM (P ) will be strictly greater than
R). On the other hand, if dM (Pk) = 2 r sin(π/k), an analysis of the equality
case in the proof of Lemma 4.4 will yield that the endpoints of P have to
coincide with the endpoints of Pk.

5. Optimal sets

The search for the optimal sets in geometric optimization problems is, in
general, a hard question. For some problems, it is only possible to obtain some
properties of the solutions, but not a complete description of them. However,
for the problem considered in this paper, we will see that we can give a precise
characterization of the optimal set, which in this setting corresponds with the
k-rotationally symmetric planar convex body attaining the minimum value for
the maximum relative diameter.

Our initial motivation resides in the following question: given a k-rotationally
symmetric planar convex body C, we know from Theorem 4.5 that the low-
est value for the maximum relative diameter among all k-partitions of C is
achieved by the standard k-partition Pk(C) associated to C, and it is equal to
dM (Pk(C), C). Then, a natural further step is investigating for the minimum
of such lowest values, among all sets in the class Ck. Equivalently, we are
interested in finding

min{dM (Pk(C), C) : C ∈ Ck},
which will consequently determine the optimal body in Ck.

However, in this setting it is more convenient to find

min

{
dM (Pk(C), C)2

A(C)
: C ∈ Ck

}
,

where A(C) denotes the area of C, since the quotient

(5.1)
dM (Pk(C), C)2

A(C)
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is invariant under dilations about the center of symmetry of C, and therefore
the optimal body will be independent from the enclosed area.

The following Theorem 5.1 provides the characterization of the optimal
body in Ck, for each k ∈ N, k > 3.

Theorem 5.1. Among all k-rotationally symmetric planar convex bodies for

fixed k ∈ N, k > 3, the minimum value in (5.1) is uniquely attained by the in-

tersection of the unit circle with the regular k-gon with inradius 1/(2 sin(π/k)),
up to dilations.

Proof. In order to obtain the minimum value in (5.1), we can fix either the
value of the maximum relative diameter or the area of the set. We shall
proceed by fixing the maximum relative diameter, and so we shall maximize

the area of the set.

Consider an arbitrary set C in Ck with dM (Pk(C), C) = 1, where Pk(C)
is the standard k-partition associated to C. From Lemma 3.2, it follows
that R(C) 6 1 and 2 r(C) sin(π/k) 6 1, where R(C) and r(C) are the
circumradius and the inradius of C, respectively. The first inequality im-
plies that C is contained in the unit circle, and the second one implies that
r(C) 6 1/(2 sin(π/k)), which gives that C is contained in the regular k-gon
with inradius 1/(2 sin(π/k)), due to the convexity of C. Therefore, C will be
contained in the corresponding intersection, and the set with maximal area
under these conditions will be necessarily that intersection. �

Remark 5.2. The previous Theorem 5.1 characterizes the optimal body in
Ck for our problem, when considering k-partitions, for any k ∈ N, k > 3. We
can also study the same question for k-subdivisions. In that case, taking into
account Theorem 4.6, analogous reasonings will yield to the same characteri-
zation of the optimal bodies only when k 6 6.

5.1. Description of the optimal bodies. We shall now determine the opti-
mal bodies for each k ∈ N, k > 3, by analyzing the corresponding intersection
described in Theorem 5.1 in each particular case. The precise optimal bodies
are depicted in Figure 12.

For k ∈ {3, 5}, we have that the value of the inradius 1/(2 sin(π/k)) of
the coresponding regular k-gon is strictly less than 1, and its circumradius is
strictly greater than 1 (see Example 3.5). This implies that the regular k-gon
actually intersects the unit circle, obtaining in these cases a sort of regular
k-gons with rounded corners as optimal bodies.

For k = 4, the square with inradius 1/(2 sin(π/4)) has circumradius equal to
1. Hence, that square is completely contained in the unit circle and provides
the optimal body in this case.

Finally, for k > 6, the inradius 1/(2 sin(π/k)) of the regular k-gon Ek is
greater than or equal to 1, which implies that the unit circle is entirely con-
tained in Ek. Therefore, the optimal bodies coincide with the unit circle for
k > 6.
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Figure 12. Optimal bodies for k = 3, k = 4, k = 5, and k > 6.

Remark 5.3. The optimal body for k = 3 was already obtained in [3, Th. 4.7]
by means of a constructive procedure, and is a solution for some others geo-
metric optimization problems, see [9, §. 4].

6. k-subdivisions for large values of k

In Section 4 we have proved that, for each k-rotationally symmetric planar
convex body, the associated standard k-partition is a minimizing k-partition
for the maximum relative diameter, for any k ∈ N, k > 3 (Theorem 4.5),
and also a minimizing k-subdivision for k ∈ {3, 4, 5, 6} (Theorem 4.6). In this
section, we will go further with the study of the k-subdivisions problem, by
considering the asymptotic situation for large values of k ∈ N, and searching
for a minimizing k-subdivision for the maximum relative diameter.

We have already seen that, in general, the standard k-partition is not mini-
mizing when k > 7 (for instance, see Examples 4.7 and 4.8). The reasonings in
this section will lead us to conjecture that an optimal k-subdivision, when the
number of regions k is large enough, is provided by a hexagonal tiling (up to
some subsets touching the boundary of the original set). This kind of tilings
have already appeared in the literature during the last years, specially from
the isoperimetric point of view (see [10] for the least-perimeter subdivision of
the plane, or [6] for the structure of the solutions of the planar soap bubble
problem for a large number of regions). We point out that the assumption of
rotational symmetry can be removed, and so we shall focus on general planar
convex bodies.

The following lemma, whose proof relies on the classical isodiametric in-
equality [2], provides a first lower bound for the maximum relative diameter,
when considering k-subdivisions of an arbitrary planar convex body.

Lemma 6.1. Let C be a planar convex body, and let S be a k-subdivision of

C, for k ∈ N. Then,

(6.1) dM (S,C) >

√
A(C)

k

√
4

π
.

Proof. Let C1, . . . , Ck be the subsets of C given by S, and call d = dM (S,C).
By using the isodiametric inequality [2], since D(Ci) 6 d, we have that
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A(Si) 6
π

4
d2, for i = 1, . . . , k. Then,

A(C) =

k∑

i=1

A(Ci) 6 k
π

4
d2,

which yields the statement. �

Remark 6.2. We recall that the equality in the classical isodiametric inequal-
ity holds for circles, and so, the equality in (6.1) cannot be attained, since it is
not possible to consider a subdivision given by circles due to the overlappings
of the corresponding subsets. Therefore, (6.1) actually provides a strict lower
bound for the maximum relative diameter functional.

The following Lemma 6.3 will allow to improve the lower bound obtained
in the previous Lemma 6.1, for large values of k.

Lemma 6.3. Let C be a planar convex body, and let S be a k-subdivision of

C with dM (S,C) = d. Then,

(6.2) A(C) 6 0.688452 k d2 + dP (C),

where P (C) denotes the perimeter of C.

Proof. Call C1, . . . , Ck the subsets of C given by S. Let C̃i be the convex hull

of Ci. Then D(C̃i) = D(Ci) for i = 1, . . . , k, and C is covered by the union
of these convex hulls. Since the possible overlappings can be eliminated by
dividing the intersection regions by proper line segments, we can then assume
that C1, . . . , Ck are convex polygons up to some arcs contained in ∂C. By
replacing each of these arcs by the line segment determined by its endpoints,
we shall obtain convex polygons C ′

i ⊂ Ci, i = 1, . . . , k, whose union is a convex
polygon C ′ contained in C. It is clear that C\C ′ is contained in the union of
stripes parallel to ∂C ′ and breadth d. This implies

(6.3) A(C) 6 A(C ′) + dP (C ′) 6 A(C ′) + dP (C) =

k∑

i=1

A(C ′

i) + dP (C).

The convex polygons C ′

1, . . . , C
′

k determine a planar graph with k + 1 faces
(together with the unbounded component C ′

0). If m and n denote the number
of edges and vertices, by Euler’s theorem we have (k + 1)−m+ n = 2.

Since each edge is incident to two vertices and the degree of each vertex is at
least 3 we obtain 2m > 3n. It follows 1 = k−m+n 6 k−m+2/3m = k−m/3
and so

m 6 3k − 3.

Let fj be the number of polygons with j edges in {C ′

1, . . . , C
′

k}, and s the
number of edges of C0. Then

2m = s+
∑

j

fj j
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and so ∑

j

fj j < s+
∑

j

fj j = 2m 6 6 k − 6 6 6 k.

On the other hand, let mj be the maximal area of a polygon of j edges with
diameter one. It is known (see [12]) that mj is attained by regular polygons
for odd j, with

mj = j/2 cos(π/j) tan(π/(2j)).

Furthermore, the values for m4, m6 and m8 are also numerically known
(see [12]), so thatm3 = 0.433012, m4 = 0.5, m5 = 0.657163, m6 = 0.6749814429,
m7 = 0.719740, m8 = 0.7268684828, m9 = 0.745619. Moreover, notice that
mj 6 π/4, for any j > 3, as the corresponding polygon will be contained in the
circle of diameter one. Then, if C ′

i is a polygon with j edges, A(C ′

i) 6 d2 mj,
and so

(6.4)

k∑

i=1

A(C ′

i) 6
∑

j

fj mj d
2 = d2

∑

j

fj mj 6 d2
( 9∑

j=3

fj mj+π/4
∑

j>10

fj

)
.

We are interested in finding an upper bound for (6.4). By replacing
∑

j>10 fj

by f̃ and calling m̃ = π/4, and using linear programming, it is straightforward

checking that the maximal value for f3m3 + . . . + f9 m9 + f̃ m̃ under the

restrictions f3+. . .+f9+f̃ = k, 3f3+. . .+9f9+10f̃ 6 6 k, and f3, . . . , f9, f̃ > 0
is given by k(m5 +m7)/2 = 0.688452 k, being attained by f5 = f7 = k/2 and

f3 = . . . = f9 = f̃ = 0.

Using that bound in (6.4), we conclude that
∑k

i=1 A(C
′

i) 6 0.6884 k d2,
which yields the statement taking into account (6.3). �

Corollary 6.4. Let C be a planar convex body, and let S be a k-subdivision
of C. Then

(6.5) dM (S,C) >

√
A(C)

k

√
1

0.688452
−O(1/k).

Proof. The statement is a direct consequence of (6.2). �

Remark 6.5. For large values of k ∈ N, (6.5) gives an improvement of the
lower bound in (6.1). However, such a bound is strict, since a planar tiling by
regular pentagons and regular heptagons cannot be realized.

In the following Lemma 6.6 we shall consider a particular k-subdivision for
any planar convex body and any k ∈ N, induced by a proper tiling of the
plane by regular hexagons, see Figure 13. We shall estimate the maximum
relative diameter dM for these k-subdivisions, obtaining an upper bound for
the minimal value of dM , which we conjecture it is the optimal one for large
values of k ∈ N.

Lemma 6.6. Let C be a planar convex body C. For each k ∈ N, there exists

a k-subdivision Sk such that

(6.6) dM (Sk, C) 6

√
A(C)

k

√
8

3
√
3
+O

(
1

k

)
.
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Proof. Call H the regular hexagon with unit diameter, and so A(H) = 3
√
3/8.

For any d > 0, let Ld be the planar lattice with fundamental cell dH. For any
k ∈ N, let dk be the unique positive solution of

(6.7) k A(dH) = A(C) + dP (C) + π d2,

where P (C) denotes the perimeter of C. It is clear that C is covered by the
union of the fundamental cells of Ldk with nonempty intersection with C.
Call n the number of such fundamental cells, which will be contained in the
outer parallel body C+ dk B, where B is the planar unit ball. Then, Steiner’s
formula and (6.7) give

nA(dk H) 6 A(C + dk B) = A(C) + dk P (C) + π d2k = k A(dH),

and so n 6 k. This means that the lattice Ldk induces a k-subdivision Sk of
C (if n < k, we can divide a fundamental cell until having a decomposition of
C into k connected subsets) with dM (Sk, C) 6 dk. This fact, together with a
straightforward estimate of dk by using (6.7), proves the statement. �

Remark 6.7. We stress that the k-subdivision Sk from Lemma 6.6 consists
of regular hexagons of diameter dk in the interior of the set, and portions of
such hexagons when meeting the boundary of the set.

Figure 13. A subdivision of the circle given by regular hexagons

The previous Lemma 6.6 gives an upper bound for the minimum possible
value of the maximum relative diameter for large enough values of k ∈ N.
However, we think that such a bound is the optimal one due to the following
fact: taking into account Lemma 6.1 and using the covering density [8] (recall
that the subdivision by circles would produce overlappings of the subsets), it is
easy to check that the bound from (6.6) can be obtained from the bound given
in (6.1), when k is large enough. This means, in some sense, that the hexagonal
tiling corrects the defects appearing in the decomposition by circles. In view
of this, we finish this section with the following Conjecture 6.8, regarding the
minimizing k-subdivisions for a planar convex set and large values of k ∈ N.

Conjecture 6.8. Let C be a planar convex set, and let S be any k-subdivision
of C. For large enough values of k ∈ N, the minimal value for dM (S,C)
is provided by the k-subdivision described in Lemma 6.6, given by regular
hexagons of fixed diameter in the interior of C and portions of such hexagons
when meeting the boundary of C.
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